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Herr, L. S. (Ph.D., Mathematics)

The Log Product Formula and Deformations of Modules

Thesis directed by Prof. Prof. Jonathan Wise

The material of this thesis is drawn from two distinct papers. One part concerns deformations

of modules. We pose an extension problem, the possibility and number of solutions of which

are encoded in a banded gerbe on a topos of modules. This object represents a class Def ∈

H2(A-mod/M, hK) in cohomology.

Work of L. Illusie [29] produced a class f ^ ω ∈ Ext2
A(M,K) with similar properties, and

questioned whether an approach along the lines of the present work was possible. We show that

the two groups H2(A-mod/M, hK) and Ext2
A(M,K) are isomorphic in such a way that our class is

mapped to the inverse of Illusie’s.

Our topology is an analogue for modules of that found in [71], [70]. These papers contain an

erroneous argument; the present work is logically independent. Our work depends nevertheless on

the ideas of those papers, and similarly circumvents the cotangent complex in the hopes of greater

concreteness and simplicity.

The other portion of this thesis concerns logarithmic, or “log” geometry and its relationship

with intersection theory. The standard intersection theory toolkit of normal cones, virtual funda-

mental classes, and Gysin Maps was introduced implicitly for the log context in the seminal work

[23]. These definitions depend on the stacks and deformation theory developed by Olsson [60], [61].

Our techniques also rely on Artin Fans [2], Log Blowups [37], and a strictifying factorization found

in [33].

To the author’s knowledge, the present work is the first to explicitly examine and define log

normal cones and their relatives. We aspire to develop this new technology further in future work,

and regard the paper as a survey of foundational results in this direction. As an application, we

prove a log version of a well-known theorem which computes the Gromov-Witten Invariants of a
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product in terms of those of its factors. This extends results proved in [42].
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Chapter 0

How to Read This

But where to start? he said Boston? College? 12th, 11th, 10th, 9th, 8th! 7th, 6th,

5th, 4th, 3rd, 2nd, 1st Grade? Kindergarten? Supervised play area? Birth? No! I

am blameless. If for no other reason than that my initial error can’t be

pinpointed. Whose can be? Fisher shut his mouth for a while, as he was gradually

overcome with an old fear[:] That of all his misfortunes owing to his complete

ignorance of the multiplication table.

[51, pg. 223]

We implore the reader to skip the first three chapters of the present volume. The original

mathematical content is entirely contained in Chapters 4 and 5. The rest is meant as an expedient

introduction to concepts used therein, and will have served its purpose if it temporarily relieves

the readers of the burden of familiarizing themselves with the broader literature surrounding topoi,

intersection theory, and logarithmic geometry.

The reader who wishes to gain any reasonable grasp on them should take up [52], [20], [63,

02P3], [38], [37], and [59] in earnest. Knowing full well that these references are irreplaceable, we

have followed them as unerringly and completely as possible. We apologize to the original sources

for not quoting them in full and to the reader for the illusion that such sources may be skipped.

Chapter 4 precedes Chapter 5 because the results are more important. We will make many

citations to the stacks project [63] and use only the 4-character tag as reference.



Chapter 1

Categories and Deformations

In mathematical cognition, insight is an activity external to the thing; it follows

that the true thing is altered by it. The means employed, construction and proof,

no doubt contain true propositions, but it must none the less be said that the

content is false. In the [Pythagorean Theorem] the triangle is dismembered, and

its parts consigned to other figures, whose origin is allowed by the construction

upon the triangle. Only at the end is the triangle we are actually dealing with

reinstated. During the procedure it was lost to view, appearing only in fragments

belonging to other figures. Here, then, we see the negativity of the content coming

in as well; this could just as much have been called a ‘falsity’ of the content as is

the disappearance of supposedly fixed conceptions in the movement of the Notion.

[10, Preface, # 43, pg. 25]

1.1 Categorical Preliminaries

Fix a universe without mention and consider only “small” sets lying in the universe, (Set).

Likewise, restrict attention to the 2-category of small categories (Cat), the category of small topo-

logical spaces (Top), the category of small schemes (Sch), etc. We reserve the right to emphasize

or omit the adjective “small.”
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1.1.1 Topoi

The goal of topoi and sites is to generalize intuition from sheaves on a topological space

to more exotic categories. We replace “open covers” by more general notions of cover which can

include covering spaces, smooth submersions, flat and surjective maps, etc.

Recall that a presheaf F on a category C is a contravariant functor

F : Cop → (Set).

Morphisms are natural transformations. The category of presheaves on a fixed category C is

denoted by Ĉ. The reader is left to formulate notions of presheaves of abelian groups, rings, etc.

on their own.

Definition 1.1.1. A full subcategory D ⊆ C is a sieve if, whenever X ∈ D and there exists an

arrow Y → X, then Y ∈ D. We may identify sieves D with subpresheaves of the final presheaf.

If X ∈ C, a sieve on X is a sieve of the “slice” or “over”-category C/X. We can generate a sieve

from any subset of C. Write hX for the Yoneda Presheaf:

hX(T ) := Hom(T,X).

A (Grothendieck) Topology on a category C is a distinguished collection of sieves J(X) on

each object X ∈ C called covering sieves satisfying

• The maximal sieve hX is in J(X),

• If D ∈ J(X) and f : Y → X, the sieve f∗D of all Z → Y such that Z → Y → X ∈ D is

covering for Y , and

• If D ∈ J(X) and E any sieve on X. If the pullback sieve f∗E is in J(Y ) for all f : Y →

X ∈ D, then E is in J(X).

A category with a topology is called a site. A sheaf on a site (C, J) is a presheaf F on C

such that the restriction map

F (X) = Hom
Ĉ

(hX , F )→ Hom
Ĉ

(D,F )
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is a bijection for all covering sieves D ∈ J(X). A (Grothendieck) Topos is a category E which is

equivalent to the category C̃ of sheaves on some site (C, J).

Given two topologies J, J ′ on a category C, we say that J ′ is finer than J if, for any X ∈ C,

J(X) ⊆ J ′(X). This endows the set of topologies on C with a poset structure. This poset structure

admits suprema [52, II.1.1.3].

A common way to specify a Grothendieck Topology on a category C with fiber products is to

provide, for each X ∈ C, a collection of distinguished families of arrows {Yi → X} called covering

families. This assignment must satisfy:

• All isomorphisms are covering families:

{X ′ ' X}.

• Covering families are stable under pullback: if {Yi → X} is covering and Z → X is any

morphism, then

{Yi ×X Z → Z}

is covering.

• Transitivity: If {Yi → X} is a covering family and we choose a covering family {Zij → Yi}

for each Yi, then the set of composites

{Zij → Yi → X}

is covering.

A family of arrows {Yi → X} defines a sieve D on X consisting of all T → X which factor through

some Yi → X. In this way, a collection of covering families yields a Grothendieck Topology.

If a topology is described by a collection of covering families, the sheaf condition for a presheaf

F may be expressed as the exactness of the sequences

F (X)→
∏

F (Yi)⇒
∏

F (Yi ×X Yj)

for any covering family {Yi → X} [52, Corollaire 2.4].
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Example 1.1.2. We collect a handful of examples of sites [58, Grothendieck pretopology – Revision

20], [63, 00UZ].

• The example which motivated the development of Grothendieck Topologies is the étale site.

Let S ∈ (Sch) be a scheme. Define the big étale site Bigét(Sch)/S of S to be the category

(Sch)/S with the topology generated by covering families

{Yi → X}

in which every arrow is étale and the family is jointly surjective.

• For set-theoretic reasons, it is often preferable to work with a modification of the first

example. Consider the category of S-schemes X → S whose structure map is étale. Endow

this with the same topology; namely, that covering families are families of étale maps which

are jointly surjective. This is called the small étale site, denoted (Sch/S)ét.

• An ordinary topology T ⊆ 2X on a set X is naturally a poset with Grothendieck Topology,

the covers being given by jointly surjective inclusions of open sets. In particular, {Ui ⊆ X}

is a covering family if and only if
⋃
Ui = X.

• A topology on the category of topological spaces itself may be generated by surjections

{Y → X} which admit sections over a cover
⋃
Ui = X:

Y

Ui X.

• The category of R-manifolds has a topology given by surjective submersions.

• The chaotic or indiscrete topology on any category is the topology whose covering families

are just the isomorphisms {X ′ ' X}. Equivalently, the only covering sieve of an object X

is hX . Sheaves for this topology are the same as presheaves.
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Beware that seemingly different systems of covering families may induce equivalent topoi.

E.g., consider the topologies generated by jointly surjective smooth morphisms and jointly surjective

étale morphisms [63, 055V].

Definition 1.1.3. Consider the set of covering sieves J(X) of an object X in a site C. Order J(X)

by inclusion. If F is a presheaf on C, define

LF (X) := colimD∈J(X) Hom
Ĉ

(D,F ).

The collection of covering sieves J(X) is natural in X due to pullbacks of covers remaining covers;

via these maps, the colimits over them obtain a functoriality, and LF (·) is a presheaf.

The natural inclusion hX ∈ J(X) gives rise to a map

` : F → LF,

which may be thought of as a morphism of endofunctors id⇒ L on Ĉ.

The presheaf LF isn’t quite a sheaf, but L(L(F )) always is. If F is already a sheaf, then

` : F → L(L(F )) is an isomorphism. The functor L is left-exact [52, Proposition II.3.2].

In other words, the inclusion of the category of sheaves into that of presheaves i : C̃ ⊆ Ĉ

admits an exact left adjoint L ◦ L. Given a presheaf F , we write

F sh := L(L(F ))

and call this object the “sheafification” of F .

Remark 1.1.4. Warning: There are presheaves on certain sites with no sheafification! See [67,

Theorem 5.5] for an example for the fpqc topology. The issue is set-theoretic, and disappears if the

site possesses a set of topological generators or if one is careful with Grothendieck Universes.

Remark 1.1.5. Warning: The inclusion i : C̃ ⊆ Ĉ is left-exact but not right-exact in general!

Example 1.1.6. The presheaves hX representing objects X ∈ C are not sheaves in general. In

other words, the Yoneda Embedding

C → Ĉ; X 7→ hX
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needn’t factor through the subcategory C̃ ⊆ Ĉ. We consider the sheafified Yoneda Embedding

C → Ĉ → C̃ ; X 7→ (hX)sh

in bad cases.

The topology of C is said to be subcanonical if the presheaves hX are already sheaves. Because

the poset of topologies admits suprema, there is a finest subcanonical topology, called the canonical

topology.

In “nice” categories [58, regular category – Revision 50], the canonical topology has a simple

description: A morphism {Y → X} is covering if the diagram

Y ×X Y ⇒ Y → X

is a coequalizer. The map Y → X is then called an effective epimorphism.

Functoriality among topoi boils down to the observation: Restriction of functors may have

left and right adjoints, provided the target category has sufficient limits or colimits.

Definition 1.1.7. Suppose u : C → D is a functor and E is a category. Precomposition defines a

functor

u∗ : Hom(D,E)→ Hom(C,E).

If this functor has adjoints, the right adjoint Ranu is called the “Right Kan Extension” and

the left adjoint Lanu is called the “Left Kan Extension.” Explicitly, consider F : D → E and

G : C → E. We get equivalences between natural transformations:

HomHom(C,E)(G,F ◦ u) = HomHom(D,E)(LanuG,F ),

HomHom(C,E)(F ◦ u,G) = HomHom(D,E)(F,RanuG).

The picture:

C E

D

u

G

 
E.

D

LanuG
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Remark 1.1.8. There is a dictionary at the heart of category theory which defines Kan Extensions,

limits/colimits, adjoints, etc. all in terms of each other. For example, the colimit of a diagram

G : C → E is its left Kan Extension along the functor C → ∗ to the punctual category.

If E in the diagram

C E

D

G

u

has suitable limits/colimits, we show how to construct the Kan Extensions of G [52, Proposition

I.5.1].

For d ∈ D, let d\u denote the category where

• Objects are c ∈ C together with d→ u(c).

• Morphisms are morphisms c→ c′ which, after applying u, commute with the maps from d.

There is a natural diagram in E for any d ∈ D given by

d\u→ C
G→ E.

Then the Right Kan Extension can be specified on an object d by

RanuG(d) := lim(d\u→ C
G→ E).

Likewise, define a category u/d for d ∈ D to be objects c ∈ C together with a map u(c)→ d.

The left Kan Extension has the opposite formula

LanuG(d) := colim(u/d→ C
G→ E).

We will be primarily interested in the case E = (Set) and our sources are opposite categories

u : Cop → Dop. Our formulas become:

LanuG(d) := colim(d\u→ Cop → G),

RanuG(d) := lim(u/d→ Cop → G).

In this case both always exist, and we write u!G := LanuG, u∗G := RanuG.

Note that u!hX = hu(X).
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Definition 1.1.9. Let C,D be sites. A functor u : C → D “continuous” if restriction along u

sends sheaves to sheaves:

D̃ C̃

D̂ Ĉ.u∗

This means that if G ∈ D̃ is a sheaf on E, the precomposition G ◦ u is a sheaf on C.

A functor u : C → D is called “cocontinuous” if the right adjoint u∗ of the restriction u∗

sends sheaves to sheaves.

If we want to distinguish between the functors u!, u
∗, u∗ on presheaves or on sheaves, we may

write

û!, û
∗, û∗

for presheaves and

ũ!, ũ
∗, ũ∗

for sheaves.

Proposition 1.1.10. We recall intrinsic definitions of continuous and cocontinuous for functors

u : C → D between sites.

• The functor u is continous if and only if [52, Proposition III.1.2]:

∗ For all covering sieves R ⊆ hX in C, the sheafification of the map of presheaves

u!R ⊆ u(X) on D is an isomorphism.

∗ There exists a functor u! : C̃ → D̃ commuting with colimits which extends u:

C D

C̃ D̃ .

u

u!

The functors (u!, u
∗) form an adjoint pair.

∗ If both topologies are defined by covering families and u commutes with fiber products,

then continuity is equivalent to:
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– If {Yi → X} is covering in C, then {u(Yi)→ u(X)} is covering in D.

• The functor u is cocontinuous if and only if

∗ For every covering sieve R ⊆ hu(Y ) in D, the sieve generated by all Z → Y such that

u(Z)→ u(Z) is in R covers Y in C [52, Proposition III.2.2]. The sieve described is

u∗R×u∗hu(Y )
hY .

.

Example 1.1.11.

If (u, v) is an adjoint pair of functors, then u is cocontinuous if and only if v is continuous [52,

Proposition III.2.5].

If u : C → D is a functor and D is equipped with a topology, there is a finest topology on C making

u continuous. It is named the “induced topology.” A sieve R ⊆ hX is covering for the induced

topology on C if and only if, for all Y → X, the sieve

u!(R×hX hY )→ hu(Y )

becomes an isomorphism after sheafification on D. If fiber products exist in both categories and u

commutes with them, a family {Yi → X} is covering for the induced topology on C if and only if

{u(Yi)→ u(X)} is covering on D. For any site C, the topology on C is the induced topology from

the Yoneda Embedding

C → C̃

and the canonical topology on the target [52, Propositions III.3.2, III.3.5, Corollaire III.3.3].

If F is a presheaf on a site C, we endow the overcategory C/F with the topology induced from the

functor jF : C/F → C. The functor jF is also cocontinuous. If Y ∈ C, X ∈ C/Y , then sieves of X

in C/Y are the same as those of X ∈ C and this bijection takes covering sieves to covering sieves

[?].
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Theorem 1.1.12 (Comparison Lemma [52, Théorème III.4.1]). Let i : C ⊆ D be a full subcategory

of a site, endowed with the induced topology. If every object Y ∈ D can be covered by objects

belonging to C, then restriction of sheaves

i∗ : D̃ → C̃

is an equivalence. If the topology of D is subcanonical, the converse is also true.

Example 1.1.13. Consider the category of affine schemes C = (Aff) and the category of all

schemed D = (Sch). Every scheme may be covered by affines as part of the definition. The

Comparison Lemma implies that the restriction

(̃Sch)→ (̃Aff)

is an equivalence.

Consider a fixed topological space X and the poset of its open subsets Ouv(X). Let B be

a basis of open sets, and consider it with its natural sub-poset structure of Ouv(X). Then the

Comparison Lemma says restriction

Õuv(X) ' B̃

is an equivalence.

1.1.2 Simplicial Objects

Definition 1.1.14. The category ∆ has objects [n] given by the poset 0 ≤ 1 ≤ · · · ≤ n with

morphisms respecting the partial order ≤. It is equivalent to the category of linearly ordered finite

nonempty sets. All morphisms may be expressed as composites of the codegeneracy σi : [n]→ [n−1]

and coface maps ∂i : [n] → [n + 1]: the former is surjective and sends i, i + 1 both to i, while the

latter is injective and omits i.

Denote by ∆̂ the category of presheaves on ∆, referred to as “simplicial sets.” Given a

simplicial set X, write Xn instead of X([n]) and write the restriction maps as si = σ∗i : Xn−1 → Xn
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and di = ∂∗i : Xn+1 → Xn. The Yoneda embedding

∆→ ∆̂

gives us standard simplicial sets that we will write ∆n := h[n]. The kth horn Λnk ⊆ ∆n is the

subpresheaf corresponding to the sieve generated by the coface maps ∂i for i 6= k:

Λ2
1 ⊆ ∆2

1

0 2

Λ3
3 ⊆ ∆3

0

2

1

3.

We call a functor ∆ → C a cosimplicial object in C and ∆op → C a simplicial object in C.

We denote simplicial objects in C as C∆op
.

Remark 1.1.15. For C, D two categories, let Hom?(C,D) temporarily denote the full subcategory

of the functor category whose objects are functors f : C → D which preserve colimits.

The Yoneda embedding into the presheaf category C → Ĉ is the “free cocompletion” of C in

the sense that restriction induces an equivalence of categories:

Hom?(Ĉ,D) = Hom(C,D).

There is a canonical cosimplicial category

[·] : ∆→ (Cat).

defined by [·](n) := [n], regarded as a poset category. This gives rise to a fully faithful nerve functor

(Cat) ∆̂

C N(C),
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where n simplices of N(C) are given by

N(C)n := Hom(Cat)([n], C).

By the above free cocompletion property, we have

Hom?(∆̂, (Cat)) = Hom(∆, (Cat)).

Therefore our cosimplicial category [·] extends naturally to a colimit-preserving functor

∆̂→ (Cat).

This functor is a left adjoint to the nerve N called the “homotopy category” [47, Definition 1.1.5.14].

As in [47, Proposition 1.1.2.2], the fully faithful functor N : (Cat) → ∆̂ has essential image

those simplicial sets S which satisfy a horn-filling condition: for any bold diagram and 0 < k < n,

there exists a unique lift

Λnk S

∆n

∃!

This condition implies in particular that the simplicial set S is 2-coskeletal; i.e., that the functor

S : ∆ → (Set) is determined by its values S1, S0 and the structure maps between them. We may

identify categories with their nerve simplicial sets.

The 2-coskeletal condition on a small category C means it is determined by a diagram of sets

Mor C Ob C.

s

t

id

The horn-filling condition for Λ2
1 ⊆ ∆2 gives us the composition law

Mor C ×s,Ob C,t Mor C → Mor C.

The required associativity and compatibility with identity come from the horn-filling condition for

∆3.
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Recall that a category is called a groupoid if every arrow is an isomorphism. Equivalently,

there is a function

i : Mor C → Mor C

such that i(f) is the inverse to f [63, 0230].

1.1.3 Generalities on Categories

Definition 1.1.16. A 2-category C is a category enriched in categories [62, Appendix B], [63,

003D]. This means C has objects Ob C and, given any pair x, y ∈ Ob C, there’s a category

HomC(x, y) of morphisms between them. The objects of the category HomC(x, y) are referred to

as 1-morphisms and the morphisms are 2-morphisms. The diagram

x yg

f

η

means f, g are objects of HomC(x, y) and η is a morphism between them.

In this setting, “composition” of 2-morphisms can have two distinct meanings:

• Composition within a single category HomC(x, y). This is called “vertical composition:”

x y.
η

ζ
 x yη◦ζ

• Composition via the composition functor from the enriched category C, called “horizontal

composition:”

◦ : HomC(x, y)×HomC(y, z)→ HomC(x, z).

x y z

f

g

f ′

g′

η ζ  x y

f ′◦f

g′◦g

η?ζ

A (2, 1)-category is a 2-category in which all 2-morphisms are invertible with respect to

vertical composition.
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We remark that there is a sense in which one can compose 2-morphisms with 1-morphisms in

a 2-category C sometimes called “whiskering.” Let f ∈ HomC(x, y) and η : g ⇒ g′ ∈ HomC(y, z):

x y z.
f

g′

g

η

These data yield a 2-morphism η ? idf :

x z.

g′◦f

g◦f

η?idf

We consider the 2-category (Cat) as a (2, 1)-category. That is, it has

• Objects: small categories C.

• Morphisms: Functors between categories.

• 2-Morphisms: Natural isomorphisms between functors.

We disallow general natural transformations in (Cat) to cohere with [47] and the conventions for

algebraic stacks in [63]. It also simplifies the discussion of 2-fiber products:

Definition 1.1.17. A 2-commutative square is a diagram of functors between categories:

A B

C D

q

g f

p

together with a natural isomorphism η : f ◦ q ' p ◦ g.

The 2-fiber product of a cospan C
p→ D

f← B is the category C ×D B with:

• Objects given by pairs of objects c ∈ Ob C, b ∈ Ob B together with an isomorphism

p(c) ' f(b).

• Morphisms (c, b) → (c′, b′) are pairs of morphisms c → c′ ∈ C, b → b′ ∈ B such that the

square

p(c) p(c′)

f(b) f(b′)

∼ ∼

commutes in D.
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The 2-fiber product sits in a 2-commutative diagram

C ×D B B

C D

p′

f ′ f

p

η0 : f ◦ p′ ' p ◦ f ′,

with f ′, p′ given by projection onto c, b and the natural isomorphism η given by the structure

isomorphisms from each object.

This category satisfies an important property: given any 2-commutative square

A B

C D

q

g f

p

η : f ◦ q ' p ◦ g,

there exists a functor z : A → C ×D B and a natural transformation η0 such that the horizontal

composition

A C ×D B Dz
η0

gives the arrow η = η0 ? idz. Moreover, any two such functors z : A→ C ×D B are isomorphic.

Remark 1.1.18. The “important property” of the 2-fiber product should be taken as a definition.

All 2-commutative squares with that property are equivalent.

For more general limits of categories, one should resort to the “homotopy limit” which serves

as a notion of limit for ∞-categories. If C is a category enriched in nice topological spaces and

p : I → C is a diagram, the map

HomC(x, lim
I
p)→ holimI HomC(x, p(·))

should be a homotopy equivalence. We won’t use these homotopy limits explicitly, so we don’t

discuss them further.

Say a category I is finite if Ob I and Mor I are both finite (possibly empty). Given a category

C, define a category C/ to have

• Objects {“−∞”}
⊔

ObC
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• Morphisms

HomC/(x, y) :=



HomC(x, y) if x, y ∈ C

{∗} if x = −∞

∅ if y = −∞, x 6= −∞

As a simplicial set, C/ is the join ∆0 ? C. Write C. := ((Cop)/)op.

Definition 1.1.19. A category C is called cofiltered if, for every diagram d : I → C indexed by a

finite category I, there is an extension of d to a functor d/ : I/ → C. In other words, one can find

another object of C with maps to every object in the image of d such that these maps commute

with the maps in d.

We say C is filtered if its opposite category is cofiltered; equivalently, every finite diagram

d : I → C can be extended to d. : I. → C.

We say the limit or colimit of a functor F : C → D is cofiltered or filtered if C has that

property.

Remark 1.1.20. A category C is cofiltered if and only if it satisfies:

(1) The category C is nonempty.

(2) Given a cospan depicted by solid arrows:

W X

Y Z,

one can extend it to the commutative square with the dashed arrows.

(3) Given two arrows f, g : X ⇒ Y , there is another h : W → X such that f ◦ h = g ◦ h.

Definition 1.1.21 ([52, Définition 2.4.1]). Let C be a category with finite limits and colimits. A

functor f : C → D is left-exact if the natural map

f(lim
I
p(i))→ lim

I
f(p(i))
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is an isomorphism, for any finite diagram p : I → C. It is called right-exact if the maps

colimI f(p(i))→ f(colimI p(i))

are isomorphisms, for all finite diagrams p : I → C. The functor is called exact if it is both left

exact and right exact.

Given an adjoint pair (u, v) of functors, u is right-exact and v is left-exact.

Remark 1.1.22. Filtered colimits and cofiltered limits are often exact, meaning they commute

with all finite limits and colimits. This is almost Grothendieck’s AB5 condition [63, 079A]. This

property holds for (Set) as well as any topos.

Definition 1.1.23. Fix a category C.

A map X → Y is an epimorphism if, for all T ∈ C, the restriction map

Hom(Y, T )→ Hom(X,T )

is injective. We say a family of arrows {Xi → Y } is an epimorphism if the restriction map as above

to the product
∏

Hom(Xi, T ) is injective.

If C has products, we say that an epimorphism f : X → Y is

• universal if any pullback of f is also an epimorphism,

• effective if the diagram

X ×Y X ⇒ X → Y

is a coequalizer.

A zero object 0C ∈ C in a category is an object which is both initial and final. If f : X →

Y ∈ C is a morphism, the kernel of f is the pullback 0C ×Y X. Likewise, the cokernel of f is the

pushout X tY 0C .

A functor F : C → D is called conservative if it “detects isomorphisms:” whenever f : X →

Y ∈ C is such that F (f) is an isomorphism in D, f is an isomorphism in C.
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Definition 1.1.24. Let D ⊆ C be a full subcategory. Consider the Yoneda embedding composed

with restriction to D:

ϕ : C → Ĉ → D̂

X 7→ Hom( · , X)

We say D generates C if ϕ is conservative. We say D generates C

• by epimorphisms if ϕ is faithful.

• by strict epimorphisms if ϕ is fully faithful.

We have the implications:

(generating by strict epimorphisms)

(generating) (generating by epimorphisms)

Remark 1.1.25. The reader may check that the conditions of Definition 1.1.24 may be simply

expressed on objects:

• D generates C if and only if, given any morphism X → Y in C such that

Hom(T,X)→ Hom(T, Y )

is a bijection for all T ∈ D, X → Y is an isomorphism.

• D generates C by epimorphisms if and only if, for all Y ∈ C, the family {T → Y } of all

arrows with target Y and source T ∈ D is an epimorphic family.

• D generates C by strict epimorphisms if that same family is not only epimorphic but strictly

epimorphic.

Definition 1.1.26 ([47, A.1.1.2]). An object X in a category C which admits small colimits is

called finitely presentable if the natural map

colimI Hom(X,Yi)→ Hom(X, colimI Yi)
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is an isomorphism for I filtered.

A category C is called presentable if it admits small colimits and there is a subset S ⊆ ObC

such that every object in S is finitely presentable and every object in C may be obtained as the

colimit of objects in S.

Example 1.1.27. The abelian group Z
[

1

2

]
= colimn∈N

1

2n
Z is not finitely presented because the

identity map doesn’t lie in the image of any finite stage

Homabgrp(Z
[

1

2

]
,

1

2n
Z).

Abelian groups and R-modules in general are presentable however, using the set of finitely

presentable objects

{R/I | I ⊆ R an ideal.}

A stack is intuitively defined as a sheaf of categories. We make sense of a (contravariantly)

fibered category and then require gluing for both objects and morphisms, much the same as one

defines a sheaf [65].

Definition 1.1.28. Consider a functor p : F → C. Let ϕ : α → β be an arrow in F with image

f : U → V . We say ϕ is cartesian if, for all ψ : γ → β lying over an arrow g : W → V and

h : W → U such that g = f ◦ h, there exists a unique arrow χ : γ → α such that ϕ ◦ χ = ψ and

p(χ) = h. Pictorially,

α β F

γ

U V C.

W

ϕ

p

∃!χ

ψ

f

h

g

This amounts to the functor

F/ϕ→ F/β ×C/V C/f

being an equivalence of categories [47, Remark 2.4.1.2].
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A fibered category p : F → C is a functor such that, for any f : U → V in C and β ∈ C with

p(β) = V , there exists a cartesian arrow ϕ : α→ β with p(ϕ) = f . The fiber of p over some object

U ∈ C is the category FU with:

• Objects: α ∈ F such that p(α) = U .

• Morphisms: ϕ : α→ β such that p(ϕ) = idU ; in particular, p(α) = p(β) = U .

Given an arrow ϕ : α → β ∈ F , we can record the pair (p(ϕ), β). There is a contractible

space of cartesian arrows (“unique up to unique isomorphism”) ϕ inducing a fixed (f, β) which is

nonempty precisely if the functor p is a fibered category. A cleavage of p : F → C is a choice of a

cartesian arrow inducing every such (f, β) ∈ C [1]×t,C,pF . A cleavage exists by the axiom of choice.

Having fixed a cleavage, we write β|U or f∗β and say “pullback of β along f” for the source of the

cartesian arrow in the cleavage inducing (f, β).

We record a few examples of fibered categories from [65, 3.2].

Example 1.1.29. These functors all give fibered categories:

• Consider a category C admitting fiber products. Let C [1] be the “category of arrows” in

C:

∗ Objects: Arrows f : X → Y in C and

∗ Morphisms: Commutative Squares

X X ′

Y Y ′.

f f ′

The functor C [1] → C sending f : X → Y to Y yields a fibered category. The cartesian

arrows are precisely cartesian squares. This justifies the nomenclature.

• The functor (Top) → (Set) assigning to each topological space its underlying set is a

fibered category. Cartesian arrows are continuous functions f : X → Y for which X has

the induced topology from f .
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• Let G be a group object in a topos E. A G-torsor in E is

We may identify fibered categories p : F → C endowed with a cleavage with “pseudo-functors”

q : C → (Cat). To produce a pseudo-functor from a fibered category with cleavage, send U ∈ C to

the fiber FU and send f : U → V in C to the “functor” FV → FU which sends β ∈ FV to a source

of a cartesian arrow ϕ : α→ β lying over f .

For the other direction, send a pseudo-functor q : C → (Cat) to the category of pairs (U,α),

with U ∈ C and α ∈ q(U). This lies over C via projection onto the first factor. There is a general

construction called “straightening” and “unstraightening” at play here which is analogous to the

identification between functions and sections of trivial bundles [47, §3.2].

In analogy with the procession from presheaves to sheaves, a fibered category is sometimes

called a “pseudo-functor.” We think of a fibered category as a “functor” C → (Cat) sending U to

FU .

For such a “presheaf of categories” to be a stack, it must satisfy a “gluing” or “descent” axiom.

Consider a fibered category F → C over a site C. The gluing axiom requires an equivalence

FX → holimU∈DFU

for any X ∈ C and D ⊆ hX covering sieve [58, descent – Revision 42]. Because this definition lacks

concreteness, we spell out the category on the right when C has fiber products.

Definition 1.1.30. Let C be a site with fiber products and F → C be a fibered category. Consider

a covering family U = {Ui → U} and write Uij := Ui ×U Uj , Uijk := Ui ×U Uj ×U Uk, etc.. A

descent datum for U [65, Definition 4.2] is a pair of sets ({ξi}, {ϕij}) of

• Objects ξi ∈ FUi and

• Isomorphisms ϕij : ξi|Uij ' ξj |Uij beween restrctions to each intersection Uij such that
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• The isomorphisms {ϕij} satisfy the “cocycle condition” that the triangle

ξj |Uijk

ξi|Uijk ξk|Uijk

ϕjk∼
◦

ϕij∼

ϕik∼

should commute.

Descent Data for U form a category FU whose objects are descent data and morphisms

({ξi}, {ϕij})
f→ ({ηi}, {ψij}) are

• Collections of arrows fi : ξi → ηi such that

• The diagrams

ξi|Uij ηi|Uij

ξj |Uij ηj |Uij

fi

ϕij ◦ ψij

fj

commute.

There is a natural map

FU → FU

which associates to an object ξ ∈ FU all its pullbacks to Ui, Uij , Uijk, etc. The fibered category F

is a stack if this natural map is an equivalence.

We sketch a way to do without the choice of cleavage in our definition of descent data [65,

page 73]. Define categories of diagrams in F

F�U :=



ξijk ξjk

ξik ξk

ξij ξj

ξi ξ



F∆
U :=



ξijk ξjk

ξik ξk

ξij ξj

ξi
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where such diagrams lie over the diagram of structure maps between Uijk, Uij , Ui, etc. in such a

way that every arrow is cartesian. Because the space of choices of a cartesian arrow is contractible

the morphism F�U → FU sending such a cube to ξ is an equivalence. Choose an inverse to this

equivalence and compose with the forgetful functor:

FU → F�U → F∆
U

to obtain a functor which is naturally isomorphic to any natural map FU → FU coming from a

chosen cleavage as in Definition 1.1.30. A “coordinate-free” way to formulate the stack condition

is therefore that the forgetful map

F�U → F∆
U

is an equivalence.

We will be primarily interested in stacks p : F → C such that each fiber FU is a groupoid.

To emphasize this property, we may say F is a stack in groupoids.

The (2, 1)-category of stacks over a fixed site C has

• Objects given by stacks over C,

• Morphisms given by functors which commute with the structure functors to C,

• Natural transformations are required to be natural isomorphisms.

1.1.4 Cohomology in a Topos

Definition 1.1.31. A category A is

• additive if it is enriched over abelian groups and has finite coproducts.

• abelian if it is additive, it admits kernels and cokernels, and, for every map f : X → Y , the

canonical morphism

coker(ker f → X)→ ker(Y → coker f)

is an isomorphism.
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A functor f : A → B between categories enriched over abelian groups is called additive if

the map induced by f

HomA(x, y)→ HomB(f(x), f(y))

is a group homomorphism for every x, y ∈A.

Remark 1.1.32. Consider objects X1, . . . Xn ∈ A in an additive category. By Proposition 2.1 of

[58, additive category – Revision 33], the map

⊔
Xi →

∏
Xi

given by the collection of arrows

Xi → Xj =


idXi if i = j

0 if i 6= j

is an isomorphism. To emphasize the symmetry in this situation, we write

⊕
Xi :=

⊔
Xi '

∏
Xi.

In particular, the zero object is given by the empty product/coproduct.

Definition 1.1.33. An object I ∈A in an abelian category is injective if, for all spans

X Y

I

i

with i a monomorphism, there exists a dashed arrow making the diagram commute.

An abelian category A is said to have enough injectives if every object may be embedded

into an injective object.

An object P ∈A in an abelian category is projective if, for all cospans

P

X Y,
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in which X → Y is an epimorphism, there exists a dashed arrow making the diagram commute.

We say A has enough projectives if every object X has an epimorphism P → X from a projective

object P .

Remark 1.1.34. If an abelian category A has a generator, admits direct sums, and filtered

colimits are exact, then it has enough injectives [24, Theorème 1.10.1]. Under these hypotheses, A

is sometimes called a Grothendieck abelian category.

If (u, v) is an adjoint pair and u is left-exact, then v sends injectives to injectives [52, Propo-

sition V.0.2].

Any abelian category A admits a fully faithful and exact functor into A-mod, for some ring A.

If A has small coproducts and a generator x ∈A which is projective and of finite presentation, then

it’s equivalent to A-mod for A = Hom(x, x)op [58, Freyd-Mitchell embedding theorem – Revision

7].

See [24] for elaboration on abelian categories, chain complexes, injective resolutions, quasi-

isomorphisms, spectral sequences, etc.

Proposition 1.1.35. Consider A
f→ B

g→ C two additive, left-exact functors between abelian

categories. Suppose A and B have enough injectives and that f takes injectives to objects which

are acyclic for g. Then there exists a spectral sequence of functors [24, Theorème 2.4.1]

Ep,q2 := Rpg ◦Rqf ⇒ Rp+qg ◦ f.

This goes by the name of the “Grothendieck-Leray” Spectral Sequence.

Now fix (E,A) a topos with a commutative ring object A ∈ E. Let B be another ring in E.

Proposition 1.1.36 ([52, Proposition 1.2]). This pair of statements are equivalent for a B − A-

bimodule M :

• M is left-A-flat: the functor

P 7→ P ⊗AM

is exact.
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• For every injective B-module I, the left A-module HomB(M, I) is injective.

The categories of left and right A-modules are equivalent by commutativity. We denote this

category by A-mod. If X ∈ E, and N is an A-module in E, define the cohomology groups:

Hp(X,N) := ExtpA(A(X), N).

The module A isn’t included in the notation because the cohomology groups are independent of

the sheaf of rings. That is, they only depend on the underlying sheaf of abelian groups of N [52,

Corollaire 3.5]. The ext-groups are, by definition, the derived functors of

HomA(A(X), N) = HomE(X,N) = Γ(X,N) = N(X).

1.2 Differentials and Deformations

1.2.1 Kähler Differentials

Definition 1.2.1. Let A→ B be a ring map and J a B-module. An A-derivation δ : B → J is an

A-linear map satisfying the “Leibniz Rule:”

δ(fg) = fδ(g) + gδ(f).

From this, we see δ(A) = 0. The set of A-derivations from B to J is denoted DerA(B, J) and

possesses a natural B-module structure.

In the same context, an A-extension of B by J is a surjection B′ → B of A-algebras with

kernel J such that J2 = 0 via the multiplication of B′. In this context, J also has the structure of

a B-module. The set of A-extensions of B by J up to equivalence is denoted ExalA(B, J) and also

possesses a natural B-module structure.

These groups are functorial in a sense we make explicit.

• A morphism of B-modules J → J ′ yields maps

DerA(B, J)→ DerA(B, J ′)
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and

ExalA(B, J)→ ExalA(B, J ′)

coming from postcomposition and the pushout of extensions:

0 J B′ B 0

0 J ′ B′ ⊕J J ′ B 0.
y

• A commutative square of rings

B0 B1

A0 A1

begets maps

DerA1(B1, J)→ DerA0(B0, J)

and

ExalA1(B1, J)→ ExalA0(B0, J)

coming from precomposition and the pullback of extensions:

0 J B′1 ×B1 B0 B0 0

0 J B′1 B1 0.

p

The reader is invited to verify the claimed exactness. These functorialities commute and give rise

to group structures:

DerA(B, J)⊕DerA(B, J) DerA×A(B ×B, J ⊕ J) DerA(B, J)

ExalA(B, J)⊕ ExalA(B, J) ExalA×A(B ×B, J ⊕ J) ExalA(B, J).

The reader can check that the group structure on derivations amounts to pointwise addition. The

group structure on extensions sends a pair of extensions

0 J B′ B 0

0 J B′′ B 0
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to the extension given by the pushout:

0 J ⊕ J B′ ×B B′′ B 0

0 J B̃ B 0.

id+id

y

There is a universal A-derivation d : B → ΩB/A in the sense that

DerA(B, J) = HomB(ΩB/A, J)

via precomposition with d. The target ΩB/A is called the module of Kähler Differentials. One may

form ΩB/A as a quotient of the free B-module on symbols {db|b ∈ B} under the relations:

• da = 0 if a ∈ A,

• d(b+ b′) = db+ db′, and

• d(b · b′) = bdb′ + b′db.

Define an A-algebra B + εJ called the “trivial extension” or the “algebra of dual numbers”

to have underlying A-module B ⊕ J and multiplication

(b, j) · (b′, j′) := (bb′, bj′ + b′j).

The projection onto the first coordinate defines an A-algebra map B + εJ → B. This yields an

A-extension of B by J . The multiplication is defined so that

HomA−alg/B(B,B + εJ) = DerA(B, J),

where the lefthand side refers to A-algebra sections of the map B + εJ → B.

A crucial simple case of Kähler Differentials is when B = A[S] is the free A-algebra on some

not necessarily finite set S. Then ΩA[S]/A = A[S]S ; that is, they are the free A[S]-module on S.

This is because the Leibniz Rule determines the value of a derivation out of A[S] on monomials in

S based on its values on the elements of S.
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In classical Algebraic Geometry, a composable pair of ring maps A → B → C gives rise to

an exact sequence

ΩB/A ⊗B C → ΩC/A → ΩC/B → 0,

or equivalently

0→ DerB(C, J)→ DerA(C, J)→ DerA(B, J).

If we assume B → C is surjective, then ΩC/B = 0. Let I = ker(B → C). Then this sequence

extends to

I/I2 d→ ΩB/A ⊗B C → ΩC/A → 0.

This “conormal sequence” gives the most practical way to compute Kähler Differentials, via a trick

which is we will reuse later to define the cotangent complex. Given A → C a ring map, choose a

free A-algebra B = A[S] and a surjection B → C. Then ΩB/A ⊗B C = CS and ΩC/A is seen to be

the quotient of this free module by the Jacobian map d.

The conormal sequence asks a question: is it possible to extend the “functor of Kähler

Differentials” to the left and get a long exact sequence? The answer is yes, although we offer a

modular interpretation for the more immediate terms to the left before extending all the way.

Proposition 1.2.2. The exact sequence of derivations may be extended to a longer exact sequence:

0 DerB(C, J) DerA(C, J) DerA(B, J)

ExalB(C, J) ExalA(C, J) ExalA(B, J).

u v

∂
u′ v′

Proof. The map u is the natural inclusion and v is the restriction. It is then clear that they compose

to zero and the sequence is exact at that step. The map ∂ sends a derivation δ : B → J to the

extension

0→ J → C + εJ → C → 0,

with C + εJ regarded as a B algebra via B
id+δ−→ B + εJ → C + εJ . Because δ was an A-derivation,

it’s clear that u′ ◦ ∂ = 0. Moreover, if u′ sends an extension to 0, it’s clear that the extension splits



31

as an extension of modules as above. For this to be a splitting of A-algebras means the B-derivation

B → C + εJ → J is 0 on A, which gives us exactness of the composable pair ∂, u′.

The map v′ simply pulls an extension back along the map B → C:

0 J B ×C C ′ B 0

0 J C ′ C 0.

p

The cartesian square attests to the fact that splittings of the pullback are equivalent to B-algebra

structures on the original extension, which is the content of exactness of the composable pair v′, u′.

1.2.2 The Cotangent Complex

We observe without further mention that everything we’ve said so far can be done in the

context of sheaves of algebras and modules in a topos, as opposed to merely in the category of sets.

Fix such a topos E. We may identify sheaves on E for the canonical topology with objects in E

that represent them.

Consider a map of rings in E. If S ∈ E, define the free A-algebra on S to be the sheafification

of the presheaf:

U → A(U)[S(U)].

This yields a functor F : E → A-alg, which is the right adjoint of the forgetful functor U : A-alg→

E. Likewise, the free A-module on S ∈ E is denoted A(S) and defined as the sheafification of the

presheaf

U 7→
⊕
S(U)

A(U).

Consider an A-algebra B, and apply FU repeatedy to B to get an augmented simplicial

object:

P• : · · ·A[A[A[B]]]
→
⇒ A[A[B]]⇒ A[B]→ B.

That is, Pn := A[A[· · · [B] · · · ]] = (FU)n+1B and there’s an augmentation P0 → B. This is an

example of the bar construction coming from the monad FU , and is sometimes called the standard
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resolution [63, 08PM]. It is patently a simplicial A-algebra, and we use it to define a simplicial

B-module LB/A∆
• via

LB/A∆
n

:= “(ΩP•/A ⊗P• B)n” := P (Pn−1)
n ⊗Pn B = B(Pn−1).

To be clear, the 0th simplex is LB/A∆
0

= B(B). This simplicial object admits an augmentation

LB/A∆
0
→ ΩB/A. Every face map is surjective, and so is the augmentation.

Recall the unnormalized chain complex [48, Definition 1.2.3.8]: consider a simplicial object

P• ∈A∆op
in an additive category A. Define the unnormalized chain complex C∗(P•) to have the

same objects, and chain map the alternating sum of the face maps:

Cn(P•) = Pn

d : Cn(P•)→ Cn−1(P•); d :=
∑

(−1)idi.

In the case of an abelian category, we can also define a normalized chain complex [48, Def-

inition 1.2.3.9] which is quasi-isomorphic to the unnormalized chain complex. If A is idempotent

complete, the unnormalized chain complex forms part of the well-known Dold-Kan Equivalence:

Ch≥0(A) 'A∆op
.

Definition 1.2.3. The cotangent complex LB/A is the unnormalized chain complex of the simplicial

object LB/A∆
• . It is considered as an object in the derived category of B-modules.

Given A→ B → C, we get a transitivity triangle by choosing simplicial A-algebras compat-

ibly:

A P• Q•

A B C.

Because these simplicial algebras are free and smooth, we get a triangle in the derived category

[29, II.2.1]:

LB/A ⊗B C → LC/A → LC/B
+1→ . (1.1)
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The “Fundamental Theorem” [29, Theorème 1.2.3] of the cotangent complex is that

Ext1
B(LB/A, J) = ExalA(B, J).

One also computes that h0(LB/A) = ΩB/A using the augmentation and the fact that the Dold-Kan

Correspondance identifies homotopy groups of the simplicial objects to homology groups of the

complex.

These isomorphisms and the exact triangle (1.1) produce a long exact sequence from a C-

module J :

0 DerB(C, J) DerA(C, J) DerA(B, J)

ExalB(C, J) ExalA(C, J) ExalA(B, J)

Ext2
C(LC/A, J) · · · .

∂

In and around Proposition 1.2.5.4 [29], Illusie proves that this sequence is an extension of the long

exact sequence we described in Proposition 1.2.2.

In the case A → B → C with B → C surjective with kernel I and B a smooth A-algebra,

the cotangent complex is of perfect amplitude in [-1, 0] and is quasi-isomorphic to

I/I2 d−→ ΩB/A ⊗B C.

This corresponds on schemes to morphisms f : X → Y which factor as a closed immersion composed

with a smooth map. If A→ B is smooth in particular, then

LB/A = ΩB/A[0].

If A→ B is surjective with kernel I, then

h1(LB/A) = I/I2, h0(LB/A) = 0.

This means that [29, Lemme 1.2.8]

HomB(I/I2, J) = ExalA(B, J).
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This equality is obtained by pushing out the extension

0→ I/I2 → A/I2 → B → 0.

1.2.3 Deformations of Algebras

Fix an extension of rings

0→ J → A′ → A→ 0.

It may be possible to obtain a morphism between two extensions of algebras

η : 0 I B′ B 0

0 J A′ A 0

Such an extension η yields a morphism u : J ⊗A B → I of B-modules and includes the data of a

ring map A→ B. As in [29, Problème 2.1.2.1], the question is whether one can find such an η with

a fixed u(η) : J ⊗A B → I extending a fixed map A→ B.

In this case, the long exact sequence corresponding to the composable pair A′ → A → B

becomes:

0 DerA(B, I) DerA′(B, I) 0

ExalA(B, I) ExalA′(B, I) HomB(J ⊗A B, I)

Ext2
B(LB/A, I) · · · .

∼

u

∂

Here, we’ve used the calculation of algebra extensions in the surjective case: ExalA′(A, J) =

HomA(J/J2, I) and J2 = 0.

Then one can check [29, 2.1.2.2] that the map marked u in this sequence sends an extension

of algebras η to the induced map u(η) : J ⊗A B → I. This long exact sequence the claim that, for

any u ∈ HomB(J ⊗AB, I), there is an obstruction ∂u ∈ Ext2
B(LB/A, I) to the possibility of coming

up with an extension η which induces the given map u = u(η). Provided such an obstruction

vanishes and there does exist such an extension η, the sequence also articulates that the set of all
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such extensions is naturally a torsor under the group ExalA(B, I) [29, Proposition 2.1.2.3]. This

answers the question of classifying such η posed above.

We pause to mention that everything above has an analogue for graded algebras. There is

a graded cotangent complex LB/Agr which is isomorphic without grading to the original cotangent

complex LB/A. Graded derived maps out of such a graded cotangent complex classify graded

derivations and algebra extensions.

Illusie’s strategy for the deformations of modules is to embed the module deformation problem

into a deformation problem of graded algebras, so this will be important to us in the next section.

Complements are also explored in [29] concerning the deformations of maps between algebras,

modules, etc., but we will have no need for such constructions.

1.2.4 Deformations of Modules

This section summarizes results of [29, §IV.3].

Fix a ringed topos (E,A) and a squarezero extension of sheaves of A-algebras:

0→ J → A′ → A→ 0.

Fix A-modules M and K, naturally considered as A′-modules which J annihilates. We

consider extensions

ξ : 0→ K →M ′ →M → 0

of A′-modules – J need not annihilate M ′. From an extension ξ, we get an invariant map given on

local sections by:

θ(ξ) : J ⊗AM → K

j ⊗m 7→ jm′

where m′ ∈M ′ is a lift of m ∈M .

Illusie develops a notion of cotangent complex for graded algebras, and then obtains an exact

sequence which illuminates obstructions and classifications of extensions ξ as above with fixed map

θ(ξ). We sketch this approach before defining the sequence in an ad-hoc manner.
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Write C ′ := A + εM ′, C = A + εM , and endow them with the grading placing A in degree

zero and M,M ′ in degree one. Consider K as a module in degree one. The extension ξ of modules

begets an extension of graded algebras

0 K C ′ C 0

0 J A′ A 0,

with the lower row all in degree zero. This construction produces an isomorphism

Ext1
A′(M,K) ' ExalA′(C,K)gr,

where the right hand side refers to graded extensions of algebras. In this case, we see J ⊗AC → K

is precisely θ(ξ) : J ⊗AM → K.

In this context, the long exact sequence arising from the composable pair A′ → A→ C is of

the form:

0 DerA(C, J) DerA′(C, J) 0

Ext1
A(M,J) Ext1

A′(M,J) HomA(J ⊗AM,K)

Ext2
C(LC/A, J) · · ·

∂



Chapter 2

Intersection Theory and Virtual Fundamental Classes

Assumption 2.0.1. For this section and any using intersection theory, we assume that schemes

are finite type and Noetherian over a ground field K. The Stacks Project develops these ideas in

greater generality [63, 02QL].

Remark 2.0.2. Assumption 2.0.1 gives us a dimension function on points of our schemes X

defined by the transcendence degree: dimx = tr.degK k(x). It also gives us finite irreducible

decompositions. By [63, 02QO], the dimension of an integral subscheme Z with generic point ξ and

a closed point z ∈ Z is equivalently given by

• dimK ξ,

• dimZ, or

• dimOZ,z.

Definition 2.0.3. Let X ⊆ Y be the closed immersion of affine schemes coming from a surjection

B � A, and write I for the kernel. Apply SymB to the inclusion I ⊆ B and take the epi-mono

factorization to get the blowup algebra:

SymB I �
⊕
n≥0

In · tn ⊆ B[t].
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Now tensor · ⊗B A to restrict to X:

SymA I/I
2 �

⊕
n≥0

In/In+1 · tn ⊆ A[t].

Taking Spec defines the closed immersion of the normal cone into the normal sheaf :

CX/Y ⊆ NX/Y .

This construction didn’t depend on X,Y being affine, and we define the normal cone and normal

sheaf more broadly in the same way.

Remark 2.0.4. Let F be a coherent module on a scheme X. Then SymX F is an A1-module

scheme.

The normal cone and normal sheaf correspond to sheaves of graded rings S• =
⊕
n≥0

Si on a

scheme X with two important properties:

• S0 = OX ,

• S1 is coherent as a module and locally generates S•.

Assumption 2.0.5. We assume that all our sheaves of graded rings satisfy the preceding two

conditions.

Remark 2.0.6. What is the geometric meaning of our assumptions on graded rings? A grading

S• =
⊕
n≥0

Sn induces

γ : S• → S•[t], s 7→ s · tdeg s

which is a section of the map S•[t] → S• sending t to 1. If we compose γ with the map sending t

to 0, we get the map S• → OX sending everything with nonzero degree to 0.

On schemes, this entails an action of the monoid scheme A1 on C = SpecS• over X such that

the action of 0 factors through the vertex. The condition S0 = OX means killing off everything

in nonzero degrees is an isomorphism, and corresponds to the section of C → X called the vertex.

For S1 to locally generate S• means

SymX S
1 → S•
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is a surjection of sheaves, so every cone C embeds into an A1-module Cab := Spec SymX S
1.

Remark 2.0.7. A map f : X → Y is a local complete intersection if and only if CX/Y = NX/Y [8,

Proposition 3.12].

2.1 Chow Groups

This section is well-known. We provide a condensed summary of the results in [63, 02P3] and

[20].

2.1.1 Cycles and Multiplicities

Definition 2.1.1. A prime k-cycle of a scheme X is an integral, k-dimensional closed subscheme

Z ⊆ X. The group of k-cycles ZkX is the free abelian group generated by prime k-cycles. Note that

the k-cycles of X are the same as those of the reduction ZkX = ZkXred. Write Z∗X :=
⊕
k≥0

ZkX.

Remark 2.1.2. If X is of equidimension n, the group Zn−1X is nothing but the group DivX of

Weil Divisors. We sometimes say prime divisor for a prime (n− 1)-cycle in this setting.

Definition 2.1.3. Let R be a ring and M a finitely generated R-module. Given a finite, strictly

increasing filtration

0 = M0 (M1 ( · · · (Mn = M,

its length is defined to be n. The length of M lenAM is defined to be the supremum over all such

filtrations.

Remark 2.1.4. We collect a handful of standard properties of length, collected from [63, 00IU].

• Given a short exact sequence of R-modules

0→M ′ →M →M ′′ → 0,

if any two of the three are of finite length, the third is as well. In addition, length is

additive:

lenRM = lenRM
′ + lenRM

′′.



40

This implies that the length is similarly additive over all exact sequences.

• Length sends a map R→ S of rings and an S-module N to an inequality

lenRN ≥ lenS N

which is equality when R → S is surjective. In particular, if M is a module supported at

a point, the length is the dimension of the vector space over the fraction field. Moreover,

localizing the ring R can only decrease the length of M .

• Any maximal chain will have the same length, and the successive grades quotients are of

the form R/m for some maximal ideal m.

• Let (A,m) be a local ring and A→ B a map to a ring B with finitely many maximal ideals

mi all lying over m. Then [κ(mi) : κ(m)] is finite, and for any B-module M of finite length,

lenAM =
∑
mi

[κ(mi) : κ(m)] lenBmi
Mmi .

• If (A,mA)→ (B,mB) is a flat, local homomorphism of local rings, then

lenAM · lenB(B/mAB) = lenB(B ⊗AM).

Definition 2.1.5. An integral, k-dimensional closed subscheme Z ⊆ X has an associated k-cycle

[Z] ∈ ZkX. We extend this to equidimensional closed subschemes. Let Y ⊆ X be a closed

subscheme all of whose irreducible components are dimension k. Let Y ′ ⊆ Y be an irreducible

component with generic point ξ. Define the multiplicity of Y ′ in Y to be

mY ′,Y := lenOY,ξ OY ′,ξ.

Then the cycle class of Y is the sum ∑
Y ′⊆Y

mY ′,Y [Y ′]

over irreducible components of Y .
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2.1.2 Pushforward and Pullback

Definition 2.1.6. If X is a scheme with irreducible components X1, . . . Xn whose generic points

are η1, . . . ηn, we define [63, 01RV] the function field

R(X) := OX,η1 × · · · ×OX,ηn .

This may be equivalently defined as the ring of rational functions on X. If X is integral, R(X) =

k(η).

Definition 2.1.7. If f : X → Y is a proper map of schemes and Z ⊆ X is an integral, closed

subscheme of dimension k, then the scheme-theoretic image has lesser dimension dim f(Z) ≤ dimZ

[63, 02R1]. If this inequality is in fact an equality, the extension of function fields [R(Z) : R(f(Z))]

is finite. Define the proper pushforward f∗ : ZkX → ZkY on primitive k-cycles as

f∗[Z] :=


[R(Z) : R(f(Z))] · [f(Z)] if dim f(Z) = dimZ

0 otherwise

Remark 2.1.8. A morphism f : X → Y is said to have relative dimension r if every nonempty

fiber is equidimensional of dimension r. If f : X → Y is flat of relative dimension r and Z ⊆ Y is

closed, then either

dim f−1(Z) = dimZ + r

or f−1(Z) is empty [63, 02R8]. Further, “flat of relative dimension r” is stable under pullback.

Consider a map f : X → Y . If Z ⊆ Y is defined by the vanishing by a quasi-coherent ideal

I, the scheme-theoretic preimage f−1Z is the vanishing locus of the image of f∗I in OX .

Definition 2.1.9. Let f : X → Y be flat of relative dimension r. Consider a k-dimensional integral

closed subscheme Z ⊆ Y . Define the flat pullback:

f∗[Z] := [f−1Z].

This is a (k+ r)-cycle on X. Extend the definition to all k-cycles f∗ : ZkY → Zk+rX by additivity.
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Remark 2.1.10. We collect some basic results on pushforward and pullback:

• Let j : U ⊆ X be an open immersion with complement i : Z ⊆ X. The maps

ZkZ
i∗→ ZkX

j∗→ ZkU → 0

form an exact sequence.

• Consider a pullback square

X ′ X

Y ′ Y

p

f ′
p

f

q

with q flat of relative dimension r and f proper. By [63, 02RG],

q∗f∗ = p∗f ′∗ : ZkX → Zk+rY
′.

• If f is finite locally free of degree r, then it is both proper and flat and f∗f
∗ amounts to

multiplication by r.

2.1.3 Divisors and Chow Groups

If Z ⊆ X is a codimension-one closed subscheme of an equidimensional scheme,

Definition 2.1.11. The order of vanishing of f ∈ R(X)∗ along a prime divisor Z ⊆ X with generic

point η is defined

ordZ f := lenRR/(f)

where R = OX,η. Define the divisor of f via the sum over all prime divisors

div f = divX f :=
∑
Z⊆X

ordZ f · [Z].

This sum is finite by [63, 02RL]. Define the class group of X as the cokernel Cl(X) = An−1X :=

Div(X)/R(X)∗ by the divisor function.

Define the group of rational equivalences WkX analogously as the direct sum of R(T )∗ over

T ⊆ X an integral, closed subscheme of dimension (k + 1). The Chow Group of k-cycles is then
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defined as the cokernel

AkX := ZkX/WkX.

of the divisor function. Write A∗X :=
⊕
k≥0

AkX.

Remark 2.1.12. The case where OX,η is regular for any generic point in a prime divisor η ∈ Z

has been described as “regularity in codimension one” [28]. In this situation, the one-dimensional,

regular local ring R = OX,η is a DVR [63, 00PD]. Let t ∈ R be a uniformizer. Then lenRR/(t) = 1,

so ord f coincides with the valuation of R.

Consider X integral and not necessarily regular, but with normalization X̃ → X. The order

of f ∈ R(X)∗ = R(X̃ )∗ is given by the summation

ordZ f =
∑
Z̃ 7→Z

[R(Z̃ ) : R(Z)] · ord
Z̃
f

as in [20, Example 1.2.3]. This reassures us that ord in our generality is determined by the situation

where X is regular in codimension one.

Remark 2.1.13. Consider a map of integral schemes f : X → Y and elements r ∈ R(X), s ∈ R(Y ).

If f is flat of some constant relative dimension, then [63, 02RR]

f∗ divY s = divX s.

If f is instead dominant, proper and Nm : R(X)→ R(Y ) is the norm, then [63, 02RT]

f∗ divX r = divY Nm(r).

From this, we see that flat pullback f∗ and proper pushforward f∗ descend to maps on Chow

Groups.

2.2 Algebraic Stacks

2.2.1 Algebraic Spaces

This subsection makes sense of the statement: “Schemes admit descent for the Zariski topol-

ogy, but not for the étale topology.”
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Let p : F → F ′ be a map between presheaves on a site C. We say p is “covering” if, for any

hX → F ′ with X ∈ C, the image of

hX ×F ′ F → hX

is a covering sieve on X. By [52, Proposition 5.1], this is equivalent to the sheafification

F sh → F ′sh

being an epimorphism. This topology on Ĉ is the finest subcanonical topology (every epimorphic

family is covering) for which all covering families {Yi → X} in C induce covering families {hYi →

hX} in Ĉ [52, Proposition 5.4].

2.2.2 Algebraic Stacks

As in Remark 1.1.15, a groupoid G is given by a diagram of sets

Mor G Ob G

s

t

id

with a composition law

m : Mor G×s,Ob G,t Mor G→ Mor G

which is compatible with a bunch of identities.

Enrich the diagram to one of sheaves R,U ∈ C̃ on a site C:

R U,

s

t
id

again with composition law and inverses. This groupoid object in C̃ gives us a bona fide functor

Cop → (Gpoid) corresponding to a fibered category. This fibered category needn’t be a stack, but

its stackification is called the “quotient stack” and denoted [U/R].

So far, nothing we’ve said about stacks is of any geometric import. The most important

context in the sequel will be:

• the étale site of schemes: C = (Sch)ét,
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• the sheaves R,U should be representable, either by schemes or algebraic spaces, and

• the structure morphisms of the groupoids (R,U, s, t,m, i) should be smooth.

In this context, we call a groupoid object in the category of algebraic spaces a smooth groupoid.

Often, we abbreviate the data (R,U, s, t,m, i) to R⇒ U .

Definition 2.2.1. Let p : F → (Sch)ét be a stack. A presentation for F is a smooth groupoid

R⇒ U and an equivalence

[U/R] ' F.

Such a stack F is called algebraic or Artin if it admits such a presentation by a smooth

groupoid.

An algebraic stack is called DM or Deligne-Mumford if there exists a surjective, étale map

U → F from a scheme U .

The 2-category of algebraic stacks is the full sub-2-category of stacks over (Sch)ét on those

which are algebraic.

Remark 2.2.2. The sections [63, 04T3, 04TJ] show how to make our definition intrinsically. Let

F → (Sch)ét be a stack in groupoids. It is called algebraic if

• The diagonal F → F × F is representable by algebraic spaces,

• There exists a scheme U and a surjective, smooth map U → F .

Remark 2.2.3. Our references to the Stacks Project work in the fppf topology (Sch)fppf in-

stead. As explained after their definition of algebraic stack [63, 026O], the resulting 2-categories of

algebraic stacks are equivalent.

The seminal reference [41] works over the site (Aff)ét of affine schemes only. This also yields

an equivalent 2-category, because each scheme may be covered by its affine open subschemes.

The reader is also invited to make sense of algebraic stacks over S ∈ (Sch): similar stacks

over (Sch/S)ét.
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Remark 2.2.4. We collect some basic facts about algebraic stacks we will use without mention.

• A stack over (Sch)ét is algebraic if and only if it is equivalent to an algebraic stack.

• The sub-2-category of (Cat)/(Sch) on the algebraic stacks is closed under 2-fiber products.

2.3 Virtual Fundamental Classes

2.3.1 Kresch’s Chow Groups

We continue to apply Assumption 2.0.1 to algebraic stacks. We recall the definition of the

Chow Groups of an algebraic stack [40]:

Definition 2.3.1. Let X be an algebraic stack. Write ZkX for the free abelian group of integral

closed substacks of X. Write WkX for the direct sum of R(T )∗ for all closed integral subschemes

T ⊆ X of dimension (k + 1). These are both sheaves for the smooth topology.

Define the näıve Chow Groups A◦kX via the cokernel

A◦kX := ZkX/WkX

of the map which is induced smooth-locally by the divisor function. This is the presheaf quotient.

We need two categories from each algebraic stack Y :

• AY is the category of projective Y -stacks with mapsX → X ′ given by inclusion of connected

components over Y . A projective morphism p : Y ′ → Y induces a functor p∗ : AY ′ → AY

• Bop
Y is the category of vector bundles over Y with morphisms given by surjections F � E. A

morphism f : Y ′ → Y gives rise to covariant functors in the other direction f∗ : Bop
Y → Bop

Y ′ .

If Y is connected, define the Edidin-Graham-Totaro Chow Groups as the limit over flat

pullbacks along surjections of vector bundles:

Â kY := lim
E∈BopY

A◦k+rankEE.
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For Y not necessarily connected, define them as the sum
⊕

Â kY
′ over the connected components

Y ′ ⊆ Y .

If p : X → Y is a projective morphism with X connected, define the restricted EGCT groups

Â
p
X := lim

E∈BopY
A◦k+rankEp

∗E.

For X not necessarily connected, define them again as the sum over its connected components. We

have natural maps

Â kX
ιp← Â

p

kX
p∗→ Â kY.

Let T and X be Y -algebraic stacks and consider a pair p, q : T ⇒ X of projective morphisms

whose morphisms to Y are naturally isomorphic. Let B̂
p,q

k X denote the image of the difference of

the two natural maps

Â
p

kT × Â kT
Â
q

kT → Â
p

kT × Â
q

kT ⇒ Â kX.

This image is the set of differences between pairs (β1, β2) ∈ Â
p

kT × Â
q

kT with the same image in

Â kT :

{p∗β1 − q∗β2 | ιpβ1 = ιqβ2}.

Write B̂ kX for the subgroup of Â kX generated by all such T and pairs p, q : T ⇒ X. Then

Kresch’s Chow Groups [40, Definition 2.1.11] are defined as

AkY := colimAY (Â kX/B̂ kX).

Remark 2.3.2. Consider two inclusions of components i, j : X ′ ⇒ X over Y . This yields a pair of

projective morphisms over Y and hence a subgroup B̂
i,j

k X ⊆ B̂ kX. This means the colimit used

to define Kresch’s Chow Groups may be taken over the poset of equivalence classes in AY instead

[40, Remark 2.1.10].

Remark 2.3.3. Kresch’s Chow Groups amount to considering naive Chow Groups of vector bundles

and enforcing flat pullbacks and projective pushforwards to be well-defined before summing over

connected components.
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We need a result on these Chow Groups to make our definition of virtual fundamental class

in the next section make sense.

Definition 2.3.4. If X is isomorphic to a quotient stack [U/G] for U an algebraic space and G a

linear algebraic group, then we call it a global quotient stack.

Now consider an algebraic stack X locally of finite type over C which admits a stratification by

locally closed substacks Ui which are each global quotient stacks. One says X admits a stratification

by (global) quotient stacks.

Proposition 2.3.5 ([40, Proposition 5.3.2]). Given a vector bundle stack π : E → X on an

algebraic stack X locally of finite type over C, assume X admits a stratification by global quotient

stacks as above. Then the pullback

π∗ : A∗X → A∗E

is an isomorphism.

2.3.2 Virtual Fundamental Classes

The most important Chow classes for us will be “Virtual Fundamental Classes,” which arise

from normal cones. First generalize our definition of normal cone to stacks. We need a lemma:

Lemma 2.3.6 ([49, Lemmas 2.27, 2.28]). Given a DM-type morphism f : X → Y of algebraic

stacks locally of finite type over C, one can find a nonunique commutative diagram

R S

U V

X Y

with U, V schemes, U → X and V → Y smooth surjections, R = U ×X U, S = V ×Y V and the

vertical maps the projections, U → V a closed immersion and R→ S a locally closed immersion.
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Given a chosen diagram as in Lemma 2.3.6, write Q = U ×Y U . We have a cartesian square

R Q S

U × U V × V.

p

which induces morphisms

CR/S → CQ/S → CU×U/V×V ⇒ CU/V

which can be augmented to a smooth groupoid of schemes [49, Proposition 2.29]. This smooth

groupoid results in an algebraic stack

“C ′′X/Y

over X.

Definition 2.3.7 ((Intrinsic) Normal Cone). The algebraic stack just defined is well-defined in

that it is independent of choices. It is called the (Intrinsic) Normal Cone.

This normal cone is simply a stack lying above the source of the morphism. To get a Chow

Class out of this, we need a “perfect obstruction theory:”

Definition 2.3.8. A perfect obstruction theory [49, Condition 3.3 (*)], [8, Definition 4.4] for a

DM-type map f : X → Y of algebraic stacks locally of finite type over C is a closed embedding of

cone stacks

CX/Y ⊆ E

into a vector bundle stack E on X.

An equivalent definition of perfect obstruction theory is a map E → LX/Y in the derived

category which is an isomorphism on h0 and an epimorphism on h−1. Truncating in degrees [−1, 0]

and applying the “h1/h0(·∨)” construction [8, §2] to this morphism yields a closed embedding of

cone stacks

NX/Y ⊆ E := h1/h0(E∨)

which we compose with the natural closed immersion CX/Y ⊆ NX/Y to get a perfect obstruction

theory in the sense of Definition 2.3.8. See [69] for more on this equivalence.
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Kresch’s notion of the Chow Groups of X entails equivalence classes of closed immersions

into vector bundles, not vector bundle stacks, over X. We need an additional assumption on X for

this to be okay:

Definition 2.3.9. Suppose given a map f : X → Y with a perfect obstruction theory CX/Y ⊆ E.

Assume X admits a stratification by global quotient stacks as in Definition 2.3.4. The Virtual

Fundamental Class of (f,E) is the unique class

[f,E]vfc ∈ A∗X

which pulls back to CX/Y ⊆ E under the projection E → X. Both uniqueness and existence of

such a class rely on Proposition 2.3.5.



Chapter 3

Logarithmic Algebraic Geometry

How to conceive what is outside a text? That which is more or less than a text’s

own, proper margin? For example, what is other than the text of Western

metaphysics? It is certain that the trace which ‘quickly vanishes in the destiny of

Being (and) which unfolds ... as Western metaphysics’ escapes every

determination, every name it might receive in the metaphysical text. It is

sheltered, and therefore dissimulated, in these names. It does not appear in them

as the trace ‘itself.’ But this is because it could never appear itself, as such.

Heidegger also says that difference cannot appear as such: ‘Lichtung des

Unterschiedes kann deshalb auch nicht bedeuten, dass der Unterschied als der

Unterschied erscheint.’ There is no essence of différance; it (is) that which not

only could never be appropriated in the as such of its name or its appearing, but

also that which threatens the authority of the as such in general, of the presence

of the thing itself in its essence. That there is not a proper essence of différance at

this point, implies that there is neither a Being nor truth of the play of writing

such as it engages différance.

[11, Différance, pg. 25-6]

The historical motivation for the concept of log structures is the case of a “simple-normal-

crossings divisor” [59, III.1.8], [17]. Semistable reductions over a discrete valuation ring are of this

form at the special fiber by definition.

The union of the first r coordinate hyperplanes Y ⊆ An is given by the vanishing of the
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principal ideal

I = (x1 . . . xr) ⊆ Z[x1, . . . , xn] = Γ(An).

Consider a scheme X → S over a base S. A divisor Y ⊆ X is called simple normal crossings if,

locally on X, there’s an étale map f = (f1, . . . fn) : X → AnS from which Y is obtained as the

vanishing of the product f1 · · · fr of the first r ≤ n coordinates.

The module of Kähler Differentials for X/S is

ΩX/S = OX · df1 ⊕ · · · ⊕OX · dfn.

Write U := X \ Y and j : U ⊆ X. The sheaf j∗j
∗ΩX/S = ΩX/S [f−1

1 , · · · , f−1
r ]. Define the sheaf of

differentials with log poles along Y to be the sub-OX -module

Ω`
X/S = ΩX/S(log Y ) ⊆ j∗j∗ΩX/S

generated by

{df1

f1
, . . . ,

dfr
fr
, dfr+1, . . . , dfn}.

We may write dlogf :=
df

f
.

Use the Jacobian map to make sense of Ω`
Y/S :

I/I2 → Ω`
X/S |Y → Ω`

Y/S → 0.

We argue that if r = n, Ω`
Y/S is free. The union of the coordinate hyperplanes is therefore “smooth”

in some log sense.

The principal ideal I = (f1 · · · fn) has image under the differential:

d(f1 · · · fn) = (f2 · · · fn)df1 + · · · (f1 · · · fn−1)dfn

= (f1 · · · fn)(
df1

f1
+
df2

f2
+ · · ·+ dfn

fn
)

∈ I · Ω`
X/S

and we mod out by I · Ω`
X/S to restrict to Y . Therefore dI = 0 and Ω`

X/S |Y = Ω`
Y/S is free.

The union of the coordinate hyperplanes is clearly not smooth as a scheme, and we need to

remember
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• the locally given étale map to AnS and

• which coordinate hyperplanes r ≤ n are included in Y .

The general concept of a log structure replaces An with Spec of other monoid rings. The second

bullet point specifies the log structure on An.

Why is this one example so important that it gives rise to a whole field of inquiry? Recall

that a noetherian scheme X is proper if, for all discrete valuation rings R with fraction field K, the

diagrams

SpecK X

SpecR

may be filled uniquely. Discrete valuation rings are the noetherian, regular, local rings of dimension

one, so SpecR is a local ring on a curve and SpecK is the complement of the closed point.

The valuative criterion above therefore says that proper schemes admit unique limits along one-

dimensional families.

If ` ⊆ L is an extension of fields, one can define a “universal properification” of SpecL as the

set of valuation rings R intermediate between ` and L. This is called the “Riemann-Zariski Space.”

For L a function field over `, this space is given by the inverse limit of all projective schemes over

` with function field L.

These ideas can be expanded to show that any X → S finite type, separated over a quasi-

compact, quasiseparated S factors as a quasicompact open immersion X → X composed with a

proper map X → S [63, 0F41]. In good situations, the boundary X \X will be a simple normal

crossings divisor.

These universal compactifications have spiritual similarity with the Stone-Čech compactifi-

cation or the small object argument. More concretely, the points of the universal compactification

should be some sort of rigid analytic space obtained by taking all possible blowups. The points of

this limit come from valuations, and Berkovich Spaces are seen as one universal way to compactify.

We will first review essential facts about monoids from [59]. We will define log structures
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intrinsically, and then see that the cases of interest are all given by “charts” like the map to AnS .

3.1 Monoids

We remind the reader that all our monoids are commutative with unit. We reserve the right

to use additive notation (P,+, 0) or multiplicative (P, ·, 1) for a monoid and to refer to either

as “multiplication” or “addition.” A morphism θ : P → Q of monoids must not only satisfy

θ(p1 + p2) = θ(p1) + θ(p2), but also that θ(0) = 0. Arbitrary limits and colimits exist in the

category of monoids. Write . . .

• P gp for the Grothendieck Groupification.

• P ∗ for the subgroup of units.

• P+ for the nonunits.

• P for the quotient P/P ∗, called the characteristic monoid.

For groups, there is a standard anti-equivalence:
Quotients of groups

G� K


op

!


Normal Subgroups

N E G


given by taking quotients by normal subgroups and finding the kernel of a quotient. In monoids,

the kernel is often useless. The preimage of zero in the addition map N×N +→ N is just 0, and yet

this map is far from an injection. Nevertheless, the antiequivalence may be salvaged in modified

form.

What use is the kernel? The fibers of the quotient G� K all differ by addition of elements

coming from N . In other words,

G⊕N ∼→ G×K G

via the shearing map (g, n) 7→ (g, g + n). To this end, we can just use G×K G in place of N ⊆ G.
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Because of the free-forgetful adjunction between monoids and sets, fiber products are the

same in both. Thus G ×K G ⇒ G is an equivalence relation. It is also a monoid. If both, we say

it is a congruence relation.

In any topos, epimorphisms are effective as part of Giraud’s axioms. This means that maps

out of the diagram

[G×K G⇒ G]

are the same as maps out of the quotient K. This exemplifies the principle of the Dold-Kan

Equivalence that simplicial sets are a replacement of chain complexes in nonabelian situations. We

get an equivalence 
Quotients of groups

G� K


op

!


Congruences

E ⇒ G.


We can obtain the pushout of a diagram

P R

Q

u

v

by coequalizing the maps from P to R ⊕ Q. This congruence relation may be complicated, but

admits a simpler description in the case where any of P,Q, or R is a group [59, Proposition I.1.1.5]:

(r, q) ' (r′, q′)

precisely when there are p, p′ ∈ P such that

q + v(p′) = q′ + v(p)

and

r + u(p) = r′ + u(p′).

If P is a group, this is the quotient by the antidiagonal action of P :

(r, q) ' (r + v(p), q + u(−p)), p ∈ P, q ∈ Q, r ∈ R.
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Example 3.1.1. Define the cokernel of a map P → Q of monoids via the congruence for pairs

p, p′ ∈ P :

q ∼ q′ if q + p = q′ + p′.

For example,

coker(N ∆→ N2) = Z.

Cokernels may be ill-behaved: 1 1

0 1

 = f : N2 → N2; coker(f) = 0.

Remark 3.1.2. Pushouts R ⊕P Q are sometimes written R ⊗P Q because they also represent

“bilinear” maps out of R×Q:

f : R×Q→ T ; f(r + p, q) = f(r, q + p).

Tensor products commute with colimits because they’re a right adjoint. They don’t commute

with products.

Example 3.1.3. Groupification P 7→ P gp is not exact. It commutes with products, but not fiber

products. For example, consider the kernel of

N2 +→ N

compared with the kernel of the groupification.

Most often, our monoids are integral, meaning P ⊆ P gp. A monoid P is integral if and only

if it satisfies the cancellation property :

if p+ r = q + r ∈ P, then p = q.

A monoid P is finitely generated if a fixed finite set S ⊆ P may be chosen so that all elements

of P are combinations of those of S. Equivalently, there is a surjection:

N(S) → P.
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We say a monoid P is fine if it is finitely generated and integral.

Integral monoids are equivalent to ordered groups in a way we presently describe:

Definition 3.1.4. A P -set is a set S together with a map

P × S → S

satisfying the usual identities. Maps between P -sets should be equivariant with respect to the

action of P .

A P -set S defines a category TPS called the Transporter with underlying digraph described

by the action and projection:

[P × S ⇒ S].

In other words,

• the objects are ObTPS = S, and

• the morphisms are HomTPS(s, t) := {p ∈ P | p.s = t}.

Composition is given by multiplication in P .

The transporter category is an enrichment of a natural poset structure on S. Namely, s ≤

t ∈ S if there exists an element p ∈ P such that p.s = t.

The cases P

�

P and P

�

P gp are of primary interest. We may write TP := TPP .

Remark 3.1.5. The poset structure on TP induces a congruence relation ∼: p ∼ q if p ≤ q and

q ≤ p. The monoid M/ ∼ is always sharp, and the map

M →M/ ∼

is an isomorphism if the action P

�

P is free [59, Around Definition 1.3.1].

The groupification P gp is the analogue of the fraction field of an integral domain. We also

have analogues of less extreme localizations.
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Definition 3.1.6. Let P

�

S be a P -set and choose a subset F ⊆ P . Then there exists a P -set

F−1S on which F acts bijectively and a map S → F−1S.

This map satisfies a universal property: let T be another P -set on which the elements of F

act through bijections. A map S → T factors through a unique map S → F−1S
∃!
99K T .

The map S → F−1S and its target are referred to as the localization of S by F [59, I.1.4.4].

We are ready to define scheme-like contraptions made out of monoids that form one approach

to the relationship between schemes and monoids exemplified at the start of this chapter.

Definition 3.1.7. Let P be a monoid. An ideal I ⊆ P is a subset which is closed under the action

of P : PI ⊆ I. The ideal is prime if I 6= P and, whenever p+ q ∈ I, either p or q is in I.

A face of a monoid is a submonoid F ⊆ P where, if p + q ∈ F , both p and q are in F . We

write F ≺ P .

Write SpecP for the set of prime ideals of P . The complement of a prime ideal is a face and

vice versa:

SpecP :=


Prime Ideals

π ⊆ P

!


Faces

F ≺ P


op

.

We endow the set SpecP with the Zariski Topology with closed sets given by

V (S) := {π ∈ SpecP |π ⊇ S}, S ⊆ P.

The dimension of SpecP is the supremum of lengths n of all chains of strict inclusions of

primes of P :

∅ = π0 ( π1 ( · · · ( πn = P+.

The height of a prime π ⊆ P is the maximum such chain with π = πn in the above instead

of P+.

If f ∈ P and π ⊆ P is a prime, we traditionally write P

[
1

f

]
= 〈f〉−1P and Pπ = (P \π)−1P .
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Remark 3.1.8. Every monoid has a largest and smallest prime: ∅, P+ ⊆ P . In this way, SpecP

behaves like that of a local ring – there’s a unique generic point ∅ and a unique closed point P+.

These two coincide precisely when P is a group.

Likewise, M∗,M ⊆M are the smallest and largest faces. Faces of the multiplicative monoid

of a ring are usually called “saturated multiplicative subsets,” but we avoid this terminology to

reserve “saturated” for monoids. Observe that, if S is a P -set, F ⊆ P is a subset, and 〈F 〉 is the

face it generates, then the localizations are the same:

F−1S ' 〈F 〉−1S.

The union of a family of prime ideals is prime, and the intersection of a family of faces is a

face. The interior ideal of P is the set of elements which don’t lie in a proper face; equivalently,

elements in the intersection of all nonempty primes. This corresponds to the nilradical.

Example 3.1.9. The zero submonoid 0 ∈ N is a face. This property says exactly that N is sharp.

The only other face is all of N.

Likewise, the only two prime ideals of N are N>0 and ∅. The picture depicts a single special-

ization:

SpecN : •

with = ∅ and • = N>0.

If we look at products Nk of the natural numbers, we get cubes of specializations in k different

directions:

Example 3.1.10. Let 土 denote the multiplicative monoid on {0, 1} ⊆ Z. Given a morphism

θ : P → 土, the preimage θ−1(1) is a face of P . All faces of P are obtained this way. This means
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1 ∈ 土 is the universal face. Likewise, 0 ∈ 土 is the universal prime.

Each monoid has a morphism P → 土 called the vertex classifying the minimal face P ∗.

Each morphism P → 土 classifying a face F ⊆ P factors as:

P → F−1P → 土.

A morphism θ : P → Q of monoids is called local if θ−1(Q+) = P+. This is equivalent to

θ−1(Q∗) = P ∗. Geometrically, this corresponds to the preimage of the closed point being only the

closed point. A morphism θ is local if and only if it lies over the vertex maps 3.1.10:

P Q.

土

Proposition 3.1.11. We collect some essential facts about ideals, primes, faces, etc.

• If P is fine, then SpecP is a finite set [59, I.1.4.7].

• Let S ⊆ P be a subset [59, I.1.4.2]:

∗ The ideal PS generated by a set S ⊆ P is given by all p ∈ P such that p ≥ s for some

s ∈ S.

∗ Let Q ⊆ P be the submonoid generated by S. The face 〈S〉 ⊆ P generated by S is

the set of p ∈ P such that p ≤ q for some q ∈ S.

∗ In particular, if S = {p} is a singleton, the face generated is all q ∈ P such that

q ≤ np.

• If P is integral, all faces are exact. If P is fine, all faces generated by a single element:

F = 〈f〉 [59, I.2.1.17].

The affine scheme SpecA of a ring A is not just a topological space, but a ringed one. A

monoided space is (the topos of) a topological space or an étale site with a sheaf of monoids [59,

II.1.1.1]. A sharply monoided space is one whose sheaf of monoids has sharp sections. Write

(MonSp), (MonSp#) for the categories of such topoi.
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Define a sheaf MSpecP on SpecP by its values on distinguished opens D(f):

D(f) 7→ P

[
1

f

]
= 〈f〉−1P.

We get a sharply monoided space (Spec# P,M#
SpecP ) by

D(f) 7→ P

[
1

f

]
.

Remark that the functor of points equates

P

[
1

f

]
= P/f.

In either category, Spec(#) P represents the functor

(X,MX) 7→ Hom(P,Γ(MX)).

The stalks at a prime π ∈ SpecP are given by Pπ and Pπ = P/(P \ π), respectively. If P is

integral, Pπ is the subset of P gp whose “denominators” aren’t in π. The subset SpecPπ ⊆ SpecP

is the set of ρ ∈ SpecP specializing to π.

If P is fine, we’ve seen that all faces are generated by a single element in Proposition 3.1.11.

This is the biggest difference between the usual story of schemes and their stalks: the complement

of a prime is generated as a face by a single element P \ π = 〈f〉, so

MSpecP,π = Pπ = P

[
1

f

]
= D(f).

The set of generizations of π is open, so an open set is specified by a set of generizations. The

topology on SpecP is thereby determined by the preordered set of generizations. This is always

the case for finite topological spaces.

A map θ : P → Q induces a map

θ∗ : SpecQ→ SpecP ; ρ 7→ θ−1ρ.

Crucially, the induced maps on stalks

Pθ∗ρ → Qρ
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are local. Indeed, this is tautological from the diagram

P → Q→ 土

classifying ρ.

The reader familiar with schemes knows what comes next:

Definition 3.1.12. A monoided space (X,MX) which is locally isomorphic to SpecP for some

monoid is called a monoscheme [?]. A sharply monoided space which is locally isomorphic to

Spec# P is called a fan [33, 2.2.6]. A monoscheme has an induced fan, but fans are not monoschemes.

Maps (X,MX)→ (Y,MY ) between monoschemes are maps of monoided spaces for which the

stalks

MY,f(x) →MX,x

are local maps of monoids for all x ∈ X.

The nomenclature “monoscheme” evokes “monoids” as well as “schemes over F1” in the sense

of [64].

Remark 3.1.13. Given θ : P → Q, we get a map

SpecQ→ SpecP ; π 7→ θ−1I.

This map necessarily sends ∅ to itself. This means that generic points are sent to generic points,

so all maps are “dominant.” If Spec θ is a closed immersion, it is surjective.

Ogus introduces pairs of a monoid and an ideal called “acceptably idealized monoids” as a

way to add in meaningful closed submonoschemes [59, I.1.5.1]. We won’t need this abstraction.

Proposition 3.1.14. A monoid P is finitely generated if and only if it is finitely presented. In

fact, every congruence relation on a finitely generated monoid is finitely generated [59, I.2.1.9].

Remark 3.1.15. The proposition is proven by demonstrating a “noetherian” property for monoids

holds for N. This is a consequence of “Hilbert’s Basis Theorem.”
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There are many such monoidal parallels to classical commutative algebra. Here are a handful

of them in order to whet the reader’s appetite:

• Nakayama’s Lemma

• Primary Decomposition

• Fractional Ideals

3.2 Log Schemes and Monoschemes

For our purposes, monoids are a tool that vastly simplifies computations involving ordinary

schemes. This section makes the connections between monoids and schemes explicit in three ways.

Definition 3.2.1. Let (X,OX) be a scheme. A prelog structure on X is a sheaf of monoids MX

on the étale site of X equipped with a map

α : MX → (OX , ·)

to the multiplicative monoid of the structure sheaf. Maps between prelog structures are maps of

sheaves of monoids which commute with the structure maps to OX .

This map is a log structure if α restricts to an isomorphism

α−1O∗X ' O∗X .

We identify the two via this isomorphism. A scheme together with a log structure is called a

log scheme. Maps between log structures are the same as maps between their underlying prelog

structures.

Example 3.2.2. Every scheme admits two log structures: MX = O∗X and MX = OX . These are

called the trivial and empty log structure, respectively. Both are interesting, but we use the trivial

log structure to identify schemes as a full subcategory of log schemes; write X◦ for a scheme X

endowed with the trivial log structure MX = O∗X .



64

Example 3.2.3. Let k be a field. The standard log point is the scheme Spec k together with the

log structure

α : k∗ ⊕ N→ k; (t, n) 7→


0 if n 6= 0

t if n = 0

We think of this map as (t, n) 7→ t · 0n. If k is algebraically closed, all log structures on Spec k are

of this form.

Let R be a discrete valuation ring; SpecR is then called a “trait” or a “dash.” Let R′ = R\0

and write k for the residue field of R. The standard log dash is the scheme SpecR with the log

structure R′ → R. At the other extreme, the hollow log structure on R is given by

α : V ′ → V ; v 7→


0 if v ∈ V +

v if v ∈ V ∗

Since V ′/V ∗ is isomorphic to the value group N, the standard log structure on the dash restricts

to the standard log structure on k. The hollow log structure does as well.

The isomorphism V ′/V ∗ ' N depends on a choice of uniformizer, and is not functorial. If we

fix a uniformizer π ∈ V ′, then we obtain infinitely many log structures associated to

N→ V ′; 1 7→ πn.

The case n = 1 is the standard log structure, and one can make precise the statement that the log

structures “converge” to the hollow one in the limit [59, III.1.5.6].

Example 3.2.4. Let i : Y ⊆ X be a closed subscheme with complementary open j : U ⊆ X.

Consider the subsheaf M ⊆ OX with sections

M(U) := {f ∈ OX(U) | f |U ∈ O∗U}.

This is the sheaf of regular functions whose restriction to U is invertible: M = OX ×j∗OU j∗O∗U .

Sums of invertible elements needn’t be invertible, but M is a monoid under multiplication. In fact,

M is a sheaf of faces in the multiplicative monoid OX necessarily containing O∗X .

The inclusion M ⊆ OX compactifying log structure.
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There is an initial map from a prelog structure α : MX → OX to a log structure, given by

the associated log structure Mass
X :

α−1O∗X MX

O∗X Mass
X

OX .

α

We need to make sense of morphisms between different log schemes, not just morphisms of

log structures on one fixed scheme. A morphism of log schemes (X,MX) → (Y,MY ) is a map

X → Y of schemes and a morphism

f−1MY →MX

that fits into a commutative square

f−1MY MX

OY |X OX .

We can equivalently reformulate the definition as:

MY f∗MX

OY f∗OX .

We do not expect f−1MY → OX to be a log structure. Write f∗MY = MY |X for its associated

log structure, the pullback log structure. Likewise, denote by f `∗MX the pushforward log structure

given by the pullback

f `∗MX f∗MX

OY f∗OX .

p

We often abuse notation and simply write f∗MX instead of f `∗MX . We see that a morphism

(X,MX)→ (Y,MY ) of log schemes is a morphism X → Y of schemes, together with either of the

equivalent data:
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• A map MY → f∗MX of log structures on Y , or

• A map MY |X →MX of log structures on X.

Example 3.2.5. Given a log scheme X, we write X◦ also for the underlying scheme of X endowed

instead with the trivial log structure. There is a morphism

X → X◦

which is initial for all maps from X to a scheme, considered as a log scheme with trivial log structure.

On the other hand, the only log schemes with a map

X◦ → X

lifting the identity on underlying schemes have trivial log structure. There is a similar construction

to X◦ but for the empty log structure, but we don’t need it.

Example 3.2.6. If a morphism of schemes X → Y is compatible with fixed open sets U, V :

U V

X Y,

then it induces a map between the log schemes X and Y endowed with the compactifying log

structures.

3.2.1 Monoid Rings and Charts

There are many ways to describe a log structure. The first approach of K. Kato [38] is given

by “charts.” A map P → Γ(MX) is equivalent to the data of a map out of the constant sheaf

PX →MX by the adjunction (·X ,Γ(·)). We say P → Γ(MX) furnishes a chart if the corresponding

map

P assX →MX

is an isomorphism.
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A log scheme which locally admits a chart is called quasi-coherent. Log structures with charts

are similar to quasi-coherent sheaves.

The map P → Γ(MX)→ Γ(OX) which becomes the structure map of the log structure after

sheafification is classified by a map

X → SpecZ[P ].

We remind the reader of these rings and their features.

Given a ring R and a monoid P , the monoid ring is

R[P ] := {f : P → R | f(p) 6= 0 for only finitely many p}.

The values f(p) are the coefficients of p, and we write such a finitely supported function as a

polynomial ∑
f(p)[p].

The addition is pointwise and the multiplication is determined by linearity and

[p] · [q] = [p+ q].

Example 3.2.7. Write σ(f) for the support of f : the set of p ∈ P for which f(p) 6= 0. Then

• σ([p] · f) = p+ σ(f),

• σ(f + g) ⊆ σ(f) ∪ σ(g), and

• σ(fg) ⊆ σ(f) + σ(g) [59, I.3.5.4].

The convex hull of σ(f) in C(P ) is sometimes called the Newton Polyhedron.

Proposition 3.2.8. Let R be a ring and P an integral monoid.

• If P gp is torsion-free and R an integral domain, R[P ] is an integral domain.

• If P is fine, R normal, then

R[P sat]→ R[P ]

is the normalization map.
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• If P is fine, R→ R[P ] is fppf [59, I.3.4.1].

• If R is noetherian and Cohen-Macaulay and P is fs, then R[P ] is Cohen-Macaulay [59,

I.3.4.3].

We write

AP := SpecZ[P ].

Our study of intersection theory will be over C, and we will use the notation AP := SpecC[P ].

This scheme has a monoid structure coming from the maps

Z[P ]→ Z[P ]⊗ Z[P ]; [p] 7→ [p]⊗ [p],

Z[P ]→ Z; [p] 7→ 1.

We endow AP with the log structure associated to

P → Z[P ].

Maps of schemes from T to AP correspond to maps Z[P ] → Γ(OT ). The log structure

rigidifies this data: Maps of log schemes are given by:

Homlog(T,AP ) = Hommon(P,Γ(MT )).

In particular [59, I.3.1.2],

Homlog(AP ,AQ) = Hommon(Q,P ).

Observe

H(P ) = Homlog(AN,AP ).

The monoid schemes also have a vertex map, coming from the vertex

P 7→ 土 ⊆ Z.

We write A∗P := AP gp , in analogy with the traditional dense open torus of a toric variety.

Given a morphism θ : P → Q, write

A∗Q/P := Acoker θgp = ker(A∗Q → A∗P ).
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We get an action A∗Q/P

� AQ over P . The shearing map

A∗Q/P × AQ → AQ ×AP AQ

extends the A∗Q/P -torsor A∗Q → A∗P . This action stabilizes the closed immersions

AQF ⊆ AQ, AF ⊆ AQ

for any face F ≺ Q [59, I.3.3.5].

3.2.2 Fans and Log Stacks

The choice of a chart is something very non-canonical. For example, suppose θ : P → Q

of quasi-integral monoids induces an isomorphism on sharpenings: θ : P ' Q. Given a map

α : Q→ Γ(OX), the log structures associated to α and α ◦ θ are the same.

It may be better to consider charts given by sharp monoids P . An example will reassure us

that this is often locally possible – we can choose a chart P → Γ(OX) instead of P → Γ(OX):

Example 3.2.9. Let (X,MX) be a monoided space. A chart P → Γ(MX) with P integral and

MX a sheaf of integral monoids is called neat at a point x ∈ X if the composite

P →MX,x →MX,x

is an isomorphism.

If MX is fine, then it admits a local chart that is neat at x ∈ X if and only if

0→M∗X,x →Mgp
X,x →M

gp
X,x → 0

splits. In particular, it splits if MX is saturated [59, II.2.3.7].

We have already discussed AP , which represents the functor

X 7→ Hom(P,Γ(MX)).

We can describe this as a composite:

(LSch)→ (MonSch)
hSpecP→ (Set).
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Instead, consider the sharp version of Spec# P :

(LSch)→ (MonSch#)
h
Spec# P→ (Set); (X,MX) 7→ (X,MX) 7→ Hom(P,Γ(MX)).

Let P be an fs monoid. The action A∗P

� AP presents a monoidal quotient stack

AP := [AP /A∗P ]

called an “Artin Cone.” This stack represents a functor on fine log schemes – this means it

represents a sheaf of sets just like an ordinary log scheme even though it is a complicated stack

without log structures. This behaves like A∗P

� AP is a free action!

The study of these stacks goes back to [60], where they’re attributed to Illusie and Lafforgue.

We describe the functor of points of AP separately for schemes and log schemes.

Proposition 3.2.10. Let P be an fs monoid. The fibers AP (T ) over a test scheme T are given by

a choice of fs log structure NT on T , together with a map P → NT which étale-locally lifts to a

chart [60, Proposition 5.14, 5.15].

The log structure on AP descends from that of AP [60, After 5.13]. With this natural log

structure, the stack represents a functor we’ve seen before:

Proposition 3.2.11 ([60, Proposition 5.17]). Let T be a fine log scheme. Then

Homfs(T,AP ) = Hom(P,Γ(MT )) = Hom(T, Spec# P ).

We are mostly interested in quasi-integral monoids P , for which P ∗

�

P acts freely and thereby

becomes a torsor over P . Quasi-integral log structures admit a description similar to Deligne and

Faltings’ original works, due to [46], [9].

The diagram

Gm ×Gm Gm

A1 × A1 A1

m

m

presents the monoid
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3.2.3 Log Blowups and Exactification

Let Y ⊆ X be a closed immersion of schemes corresponding to an ideal sheaf I. The ordinary

blowup BlYX → X has a kind of “functor of points:”

Proposition 3.2.12 ([28, Proposition 7.14]). Let X is noetherian, I is a coherent sheaf of ideals.

If f : Z → X is such that f∗I ·OZ is an invertible sheaf, then there exists a unique factorization

BlYX

Z X.
f

This statement is not if and only if: maps to the blowup are not the same as maps to

X satisfying the property, but certain maps are given that way. In particular, maps into the

exceptional divisor aren’t of this form.

If we take the blowup of an ideal of monoids in a suitable sense, we will see that it has a bona

fide functor of points. Log maps to such a blowup will be uniquely identified with maps satisfying a

similar property; in particular, the blowup map will be a monomorphism among integral schemes.

Definition 3.2.13. Let I be a coherent sheaf of monoid ideals in a fine (resp. fs) log scheme X.

The log blowup of X at I is the sieve D ⊆ hX on (LSch)fine (resp. (fs)) of f : T → X such that

f∗I is invertible.

Log blowups are representable by a fine (resp. fs) log scheme B`IX [59, III.2.6.3].

Proposition 3.2.14. Let I be a coherent sheaf of monoid ideals in a fine (resp. fs) log scheme X

and refer to [59, III.2.6.3].

• Log blowups are compatible with base change:

B`IX×XfineT = B`I|T T.

Here, it is imperative that the fiber product take place in the fine or fs category.

• Log blowups are proper monomorphisms which are universally surjective.
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• Log blowups commute: let J be another coherent sheaf on X. Then

B`IX ×X B`JX ' B`I+JX ' B`I(B`JX) ' B`J(B`IX).

One of the main uses of a log blowup is to render a morphism “exact:”

Definition 3.2.15. A map θ : P → Q of monoids is called exact if the square

P Q

P gp Qgp

θ

θ

is a pullback.

Proposition 3.2.16. Let θ : P → Q be a map of monoids.

• The map θ is exact if and only if θ is [59, I.4.2.1].

• If θ is exact, then Spec θ is surjective. The converse holds if P is fs [59, I.4.2.2].

• If θ is exact, then it is universally local. The converse holds if P is saturated [59, I.4.2.3].

• The integral pullback of an exact morphism is exact [59, I.2.1.16].

• If θ : P → Q is a homomorphism of integral monoids, then it is exact if and only if,

whenever θ(p) ≤ θ(p′), then p ≤ p′ [59, I.2.1.16].

• M is integral if and only if ∆ : M →M ×M is exact [59, I.2.1.16].

Proposition 3.2.17. If θ : P → Q is injective, the bullets are equivalent [59, I.4.2.7, I.2.1.16]:

• θ is exact,

• the induced action P

�

Q preserves Q \ P ,

• Z[θ] : Z[P ]→ Z[Q] splits as a morphism of Z[P ]-modules,

• Z[θ] is universally injective.
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In the case where θ is injective and exact, the map Z[θ] “universally descends flatness:” given

any pushout of rings:

Z[P ] Z[Q]

A B
y

and any A-module M , the module M is flat over A if and only if the module M ⊗A B is flat over

B [59, I.4.2.8].

Example 3.2.18. Let θ : P → Q be a morphism of monoids. Form the pullback

P θ Q

P gp Qgp.

p

Then P θ → Q is exact and P → P θ becomes an isomorphism upon groupification. This factoriza-

tion is natural in morphisms θ [?].

Proposition 3.2.19. Let f : X → Y be a quasicompact morphism of fine log schemes. Locally

on Y , one can blow up Y so that f pulls back in the category of integral monoids to an exact

morphism [59, III.2.6.7].

This is a form of [33, Proposition 2.3.12].

A related, important use of log blowups is to achieve “valuativization.” A valuative monoid

P is an integral monoid such that, for all x ∈ P gp, at least one of x,−x is in P . The poset structure

on TPP
gp for an integral monoid P is a total order if and only if P is valuative.

Example 3.2.20. The natural numbers N form a valuative monoid, as does any group. Given any

totally ordered group, the nonegative elements form a valuative monoid. The additive monoid

N[ε] := {(x, y) ∈ R2 |x > 0 or (x = 0 and y ≥ 0)}

is valuative. The nomenclature reflects the use of this monoid as an “infinitesimal extension” in

the definition of the smooth topology on monoids.
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We will see than any saturated monoid is the intersection of all valuative submonoids in its

groupification containing it [37, Lemma 1.1.9].

Let L be an abelian group. We say of two submonoids Q,Q′ ⊆ L that Q′ dominates Q if

Q ⊆ Q′ and the inclusion is local. The maximal submonoids with respect to the partial order

of domination are valuative submonoids P such that P gp = L [59, I.2.4.1]. Our next proposition

illustrates that most valuative monoids aren’t finitely generated.

Proposition 3.2.21. Let P be sharp, fine, and valuative. Then P = N or P = 0. The same is

true if P is only assumed to be fs, sharp, and of dimension one [59, I.2.4.2].

Moreover, every fs monoid of dimension one is N× Γ for some finite abelian group Γ.

Example 3.2.22 (Divisorial Valuations). Let P be fine and consider a prime p ⊆ P of height one.

Then P satp is valuative and there’s a unique valuation

vp : P gp → Z

such that

v−1
p N>0 ∩ P = p.

Moreover,

P satp = v−1
p (N)

[59, I.2.4.4].

If P is fs, then

P =
⋂

vp, htp=1

v−1
p N

and

P ∗ =
⋂

vp, htp=1

v−1
p 0.

That is to say, P is the intersection of its localizations at height-one primes [59, I.2.4.5].

A finitely generated, nonempty ideal of a valuative log scheme is principal for the same reason

noetherian valuation rings are principal ideal domains. The idea behind the “valuativization” of a

log scheme is that the converse also holds:
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Definition 3.2.23. Let X be a log scheme with integral, quasi-coherent log structure. Order the

coherent, nonempty ideal sheaves I ⊆MX by

I ≤ J if there is an ideal K ⊆MX such that IK = J.

Define

Xval := lim
I⊆MX

B`IX.

Such a limit of schemes will likely not be a scheme. It has an incarnation as a “log space”

[37], a locally ringed space with log structure. Moreover, any map Y → X with Y a locally ringed

space with valuative log structure factors uniquely through Xval → X.

This important but subtle construction is attributed to Ofer Gabber. According to [37], we

offer a direct description of the underlying topological space.

Fix a chart X → SpecZ[P ]. If P → V is a map of monoids, write

XV := X ×SpecZ[P ] SpecZ[V ].

A point of Xval is a pair (V, x) with V ⊆ P gp a valuative submonoid containing P and x ∈ XV

such that the map

V → OXV ,x = (OX ⊗Z[P ] Z[V ])x

is local.

We identify the point corresponding to a pair (V, x). If I ⊆ P is a finitely generated ideal, it

becomes principal after extension to V : IV = (a). This gives P [a−1I] ⊆ V . Then SpecZ[P [a−1I]]

is an open subset D+(a) ⊆ B`IP , and we have a map

ϕ : SpecZ[V ]→ SpecZ[P [a−1I]] ⊆ B`IP.

The point in Xval corresponding to (V, x) is the limit of the images of x ∈ XV under ϕ×SpecZ[P ]X :

XV → B`IX.

The stalks of the structure sheaves are:

OXval,(V,x) = OXV ,x,
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MXval,(V,x) = V ⊕V ∗ O∗XV ,x.

We can also describe the topology on Xval. If Q ⊆ P gp contains P and is finitely generated

over it, consider a open immersion U ⊆ XQ. The map Uval → Xval is a strict open immersion of

log spaces. Opens of the form Uval form a basis for the topology on Xval. A pair (V, x) is in Uval

if and only if Q ⊆ V and the image of x lands in U ⊆ XQ:

Uval Xval

U XQ

X.

p

3.3 Toric Geometry

If P is a fine monoid, write H(P ) := Hom(P,N).

Proposition 3.3.1. • The monoid H(P ) is fs and sharp.

• The reflexivity map

P → H(H(P ))

factors through an isomorphism P sat ' H(H(P )). The functor H is therefore an anti-

autoequivalence of sharp, toric monoids [59, I.2.2.3].

• All faces F ≺ P are given by h−1(0) for some h : P → N [59, I.2.2.1]. That is, 0 ∈ N is the

universal face among fine monoids.

• The pairing P ×H(P )→ N induces an antiequivalence
Faces

F ≺ P

!


Faces

F ≺ H(P )


op

.

• Any fine, sharp monoid P is a submonoid of Nr × Γ for some finite group Γ. If P gp is

torsion-free, one may take Γ = 0. These facts proceed from a splitting of

P gp → HHP gp,
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which has kernel the torsion subgroup of P gp [59, I.2.2.7].

• The interior of H(P ) consists in the local homomorphisms P → N.

Our discussion of cones is valid over any archimedean, ordered field. We stick to R for

simplicity.

Definition 3.3.2. A cone C is a monoid with an R-vector space structure on Cgp such that C

is closed under the action of R≥0. We usually consider sharp cones, C∗ = 0. These are called

“strongly convex rational cones” in the literature.

Let MR and NR be vector spaces with a perfect pairing

MR ×NR → R; (m,n) 7→ 〈m,n〉,

and consider C ⊆MR a finitely generated cone. Write

C∨ := {h : MR → R |h|C ≥ 0},

C⊥ := {h : MR → R |h|C = 0}.

Given a subset S ⊆ V of a vector space, we can take the conical hull

C(S) := R≥0〈S〉 ⊆ V

to be the subset of positive linear combinations of elements of S. We use this often when S ⊆ V is

given by P ⊆ P gp ⊗ R for an integral monoid.

Proposition 3.3.3. If P is integral, we have a bijection
Faces

F ≺ P

!


Faces

G ≺ C(P )


given by F 7→ C(F ) and G 7→ G ∩C(P ) P [59, I.2.3.7]. We have C(P ) ' C(P sat), and a larger

square of homeomorphisms of spectra [?]:

SpecC(P sat) SpecC(P )

SpecP sat SpecP.
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Proposition 3.3.4. Let C,C ′ ⊆MR be finitely generated cones.

• Any face F ≺ C is given by h−1(0) for some map h : MR → N.

• We have an antiequivalence:
Faces

F ≺ C


op

!


Faces

G ≺ C∨


given by F 7→ F∨ and G 7→ G∨ [59, I.2.3.12].

• We have the identities

(C + C ′)∨ = C∨ ∩ C ′∨

and

C∨ + C ′∨ = (C ∩ C ′)∨.

• Gordan’s Lemma: Let L be a finitely generated abelian group, C ⊆ L ⊗ R a finitely

generated monoid. Then C ∩ L is finitely generated.

A cone C ⊆ V is said to be simplicial if C ' Rn≥0. Every sharp, finitely generated cone in R

or R2 is simplicial. A theorem of Carathéorodory [59, I.2.5.1] states that every cone C generated

by a finite set S is the union of its simplicial subcones generated by linearly independent subsets

of S. In fact, they can all be taken to be of the same dimension.

3.4 Log Differentials

The point of log structures is to qualify in what way mildly singular schemes can be “log

smooth.” We began the section on log structures with the historically original notion of differential

forms with log poles along a normal crossings divisor; we now expand this notion to general log

structures. Not only will normal crossings divisors become log smooth, but we will also see that

log smooth schemes over a point are “toric varieties with torsion.” Log smooth maps are a class of

non-flat families of these toric varieties.
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Refer to the parallel notions of Kähler Differentials, Derivations, and the Cotangent Complex

recalled in Chapter 1.

Instead of just fixing a ring homomorphism A → B, we need to fix a commutative square

θ : α→ β:

A B

P Q

α β

with A → B a ring map and the rest of the diagram in the category of monoids. Consider a

B-module I. A log derivation of θ with values in I is a pair

D : B → I

δ : Q→ I

such that D is an ordinary A-derivation and δ satisfies:

• δ(P ) = 0 and

• D(β(q)) = β(q) · δ(q) for all q ∈ Q.

The set Derα(β, I) of all log derivations of θ with values in I has a pointwise B-module

structure. This B-module of log derivations is covariantly functorial in I and contravariantly

functorial in morphisms of commutative squares α→ β [59, IV.1.1.3]. The compatibility D◦β = β·δ

conceptually defines δ as

“dlogβ(q) =
Dβ(q)

β(q)
.”

This is literally correct if β(q) ∈ B∗ is a unit.

Just as for ordinary derivations, there’s a universal log derivation.

Proposition 3.4.1. Fix a commutative diagram θ : α → β and a B-module I as above. There is

a B-module Ω`
θ equipped with a “universal θ-derivation:”

D : B → Ω`
θ

δ : Q→ Ω`
θ
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forming an element (D, δ) ∈ Derα(β,Ω`
θ) such that all other θ-derivations valued in I are the

composite of (D, δ) with a unique map Ω`
θ → I [?].

Write π : Q→ Qgp/P gp. The universal derivation is given as the pushout:

Q B ⊗Qgp/P gp

B

ΩB/A Ω`
θ.

β⊗π

β

D
y

The functorialities of log derivations and Ω`
· may be seen in the functoriality of the rest of the

diagram. Moreover, we can readily compute the most important case where α : P → R[P ],

β : Q→ R[Q] are monoid rings with their canonical log structures:

Proposition 3.4.2. Let θ : α→ β be a commutative square of monoid rings

R[P ] R[Q]

P Q

α β

and continue to write π : Q → Qgp/P gp. Let I be an R[Q]-module. Then restriction yields an

isomorphism

Derα(β, I) ' Homabgp(Q
gp/P gp, I),

which means

Ω`
θ = Qgp/P gp ⊗R[Q].

The universal derivation is

δ : Q→ Qgp/P gp ⊗R[Q]; q 7→ π(q)⊗ q

and D is the map on R[Q] induced by δ [59, IV.1.1.4].

In particular, if Qgp/P gp is a finitely generated group with torsion a finite group of order

invertible in R, then Ω`
θ is free.
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These notions may be applied to sheaves. If X → Y is a morphism of schemes and E is a

sheaf of OX -modules, log derivations of X → Y with values in E entail similar pairs of maps for

the diagram

OY |X OX

MY |X MX

valued in E. These log derivations also come from an OX -module Ω`
X/Y in the same way.

There is an alternative description of the Log Kähler Differentials which hinges on a lemma:

Lemma 3.4.3. The inclusion O∗X ⊆ OX generates OX as a sheaf of additive monoids. So does

MX , for any log structure on X.

If a ∈ OX(U) is some local section, it restricts to any stalk OX,x, x ∈ X to either a unit or

an element of the maximal ideal. In the latter case, a− 1 is a unit.

This lemma implies that derivations (D, δ) are determined by δ. However δ, as a map of

multiplicative monoids, doesn’t see the additive structure of the ring.

Let R ⊆ OX ⊗Mgp
X be generated by local sections given by

∑
α(mi)⊗mi −

∑
α(m′i)⊗m′i

for
∑
α(mi) =

∑
α(m′i), mi,m

′
i ∈MX .

We want to mod out by R, which is the same as taking the coequalizer of

Z[MX ]×OX Z[MX ]⇒ OX ⊗Mgp
X .

Together with quotienting out by the image of MY |X , this gives the Log Kähler Differentials [59,

IV.1.2.11]:

Proposition 3.4.4. The unique derivation extending

δ : MX → OX ⊗ (Mgp
X /M

gp
Y |X)/R; m 7→ 1⊗m

is also universal. It thereby enjoys a unique isomorphism

Ω`
X/Y ' OX ⊗ (Mgp

X /M
gp
Y |X)/R.
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Proposition 3.4.5. If θ : P → Q is injective, the bullets are equivalent:

• The inclusion θ is exact.

• The complement Q \ P is closed under the action of P .

• The map θZ : Z[P ]→ Z[Q] splits as a map of Z[P ]-modules.

• The map θZ : Z[P ] → Z[Q] “universally descends flatness:” For any Z[P ]-algebra A form

the pushout

A B

Z[P ] Z[Q].

q

We say θ universally descends flatness if an A-module M is flat if and only if M ⊗A B is a

flat B-module.

[59, I.4.2.8]



Chapter 4

The Log Product Formula

If there were even a trifle nonempty, Emptiness itself would be but a trifle. But

not even a trifle is nonempty. How could emptiness be an entity?

...

Action and misery having ceased, there is nirvana. Action and misery come from

conceptual thought. This comes from mental fabrication. Fabrication ceases

through emptiness.

...

For him to whom emptiness is clear, everything becomes clear. For him to whom

emptiness is not clear, nothing becomes clear.

[12, XIII # 7, XVIII # 5, XXIV # 14]

4.1 Introduction

4.1.1 The Log Product Formula

The purpose of the present paper is to prove the “Product Formula” for Log Gromov-Witten

Invariants. For ordinary Gromov-Witten Invariants, the analogous formula was established by K.

Behrend in [7].

Let V , W be log smooth, quasiprojective log schemes. Let Q be the fs fiber product

Mg,n(V )×`
Mg,n

Mg,n(W ),
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with maps

Mg,n(V ×W )
h−→ Q

∆̃−→Mg,n(V )×Mg,n(W ).

One can naturally endow Q with a “log virtual fundamental class” in two ways: pushing forward

that of Mg,n(V ×W ) or pulling back that of Mg,n(V )×Mg,n(W ). The Product Formula equates

these:

Theorem 4.1.1 (The “Log Gromov-Witten Product Formula”). The two log virtual fundamental

classes are equal in A∗Q:

h∗[V ×W,E(V ×W )]`vir = ∆![V,E(V )]`vir × [W,E(W )]`vir.

The symbol ∆! refers to a “Log Gysin Map” for which we offer a definition, along with “Log

Virtual Fundamental Classes.”

This theorem was formulated for ordinary virtual fundamental classes in [42] and proved

under the assumption that one of V or W has trivial log structure. Like their work and [7] before

it, our proof centers on this cartesian diagram (Situation 4.6.5):

M `
g,n(V ×W ) Q M `

g,n(V )×M `
g,n(W )

D Q′ M`
g,n ×M`

g,n

Mg,n Mg,n ×Mg,n.

h

c
p`

p`
a

l φ

p`
s×s

∆

One applies Costello’s Formula [15, Theorem 5.0.1] and commutativity of the Gysin Map to this

diagram to compare virtual fundamental classes.

In the log setting, one requires this diagram to be cartesian in the 2-category of fs log algebraic

stacks in order to preserve modular interpretations. The assumption of [42] that V or W have trivial

log structure ensures that these squares are also cartesian as underlying algebraic stacks.

These fs pullback squares in question likely aren’t cartesian on underlying algebraic stacks.

Therefore, none of the standard machinery of ordinary Gysin Maps and Normal Cones is valid.

This quandary forced us to prove the log analogues of Costello’s Formula and commutativity for
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our “Log Gysin Map.” With these modifications, the original proof of K. Behrend essentially still

works. We pause to comment on the new technology.

4.1.2 Log Normal Cones

The Log Normal Cone C`X/Y = CX/LY of a map f : X → Y of log algebraic stacks is the

central object of the present paper. Every log map factors as the composition of a strict and an

étale map X → LY → Y , so the cone is determined by two properties:

• It agrees with the ordinary normal cone for strict maps.

• If one can factor f as X → Y ′ → Y with Y ′ → Y log étale, the cones are canonically

isomorphic:

C`X/Y ' C
`
X/Y ′ .

This object becomes simpler in the presence of charts. Locally, we may assume the map

X → Y has a chart given by a map of Artin Cones AP → AQ. The map AP → AQ is log étale, so

we can base change across it to get a strict map without altering the log normal cone.

Because this method can lead to radical alterations of the target Y , we recall another strategy

that we learned from [33, Proposition 2.3.12]. For ordinary schemes, one locally factors a map as a

closed immersion composed with a smooth map to get a presentation for the normal cone [8]. We

obtain a similar local factorization (Construction 4.2.1) into a strict closed immersion composed

with a log smooth map, and the same presentation exists for the log normal cone.

The above is made more precise in Remark 4.3.7. The charts and factorizations these tech-

niques require are only locally possible, so we need to know how log normal cones change after étale

localization. We encounter a well-known subtlety noticed by W. Bauer [61, §7]: The log normal

cone isn’t invariant under base-changes by log étale maps (Remark 4.3.14). Our workaround is

somewhat different from that of Olsson. These results are at the service of log intersection theory,

and we outline a standard package of log virtual fundamental classes and Log Gysin Maps.
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4.1.3 Pushforward and Gysin Pullback

The proof of the Product Formula needs two ingredients: commutativity of Gysin maps

and compatibility of pushforward with Gysin maps. The commutativity of Gysin Maps readily

generalizes to the log setting in Theorem 4.4.12; on the other hand, compatibility with pushforward

simply fails!

Nevertheless, the original proof of the product formula depends on a weak form of this

compatibility first introduced by Costello [15, Theorem 5.0.1]. We prove a log version of this

theorem and will offer further complements in [16].

We obtain another partial result towards compatibility of pushforward and Gysin Pullback.

For a log blowup p : X̂ → X with a log smoothness assumption, we show p∗[X̂]`vir = [X]`vir in

Theorem 4.4.10. The alternative approach of [6] may extend our results by modifying the notions

of dimension, degree, pushforward, chow goups, etc. in the log setting. See also [?] for an insightful

approach to Log Chow Groups.

We hope the technology and the strategy of reducing statements about log normal cones to

the strict, ordinary case will be of interest.

4.1.4 Conventions

• We only consider fs log structures. We therefore use L,LY to refer to Olsson’s stacks

T or,T orY .

• We work over the base field C.

• We adhere to the convention of [60] regarding the use of the term “algebraic stack”: we

mean a stack in the sense of [41, 3.1] such that

∗ the diagonal is representable and of finite presentation, and

∗ there exists a surjective, smooth morphism to it from a scheme.

We do not require the diagonal morphism to be separated.
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• By “log algebraic stack,” we mean an algebraic stack with a map to L. Maps between

them need not lie over L.

• The name “DM stack” means Deligne-Mumford stack and a morphism f : X → Y of

algebraic stacks is (of) “DM-type” or simply “DM” if every Y -scheme T → Y pulls back

to a DM stack T ×f,Y X [49].

• The word “cone” in “log normal cone” refers to a cone stack in the sense of [8].

• Let P be a sharp fs monoid. Write

AP = [SpecC[P ]/ SpecC[P gp]]

for the stack quotient in the étale topology endowed with its natural log structure [2], [13],

[60]. Beware that some of these sources first take the dual monoid. This log stack has a

notable functor of points for fs log schemes:

Homfs(T,AP ) = Hommon(P,Γ(MT )).

In particular,

Homfs(AP , AQ) = Hommon(Q,P ).

We write A for AN = [A1/Gm]. Log algebraic stacks of this form are called “Artin Cones.”

“Artin Fans” are log algebraic stacks which admit a strict étale cover by Artin Cones. The

2-category of Artin Fans is equivalent to a category of “cone stacks” [13, Theorem 6.11].

• The present paper concerns analogues of normal cones and pullbacks in the logarithmic

category. We use the notation p, ×, C for pullbacks and normal cones of ordinary stacks,

and write p`, ×`, C` to distinguish the fs pullbacks and log normal cones. When they

happen to coincide, we write `, p`, ×`, C` to emphasize this coincidence.

• Many of our citations could be made to original sources, often written by K. Kato, but

we have opted for the book [59]. We have doubled references to Costello’s Formula [15,
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Theorem 5.0.1], [16] where appropriate because we will have more to say building on future

work.

4.2 Preliminaries and the Log Normal Sheaf

The present paper originated with one central construction, which we learned from [33,

Lemma 2.3.12].

Construction 4.2.1. The normal cone of a morphism f : B → A of finite type is constructed by

choosing a factorization B → B[x1, . . . , xr]� A inducing a closed immersion into affine r-space:

SpecA ↪→ ArB → SpecB.

The normal cone of f may then be expressed as the quotient of the ordinary normal cone of the

closed immersion by the action of the tangent bundle of ArB → SpecB.

Let P → A and Q→ B be morphisms from fs monoids to the multiplicative monoids of rings

(“prelog rings”). A commutative square:

B A

Q P

f

θ

is a chart of a map between affine log schemes. Assume f is of finite type; θ automatically is by

the fs assumption. We will obtain a factorization of the induced log schemes into a strict closed

immersion followed by a log smooth map.

Start with a similar factorization

B B[x1, · · · , xr, y1, . . . , ys] A

Q Qs P

with Qs = Q⊕Ns mapping to B[x1, . . . xr, y1, . . . ys] by sending the generators of Ns to the algebra
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generators y1, . . . ys. Define Qθs via the cartesian product

Qs Qθs P

Qgps Qgps P gp.

p

By definition, Qθs → P is exact, and Qs → Qθs is a “log modification:” an isomorphism on groupi-

fications. Witness also that Qθs → P is surjective, so the characteristic monoid map Qθs
∼→ P is an

isomorphism [59, Proposition I.4.2.1(5)] and SpecP → SpecQθs is strict. Take Spec of both rings

and monoids [59, §II] to obtain a diagram with strict vertical arrows:

X Xθ Ar+sY Y

SpecP SpecQθs SpecQs SpecQ

p`

We’ve written Y = SpecB, X = SpecA and introduced the fs pullback Xθ in the diagram.

The top row expresses our original map Spec f as the composition of a strict closed immersion, a log

modification, and a smooth and log smooth morphism. The log modification SpecQθs → SpecQs

and hence Xθ → Ar+sY may be expressed as a (strict) open immersion into a log blowup as in [59,

Lemma II.1.8.2, Remark II.1.8.5]. Hence X ⊆ Xθ is a strict closed immersion and Xθ → Y is log

smooth.

Remark 4.2.2. Continue in the notation of Construction 4.2.1. If we began with a morphism of

fs log rings with f and θ both surjective, we could omit Qs → B[x1, . . . , xr, y1, . . . ys]. In that case,

we obtain a factorization

X ⊆ Xθ → Y

where Xθ → Y is not only log smooth but log étale.

As in [8], we will present the log normal cone locally as C`X/Y = [CX/Xθ/T
`
Xθ/Y

] using

these factorizations. The difficulty is then piecing together the local descriptions and checking

compatibility. In this sense, the heavy lifting has already been done for us by [49]. We spend the

rest of this section collecting relevant properties of the log normal sheaf N `
X/Y . When we define
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the log normal cone C`X/Y ⊆ N `
X/Y , its important properties will be locally deduced from such

factorizations.

Remark 4.2.3. An algebraic stack X is DM if and only if the map X → Spec k to the base field is

of DM-type. If X → Y is a morphism of DM type and Y admits a stratification by global quotients,

then so does X [49, Remark 3.2]. A morphism f : X → Y of algebraic stacks is of DM type if and

only if its diagonal ∆X/Y : X → X ×Y X is unramified [63, 06N3].

Lemma 4.2.4. Let f : X → Y be a morphism of log algebraic stacks. If the map on underlying

stacks is of DM-type, then the induced maps LX → LY and X → LX are DM-type.

Proof. The inclusion X ⊆ LX representing strict maps is open, so it suffices to show that LX →

LY is DM-type.

We will argue that the diagonal of LX → LY is unramified [63, 04YW]. The isomorphism

LX ×LY LX ' L(X ×`Y X) identifies the diagonal ∆LX/LY with the result of L applied to the

fs diagonal

∆`
X/Y : X → X ×`Y X.

Any diagram:

S0 LX

S′0 L(X ×`Y X)

L∆`
X/Y

with S0 ⊆ S′0 a squarezero closed immersion of schemes is equivalent to a diagram

S X

S′ X ×`Y X

∆`
X/Y

with S ⊆ S′ an exact closed immersion of log schemes. Composing with the fsification map

X ×`Y X → X ×Y X sends this square to

S X

S′ X ×Y X,

∆`
X/Y
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in which case the two dashed arrows have the same underlying scheme map because X → X ×Y X

is unramified by hypothesis. Then the maps on log structure must be the same as well, because

(MX ⊕`MY
MX)|S′ → (MX)|S′

is an epimorphism.

Recall the functor of points of the normal sheaf.

Definition 4.2.5 (Normal Sheaf Functor of Points). Let f : X → Y be a DM morphism of

algebraic stacks. Define a stack NX/Y over X named the log normal sheaf via its functor of points:
NX/Y

T X

 :=


(T,OX |T ) X

(T,A) Y

i

i is a square-zero closed

immersion with kernel OT



=


OY |T a squarezero algebra

0 OT A OX |T 0 extension on ét(T )


An obstruction theory for f is a fully faithful functor NX/Y ⊆ E into a vector bundle stack

as in [68, Corollary 3.8].

The notion of “square-zero closed immersion” in the definition demands elaboration, since

the objects involved are étale-locally ringed spaces. See [?] for details.

Remark 4.2.6. Suppose we specified an obstruction theory E• → LX/Y in the sense of [8]. The

associated obstruction theory according to Definition 4.2.5 on T -points is given by:

NX/Y (T ) = Ext(LX/Y |T ,OT ) −→ E = Ext(E•|T ,OT ).

See [68, Corollary 4.9] and [26, Chapitre VIII: Biextension de faisceaux de groupes] for comparison

and elaboration on Ext(E•, J) = ΨE•(J). In particular, our obstruction theories are all repre-

sentable by obstruction theories in the sense of [8].
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Definition 4.2.7 (The Log Normal Sheaf). Let f : X → Y be a DM morphism of log algebraic

stacks. Let T → X be an X-scheme. A deformation of log structures along f on T is a log structure

MA → A on the étale site ét(T ) of T with maps (OY |T ,MY |T ) → (A,MA) → (OX |T ,MX |T ) of

log structures such that:

• The kernel ker(A → OX |T ) ' OT and the diagram

OY |T

0 OT A OX |T 0

constitutes a squarezero algebra extension.

• The diagram

A∗ O∗X |T

MA MX |T

is a pushout.

The second bullet says that (A,MA) is a strict squarezero extension of (OX |T ,MX |T ); com-

pare with “deformations of log structures” [?]. The square in the second bullet is also a pullback,

and MA →MX |T is also a torsor under 1 + OT .

Define the log normal sheaf to represent the deformations of log structures just defined:
N `
X/Y

T X

 := {Deformations of log structures along f on T}.

We show that this definition agrees with Definition 4.2.5 in [?]: N `
X/Y = NX/LY .

To write down the functoriality of the log normal sheaf, we need to recall some of the ma-

chinery of log stacks found in [61].
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We denote Li := L[i], the stack of i-simplices of fs log structures. The jth face map dj sends

(M0 →M1 → · · · →Mi+1) 7→



(M1 →M2 → · · · →Mi+1) if j = 0

(M0 → · · ·Mj−1 →Mj+1 · · · →Mi+1) if j 6= 0, i+ 1

(M0 → · · · →Mi) if j = i+ 1.

We write s, t : L1 → L0 = L for the “source” d1 and “target” d0 maps, respectively. We have an

isomorphism Li = L1 ×t,L,s L1 ×t,L,s · · · ×t,L,s L1 (i factors).

Endow Li with the final tautological log structure, Mi+1 in the above. All the face maps dj

are strict except j = i+ 1.

We continue [61] to use “�” to denote the category with these objects, arrows, and relations:

0 1

2 3

◦
◦

We adopt pictorial mnemonics for fully faithful morphisms of these finite diagrams: means the

functor [2] ⊆ � avoiding 2, etc.

Definition 4.2.8 (Compare [61, Lemma 3.12]). Define V := L1 ×`t,L,t L1. Given a scheme T , the

points of this stack are cocartesian squares of fs log structures:

V(T ) :=


M0 M1

M2 M3.
`y


This is the “fsification” of the ordinary pullback L1 ×t,L,t L1, endowed with the non-fs pushout

M1 ⊕monM0
M2 of the universal log structures.

The natural embedding V → L� exhibits the squares which are cocartesian as an open

substack, as we’ll record in Lemma 4.2.10.

For a morphism q : Y ′ → Y of log algebraic stacks, we obtain relative variants:

Vq := V × , L1 Y ′, L�q := L� × , L1 Y ′.
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The fs pullback here agrees with the ordinary one because Y ′ → L1 is strict. The points of these

stacks over some scheme T are squares

MY |T MY ′ |T

M0 M1,

with those of Vq required to be cocartesian.

Lemma 4.2.9. Let Larbfine denote the stack of log structures which are fine but not necessarily

saturated. The natural monomorphism

L ↪→ Larbfine

is an open immersion.

Proof. Consider some scheme X and pullback diagram

Xfs L

X Larbfine

p

Then Xfs ↪→ X is a monomorphism, the locus where the stalks of MX are saturated. After

passing to an open cover of X, [59, Theorem II.2.5.4] provides us with a locally finite stratification

X =
⊔
σ∈Σ

Xσ where

• For each σ ∈ Σ, MX |σ is constant.

• The cospecialization maps for x ∈ {ξ} ⊆ X

Mx →M ξ

are localizations at faces.

The localization of a saturated monoid remains saturated [59, Remark I.1.4.5] and a monoid is

saturated if and only if its characteristic monoid is [59, Proposition I.1.3.5]. We then have that

Xfs ⊆ X is locally a constructible subset which is closed under generization, and hence open [63,

Tag 0542].
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We collect several results of [61] adapted to the fs setting:

Lemma 4.2.10 ([61, Theorem 2.4, Proposition 2.11, Lemma 3.12]). These statements remain true

in the fs context:

(1) For any finite category Γ, the fibered category LΓ of diagrams of fs log structures indexed

by Γ is an algebraic stack.

(2) The simplicial face maps dj : Li+1 → Li are strict, étale, and DM-type for j ≤ i.

(3) If [1]→ � avoids the initial object 0 ( or ), it induces a strict étale, DM-type morphism

L� → L1.

(4) If [2]→ � omits either 1 or 2 ( or ), it induces an étale, DM-type morphism

L� → L2.

(5) The map V ⊆ L� is an open embedding.

(6) Given an fs pullback square

X ′ X

Y ′ Y,

p`

q

the associated square of stacks

X ′ X

Vq LY

p

is a pullback.

Proof. Facts (1) through (4) are immediate by Lemma 4.2.9 and the analogous facts in [61]. The

last two follow by the same arguments applied in the fs category.
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Remark 4.2.11. Apply L once more to the map LY → Y : one gets

d1 : L2Y → LY (MY →M0 →M1) 7→ (MY →M1).

The result is étale, so the original d1 : LY → Y is log étale [60, Theorem 4.6 (ii)]. The same

reasoning concludes di+1 : Li+1Y → LiY is log étale in general. In summary, all the face maps are

log étale and all but j = i+ 1 are furthermore strict étale.

Remark 4.2.12. Given q : Y ′ → Y DM, the natural maps

Vq ⊆ L�q → LY ′

are étale. The second map is the product of the étale map

∗
: L� → L2

over L1 (via ) with Y ′.

Definition 4.2.13. Use Lemma 4.2.10, bullet (6) to turn one commutative square of DM maps

into another:

X ′ X

Y ′ Y.
q

 

X ′ X

L�q LY

Maps of normal sheaves

ϕ : N `
X′/Y ′ ' NX/L�

q
→ N `

X/Y

arise from Remark 4.2.12 and the second square. We call the composite ϕ Olsson’s Morphism.

Remark 4.2.14. In Definition 4.2.13, if the first square was an fs pullback square, the second

factors:
X ′ X

Vq L�q LY.

p

Since this square is a pullback, Olsson’s morphism

ϕ : N `
X′/Y ′ ' NX′/L�

q
' NX′/Vq ↪→ N `

X/Y |X′
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is then a closed immersion.

If q or f is also log flat, ϕ might not be an isomorphism. See Lemmas 4.3.15, 4.3.16 for the

strict case.

Remark 4.2.15. A commutative square of DM maps may be factored:

X ′ X

Y ′ Y.

f

q

 

X ′ X

L�q LY

Y ′ Y.

(4.1)

This induces a commutative square of normal sheaves:

N `
X′/Y ′ ' NX′/L�

q
N `
X/Y

NX′/Y ′ NX/Y .

◦ (4.2)

The Olsson morphisms are thereby seen to be compatible with the ordinary functoriality of the

normal sheaf via the forgetful maps N `
X/Y → NX/Y .

Now suppose the original square (4.1) is an fs pullback:

• If q is strict, then Vq ' LY ′, and our fs pullback square factors as

X ′ X

Vq ' LY ′ LY

Y ′ Y,

p

p

and the functor of points witnesses that (4.2) is cartesian.

• If instead f is strict, then X ′ → Vq factors through Y ′, and the factorization

X ′ X

Y ′ Y

Vq LY

p

p
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shows that the vertical arrows of (4.2) are isomorphisms and the Olsson Morphism is the

same as the ordinary functoriality of the Normal Sheaf.

Remark 4.2.16. Given a commutative square

X ′ X

Y ′ Y,
q

of DM maps we can form two other commutative squares out of it:

X ′ X

L�q LY,

X ′ LX

LY ′ LY.

They induce morphisms

N `
X′/Y ′ ' N

`
X′/L�

q
→ N `

X/Y |X′ ,

N `
X′/Y ′ → NLX/LY |X′ .

Form the diagram

X ′ LX X

L�q L2Y LY

LY ′

s

p

d0

to see that the two morphisms of normal sheaves are compatible:

N `
X′/Y ′ ' NX′/L�

q
→ NLX/L2Y |X′ ⊆ N `

X/Y |X′ .

Lemma 4.2.17. Suppose given a pair of commutative squares:

X ′ Y ′ Z ′

X Y Z
f g

of DM-type maps. The diagram

N `
Y/Y ′

N `
X/X′ N `

Z/Z′

commutes, where all the arrows are Olsson’s morphisms.
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Proof. Introduce an algebraic X-stack W, with functor of points:
W

T X

 :=


M2 M1 M0

MX |T MY |T MZ |T

commutative diagrams of

fs log structures on T


In other words, W := (L� ×L1 L�)×L2 X.

All the triangles in this diagram commute because of the definition of Olsson morphisms and

the functor of points of N:

NX/L�
g◦f

N `
X′/X NX/W N `

Z′/Z

NX′/L�
f

NY/L�
g

N `
Y ′/Y

∼

∼

∼

Restricting the diagram to N `
X′/X , N `

Y ′/Y , and N `
Z′/Z , we get the result.

Proposition 4.2.18. Given X
f→ Y

g→ Z DM-type maps of log algebraic stacks, the Olsson

Morphisms yield a complex of stacks

N `
X/Y → N `

X/Z → N `
Y/Z |X ,

in that the composite factors through the vertex.

If h is smooth, N `
Y/Z = BT `Y/Z and rotating the triangle in the derived category yields an

exact sequence of cone stacks:

T `Y/Z |X → N `
X/Y → N `

X/Z .



100

Proof. The Olsson Morphisms come about from the commutative diagram

X X Y

Y Z Z

 

N `
X/Y N `

Y/Y |X = X

N `
X/Z N `

Y/Z |X .

0

The surjectivity, smoothness, and calculation of the fiber of N `
X/Y → N `

X/Z may all be checked

routinely using the functor of points.

Remark 4.2.19. Suppose given a (not necessarily commutative) finite diagram of cones. If the

diagram induced by taking abelian hulls is commutative, so was the original.

4.3 Properties of the Log Normal Cone

We are ready to define the log normal cone. We recall the essential properties of the ordinary

normal cone; the rest of the section establishes analogous properties in the log context.

Remark 4.3.1. Consider a DM-type morphism f : X → Y of algebraic stacks. K. Behrend and

B. Fantechi defined the Intrinsic Normal Cone [8]

Cf = CX/Y ⊆ NX/Y ;

C. Manolache [49] removed their assumptions of smooth Y and DM X. This cone has the following

basic properties:

(1) A commutative diagram

X ′ X

Y ′ Y

f

q

yields a morphism of cones ϕ : CX′/Y ′ → CX/Y ×X X ′.

• if the square was cartesian, ϕ is a closed embedding.

• if also f or q was flat, ϕ is an isomorphism.
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(2) For a composite

X
f→ Y

g→ Z

• if g is l.c.i., CX/Y = NX/Y and the sequence

NX/Y → CX/Z → CY/Z |X

of cone stacks is exact.

• if h is smooth, the sequence

TY/Z |X → CX/Y → CX/Z

is exact.

(3) Obstruction Theories and Gysin Pullbacks are obtained by placing the cone in a vector

bundle stack CX/Y ⊆ E (see [49], [68], [40]).

Definition 4.3.2 (Log Intrinsic Normal Cone, Olsson Morphisms). Let f : X → Y be a DM-type

morphism of log algebraic stacks. We define the Log (Intrinsic) Normal Cone

C`X/Y := CX/LY ⊆ N `
X/Y

after [23]. Endow it with the log structure pulled back from X. Given a commutative square of log

algebraic stacks and its partner

X ′ X

Y ′ Y
q

 

X ′ X

L�q LY,

the latter induces

ϕ : C`X′/Y ′ ' CX′/L�
q
→ C`X/Y .

This is again called the Olsson Morphism.

Remark 4.3.3. The map LY → Y has a section Y ⊆ LY which is an open immersion. This open

immersion represents strict log maps to Y .
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As a result, if X → Y is DM and strict, C`X/Y = CX/Y and N `
X/Y = NX/Y . In addition, the

Olsson Morphisms are the same as the ordinary functoriality of the normal cone (Remarks 4.2.19

and 4.2.15).

The Olsson Morphism of any fs pullback square is a closed immersion, because it fits into a

commutative square of closed immersions from Remark 4.2.14:

C`X′/Y ′ C`X/Y |X′

N `
X′/Y ′ N `

X/Y |X′ .

Remark 4.3.4 (Short Exact Sequences of Cone Stacks). Recall [8, Definition 1.12]. Let E be a

vector bundle stack and C,D cone stacks all on some base algebraic stack X. A composable pair

of morphisms of cone stacks

E → C → D

is called a short exact sequence if

• C → D is a smooth epimorphism.

• The square

E × C C

C D,

pr2

σ

where pr2 is the projection and σ the action, is cartesian.

These are equivalent to having C ' E ×X D locally in X.

Note that this definition is fpqc-local in the base X [63, 02VL]. Another reduction we will

need applies in case there is a commutative diagram of cone stacks

E C D

E′ C ′ D′

s t

with E,E′ vector bundles. If the top sequence is exact and the arrows labeled s, t are smooth and

surjective, then the bottom is exact. To see this, pushout along E → E′ so as to assume E = E′
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(s, t remain smooth and surjective). The diagram on the left is the pullback along the smooth

surjection D′ → D of the one on the right:

E × C ′ C ′

C ′ D′

p
E × C C

C D,

and we can verify that E × C is the pullback after smooth-localizing.

Proposition 4.3.5. Suppose X
f→ Y

g→ Z are DM maps between log algebraic stacks, and g is

log smooth. Then

T `Y/Z |X → C`X/Y → C`X/Z

is an exact sequence of cone stacks.

Proof. Encode the log structures on the maps via the top row of the diagram

X LY L2Z L2

Y LZ L1.

p p

Since Y → LZ is smooth, LY → L2Z is. Moreover, they have the same tangent bundle:

T `Y/Z |LY = TY/LZ |LY = TLY/L2Z

since the vertical maps are log étale [59, Corollary IV.3.2.4].

Together with the isomorphism C`X/Z ' CX/L2Z , we obtain the exact sequence.

Remark 4.3.6. In the proof, the composite

C`X/Y → CX/L2Z ' C`X/Z

is precisely the Olsson Morphism. This is immediate from the diagram:

X X

L�q L2Z

LY LZ.
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Remark 4.3.7. The introduction promised three characterizations of C`X/Y .

The log intrinsic normal cone is characterized by the strict case of Remark 4.3.3 and the

log étale case of Proposition 4.3.5. This is because any map X → Y factors into the strict map

X → LY composed with the log étale map LY → Y (Remark 4.2.11).

We can unpack this definition locally using charts. Suppose a morphism has a global fs chart

by Artin Cones:

X Y

AP AQ.

The morphism AP → AQ is log étale [60, Corollary 5.23]. Let W = AP ×`AQ Y denote the fs

pullback, so that X → Y factors through a strict map to W and W is log étale over Y . We

immediately get

C`X/Y = CX/W .

The reader may be reassured by working locally with this definition. If the reader wants instead to

work with charts Spec(P → C[P ]) in the traditional sense, then log étaleness is no longer immediate

and we must check Kato’s Criteria [59, Corollary IV.3.1.10].

Recall Construction 4.2.1 – after localizing in the étale topology, we obtain a factorization of

any map X → Y as a strict closed immersion followed by a log smooth map

X ⊆ Xθ → Y.

Proposition 4.3.5 therefore locally provides a presentation of the log normal cone:

C`X/Y = [CX/Xθ/T
`
Xθ/Y

].

Lemma 4.3.8. Given a DM map f : X → Y of log algebraic stacks with X quasicompact, the

map

X → LY

factors through an open quasicompact subset U ⊆ LY .

Our applications require openness; otherwise the lemma is trivial.
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Proof. The claim is étale-local in Y and X because X is quasicompact. We can thereby assume we

have a global chart

X Y

AP AQ.

The map AP ×AQ Y → LY is étale [60, Corollary 5.25] and X factors through its open,

quasicompact image.

Remark 4.3.9. This lemma ensures that any DM map X → Y of log stacks with X quasicompact

factors through X → U → Y with X → U strict, U quasicompact, and U → Y log étale.

Example 4.3.10. We provide an example of Construction 4.2.1 and Remark 4.2.2.

Consider the diagonal morphism A1 ∆→ A2. The addition map N2 +→ N gives a chart for ∆.

Denote by B the log blowup of A2 at the ideal I ⊆ MA2 generated by N2 \ {0} ⊆ N2. The

pullback ∆∗I is generated by the image of the composite

N2 \ {0} ⊆ N2 +→ N.

The pullback is generated globally by a single element and so ∆ factors through the log blowup B.

Name the generators N2 = Ne⊕Nf . The log blowup B is covered by two affine opens D+(e)

and D+(f), on which e and f are invertible.

On the chart D+(e), the morphism A1 → B looks like

N Ne⊕ N(f − e)

C[t] C[x,
y

x
].

The horizontal morphisms send f − e 7→ 0 and
y

x
7→ 1. Because (f − e) maps to 1 ∈ C[t], the

composite

Ne⊕ N(f − e)→ N→ C[t]
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is another chart for the same log structure on A1. This means that A1 → D+(e) is strict. The

same discussion applies to D+(f). In the tropical picture [13, §2], we subdivided A2 at the image

of the ray corresponding to A1:

A1

A2

.

Proposition 4.3.11. Consider DM-type morphisms X
f→ Y

g→ Z between log algebraic stacks. If

C`X/Y = N `
X/Y , then

N `
X/Y → C`X/Z → CLY/LZ |X

is an exact sequence of cone stacks.

Proof. Compare [8, Proposition 3.14].

By Proposition 4.2.18 and Remark 4.2.16, this sequence composes to zero. Remark 4.3.4

allows us to repeatedly fpqc-localize in X to check exactness of such a sequence. Localization

reduces to the case where X, Y , and Z are affine log schemes and the map Y → Z admits a global

fs chart. We are therefore in the situation of Construction 4.2.1.

Reduction to g : Y → Z Strict

Factor Y → Z into a strict closed immersion composed with a log smooth map:

Y ⊆W � Z.

We obtain a diagram

T `W/Z |X TLW/LZ |X

NX/Y C`X/W CLY/LW |X

NX/Y C`X/Z CLY/LZ |X .

p
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Observe that the diagram commutes – the morphism T `W/Z |X → C`X/W in the proof of Proposition

4.3.5 factors through an identification T `W/Z |LW ' T `
LW/L2Z . Because LW → W is log étale, the

two tangent spaces are isomorphic [59, IV.3.2.4]. Thus the right square is a pullback. The vertical

maps of cones are smooth surjections, so it suffices to show the middle row is exact as in Remark

4.3.4. We may thereby assume W = Z and g : Y → Z is a strict closed immersion.

Reduction to f : X → Y Strict

Use Construction 4.2.1 again to factor X → Z as a strict closed immersion composed with a

log smooth map X ⊆W � Z. The map X →W ′ := W ×Z Y is again a strict closed immersion:

X W ′ W

Y Z.

p` (4.3)

Because the top row is strict, X → LW ′ factors through the open subset W ′ ⊆ LW ′ and

CLW ′/LW |X = CLW ′/LW |W ′ |X = C`W ′/W |X = CW ′/W |X .

The fs pullback square in (4.3) also induces a cartesian square of stacks:

LW ′ LW

LY LZ

p

with LW → LZ smooth. This reveals that

CLY/LZ |LW ′ = CLW ′/LW .

Putting this together with the above, we have computed

CLY/LZ |X = CW ′/W |X .

The factorization (4.3) gives a diagram

T `W ′/Y |X T `W/Z |X

NX/W ′ C`X/W CW ′/W |X

NX/Y C`X/Z CLY/LZ |X
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The composable vertical arrows are the quotients of Proposition 4.3.5, so the bottom row will

be exact if we show the middle row is. The middle row is exact by a relative form of the original

[8, Proposition 3.14].

Remark 4.3.12. The exact sequences of cone stacks in Propositions 4.3.5, 4.3.11 are natural in

morphisms of composable pairs of arrows.

In the next example, the log normal cone differs from the ordinary scheme-theoretic one.

Example 4.3.13. In Example 4.3.10, we considered the log blowup B of A2 at the origin and the

diagonal map. Pull back to get the identity log blowup of A1:

A1 B

A1 A2.

p`

Let N,N2 both be SpecC, with log structures coming from N and N2, respectively. Then the

inclusions of the origins N ∈ A1 and N2 ∈ A2 are strict.

Take the pullback of the above diagram along the inclusion N2 ∈ A2:

N D

N N2 .

p`

The map D →N2 is the exceptional divisor of B, which is P1 with log structure Mx = N2 at the

intersections with the axes and Mx = N elsewhere.

To see the log normal cone differ from the ordinary one, compute the normal cones of the

arrows in this square: C`
N/N

=, C`
N/N2

= C`
N/D

= A1, and C`D/N2
= P1. Although N and N2 have the

same underlying scheme, the log normal cones of N over them are different.

Remark 4.3.14. A handy consequence of Proposition 4.3.11 is that, if Y → Z is a DM-type

morphism between log algebraic stacks and Y ′ → Y is a strict étale map, then

C`Y ′/Z ' C
`
Y/Z |Y ′ .
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This is not true without the strictness assumption. This is the observation of W. Bauer precluding

the existence of a log cotangent complex with all its desiderata (see [61, §7]).

In general, it need only be a closed immersion. This is because

C`Y ′/Z ' CLY/LZ |Y ′ ⊆ NLY/LZ |Y ′ ⊆ N `
Y/Z |Y ′

is a closed immersion which factors through C`Y/Z |Y ′ , as in Remark 4.2.16.

For a single example, take the log blowup B → A2 of the origin ∈ A2. The pullback defines

a strict pullback square:

D B

A2.

p`

Because the horizontal morphisms are strict, their log normal cones coincide with the ordinary

ones. Log blowups are log étale, so we would erroneously be led to conclude that

CD/B
?
= C/A2 |D.

The inclusion D ⊆ B is regular, and so is ∈ A2, so the normal cones and normal sheaves agree:

ND/B = OB(D)|B

N/A2 |D = A2
D.

The dimensions are different, so they can’t be equal.

Lemma 4.3.15. Suppose given a strict pullback square

X ′ X

Y ′ Y

p`

q

of DM-type morphisms between log algebraic stacks for which q is strict and smooth. Then the

Olsson Morphism

C`X′/Y ′
∼→ C`X/Y |X′

is an isomorphism.
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Proof. We first note that the Olsson Morphism N `
X′/Y ′ → N `

X/Y |X′ on log normal sheaves is an

isomorphism. This is clear from the q strict pullback part of Remark 4.2.15 and the fact that the

ordinary normal sheaves are isomorphic.

Now we know that the morphism of cones C`X′/Y ′ → C`X/Y |X′ is a closed immersion, and it

suffices to show that it is moreover smooth and surjective. We express this map as a composite

C`X′/Y ′ → C`X′/Y → C`X/Y |X′ .

Proposition 4.3.5 asserts that the first map is smooth and surjective and Proposition 4.3.11 says

the same for the second.

Lemma 4.3.16. Suppose given a pair of fs pullback squares

X̃ ′ X̃

X ′ X

Y ′ Y

p`
z

p`

of DM-type morphisms between log algebraic stacks for which z is strict and smooth. Then the

diagram of log normal cones

C`
X̃′ /Y ′

C`
X̃ /Y

C`X′/Y ′ C`X/Y

s′
p

s

is cartesian and the arrows s, s′ are smooth epimorphisms.

Proof. Proposition 4.3.11 provides a map of short exact sequences of cone stacks:

BT `
X̃′ /X′

C`
X̃′ /Y ′

C`X′/Y ′ | X̃′

BT `
X̃ /X
|
X̃′

C`
X̃ /Y
|
X̃′

C`X/Y | X̃′ .

t′

p

t̃

Witness that the right square is cartesian because [61]

T `
X̃′ /X′

= T `
X̃ /X
|
X̃′
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and that the arrows t′, t̃ are clearly smooth epimorphisms. The arrow t̃ is pulled back from the

smooth epimorphism t : C`
X̃ /Y

→ C`X/Y | X̃ , so we have the top pullback square

C`
X̃′ /Y ′

C`
X̃ /Y

C`X′/Y ′ | X̃′ C`X/Y | X̃ X̃

C`X′/Y ′ C`X/Y X

t′
p

s′

t s

p p

The composite vertical rectangle of cones is the diagram we are after, and so the fact that this

square is cartesian is clear. It remains only to note the bent arrows s, s′ are smooth epimorphisms

because they are the composites of t, t′ with pullbacks of the smooth epimorphism X̃ → X.

4.4 Logarithmic Intersection Theory

The Log Intersection Theory package is defined the same way as usual [49], mutatis mutandis.

Definition 4.4.1 (Log Perfect Obstruction Theory). Define a Log Perfect Obstruction Theory

(hereafter “Log POT ”) for a DM-type morphism f : X → Y to be a closed immersion of cone

stacks

C`X/Y ⊆ E (equiv. N `
X/Y ⊆ E)

of the log normal cone into a vector bundle stack E.

Given an fs pullback square

X ′ X

Y ′ Y

f ′
p`

f

and a Log POT C`X/Y ⊆ E for f , the Olsson Morphism

C`X′/Y ′
ϕ
↪→ C`X/Y |X′ ⊆ E|X′

defines a “Pullback” Log POT .
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A related notion of “Pullback” Log POT arises when X ′ → X is log étale and f : X → Y

any DM-type map. Then Remark 4.3.14 shows the map

C`X′/Y → C`X/Y |X′

is a closed immersion, and we can compose with an obstruction theory for f to get one for the

composite X ′ → X → Y .

Given a Log POT C`X/Y ⊆ E for some f , suppose X has a stratification by global quotient

stacks and Y is log smooth and equidimensional. Then [40, Proposition 5.3.2] gives us a unique

cycle

[X,E]`vir ∈ A∗X

which pulls back to the class [C`X/Y ] ∈ A∗E. This class is called the Log Virtual Fundamental Class

(hereafter “Log VFC ”).

Remark 4.4.2. When LY is equidimensional, so is C`X/Y . The correct definition of the Log VFC

requires that the cone be equidimensional. If Y is log smooth, Y ⊆ LY is dense. If Y is also

equidimensional, we get that LY is. This explains our assumptions in Definition 4.4.1. We don’t

include these assumptions in the definition of a Log POT only because we may have Log Gysin

maps more generally.

Definition 4.4.3 (Log Gysin Map). Suppose a DM-type f : X → Y has a Log POT C`X/Y ⊆ E.

Given a DM-type log map k : V → Y with V log smooth and equidimensional, form the fs pullback:

W V

X Y

p`
k

f

The embedding

C`W/V ⊆ C
`
X/Y |W ⊆ E|W

results in a class

[C`W/V , E] ∈ A∗W.
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Mimicking [49], we call this “map”

f ! = f !
E

the Log Gysin Map.

Remark 4.4.4. Consider a DM-type morphism f : X → Y of log algebraic stacks. The cartesian

square

LX X

L2Y LY

s

p

d0

from Remark 4.2.16 results in a closed embedding

CLX/LY ' CLX/L2Y ⊆ C`X/Y |LX

which we use to canonically extend an obstruction theory C`X/Y ⊆ E to a closed embedding

CLX/LY ⊆ E|LX .

Now suppose given a composable pair X
f→ Y

g→ Z as above and equip f, g with Log POT ’s:

C`X/Y ⊆ F, C`Y/Z ⊆ G.

Define a compatibility datum for such a pair to be a traditional compatibility datum [49,

Definition 4.5] for

X
f→ LY

g→ L2Z,

endowing LY → L2Z with the extended obstruction theory

CLY/L2Z ' C`Y/Z |LY ⊆ G|LY .

We offer a couple of basic remarks about our definitions before the examples and theorems.

Remark 4.4.5. The map f ! just defined takes in log smooth equidimensional stacks DM over Y

and produces classes in certain Chow Groups. We do not know whether this operation may be

extended to the “Log Chow” groups of [6].
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Remark 4.4.6. Given an fs pullback square

X ′ X

Y ′ Y

f ′
p`

f

of DM maps where f has a Log POT C`X/Y ⊆ E, endow f ′ with the Pullback Log POT . Then

f ! = f ′!

when applied to log smooth, equidimensional log schemes over Y ′.

Remark 4.4.7. If C`X/Y = N `
X/Y for a DM morphism f : X → Y , we can take E = N `

X/Y as our

obstruction theory. If X,Y are equidimensional and Y is log smooth, unwinding definitions shows

f !(Y ) = [X],

where [X] is the fundamental class of X.

Remark 4.4.8. Log Gysin Maps don’t commute with pushforward: Let

X ′ X

Y ′ Y

p

f ′
p`

f

q

be an fs pullback square. Endow f : X → Y with a Log POT C`X/Y ⊆ E and give f ′ the pullback

obstruction theory. Then the usual equality [49, Theorem 4.1 (i)] can fail:

f !q∗ 6= p∗f
′!.

Take the square of Example 4.3.13

N D

N N2

p`

and apply both operations to [N] for a counterexample.

Remark 4.4.9. Virtual Fundamental Classes don’t push forward along log blowups: Let X → F

be the morphism from a stack X to its Artin Fan (the reader may take a traditional chart instead
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of F ). Choose a finite subdivision F̂ → F , and form the fs pullback:

X̂ F̂

X F.

p
p`

Suppose given a map f : X → Y with a Log POT C`X/Y ⊆ E and equip f ◦ p : X̂ → Y with the

pullback obstruction theory

C`
X̂ /Y

⊆ C`X/Y | X̂ ⊆ E| X̂ .

Then possibly

p∗[X̂ , E]`vir 6= [X,E]`vir.

A counterexample is again given by p : D →N2 , f :N2==N2 as in Example 4.3.13: p∗[P1] = 0 for

dimension reasons.

The rest of this section and the next should reassure the disheartened reader that common-

sense fomulas of ordinary intersection theory do remain true in the log setting. We regard Remarks

4.4.8, 4.4.9 as defects of the usual notion of pushforward p∗ in the log setting. The morphisms

N → D, D →N2 of Example 4.3.13 are monomorphisms in the fs category, and N →N2 should be a

cycle of dimension one in the “two dimensional” log point N2 .

The paper [6] introduces log chow groups to correct this defect, in particular via suitable

notions of dimension and degree. See also [54]. We are eager to see which of our results may be

extended using this improved technology.

For now, we content ourselves to use the observation of [57, Proposition 4.3] that log blowups

are birational if the target is log smooth. We will use it to prove that weaker forms of the näıve

guesses of Remarks 4.4.8, 4.4.9 do hold true, as well as straightforward commutativity of the Gysin

Maps.

We will need to use Costello’s notion of “pure degree d” [15, before Theorem 5.0.1] to make

sense of pushforward on the level of cycles, given by cones embedded in vector bundles. The next

theorem allows us to check statements about Log VFC ’s after a log blowup if the target is log

smooth. Its statement and proof are similar to [4].
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Theorem 4.4.10. Suppose given a DM-type map f : X → Y between locally noetherian algebraic

stacks locally of finite type over C where Y is log smooth and equidimensional. Endow f with a

Log POT E and let X → F be any DM morphism to an Artin Fan. Take the fs pullback along a

finite subdivision

X̂ F̂

X F.

p
p` (4.4)

Endow f ◦ p with the pullback Log POT

C`
X̂ /Y

⊆ C`X/Y | X̂ ⊆ E| X̂ .

Then

p∗[X̂ , E]`vir = [X,E]`vir

Proof. We will actually show that the map

t : C`
X̂ /Y

→ C`X/Y

is of pure degree one. Then the pushforward A∗E| X̂ → A∗E sends the class of one cone to the

other, and “intersecting with the zero section” gives the equality of VFC’s.

We will reduce to the case where X → F is strict. The statement “t is of pure degree one”

may be verified étale-locally in X, as we now argue.

Given a strict étale cover X ′ → X, write X̂ ′ := X̂ ×X X ′. We have a pullback diagram

C`
X̂′ /F

C`X′/F X ′

C`
X̂ /F

C`X/F X,

t′

p p

t

as in Remark 4.3.14. Since X ′ → X is étale, the other vertical arrows are as well. The property

“pure degree one” is smooth-local in the target, so t has it if t′ does.

Now étale-localize in X so that X → F factors through a chart X → FX → F for X. Take
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the fs pullback along the subdivision F̂ → F :

X̂ F̂ X F̂

X FX F.

p` p`

We can then replace F by FX in the proof of the theorem and assume X → F is strict.

Apply the proof of Costello’s Formula [15, Theorem 5.0.1] to (4.4) to conclude

t : C`
X̂ / F̂

→ C`X/F

is of pure degree one, since F̂ → F is birational.

Expanding upon (4.4):

X̂ F̂ × Y F̂

X F × Y F

Y,

p` p`

we get a map of exact sequences of cone stacks:

T `Y | X̂ C`
X̂ / F̂ ×Y

C`
X̂ / F̂

T `Y |X C`X/F×Y C`X/F .

p
t̂ t

After pulling the bottom row back to X̂ , we get the identity on tangent bundles and see that

the right square is a pullback. Since the property“of pure degree one” pulls back along smooth

maps, the quotient maps in exact sequences of cone stacks are smooth, and t is pure degree one,

t̂ is also pure degree one. Because F, F̂ are log étale over a point, C`
X̂ / F̂ ×Y

= C`
X̂ / Ŷ

and

C`X/F×Y = C`X/Y , so the claim is proven.

Example 4.4.11. One must be cautious, for Theorem 4.4.10 is false without the assumption that

Y is log smooth. Recall the exceptional divisor D → of the blowup of A2 at the origin = SpecC

from Example 4.3.13 and its normal cone C`D/ = P1.
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For the sake of contradiction, let X̂ = P1 and X = Y = as in the theorem. Endow C`/ =

with the initial Log POT , E =. Then

[X̂ , E]`vir = [D,E]`vir = [P1]

and

[X,E]`vir = [, E]`vir = [],

but again p∗[P1] = 0 for dimension reasons.

Theorem 4.4.12 (Commutativity of Log Gysin Map). Given a composable pair of DM-type maps

between log algebraic stacks

X
f→ Y

g→ Z,

outfit f , g, and g ◦ f with log obstruction theories F , G, E and a compatibility datum (Remark

4.4.4). Require X to admit stratifications by global quotients.

If k : V → Z is a log smooth and equidimensional Z-stack and k is DM-type, take fs pullbacks:

T U V

X Y Z.

p` p`

Then the equality

[C`g◦f ⊆ E] = [C`C`g |X/C`g
⊆ F ⊕G|X ] (4.5)

holds on X.

Proof. Pullback via k all obstruction theories and their compatibility datum to reduce to showing

the theorem for k : V == Z. We essentially apply [49, Theorem 4.8] to X → LY → L2Z, endowed

with the compatible triple F,G,E by composing with an isomorphism of distinguished triangles:

G|X F E

LLY/LZ |X L`X/Z L`X/Y

LLY/L2Z |X LX/LZ LX/L2Z .

∼ ∼
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Use Lemma 4.3.8 repeatedly to obtain a strict diagram with U, V quasicompact and étale

over the stacks LY,L2Z:

X U V

LY L2Z.

Endow the cone CLY/LZ with the pullback log structure from LY and pull it back along the

part of the diagram above LY :

CLY/LZ |X = CU/V |X CU/V

CLY/LZ .

The triangle is strict and the map CU/V → CLY/LZ is pulled back from the étale U → LY , so

C`CLY/LZ |X/CLY/LZ
= CCU/V |X/CU/V .

Write i : X → U j : U → V for the maps. Then the compatibility datum pulls back and [49,

Theorem 4.8] gives us

(j ◦ i)!
E([V ]) = i!F ◦ j!

G([V ]).

Unwinding definitions, this becomes

[CX/V ⊆ E] = [CCU/V |X/CU/V ⊆ F ⊕G|X ]. (4.6)

This may be rewritten as

[C`X/Z ⊆ E] = [C`CLY/LZ |X/CLY/LZ
⊆ F ⊕G|X ],

the claimed equality of classes.

Remark 4.4.13. Theorem 4.4.12 says that

(g ◦ f)! = f !g!

in the sense that any log smooth, equidimensional log stack over Z has rationally equivalent images

under these two operations.
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Remark 4.4.14. Consider an fs pullback of DM-type morphisms between log algebraic stacks:

X ′ X

Y ′ Y.

p

f ′
p`

f

q

Write r : X ′ → Y for the composite f ◦ p = q ◦ f ′. If f, q are endowed with Log POT ’s C`X/Y ⊆ F ,

C`Y ′/Y ⊆ E, how should we give r a Log POT ?

The fs pullback square induces a pullback of stacks, which may be reexpressed as a “magic

square:”

LX ′ LX LX ′ LX ×LY ′

LY ′ LY LY LY ×LY.

p
 

p

The magic square induces a closed immersion

CLX′/LY ⊆ CLX/LY |LX′ ×LX′ CLY ′/LY |LX′

which pulls back to a closed immersion

C`X′/Y ⊆ CLX/LY |X′ ×X′ CLY ′/LY |X′

on X ′. As in Remark 4.4.4, we have closed embeddings CLX/LY ⊆ C`X/Y |LX , CLY ′/LY ⊆

C`Y ′/Y |LY ′ . We endow r with the Log POT given by the composite:

C`X′/Y ⊆ CLX/LY |X′ ×X′ CLY ′/LY |X′ ⊆ C`X/Y |X′ ×X′ C
`
Y ′/Y |X′ ⊆ F |X′ ×X′ E|X′ .

We now construct a compatibility datum for the triangle r = q ◦ f ′, leaving the reader to

apply the same argument to the other triangle r = f ◦ p. By the definitions of the Log POT ’s, we

have a commutative diagram:

C`X′/Y ′ C`X′/Y C`Y ′/Y |X′

F |X′ E|X′ ×X′ F |X′ E|X′ .
(0×id)

To be clear, the morphism F |X′ → E|X′ ×X′ F |X′ is the vertex map times the identity. It’s clear

the bottom row comes from a distinguished triangle in the derived category. The top row likewise

comes from the distinguished triangle [61, Theorem 8.14] of Gabber’s Log Cotangent Complexes:

Y ′/Y |X′ → X ′/Y → X ′/Y ′ → .
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Corollary 4.4.15. Suppose given an fs pullback square

X ′ X

Y ′ Y

p

f ′
p`

f

q

of DM-type morphisms between log algebraic stacks which admit stratifications by quotient stacks.

Outfit q with a Log POTE and f with a Log POTF ; give p, f ′ the pullback obstruction theories.

Then

f ′! ◦ q! = p! ◦ f !

in the sense that the operations send any log smooth equidimensional input stack to the same class

in A∗X
′.

Proof. Denote by r : X ′ → Y the map f ◦ p = q ◦ f ′. Apply Theorem 4.4.12 to both commutative

triangles using the compatibility datum constructed in Remark 4.4.14 to see that

p! ◦ f ! = r! = f ′! ◦ q!.

4.5 The Log Costello Formula

This section proves a log analogue of the Costello Formula [15, Theorem 5.0.1]. We will have

more to say building on future work [16].

Theorem 4.5.1. Consider an fs pullback square of DM-type maps between algebraic stacks:

X ′ X

Y ′ Y.

p

f ′
p`

f

q

Assume

• Y ′ → Y is of some pure degree d ∈ Q as in [15, Theorem 5.0.1],

• Y ′, Y are both log smooth and equidimensional,
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• all arrows are DM-type and all stacks are locally noetherian and locally finite type over C,

• X ′, X admit stratifications by global quotient stacks [40]

• q is proper.

Endow f with a log perfect obstruction theory E and give f ′ the pullback obstruction theory.

Then

p∗[X
′, E|X′ ]`vir = d · [X,E]`vir

in the Chow Ring of X.

Remark 4.5.2. Let Y ′ → Y be a map between log smooth, equidimensional stacks which is of pure

degree d. Let W → Y be a smooth, log smooth, integral, and saturated morphism and W̃ →W a

log blowup. Form the fs pullback diagram:

W̃ ′ W̃

W ′ W

Y ′ Y.

p`

p`

The property “of pure degree d” pulls back along smooth morphisms, so it applies toW ′ →W .

Then [57, Proposition 4.3] shows that W̃ →W is birational, so W̃ ′ → W̃ is also of pure degree d.

Proof of Theorem 4.5.1. Consider the morphism

s : C`X′/Y ′ → C`X/Y .

We will prove that s is of pure degree d. Both “of pure degree” and the specific degree d can

be checked after pulling back s along a strict, smooth cover of C`X/Y . Lemmas 4.3.15, 4.3.16 show

that replacing Y or X by a smooth cover results in such a smooth cover of cones.

We may thereby assume X and Y are log schemes and the map f globally factors as in

Construction 4.2.1:

X → Xθ → Ar+sY → Y.
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Note Ar+sY → Y is smooth, log smooth, integral, and saturated, and Xθ → Ar+sY is a log

blowup. We are in the situation of Remark 4.5.2, so pulling back:

X ′ X

X ′θ Xθ

Y ′ Y

p`

p`

results in a map X ′θ → Xθ which is pure of degree d along X → Xθ. The proof of Costello’s Formula

[15, Theorem 5.0.1] then asserts that

C`X′/X′θ
→ C`X/Xθ

is of pure degree d. The short exact sequences of Proposition 4.3.5

T `X′θ/Y ′
C`X′/X′θ

C`X′/Y ′

T `Xθ/Y C`X/Xθ C`X/Y

t s

let us conclude that s is as well.

4.6 The Product Formula

Let V , W be log smooth, quasiprojective schemes throughout this section. We denote the

stacks of prestable curves and stable curves which have n-markings and genus g by M`
g,n,Mg,n,

respectively [63, 0DMG]. They are endowed with divisorial log structures coming from the locus of

singular curves [23, 1.5, Appendix A], [35].

Definition 4.6.1 (Log Stable Maps). The stack of log stable maps M `
g,n(V ) has fiber over an fs

log scheme T the category of diagrams of fs log schemes

C V

T
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with C → T a log smooth curve [35, Definition 1.2] of genus g and n marked points, such that the

underlying diagram of schemes is a stable map of curves.

Remarkably, the log algebraic stack M `
g,n(SpecC) of log curves without a map is isomorphic to

the ordinary stack of stable curves Mg,n with log structure induced by the boundary of degenerate

curves [35, Theorem 4.5]. The log structures of M `
g,n(V ) for a general fs target may be more

complicated, as they have to do with the “tropical deformation space” of the curve [23].

Construction 4.6.2 ([23, Section 5]). We recall the construction [23, Section 5] of the natural

Log POT for M `
g,n(V )→M`

g,n to clarify differences in notation.

Write U → M`
g,n for the universal curve. Define UV as the fs pullback, naturally equipped

with a tautological map to V :

V UV M `
g,n(V )

U M`
g,n

πV

p`

This diagram induces maps between log cotangent complexes

L`V |UV −→L`UV /U
t←− L`M `

g,n(V )/M`
g,n
|UV .

The map U →M`
g,n is integral, saturated, and log smooth according to its functor of points, so its

underlying map of stacks is flat and the fs pullback square is also an ordinary pullback.

Then t is an isomorphism [61, 1.1 (iv)], and the log cotangent complex of V is [61, 1.1 (iii)]

L`V = Ω`
V [0].

We’ve written [0] to consider a coherent sheaf as a chain complex concentrated in degree 0. Via

the isomorphism t and this identification, we have obtained a map

Ω`
V [0]|UV → L`

U/M`
g,n
|UV . (4.7)

We need the ordinary relative dualizing sheaf ωπ◦V and the identification

Lπ!
V (·) = ωπ◦V

L
⊗ Lπ∗V (·).
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Tensor (4.7) by ωπ◦V and use the adjunction:

Ω`
V [0] |UV

L
⊗ ωπ◦V −→ Lπ!

V L`M `
g,n(V )/M`

g,n
,

E(V ) := RπV ∗(Ω
`
V [0] |UV

L
⊗ ωπ◦V ) −→ L`M `

g,n(V )/M`
g,n
.

We won’t repeat the verification [23, Proposition 5.1] that E(V ) is a Log POT .

Remark 4.6.3. The map (4.7) comes from the map on normal cones

C`M `
g,n(V )/M`

g,n
|UV

∼←− C`UV /U −→ BT `V |UV .

We needed duality, so we opted for the other perspective.

Remark 4.6.4 (Variants). The reader may choose to work in the relative setting of a log smooth

and quasiprojective map V → S. Obstruction Theories are obtained in the same way.

We can naturally impose “contact order” conditions [2] in the log setting, but we only fix

genus and number of markings to be consistent with [42]. The reader may readily vary the numerical

type conditions in our formulas.

We need one more stack, D: Points of D over T are diagrams (C ′ ← C → C ′′) of genus g,

n-pointed prestable curves over T whose maps are partial stabilizations (they lie over the identities

in Mg,n) that don’t both contract any component. In other words, C → C ′ × C ′′ itself is a stable

map. This stack is only necessary to form an fs pullback square:

Situation 4.6.5 ([42, Section 2]). Recall the fs pullback square:

M `
g,n(V ×W ) M `

g,n(V )×M `
g,n(W )

D M`
g,n ×M`

g,n

c
p`

a

∆̃

(4.8)

Let C → V ×W be a log stable map over a base T . The maps (C → V ), (C → W ) needn’t

be stable; denote their stabilizations by (C ′ → V ), (C ′′ →W ), respectively.

The top horizontal arrow in (4.8) sends (C → V × W ) to the induced log stable maps

(C ′ → V,C ′′ → W ). The vertical arrow c sends (C → V × W ) to the partial stabilizations
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(C ′ ← C → C ′′). The map ∆̃ sends a diagram (C ′ ← C → C ′′) to the pair of prestable curves

C ′, C ′′. Finally, a sends a pair of log stable maps (C ′ → V,C ′′ → W ) to the prestable curves

(C ′, C ′′).

This square has a factorization:

M `
g,n(V ×W ) Q M `

g,n(V )×M `
g,n(W )

D Q′ M`
g,n ×M`

g,n

Mg,n Mg,n ×Mg,n,

h

c
p`

p`
a

l φ

p`
s×s

∆

(4.9)

where s : M`
g,n →Mg,n stabilizes a prestable curve.

To be clear, Q = M `
g,n(V ) ×`

Mg,n
M `

g,n(W ) and Q′ = M`
g,n ×`Mg,n

M`
g,n are the analogues of

[42]’s P , P, etc.

Theorem 4.6.6 (The “Log Gromov-Witten Product Formula”). With V , W log smooth, quasipro-

jective schemes,

h∗[M
`
g,n(V ×W ), E(V ×W )]`vir = ∆!([M `

g,n(V ), E(V )]`vir × [M `
g,n(W ), E(W )]`vir).

Our proof will be the same as K. Behrend’s [7]: we compute the log normal cone of the map

Q→ Q′ in two different ways.

Remark 4.6.7 (On Diagram (4.9)). We equip a with the product E(V ) � E(W ) of the natural

Log POT ’s of Construction 4.6.2, adopting the notation

E � E′ := E|V×W ⊕ E′|V×W .

The cotangent complex L`∆ is of perfect amplitude in [-1, 0] because its source and target

are log smooth. Therefore C`∆ = N `
∆ serves as a natural Log POT for itself. We equip φ with the

pullback obstruction theory, resulting in

∆! = φ!
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by Remark 4.4.6. We endow the square bounded by φ and a with the natural compatibility datum

afforded all such squares as in Remark 4.4.14.

All of the arrows in Diagrams (4.8) and (4.9) are of DM-type.

Lemma 4.6.8. The stabilization map s : M`
g,n →Mg,n is log smooth.

Proof. The cover
⊔
mMg,n+m →M`

g,n given by forgetting marked points and not stabilizing is strict

smooth [42, 1.2.1]. This map is in particular kummer and surjective, and [?, Theorem 0.2] applies

with P = “log smooth” once we argue that the composite
⊔
mMg,n+m →Mg,n is log smooth.

The forgetful map Mg,n+1 → Mg,n is the universal curve, so it is tautologically log smooth.

We see the map Mg,n+m → Mg,n is log smooth by iterating this forgetfulness, and this completes

the argument.

Remark 4.6.9. The map D→M`
g,n which records the initial curve is log étale since the original

map was étale [7, Lemma 4] and ours is the fsification thereof. The stack Q′ is log smooth because

the map Q′ →Mg,n is pulled back from s× s.

Given a log étale map X ′ → X of log smooth log algebraic stacks with X equidimensional, we

claim X ′ must be as well. The maps X ′ ⊆ LX ′, X ⊆ LX are dense because of the log smoothness

assumption and the map LX ′ → LX is étale. Thus LX and LX ′ are equidimensional, as well

as X ′ ⊆ LX ′. This argument shows that fsification preserves equidimensionality of log smooth

stacks, so our fs versions of D, Q′ are equidimensional because the original versions [7] were.

Lemma 4.6.10. The obstruction theories E(V ), E(W ), E(V ×W ) are compatible in the sense

that

∆̃
∗
(E(V )� E(W )) ' E(V ×W ).

Proof. We completely echo the proof of [7, Proposition 6].
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Consider the diagram of universal log curves and tautological maps with the notation:

V V ×W

UV ŨV UV×W

M `
g,n(V ) M `

g,n(V ×W ).

fV

πV

sV

π̃ V

`q

qV

fV×W

πV×W

rV

We claim F → RqV ∗q
∗
V F is an isomorphism for any vector bundle F on UV . The map qV

represents partial stabilization. We make the argument for contracting one P1 at a time.

We first compute that RpqV ∗q
∗
V F = 0 for p 6= 0. This claim is local in UV , so assume F is

trivial. The fiber of RpqV ∗q
∗
V F at a point x is Hp(q−1

V (x), q∗V F ). Hence the fibers q−1
V (x) are either

a point or P1. On each fiber, the cohomology of the trivial vector bundle is concentrated in degree

0 [63, 01XS]. Not only are F and qV ∗q
∗
V F abstractly isomorphic in that case, but the natural map

is an isomorphism [19, Exercise 9.3.11].

The universal curve πV is tautologically flat, integral, and saturated. The fs pullback square

it belongs to is therefore also an ordinary flat pullback, subject to cohomology and base change

[63, Tag 08IB]. This gives:

Lr∗VRπV ∗Lf
∗
V ΩV = Rπ̃ V ∗Ls

∗
V Lf

∗
V ΩV

= Rπ̃ V ∗RqV ∗q
∗
V Ls

∗
V Lf

∗
V ΩV

= RπV×W∗Lf
∗
V×W (ΩV |V×W ).

All the same goes for W . Add the two together to get

Lr∗VRπV ∗Lf
∗
V ΩV � Lr

∗
WRπW∗Lf

∗
WΩW = RπV×W∗Lf

∗
V×W (ΩV � ΩW ).

This is dual to the compatibility we set out to prove, so we are through.

Proof of Theorem 4.6.6. Compute the log virtual fundamental class [Q,E(V )� E(W )]vir in two
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different ways:

[Q,E(V )� E(W )]vir := [C`Q/Q′ ⊆ E(V )� E(W )]

= a!(Q′)

= a!φ!(M`
g,n ×M`

g,n)

= φ!a!(M`
g,n ×M`

g,n)

= ∆![M `
g,n(V )×M `

g,n(W ), E(V )� E(W )]vir.

On the other hand,

[Q,E(V )� E(W )]vir = h∗[M
`
g,n(V ×W ), E(V ×W )]vir

by the Log Costello Formula 4.5.1.



Chapter 5

Deformations of Modules

What is truth? a mobile army of metaphors, metonyms, anthropomorphisms, in

short, a sum of human relations which were poetically and rhetorically heightened,

transferred, and adorned, and after long use seem solid, canonical, and binding to

a nation. Truths are illusions about which it has been forgotten that they are

illusions, worn-out metaphors without sensory impact, coins which have lost their

image and now can be used only as metal, and no longer as coins.

[21]

5.1 Introduction

Consider a topos E and a squarezero extension of sheaves of rings

0→ J → A′ → A→ 0 (5.1)

Fix A-modules M and K, naturally endowed with A′-module structures. The central ambition of

this paper is to provide another answer to the following question, studied in [29]:

Question 5.1.1. Is there an extension of A′-modules

ξ : 0→ K →M ′ →M → 0 (5.2)

and, if so, how many are there?
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We refine Question 5.1.1 in two ways. An important invariant of the extension (5.2) is the

homomorphism

u : J ⊗A′ M → K j ⊗m 7→ j ·m′ (5.3)

where j and m are sections of J and M and m′ is any preimage of m.

By sending an extension (5.2) to the induced map u : J ⊗A′ M → K, we obtain a group

homomorphism

θ : Ext1
A′(M,K)→ HomA(J ⊗A′ M,K)

Extensions may be classified according to their image under θ. In practice, we consider only

those extensions which induce a fixed map u.

Given an extension (5.2), we may pull back along a map N →M of A-modules.

ξ|N : 0 K M ′ ×M N N 0

ξ : 0 K M ′ M 0

0

p

The dashed arrow makes the diagram commute, and the top row is a short exact sequence.

This map of extensions is clearly cartesian, forming a fibered category Ext1
A′( ,K)→ A-mod over

the category of A-modules. The fiber over M is extensions of M by K, where both are considered

in A′-mod.

The pullback ξ|N will map under θ to the composition J ⊗A′ N → J ⊗A′ M
u→ K. This

entails a morphism of fibered categories (in fact, gr-stacks) θ : Ext1
A′( ,K)→ HomA(J ⊗A′ ,K)

over A-mod/M , the latter presheaf considered as a fibered category.

The strict pullback

Def( , u,K) Ext1
A′( ,K)

{∗} HomA(J ⊗ ,K)

p

u

(5.4)

defines a full fibered subcategory Def( , u,K) ⊆ Ext1
A′( ,K) of the category of A′-module exten-

sions over the category of A-modules over M , A-mod/M . Its sections are extensions ξ, with θ(ξ)

a fixed map u : J ⊗A′ M → K. These are referred to as “deformations.”
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Even when it is not possible to construct a deformation of u between M and K, one may

always find a map N →M of A-modules and an extension

0→ K → N ′ → N → 0

of A′-modules which is a deformation of J ⊗A′ N → J ⊗A′ M
u→ K.

In order to piece together the abundant extensions over N → M into one over M , we equip

A-mod with a topology.

Definition 5.1.2 (The Topology on A-mod). A family of maps {Ni →M}I of modules is deemed

covering if, for all finite sets of sections Λ ⊆ M(X) over some X ∈ E, there exists a covering

{Uj → X}J in E such that, for each j, there is a single i and a lift of Λ|Uj to Ni(Uj).

This site is simpler than, but directly analogous to, the site OY –Alg/OX of [71]. The topology

is subcanonical. In particular, we write hK for the sheaf N 7→ HomA(N,K). The topology is

designed to achieve the next theorem, proved in Section ??.

Theorem 5.1.3. The fibered category Def( , u,K)→ A-mod/M is a gerbe banded by hK .

The fact that Def( , u,K) forms a gerbe answers a few questions for free – in particular, the

“how many?” of Question 5.1.1:

Corollary 5.1.4. The class of the hK-gerbe Def( , u,K) in H2(A-mod/M, hK) obstructs the

existence of a deformation ξ with θ(ξ) = u. Provided this class vanishes, the set of such ξ is

naturally a torsor under H1(A-mod/M, hK). The automorphisms of any given extension are in

canonical bijection with H0(A-mod/M, hK).

For any sheaf F on a site X, we identify H1(X,F ) with F -torsors and H2(X,F ) with gerbes

banded by F (up to equivalence). There is a choice of sign hidden in this identification – ours is

specified in the appendix.

The following theorem allows us to compute Hp(A-mod/M, hK).
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Theorem 5.1.5. The groups of p-extensions are all isomorphic to the cohomology of hK on the

site A-mod/M : ExtpA(M,K) ' Hp(A-mod/M, hK).

This theorem is proved in Section ??. We describe the isomorphism of Theorem 5.1.5 ex-

plicitly in the cases p = 1, 2 of greatest interest in Propositions 5.4.1 and 5.4.5. As a result of this

description, we can identify which 2-extension corresponds to our gerbe Def( , u,K) in Section

??:

Theorem 5.1.6. The diagram

HomA(J ⊗A′ M,K) Ext2
A(M,K)

H2(A-mod/M, hK)

Def

^ω

Split (5.5)

anti-commutes.

The isomorphism Split of Theorem 5.1.5 for p = 2 sends a 2-extension to its hK-gerbe of

splittings (Definition 5.4.2 and Proposition 5.4.5). The 2-extension ω is constructed before the

theorem after choosing a resolution of M ; however, the cup product f 7→ f ^ ω is independent of

that choice up to isomorphism. The map Def sends a morphism f : J ⊗A′M → K to the hK-gerbe

Def( , f,K) over A-mod/M . Anti-commutativity signifies that Def( , f,K) and Split(f ^ ω)

represent additive-inverse cohomology classes. In other words, our obstruction and Illusie’s are

inverses.

The classification of deformations found in [29] produces the complex

0→ Ext1
A(M,K)→ Ext1

A′(M,K)
θ→ HomA(J ⊗A′ M,K)

^ω−→ Ext2
A(M,K) (5.6)

Lemma 5.1.7. The sequence of maps (5.6) is an exact sequence.

Proof. Choose an extension

ξ : 0→ K →M ′ →M → 0 ∈ Ext1
A′(M,K)

The action of J on M ′ factors as J ⊗M ′ � J ⊗M θ(ξ)→ K ↪→M ′ by the definition of θ. Since

the first map is surjective and the last is injective, the composite is zero precisely when θ(ξ) is.
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Observe that J annihilates M ′ if and only if M ′ is an A-module if and only if ξ ∈ Ext1
A(M,K).

This proves exactness at the domain of θ.

By Theorem 5.1.6, Def( , u,K) and Split(u ^ ω) are inverse cohomology classes. One gerbe

has a section when the other does. For the gerbe Def( , u,K) to have a section, u must be in

the image under θ of some extension. For Split(u ^ ω), this means that the 2-extension u ^ ω is

equivalent to zero in Ext2
A(M,K).

Exactness entails that the pushout f ^ ω is equivalent to the zero 2-extension precisely when

f is in the image of θ. Under this light, Theorem 5.1.6 says Illusie’s obstruction f ^ ω is identified

with the inverse of our Def( , f,K) under the isomorphism Split. This answers a generalization

of Question 3.1.10 in [29].

The exact sequence (5.6) originates in the transitivity triangle for the graded cotangent

complex produced in [29]. Our concrete descriptions of the maps augment those found in [63, Tag

08L8]. We can also construct the sequence without reference to the cotangent complex as follows.

Restrict scalars along the map A′ → A to get a fully faithful embedding r : A-mod/M →

A′-mod/M . This is how we consider M and K as A′-modules, and we often continue to suppress

the notation r. The functor r is cover-preserving and left exact, yielding a morphism of sites

π : A′-mod/M → A-mod/M

To avoid ambiguity, we write cohomology on A-mod as Hp(A/M, hK) and that on A′-mod

as Hp(A′/M, hK) (and similarly for global sections). The equality Γ(A′/M, hK) = Γ(A/M, π∗hK)

witnesses that the two global section maps to (Sets) commute. The Grothendieck-Leray Spectral

Sequence

Ep,q2 : Hp(A/M,Rqπ∗hK)⇒ Hp+q(A′/M, hK) (5.7)

yields a 5-term exact sequence. The concern of Section ?? is the next theorem.
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Theorem 5.1.8. Illusie’s exact sequence (5.6) and the 5-term exact sequence from the Grothendieck-

Leray spectral sequence are isomorphic. By this, we mean that the following diagram commutes:

0 Ext1
A(M,K) Ext1

A′(M,K) HomA(J ⊗A′ M,K) Ext2
A(M,K)

0 H1(A/M, hK) H1(A′/M, hK) H0(A/M,R1π∗hK) H2(A/M, hK),

∼ ∼ ∼ ∼

(5.8)

where Illusie’s exact sequence is the top row and the 5-term exact sequence is the bottom.

The solid vertical arrows of (5.8) are the isomorphisms of Corollary 5.1.5, except the last one

has a minus sign. Once we show the diagram is natural in M and K in Lemma 5.5.3, we obtain the

dashed arrow by sheafifying in M . Immediately from this identification, we may extend Illusie’s

exact sequence to the right via Ext2
A(M,K)→ Ext2

A′(M,K).

Remark 5.1.9. The homotopy sheaves of gr-stacks allow for a slick interpretation of our work.

Diagram (5.4) induces exact sequences of sheaves of homotopy groups:

0 π1Def( , u,K) π1Ext1
A′( ,K) π1Hom(J ⊗A′ ,K)

π0Def( , u,K) π0Ext1
A′( ,K) π0Hom(J ⊗A′ ,K) 0

Exactness follows from [5, Proposition 6.2.6] when u = 0. The final surjectivity is checked by

hand in the proof of Theorem 5.1.3, and local preimages ξ of an arbitrary map u under θ allows

for a local, non-canonical equivalence Def( , 0,K)
+ξ
' Def( , u,K). This verifies exactness of the

sequence of homotopy sheaves for nonzero u.

Theorem 5.1.3 ensures that π0Def( , u,K) = 0, and we immediately get π1Hom(J ⊗A′ ,K) = 0.

The resulting isomorphisms

π1Def( , u,K) ' π1Ext1
A′( ,K)

and

π0Ext1
A′( ,K) ' π0Hom(J ⊗A′ ,K)
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correspond to the identification of hK as the band of Def( , u,K) and the inverse of the vertical

dashed arrow in Theorem 5.1.8, respectively. To see the latter, describe the sheaf π0Ext1
A′( ,K)

as the sheafification of the presheaf N 7→ Ext1
A′(N,K) = H1(A′/N, hK). This sheafification is, by

definition, R1π∗hK .

Our present work most heavily relies on the paper [71]. However, there is an error in the

proof which we will correct in later work (see Remark 5.2.5). This paper is logically independent

of [71] and none of the present article depends on the mistaken assertions therein.

In the body of the paper, we omit the subscript ⊗A′ and write π∗Ext1
A′( ,K) for the strict

pullback of Ext1
A′( ,K)→ A′-mod along the restriction of scalars to A-mod, as in [63, 04WA] (for

brevity and clarity, respectively).

5.2 The Topology on A-mod

In this section, we prove that Ext1
A( ,K) → A-mod is a stack. We collect a number of

convenient properties of A-mod along the way.

For an object S ∈ E, write AS for the sheafification of the presheaf U 7→
⊕

Γ(U,S) Γ(U,A). It

deserves the title “free module” via universal property.

Suppose j : U → ∗E is a map to the final object, and Λ ⊆ Γ(U,M) is a finite subset. The

constant sheaf Λ on U has an adjoint map Λ → M |U , and another adjunction furnishes j!Λ → M

in E.

One particularly useful tautological cover by free modules is {Aj!Λ → M}, ranging over all

such finite subsets of sections. Another is the single element cover AM → M . Such covers by free

modules are good examples of those which arise in practice.

Lemma 5.2.1. The topology on A-mod is subcanonical.

Proof. Let {Mi →M}I be a cover. We check by hand that

⊕
I×I

(Mi ×M Mj)→
⊕
I

Mi →M → 0 (5.9)
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is exact. The leftmost arrow is the difference of the two projections. Apply hK to get the Čech

Complex; this is exact precisely when hK is a sheaf. Thus it suffices to show (5.9) is exact, and

left exactness of hK will give us the result. It is clear that the sequence is a complex and that⊕
IMi →M is surjective.

First assume the cover consists of a single element, {T → M}. Let S be the kernel, fitting

into a short exact sequence

0→ S → T →M → 0

Remark that T ⊕ S → T ×M T sending local sections (t, s) 7→ (t + s, t) is an isomorphism.

The composite of this isomorphism with the map T ×M T → T of (5.9) is projection onto S and

inclusion. Then (5.9) takes the form

T ⊕ S → T →M → 0,

which is exact.

Now return to the general case of an arbitrary cover. In order to verify (5.9) is exact, we may

freely localize in E. We argue that, after localization in E and addition of coboundaries, any local

section of
⊕

IMi is equivalent to a section of a single M0 (among the Mi). This reduces verifying

exactness to the special case considered above.

After localization in E, all sections of
⊕

IMi are represented by finite sums of sections from

various Mi. Choose
n∑
k=1

mik ∈ Γ(U,
⊕

IMi) and consider the images mik of mik in M . Localize

in E again and use the covering condition to lift the finite set of sections {mik}nk=1 ⊆ Γ(U,M) to

some single M0 among the Mi. Let m′ik be a chosen preimage in M0 of mik .

Consider the section
n∑
k=1

(m′ik ,mik) of
⊕
I×I

(Mi ×M Mj). The second projection maps this

section to the one we started with; the first yields a sum of elements of M0. Therefore, our original

section is equivalent to one in M0 up to a coboundary.

Our next goal is to show the topology makes the fibered category Ext1
A( ,K)→ A-mod into

a stack. Recall that extensions up to isomorphism form a group, with identity given by the trivial
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extension

0 : 0→ K → K ⊕M →M → 0

The trivial extension is isomorphic to any extension whose epimorphism admits a section. Addition

(the “Baer Sum”) of two extensions

ξ : 0→ K →M ′ →M → 0 η : 0→ K →M ′′ →M → 0 (5.10)

is defined by pulling back and pushing out the product of the two extensions along the maps in the

diagram:

M

0 K ⊕K M ′ ⊕M ′′ M ⊕M 0

K

(id,id)

id+id

In other words, the group law is defined by biadditivity and functoriality:

Ext1
A(M,K)× Ext1

A(M,K)→ Ext1
A(M ⊕M,K ⊕K)→ Ext1

A(M,K)

We fix the notation ξ and η for the extensions above throughout this section.

Remark 5.2.2. We collect a few basic properties of the topology on A-mod.

• For N,N ′ ∈ A-mod/M , the presheaf HomA(N,N ′) sending P 7→ HomA(P ×MN,P ×MN ′)

and the subpresheaf of isomorphisms IsomA(N,N ′) are both sheaves.

• Extensions ξ as in (5.10) are locally isomorphic to the trivial extension over A-mod.

• Given two families of maps {Ni →M} and {Pj →M}, if the latter is covering and refines

the former via maps {Pj → Nij} over M , then the former is also covering.

The first point follows formally from the subcanonicity of the topology. The second is shown

by pullback along M ′ →M and the third follows from the definition of the topology.

Recall the trivial gerbe BhK → A-mod whose sections over some M are hK-torsors: sheaves

P on A-mod/M which carry a free and transitive action of hK |M and locally admit sections. We
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often write hM ′|M for the sheaf some M ′ ∈ A-mod/M represents to emphasize the structure map

M ′ →M , as opposed to the sheaf hM ′ on A-mod.

Definition 5.2.3. The functor ρ : Ext1
A( ,K)→ BhK between fibered categories sends an exten-

sion ξ to hM ′|M . This sheaf becomes a hK-torsor via addition

K ×M ′ →M ′ ×M ′ +→M ′

and the Yoneda Embedding. Morphisms of extensions induce morphisms of representable sheaves

which are hK-equivariant. By Remark 5.2.2, the sheaves hM ′|M are isomorphic to their structure

group hK⊕M ' hK |M after pullback along a cover in A-mod/M . The Yoneda Lemma verifies that

ρ is fully faithful.

We will show ρ is an equivalence. Our construction relies on the free module functor

λ : E → A-mod

sending S 7→ AS .

Lemma 5.2.4. The free module functor λ sends fiber products to covers. That is, the natural map

AS×RT → AS ×AR AT

is covering, for S,R, T ∈ E.

Proof. Since the family we wish to show is a cover consists of a single map, it suffices to show it is

a cover in E instead of A-mod. Choose a section α ∈ Γ(U,AS ×AR AT ); we wish to find a lift of α

to AS×RT locally in E. Locally, we may assume α = (
∑
xksk,

∑
yktk) is a pair of finite sums with

xk, yk ∈ A(U), sk ∈ S(U), tk ∈ T (U) with the same image in AR(U).

Fix r ∈ R(U) and suppose the sk, tk mapping to r are numbered {s1, · · · , sn}, {t1, · · · , tn}.

In order for the two sums to have the same image, we must have

n∑
k=1

xk =
n∑
k=1

yk ∈ A(U)
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Define z to be the value of either sum.

Consider the section βr of AS×RT given by the sum of (si, tj) with coefficients

z i = j = 1

xi + yj i = j 6= 1

−yi j = 1 6= i

−xj i = 1 6= j

0 otherwise

Writing the coefficients as a matrix yields

z −y2 · · · −yn t1

−x2 x2 + y2 0 t2
...

. . .
...

−xn 0 xn + yn tn

s1 s2 · · · sn


Adding up the rows and columns shows βr projects to

n∑
k=1

xksk and
n∑
k=1

yktk. Define

β =
∑

r∈R(U)

βr

Only finitely many of the terms of this sum are nonzero, and β indeed maps to α.

Remark 5.2.5. The map AS×RT → AS ×AR AT is not an isomorphism, in general. A counterex-

ample is found already when E = (Sets), A = Q and R = {r}.

Consider S := {x, y} and T := {x′, y′} with their unique maps to R. Then QS×RT →

QS ×QR QT is surjective but not injective. For example, (x, y) − (x, y′) + (x′, y′) − (x′, y) goes to

zero. Hence the functor S 7→ AS needn’t commute with finite limits and is not left exact.

Applying Sym to the above counterexample shows the free algebra functor S 7→ A[S] isn’t

left exact either, contradicting a claim made in [71]. Forthcoming work will show the conclusions
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in [71] which rest on this erroneous claim remain true. For their proof, an analogue of Lemma 5.2.4

suffices.

Remark 5.2.6. Because the functor λ : E → A-mod of Lemma 5.2.4 is not left exact, it doesn’t

induce a morphism of sites in the other direction. It is cocontinuous nonetheless, inducing a

morphism of sites

E → A-mod

The left exact left adjoint belonging to this morphism is precisely F 7→ (λ∗F )sh, the sheafification

of precomposition by λ. We note that λ∗F is already a sheaf.

For {Si → T} a cover in E, the projections ASi×TSj → ASi factor through the product

ASi ×AT ASj . Taking sections over F , we get a sequence

F (AT )→
∏

F (ASi)⇒
∏

F (ASi ×AT ASj ) ↪→
∏

F (ASi×TSj )

The last map is injective because the map ASi×TSj → ASi ×AT ASj is covering. The sheaf

condition for λ∗F is that the diagram formed by the first arrow and the composites of the pair of

arrows with the injection should be an equalizer. However, the sheaf condition on A-mod ensures

that the diagram without the final injection is an equalizer. Postcomposing by an injection preserves

such an equalizer diagram.

Proposition 5.2.7. The functor ρ : Ext1
A( ,K)→ BhK of Definition 5.2.3 is an equivalence.

Proof. In the process of defining ρ, we remarked that it is fully faithful. It remains to show essential

surjectivity.

For any N ∈ A-mod, write jN : A-mod/N → A-mod for the localization morphism of topoi.

Write λ : E → A-mod for the functor S 7→ AS and λ∗ for the induced functor on sheaves F 7→ F ◦λ.

Write αN for the map A×N×2 → N which is (a, n, n′) 7→ a.(n+ n′) on sections.

Let P be an hK |M = hK⊕M -torsor on A-mod/M . Let {Mi →M}I be a cover on which P is

trivial. For N ∈ A-mod/M , define
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LN := λ∗jN !P |N

This is the sheafification of the functor U 7→
⊔

f∈HomA(AU ,N)

P |N (f).

Write Li := LMi and L := LM for brevity. There are maps pN : LN → N sending P (f) to

the section of N corresponding to f . If N → N ′ ∈ A-mod/M , then LN = LN ′ ×N ′ N and pN is

the projection.

We will show pM : L→M fits into an extension of modules which maps to P under ρ. First,

we must augment the sheaf of sets L with an A-module structure.

Define R ⊆ A-mod/M to be the full subcategory on those N whose structural morphism

to M factors through some Mi (the sieve generated by the cover). We will produce an A-module

structure on LN for each N ∈ R and then descend to L.

Remark that λ∗jN !hN ′|N = N ′ functorially in N ′. Choose an hK-isomorphism f : P |N '

hK |N = hK⊕N . Give LN the induced A-module structure from the K-isomorphism λ∗jN !f : LN '

K ⊕N . We claim this A-module structure is independent of the choice of f .

To that end, let g : P |N ' hK⊕N be another hK-isomorphism. For the map g ◦ f−1 to

be an hK-equivariant map of representable sheaves on A-mod/N , it must come from a map of

A-modules. Since g ◦ f−1 comes from an A-module homomorphism, f and g endow LN (U) with

the same A-module structure.

Since the A-module structure on each is well-defined, the equality of sheaves LN = LN ′×N ′N

is promoted to one of modules. In particular, the projection maps LN → LN ′ are each A-module

maps.

We want to construct αM using the cover. By the definition of the topology on A-mod,

if {Mi → M}I is a cover, then {M×2
i → M×2}I is also a cover. It follows that the pullback

{A× L×2
i → A× L×2} is covering in E.

Since the topology on E is subcanonical,

hL(A× L×2)→
∏

hL(A× L×2
i )⇒

∏
hL(A× (Li ×L Lj)×2)
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is an equalizer. The commutativity of the following diagram

A× (Li ×L Lj)×2 A× L×2
i A× L×2

Li ×L Lj Li L

αLi×LLj ◦ αLi
(5.11)

ensures the existence of the dashed arrow. Commutativity is the statement that the projections

Li ×L Lj = LMi×MMj → Li are A-module maps.

The dashed arrow A× L×2 99K L defines addition and scalar multiplication for L. Since hL

is a sheaf, equality between two arrows to L may be checked after pulling back along a cover of M .

This guarantees commutativity, associativity, etc.

The epimorphism
⊕
Li →

⊕
Mi → M factors through L, guaranteeing L → M to be

epimorphic. The kernel is seen to be K by pulling back L→M along any Mi →M .

It remains to show the extension

ξ : 0→ K → L→M → 0

represents P ; that ρ(ξ) ' P . We build an isomorphism for any N in the sieve R and show it is

independent of choices. Choose two hK-isomorphisms f, g : P |N ' hK |N . Apply h(λ∗jN ! )|N to

both and form the commutative diagram:

hK |N

hLN |N P |N

hK |N

∼f∼f

∼g ∼g

This verifies compatibility of the locally defined isomorphisms hLN |N ' P |N and we obtain

a global hL|M ' P . Hence ρ is essentially surjective.

Remark 5.2.8. Lemma 5.2.7 implies that Ext1
A( ,K)→ A-mod is a stack, in fact a form of the

trivial hK-gerbe. The proof checked descent by relying heavily on ρ.

In the same way, Ext1
A′( ,K)→ A′-mod is an hK-gerbe. However, π∗Ext1

A′( ,K)→ A-mod

is a stack but no longer an hK-gerbe.
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Diagram (5.4) defining Def( , u,K) describes it as a strict fiber product of stacks over

A-mod/M , so it is also a stack.

Remark 5.2.9. The topology was used in the proof only to the extent that, if {Mi → M}I is a

cover, then {M×2
i →M×2}I is also a cover in E. We could vary the topology so that the Λ in the

definition of the topology could only have at most two elements, and the proof would still work.

We speculate that allowing Λ to have at most three elements would suffice for Ext2
A( ,K)

to form a 2-gerbe, and consider this infinite hierarchy of topologies curious. In particular, descent

for the dashed arrow in Diagram (5.11) seems to be possible by the same method for algebras for

other operads and their modules.

We finish the section with a few more basic properties of the site A-mod. Define P as the

presheaf on A-mod (resp. define a sheaf PE on E) whose value on M is the set of submodules

(resp. subsheaves) of M . Precomposing by the forgetful functor A-mod → E, we regard PE as a

sheaf on A-mod and P as a subpresheaf.

Since E has a set of generators, PE(M) and P(M) are indeed sets. Restriction maps are

pullbacks of subobjects.

Lemma 5.2.10. The presheaf P on A-mod is a sheaf.

Proof. Let {Mi →M}I be a cover, with submodules Ni ⊆Mi. Write Mij := Mi ×M Mj . Suppose

the pullbacks Ni|Mij = Nj |Mij ⊆ Mij are equal. We want to exhibit a submodule N ⊆ M whose

pullbacks to each Mi are precisely Ni.

Since PE is a sheaf, the above descent data furnishes a subsheaf of sets N ⊆ M on E; we

must endow N with a submodule structure. We get a diagram as in (5.11) by replacing L by N ,

and the same argument produces the submodule structure.

Corollary 5.2.11. The arrow category q : Arr(A-mod)→ A-mod [65, 3.15] is a stack, the functor

sending an arrow to its codomain.
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Proof. Isomorphisms form a sheaf for Arr(A-mod) because IsomA(N,N ′) is a sheaf.

Any arrow N → M ∈ A-mod factors as N � P ↪→ M , an epimorphism composed with a

monomorphism. Considering P as a fibered category, factor the functor q as

Arr(A-mod)→ P→ A-mod

The first arrow sends N → M to the image P ⊆ M . Since P is a sheaf, we need only show

Arr(A-mod) → P satisfies descent for the induced topology [63, 06NU, 09WX]. The corollary

follows.

The induced topology refers to cartesian arrows over a cover in the base site. In other words,

a cover in P is a cover {Mi →M}I in A-mod together with a choice of subobject N ⊆M and its

pullbacks to Mi.

Descent data for Arr(A-mod) here refers to a choice of epimorphism M ′i � N |Mi , isomor-

phisms between the pullbacks of M ′i and M ′j along Mij ’s two projections compatible with the

epimorphisms, and compatibility of those isomorphisms on Mijk. Remark that the kernel of each

epimorphism must be the same, sayK. This is precisely a descent datum for Ext1
A( ,K)→ A-mod,

necessarily effective by Remark 5.2.8. We obtain an epimorphism M ′ � N , also with kernel K,

which pulls back to each M ′i � N |Mi and verifies descent.

We have now developed enough technology to solve the deformation problem.

5.3 Cohomology on A-mod

We can quickly solve the deformation problem with an algebraic statement. This theorem

yields an obstruction in degree-two cohomology. The rest of the section is devoted to the proof of

Theorem 5.1.5.

Theorem 5.1.1. The fibered category Def( , u,K)→ A-mod/M is a gerbe banded by hK .

Proof. We’ve seen already in Remark 5.2.8 that Def( , u,K) is a stack.
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Given an automorphism

0 K M ′ M 0

0 K M ′ M 0

∼

of a global section of Def( , u,K) → A-mod/M , subtract the identity. The resulting morphism

of chain complexes is zero on K and M , and the map M ′ → M ′ factors through M and K.

Automorphisms of deformations are thereby in bijection with hK(M).

It remains to show Def( , u,K) is locally nonempty and two sections are locally isomorphic.

For both, we may assume M = AS for some sheaf of sets S ∈ E by localizing in A-mod.

Tensor the short exact sequence (5.1) by ⊗A′S to get a canonical deformation of idJ⊗AS :

α : 0→ J ⊗AS → A′S → AS → 0

To deform an arbitrary map u : J ⊗M → K, simply localize in M and pushout α by u.

Observe θ(u ^ α) = u.

Now we show sections of Def( , u,K) are locally isomorphic. Choose an extension

ξ : 0→ K →M ′ →M → 0

with θ(ξ) = u. Since extensions are locally trivial, we may choose a cover {AS →M} so that each

S lifts to M ′. We obtain a morphism of extensions

0 J ⊗AS A′S AS 0

0 K M ′ M 0

u

witnessing that ξ|AS ' u ^ α. The induced map on the kernel is forced to be u.

Now that we have a degree-two cohomological obstruction, we must work explicitly with the

cohomology groups Hp(A-mod/M, hK). The remainder of the section proves Theorem 5.1.5.
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Lemma 5.3.1. A complex of A-modules

C• : · · · → Cp+1 → Cp → Cp−1 → · · ·

is exact if and only if, for any injective A-module K, the complex of homomorphisms into K is:

hK(C•) : · · · ← HomA(Cp+1,K)← HomA(Cp,K)← HomA(Cp−1,K)← · · ·

Proof. Standard.

Proposition 5.3.2. Given an injective A-module K, the higher cohomology of K all vanishes.

That is, Hp(A-mod/M, hK) = 0 for p ≥ 1.

Abstract properties of derived functors turn our main theorem into an immediate consequence

of the previous proposition. We show how before providing the proof, the most complicated in this

paper.

Theorem 5.1.5. The groups of p-extensions are all equivalent to the cohomology of hK on the

site A-mod/M : ExtpA(M,K) ' Hp(A-mod/M, hK).

Proof. Proposition 5.3.2 shows Hp(A-mod/M, hK) is a universal δ-functor in K. Since ExtpA(M,K)

is defined to be a universal δ-functor in K and H0(A-mod/M, hK) = HomA(M,K), we get a unique

isomorphism Hp(A-mod/M, hK) ' ExtpA(M,K) of δ-functors by [28, III.1.2.1].

Proof of Proposition 5.3.2. We will prove exactness of the Čech Complex in a series of lemmas to

follow. We recall a well-known reduction to the vanishing of Čech Cohomology in the meantime

([63, 01EV], usually attributed to Cartan), as we will need the details in Lemma 5.3.6.

Assume inductively that H i(M, hK) = 0 for 0 < i < p and any injective K. Proposition 5.2.7

yields the base case:

H1(M, hK) = Ext1
A(M,K) = 0
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for K injective. Consider a cover {Mi →M}I and an injective A-module K.

The Čech Spectral Sequence [52, V.3.3] is:

Hj(M•, H
khK)⇒ Hj+k(M, hK)

Here HkhK is the presheaf N → Hk(N, hK) and is zero for 0 < k < p by inductive assumption.

The only possibly nonzero terms on the diagonal j+k = p are Hp(M•, H
0hK) and H0(M•, H

phK).

The filtration on degree p cohomology is expressed by the exact sequence

0→ Hp(M•, H
0hK)→ Hp(M, hK)→ H0(M•, H

phK)→ · · · (5.12)

The Čech spectral sequence and therefore this short exact sequence are natural with respect to

refinement of the cover. The map on the right arises from the restriction of the presheaf Hp.

In order to show Hp(M, hK) vanishes, pick an element α. Then [63, 01FW] allows us to

choose a cover {Mi →M}I so that α|Mi = 0, so α ∈ Hp(M•, H
0hK) by the exactness of (5.12). It

suffices therefore to show Čech Cohomology vanishes.

To that end, fix a total ordering on I. Write Mi0···ip := Mi0 ×M · · · ×M Mip . Form the

Čech Nerve, a simplicial object whose pth simplices are
⊕
Mi0···ip , the sum ranging over ordered

(p+ 1)-tuples of indices i0 ≤ i1 ≤ · · · ≤ ip. The jth face map projects away from ij , and we won’t

need the degeneracies. Take alternating sums of face maps to get the unnormalized chain complex:

· · · →
⊕

Mi0···ip+1 →
⊕

Mi0···ip →
⊕

Mi0···ip−1 → · · · →
⊕

Mi →M → 0 (5.13)

Čech Cohomology results from applying hK to this sequence and taking cohomology. Complex

(5.13) is exact precisely when Čech Cohomology vanishes by Lemma 5.3.1. We’ve reduced the

proof to the following Lemma 5.3.3.

Lemma 5.3.3. Complex (5.13) is exact.

We prove this lemma after first handling a few special cases.
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Lemma 5.3.4. Case 1 of Lemma 5.3.3: If {T →M} is a cover consisting of a single element (i.e.

I = {∗}), then the complex (5.13) is exact.

Proof. Remark in particular that T → M is an epimorphism. Write S for its kernel. We describe

maps of sheaves of modules on sections t ∈ Γ(U, T ) and si ∈ Γ(U, S) over some U ∈ E for

convenience.

The shearing map T ⊕ S⊕p
∼→ T ×M · · · ×M T sending (t, s1, · · · sp) to the partial sums

(t, t+s1, t+s1 +s2, · · · , t+Σsi) is an isomorphism. Under this isomorphism, the simplicial module

yielding (5.13) has p-simplices T ⊕ S⊕p and face maps given by

di(t, s1, · · · , sp) :=



(t, s1, · · · , si−1, si + si+1, si+2, · · · , sp) if i 6= 0, p

(t+ s1, s2, · · · , sp) i = 0

(t, s1, · · · , sp−1) i = p

The reader is invited to verify the simplicial axioms and verify this assignment yields an

isomorphism of simplicial modules with T ×M · · · ×M T .

Now we check by hand that the normalized chain complex associated to T ⊕ S⊕p is exact.

The normalized chain complex in degree p is the intersection of all the kernels of the di, for i 6= 0

– its differentials are precisely d0. Consider a local section (t, s1, · · · , sp) of the p-th degree of the

normalized chain complex.

In order to be in the kernel of di for i 6= 0, p, t = 0, si = −si+1 and all sj = 0 except

j = i, i+ 1. Consider a few cases:

• p ≥ 3: Varying i implies t = s1 = · · · = sp = 0.

• p = 2: For d2 to vanish we must also have s1 = 0, and again t = s1 = s2 = 0.

• p = 1: For d1 to vanish, t = 0.

• There are no requirements for p = 0.
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The augmented normalized chain complex is thereby seen to be

0→ S → T →M → 0

with the natural maps. This is exact by assumption. The normalized chain complex is well known

[29, I.1.3.3] to be quasi-isomorphic to the unnormalized chain complex (5.13).

Remark 5.3.5. We caution the reader that
⊕

and products over M do not commute, and hence

(5.13) is not a series of fiber products of
⊕
Mi →M . That is, the problem does not reduce entirely

to Lemma 5.3.4.

Lemma 5.3.6. Case 2 of Lemma 5.3.3: Suppose M has a finite set of global sections Λ ⊆ Γ(E,M)

so that the induced map from the free module on the constant sheaf AΛ → M is covering. Then

complex (5.13) is exact.

Proof. The covering condition allows us to localize in E so that Λ lifts to some Mi, say M0. Then

the hypothesized cover factors as AΛ →M0 →M and M0 →M is a cover.

The inclusion M0 ⊆ {Mi}I is a refinement of covers. The short exact sequence (5.12) is

contravariant under refinements:

0 Hp(M•, H
0hK) Hp(M, hK) · · ·

0 Hp({M0}, H0hK) Hp(M, hK) · · ·

By Lemma 5.3.4, the groupHp({M0}, H0hK) vanishes, but the injectionHp(M•, H
0hK) ↪→ Hp(M, hK)

factors through this group; this implies Hp(M•, H
0hK) = 0. Equivalently, hK(M•) is exact. Since

K was any injective module, (5.13) is exact by Lemma 5.3.1.

We are finally ready to complete the proof of Lemma 5.3.3

Proof of Lemma 5.3.3. We often use the observation that, in order to verify exactness of the se-

quence of sheaves (5.13), we may freely localize in E.
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To show Čech Cohomology vanishes, suppose some section β =
∑
mj ∈ Γ(U,

⊕
Mi0···ip)

maps to zero. Localize so that β is a global section. Define N as the image of the map A{mj} →M

adjoint to the map from the constant sheaf {mj} ⊆Mi0···ip →M .

Write Ni := Mi ×M N and form the following diagram:

· · ·
⊕
Ni0···ip+1

⊕
Ni0···ip

⊕
Ni0···ip−1 · · · N

· · ·
⊕
Mi0···ip+1

⊕
Mi0···ip

⊕
Mi0···ip−1 · · · M

p p p

Each map Ni0···iq →Mi0···iq is the pullback of N ↪→M , so the vertical arrows are monomorphisms.

By construction, there is a preimage β̃ ∈ Γ(E,
⊕
Ni0···ip) of β. Moreover, β̃ maps to zero

under the differential by injectivity of the vertical maps. The module N was defined as the image

of A{mj}, so it falls under the jurisdiction of Lemma 5.3.6, and the top row is exact. Then β̃ is a

boundary. This concludes the proof.

Armed with the isomorphism of Theorem 5.1.5, we now undertake its study.

5.4 Extensions and Cohomology

This section describes the isomorphisms of Theorem 5.1.5 in degrees p = 1, 2. We use this

description to prove Theorem 5.1.6.

Lemma 5.4.1. The isomorphism ExtpA(M,K) ' Hp(A-mod/M, hK) of Theorem 5.1.5 in degree

p = 1 is the restriction of the functor ρ of Definition 5.2.3 to isomorphism classes.

Proof. Given a short exact sequence

γ : 0→ K → N ′ → N → 0,

The diagram with horizontal arrows the boundary maps for the long exact sequences of ExtpA

and Hp
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HomA(M,N) Ext1
A(M,K)

H0(A-mod/M, hN ) H1(A-mod/M, hK)

ρ

commutes. Indeed, a map M → N is sent via the boundary map for Hp to the hK-torsor of sections

of N ′ → N (see the appendix):

P (T ) :=


N ′

T M N


The boundary map for ExtpA sends the map M → N to the pullback γ|M of the extension

along the map. Under ρ, this extension is sent to the hK-torsor represented by M ×N N ′ in

A-mod/M . Sections of M ×N N ′ → M and elements of P are in a canonical bijection which

respects the action of hK .

Suppose now that N ′ is an injective A-module. Then the horizontal boundary maps are

epimorphisms, and we see that ρ is the same as the isomorphism provided by Theorem 5.1.5.

We must now develop a considerable amount of technology to deal with the p = 2 case. Fix

notation for two 2-extensions for the rest of the section:

ξ : 0 K X Y M 0

η : 0 K X ′ Y ′ M 0

(5.14)

Write P for the module coker(K → X) ' ker(Y →M) and P ′ likewise for coker(K → X ′) '

ker(Y ′ →M).

Define the trivial 2-extension as

0 : 0 K K M M 00

Definition 5.4.2. A butterfly ξ ' η between two 2-extensions is a completion of (5.15) or of

the equivalent diagram (5.16). They form the isomorphisms in a 2-groupoid Ext2
A(M,K). The
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2-isomorphisms are given by isomorphisms of the completions Q ' Q′ which commute with all of

the structure maps.

We owe the concept to [5] and [27]. As in the latter, we’ll be concerned only with the abelian

case.

The fibered category Isom(ξ, η) → A-mod/M has fiber over N → M given by the category

of butterflies between ξ|N and η|N . Write Split(ξ) for Isom(ξ, 0).

0 0

0 K X Y M 0

Q

0 K X ′ Y ′ M 0

0 0

(5.15)

0 0

0 P 0

0 X Y 0

K Q M

0 X ′ Y ′ 0

0 P ′ 0

0 0

(5.16)

In the first diagram, the NW-SE and SW-NE diagonals in the interior are short exact se-

quences. In the diamond-shaped diagram, each line is a short exact sequence. We will show

Isom(ξ, η) is an hK-banded gerbe even though we are particularly interested in Split(ξ).
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The next lemma is similar to [5, Propositions 4.6.1 and 8.5.1]. However, the topology along

which butterflies descend is different: we consider our topology on M , as opposed to the topology

on the underlying site E on which all the modules are sheaves.

Lemma 5.4.3. The fibered category Isom(ξ, η)→ A-mod/M is a stack.

Proof. All the data are local, so Isom(ξ, η) is bound to be a stack. To show descent data are

effective for example, one can locally

• Build an arrow Q→M (Arr(A-mod/M) is a stack – Corollary 5.2.11).

• Build factorizations Q→ Y →M and Q→ Y ′ →M (hM is a sheaf).

• Check exactness of the short exact sequences

0→ X ′ → Q→ Y → 0

and

0→ X → Q→ Y ′ → 0

(the composite ExtA( , X ′) → A-mod/Y
j!→ A-mod/M is a stack, if j is the localization

morphism of topoi).

• Check commutativity of the North, West, and South diamonds in Diagram (5.16) (HomA(X,Y )

is a sheaf on A-mod/M).

Lemma 5.4.4. The stack Isom(ξ, η)→ A-mod/M is a gerbe banded by hK .

Proof. This lemma is deduced from general principles about Picard Stacks and butterflies. Since we

may localize to split our butterflies, we get local connectivity: π0 Isom(ξ, η) = ∗. For a morphism

f : A → B between strict Picard Stacks, the isomorphism Aut(f) ' π1(B) identifies the band of

the gerbe as hK . We present a hands-on proof for the reader unfamiliar with these generalities.
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Let a map M → K act on a butterfly as the maps Y →M → K → X ′ and Y ′ →M → K →

X compatibly act on the two extensions in the above product.

Consider an automorphism of a butterfly (5.16). Subtracting the identity yields a map

between the entire diagram which is zero except for a map Q → Q. Each such map must factor

uniquely as Q → M → K → Q. This shows that 2-isomorphisms between two fixed butterflies in

Isom(ξ, η) are a pseudo-torsor under hK .

We show local existence. Localizing in M , we assume Y 'M ⊕P and Y ′ 'M ⊕P ′ are split

extensions. Define Q := (X ′ ⊕K X)⊕M , with butterfly diagram:

P

X M ⊕ P

K Q M

X ′ M ⊕ P ′

P ′

(5.17)

In order to show butterflies are pairwise locally isomorphic, pick an arbitrary butterfly Q′

filling in the above diagram. Localizing in M sufficiently, Q′ splits as (X ⊕K X ′) ⊕M ; we may

choose an isomorphism of Q′ with the above Q compatible with all the structure maps.

We leave the verification that all relevant composites in (5.17) are short exact sequences and

that the diagrams formed by our map of butterflies commute to the dedicated reader.

We can finally describe the isomorphism of Theorem 5.1.5 in the case p = 2.

Proposition 5.4.5. The map Split : Ext2
A(M,K) ' H2(A-mod/M, hK) furnished by Theorem

5.1.5 sends a 2-extension to its hK-gerbe of splittings.

Proof. Write

m : 0→ P → Y →M → 0
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γ : 0→ K → X → P → 0

so that ξ = γ ^ m

Consider the long exact sequence in Extp and Hp coming from γ. The isomorphism of

Theorem 5.1.5 is one of universal δ-functors, so we get a commutative diagram:

· · · Ext1
A(M,X) Ext1

A(M,P ) Ext2
A(M,K)

· · · H1(M, hX) H1(M, hP ) H2(M, hK)

◦∼

γ^

∼ ◦ ∼

The extension m maps to the 2-extension ξ under the boundary map γ ^ by definition. To

see what ξ maps to in H2, send m around the bottom corner of the square. The boundary map

on cohomology sends the torsor hY associated to m to its hK-gerbe of lifts to an hX -torsor. By

commutativity of the left square, this is equivalent to the hK-gerbe of lifts of the extension m to

an extension by X. As depicted in the rearranged butterfly diagram below, this gerbe is identical

to Split(ξ).

P

X Y

K Q M

K M

0

(5.18)

The final ingredient in Theorem 5.1.6 is the map

HomA(J ⊗M,K)
^ω→ Ext2

A(M,K)

of Diagram (5.5) and (5.6). This homomorphism sends u : J ⊗M → K to its pushout u ^ ω along

a fixed 2-extension ω.
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In order to construct ω, take a flat A′-module mapping surjectively onto M with kernel L:

0→ L→ H →M → 0.

When we tensor with A, we obtain

ω : 0→ J ⊗M → L→ H →M → 0.

We write L for L ⊗ A = L/JL. Since ω computes T A′
0 (A,M) and T A′

1 (A,M), it is the

canonical obstruction ω(A′,M) in Illusie’s work by [29, IV.3.1.9].

We must check ω is well-defined up to isomorphism. Given two flat surjections onto M , we

can always choose a third surjecting onto both (e.g., the direct sum of a cover by free A′-modules

trivializing both extensions). We may assume there is a map between the two flat resolutions:

0 L′ H ′ M 0

0 L H M 0

In this case, simply tensor the whole diagram by A to get a map of complexes between the

two definitions of ω. A morphism between 2-extensions as chain complexes induces a butterfly as

in the appendix.

Hence ω is sufficiently well-defined to define a morphism to the group of connected compo-

nents Ext2
A(M,K), even though there’s no canonical complex-level representative. The reader is

free to fix one representative ω and transpose to a given one via the above.

Theorem 5.1.6. The diagram

HomA(J ⊗M,K) Ext2
A(M,K)

H2(A-mod/M, hK)

Def

^ω

Split (5.19)

anti-commutes.
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Fix u ∈ HomA(J ⊗M,K) and continue to write L := L ⊗ A. Our proof consists of two

lemmas: one exhibits a functor β : Split(u ^ ω) → Def( , u,K) over A-mod/M , and the other

shows it is an hK-anti-equivalence.

Lemma 5.4.6. There is a natural functor β : Split(u ^ ω)→ Def( , u,K) over A-mod/M .

Proof. Given a splitting:

0 J ⊗M L H M 0

Q

0 K K M M 0

u

0

(5.20)

of u ^ ω, consider the pushout

η : 0 L H M 0

L

ζ : 0 Q H ⊕L Q M 0

y
h

Distinguish between three natural maps H ⊕L Q→M :

• H ⊕L Q
h→M is the structure map H →M and zero on Q.

• H ⊕L Q
q→M is the structure map Q→M and zero on H.

• H ⊕LQ
h+q→ M is the sum of the two maps above, given by both structure maps. It factors

through H.

Define an extension ξ by taking the kernel

ξ : 0 K M ′ M 0

ζ : 0 Q H ⊕L Q M 0

0 H H 0

g

h+q

h (5.21)
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To show θ(ξ) = u, tensor the diagram η → ζ ← ξ by ⊗A′A. We get a diagram containing

η ⊗A : 0 J ⊗M L · · ·

ζ ⊗A : · · · J ⊗M Q · · ·

ξ ⊗A : · · · J ⊗M K · · ·θ(ξ)

The left pentagon of the original butterfly verifies that the map J ⊗M → L→ Q factors as

J ⊗M u→ K ↪→ Q. Combine this with the above diagram into

J ⊗M

K L K

Q

θ(ξ) u

Hence J ⊗ M
u→ K → Q and J ⊗ M

θ(ξ)→ K → Q are the same. Since K ↪→ Q is a

monomorphism, this confirms u = θ(ξ).

An isomorphism Q ' Q′ of butterflies induces a unique isomorphism H ⊕L Q ' H ⊕L Q′

fixing H and L. These isomorphisms are compatible with a functorial isomorphism of the whole

diagram (5.21) inducing the identity on K, M , and H, whence a unique isomorphism on kernels

M ′ 'M ′′. Let this be the action of β on arrows.

Lemma 5.4.7. The functor β of Lemma 5.4.6 is an anti-equivalence.

Proof. We continue to use terminology from the proof of Lemma 5.4.6.

A morphism of gerbes which is banded by an isomorphism is an equivalence by [22, IV.2.2.7].

We claim that β is banded not by the identity, but by −idK .

A map M
ϕ→ K acts on a butterfly (5.20) by adding the map Q→ H →M

ϕ→ K → Q to the

identity on Q. Then the induced automorphism of H ⊕L Q is obtained by adding the identity to

H ⊕L Q
q→M

ϕ→ K → H ⊕L Q (5.22)
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We claim “a,” “b,” and “c” in the following solid diagram commute:

0 M ′ H ⊕L Q H 0

M

K

0 M ′ H ⊕L Q H 0

−g

a

z

q

c 0ϕ

b

(5.23)

The map −g is the additive inverse of g : M ′ →M defined in (5.21), and z is the composite.

Diagram (5.21) witnesses the commutativity of rectangle “c” and triangle “b.” The same

diagram also asserts M ′ → H ⊕L Q
h+q→ H →M is zero; equivalently, that

−g : M ′ → H ⊕L Q
−h→ M

and

M ′ → H ⊕L Q
q→M

are equal. This confirms commutativity of triangle “a.”

Diagram (5.23) defines a morphism of complexes; add the identity morphism to obtain a

morphism of complexes given by

• id on H.

• id+(5.22) on H ⊕L Q.

• id+ z on M ′.

By unwinding the definition of β on arrows, the action of ϕ on Q is sent by β to the auto-

morphism of ξ which is id+ z on M ′ and the identity on M and K. This is precisely the action of

−ϕ on ξ.
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5.5 Illusie’s Exact Sequence

This section describes Illusie’s Exact Sequence

0→ Ext1
A(M,K)→ Ext1

A′(M,K)
θ→ HomA(J ⊗M,K)

^ω→ Ext2
A(M,K) (5.6)

and proves Theorem 5.1.8.

We need naturality to construct the comparison diagram (5.8).

Lemma 5.5.1. The maps in (5.6) are all natural in M and K.

Proof. Naturality of the first arrow in (5.6) is clear.

Consider the pushout and pullback of an extension ξ ∈ Ext1
A′(M,K) along maps K → L and

N →M .

0 K M ′ ×M N N 0

0 K M ′ M 0

0 L M ′ ⊕K L M 0

p

y

Tensoring ⊗A, we get

J ⊗N K · · ·

J ⊗M K · · ·

J ⊗M L · · ·

θ(ξ)

Commutativity of this diagram implies that θ(ξ|N ) = θ(ξ) ◦ (J ⊗N → J ⊗M) and θ((K →

L) ^ ξ) = (K → L) ◦ θ(ξ). Conclude the arrow θ in Diagram (5.6) is natural.

If θ(ξ) = 0, or equivalently if M ′ is an A-module, then θ(ξ|N ) = θ((K → L) ^ ξ) = 0 and

M ′×M N and M ′⊕K L are both A-modules. The inclusion Ext1
A(M,K) ⊆ Ext1

A′(M,K) beginning

the sequence is natural.
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The associativity of pushing out and pulling back 2-extensions furnishes the naturality of the

last arrow, ^ ω.

Remark 5.5.2. Let A+ εM be the trivial squarezero algebra extension of A by M : the A-module

A⊕M endowed with multiplication given by A’s action and M squaring to zero. It may be graded

by placing M in degree 1, A in degree 0.

Illusie defined the exact sequence (5.6) using the first graded piece of the cotangent complex

transitivity triangle Lgr
A+εM/A/A′ . The compatibility of that approach with this more direct one was

verified already by Illusie as follows:

0 Ext1
A(M,K) Ext1

A(Lgr
A+εM/A′ ,K) Ext1

A(LA/A′ ⊗AM,K) Ext2
A(M,K)

0 Ext1
A(M,K) Ext1

A′(M,K) HomA(J ⊗M,K) Ext2
A(M,K)

∼ ∼

^ω

The commutativity of the leftmost square was observed immediately before Proposition 3.1.5 [29,

pg. 248], and the middle square is equivalent to diagram (3.1.3) on the previous page.

In the rightmost square, we are cupping with ω. Its two middle terms are τ[−1(M
L
⊗ A)

by construction. By the naturality of both sequences in K (the top is obtained by applying the

functor Ext1
A( ,K) to the transitivity triangle), it suffices to reduce to the case where K := J⊗M

and u = idJ⊗M . Since ω is the “canonical obstruction” by IV.3.1.9 of [29, pg. 250], the square

commutes. (For us, the ground ring Υ is A′.)

It remains to show the following diagram commutes, and to describe the dashed arrow.

0 Ext1
A(M,K) Ext1

A′(M,K) HomA(J ⊗M,K) Ext2
A(M,K)

0 H1(A/M, hK) H1(A′/M, hK) H0(A/M,R1π∗hK) H2(A/M, hK)

∼ ∼ ∼ Split

(5.8)

Lemma 5.5.3. The solid arrows in Diagram (5.8) are natural in the A-modules M and K.
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Proof. The whole solid diagram is natural in K by Lemma 5.5.1 and Theorem 5.1.5. The same is

true of M , except possibly the vertical isomorphisms. Choose N →M in A-mod.

Given an extension

0→ K →M ′ →M → 0

representing the torsor hK

�

hM ′|M , the pulled back extension represents hM ′×MN |N ' j
∗hM ′ . The

naturality in H1 comes from pullback of torsors. This trick shows the naturality of the first two

vertical isomorphisms.

Now examine a 2-extension

ξ : 0→ K → X → Y →M → 0

A section of Split(ξ|N ) over T → N is simply a section of Split(ξ) over T → N → M , so we

have a (strict) 2-fiber product

Split(ξ|N ) Split(ξ)

A-mod/N A-mod/M

p

j!

Accordingly, Split(ξ|N ) ' Split(ξ)|N , where the first pullback belongs to Ext2
A and the second

to H2. Hence Split is natural in M .

Lemma 5.5.4. The dashed arrow in Diagram (5.8) exists and is an isomorphism.

Proof. Lemma 5.5.3 shows that the diagram is natural in M ∈ A-mod. Sheafify to obtain

Ext1
A′( ,K)sh HomA(J ⊗ ,K)

H1(A′/ , hK)sh R1π∗hK

All of the arrows are isomorphisms, since the outer terms go to zero. Define the sought-after

isomorphism as the composition of the other three.
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Remark 5.5.5. This last argument describes the maps Ext1
A′(M,K)

θ→ HomA(J ⊗M,K) and

H1(A′/M, hK)→ H0(A/M,R1π∗hK) as sheafification.

Theorem 5.1.8. Diagram (5.8) commutes. Scilicet, Illusie’s exact sequence (5.6) and the 5-term

exact sequence from the Grothendieck-Leray spectral sequence are isomorphic.

Proof. Take an extension ξ : 0 → K → M ′ → M → 0 of A-modules. Whether one first considers

K, M ′, and M as A′-modules and then forms the torsor hK

�

hM ′ on A′-mod/M or forms the torsor

hK

�

hM ′ on A-mod/M and then applies π∗ makes no difference: π∗hK = hK functorially. The left

square commutes.

To verify that the two maps to a sheaf Ext1
A′( ,K)⇒ R1π∗hK agree, we may sheafify. Then

the arrow HomA(J ⊗ ,K)→ R1π∗hK was defined to make this square commute.

The rightmost square remains. We show

HomA(J ⊗M,K) Ext2
A(M,K)

H0(A/M,R1π∗hK) H2(A/M, hK)

−Def
Split

commutes. The upper right triangle commutes by Theorem 5.1.6.

Under the lower left triangle, consider the image of u ∈ HomA(J ⊗M,K) under the two

maps. The bottom horizontal arrow sends a global section to the inverse of (the class of) its gerbe

of lifts to an hK-torsor in A′-mod/M by conventions specified in the appendix.

By the commutativity of the leftmost square of diagram (5.8), we see that this gerbe is equiv-

alent to the gerbe of lifts of the corresponding map HomA(J ⊗M,K) to an A′-module extension.

This was the definition of Def( , u,K).
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