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RADIATION OF A SURFACE WAVE FROM A CURVATURE DISCONTINUITY IN
AN IMPEDANCE SURFACE. PART 1. CONVEX BEND

by

Edward F. Kuester and David C. Chang

Abstract

An asymptotic solution for the problem of radiation of a surface
wave incident on a convex curvature discontinuity in an impedance surface
is found. The method employs a local approximate Green's function for a
section of curved impedance surface which possesses the same formal
structure as tHat of the straight sqrface. The radiation pattern thus
obtained agrees with those of previous analyses, without the need to
assume a second straight section terminating the curved section or to

go to an extremely far field to extract it.

I. lIntroduction

Open structures such as optical dielectric wavequides are limited
in usefulness by an inherent tendency to radiate at irregularities (bends
of the guide axis, for example)[1]. An important problem in the design of
guiding systems is thus to determine the radiation losses oné may expect
from such irregularities. The surface wave itself ié known to radiate
as it travels around a curved section of gquide, and the solution for this
"continuous' radiation has been carried out for a general surface wave-
guide in [2]. Radiation also occurs at the junction between straight and
curved sections of guide (more generally, between sections of different

curvature) which is of a more discrete, ‘‘scattering'' nature. This type
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of radiation has been less well studied, with attention usually focused on
very simple structures [3-13]. Of these, all except [3-5] are either com-
pletely formal or do not give the pattern of the radiated field.

As a first step towards the development of a general theory of
scattering at a curvature discontinuity in an open waveguide (which will
be complementary to the theory of continuous radiation given in [2]) we
develop here the solution for the simple case when the guiding structure
is an impedance surface. In subsequent works the theory will be extended
first to more general two-dimensional structures, and then to arbitrary
three-dimensional guides. In many ways, this represents a considerable
extension of the various geometrical and asymptotic theories of surface
waves, which heretofore have been developed only for the case when the
axis of the guiding structure is smooth [14-19]. The present work will

deal with the case of a convex bend.

Ii. Statement of the Problem
Consider the junction between straight and curved sections of a

surface with impedance ZS as shown in Fig. 1. To avoid the necessity
of dealing with a second transition in the surface, the straight section
is assumed to extend from y= -« to y=0 while the. curved section ranges
between ¢=0 and ¢ = , in a kind of "Riemann surface' of which only

a finite range of angles ¢ liés in the physical or Euclidean plane [20].
This artifice should not trouble the reader, since it is similar in intent
to the typical assumption of infinite extent of a straight waveguide in

an excitation problem, and assures that none of the scattered fields are
re-reflected from some obstacle further along the guide. We consider TE

waves, so that
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Fig. 1

Junction of straight and curved sections
of impedance surface.
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+ =
(v, + K9E, = 0 (1)
2 2
above the surface for k™ =w HES » and
BEZ x=0, y€0; n=x
==+ ky E. =0 on (2)
an 0z o=R,0320;n=0p

on the surface, where R is the radius of curvature of the curved
section, Yo = - ZO/Zs is the normalized surface susceptance,

1
Z0 = (uo/eo)2 is the characteristic impedance of free space, and n s

the outward normal from the surface. With a time dependence exp(iwt),

we impose additionally the radiation condition

3[3E,
ril—=+ ikE_ | - 0
or

1
2 + Y2)2 + « above the surface.

as r = (x
The straight surface is known [4, p. 24] to support a single

surface wave mode

—kyox (3)

which we assume to be incident on the junction from the left. The sub-

-1 11

script “'s'" here indicates the modal function for the surface-wave and '

o)
indicates the unperturbed straight waveguide section. With a surface
wave mode of this kind as our excitation or incident field, we shall
formulate the problem as an integral equation over the aperture, defined

by y=0, 0 g x < o .
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Fig. 2 Infinitely extended straight impedance plane.

i N

Fig. 3 Infinitely extended curved impedance surface.



First, we require the appropriate Green's functions. For region

S] of Fig. 1, we use the Green's function G, for the infinitely extended

1
straight impedance surface (Fig. 2) which satisfies the impedance boundary
condition (2) at x=0 and the outgoing radiation condition as r » o,
Similarly, for region 52’ we use the Green's function G2 for the
infinitely extended (-o< ¢ <®) curved impedance surface (Fig. 3) which
satisfies the impedance boundary condition at p=R and the outgoing
radiation condition as (p2 + R2¢2)1§ + . Both G] and G2 satisfy the

wave equation

(vi + kz)G] (5,p") = -8 (p-p")

and are easily constructed as Fourier integrals (see, e.g., [ﬁ, p.b7]

and [20, pp. 685—691})

. ~ikv|y-y'| -ikwx i kwx -ikwx _\ dv
G, = - ﬁ; éf e e e 4 Po(v)e (w
1 (4)
‘ w-iy
_ _2y3 _max Ty - o}
= (] Vv ) N X> —min {X,X } 5 Fo(\)) W+i'Y
< o
__ikR -lkv 5-s (2) (1) (2)
6, = - 58 C[ |s-s"| Ho g (Ko, ) EH) wr ko)~ HO g (ko )P (v,R) }dv
2
s=Rp; P, = (0.0} (5)
< _
m(kR) Y, H“)(kR)
P(v,R) =
(2’ R) + v, H(Z) (kR)
Here H(l)(z) are Hankel functions of the first and second kind,

respectively. The integration contours C] and C2 are shown in Figs. &4
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Fig. 5 |Integration contour and singularities of integrand for GZ'



and 5 respectively, in relation to the singularities of the integrands.
Note that in eqn. (4), C] must lie on the proper Riemann sheet where
imw < 0.

To simplify the resulting integral equations we shall use slightly

modified Green's functions whose normal derivatives vanish on C

12°
R - =1 _ — = - =1
G],Z(p’p ) - G]’z( ,p ) + G]’z(p’pim)
where if p = (x',y') [resp. (e',9"1, D;m = (x', -y') [resp. (p',-0"')I.
Thus
36° | 36 36
]:2 = "? - "? =0 (6)
ay y' =0 ay Jy y'= 0
and
2 2 - =i - =1 o
(VS + k9)6y ,(P,07) = -8(p-p") - &(p-p; ) (7)
Since S] and 52 have infinite boundaries, we apply Green's theorem
to outgoing fields in these regions: EZ - E;nc and G] on S] and EZ
and G2 on Sz. Then, using boundary condition (2) and the radiation
condition, we have
* 3. - inc r_ e 12 _ inc B _ inc 2 X 1
f oF 23 (€, - E;")dn f[let (€,-€1"€) - (E,-E]"“)y, " 6}1 dS
C 1
12 S
1
E (5)-Einc(5) y £ 0 (physical region)
~ y4 z (8)
- inc — . .
- >
Ez(pim) E, ( im) y > 0 (image region)
and
f ¥ E_ ' = f G*y 2. - E v'26% 1ds"
C 29 9 S 2t "z z't 2



fE (p) y 2 0 (physical region)
=\ (9)

iE {p. ) y £ 0 (image region)

It is easily shown by elementary integration [4,pp.29-31] that

8Einc I aEinc
- Ic 6} —a—il.—— de' = -2f G, (x,y;x",0) ——-a——;—:—dx'
O
12
_ik\)olyl (]0)
=y (e

so that, setting y = 0 in (8)-(10) and enforcing continuity of tangential
E and H (i.e. of EZ and its normal derivative) on the aperture CIZ’
we end up with the following Fredholm equation of the first kind for
the unknown function f(x) which gives the value of BEZ/BY at the

aperture:

v () + fo(K] + K)F(x')dx" =0 (1)
where

K, ,({x,x ) =6 (x,0;x ,0); f(x') = [BEZ/ay ]y'=0

1,2 1,2

Equations (8) and (9) in the physical regions will give E, in terms
of f(x') once the latter function is determined. Equation (10) and

the fact that K2 - K] as kR > o [21] verify that f(x) reduces to

in .. . .
BEZ 98y on the aperture and the incident wave is transmitted unaffected,
as we expect. Thus it is convenient to rewrite (11) as

oo

Wso(x) + ny

OK]f(x')dx' + j;(KZ-K])f(x')dx‘ =0 (12)

for the purpose of finding a perturbation solution for large kR.
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tit. Approximate Form of the Green's Function in the Curved Region

An effective perturbation solution of (1la) requires that we be able
to express the difference between K2 and K] as a relatively simple
function of kR. Although it is known [21] that G2 - G] as kR > o for
any fixed values of D and p', the eigenfunctions of the two regions are
known to be vastly different from one another because the singularity
structure of equation (4) is quite different than that of (5)(22] . As
shown in Fig. 5, aside from the surface-wave pole vp (which is only slightly
perturbed from vo [23]1), the branch cuts in Fig. 4 have disappeared
and an infinite set of.“Watson poles'' or ''creeping wave poles''

[20, pp. 685-698] has replaced them. Since the spectra of the two Green's
functions are so different, and the residue series over the creeping wave
modes is known to converge poorly in the geometrically illuminated region
of the curved section [20, p. 691] , we desire some approximate expression
for G2 with singularities similar to those in Fig. b,

Let us first recall how the straight waveguide Green's function G]
is expressed as an expansion over the surface-wave mode and a continuous
spectrum of radiation modes [4, pp.24-31, 44-48]. By deforming C] over

the branch cut in the lower half-plane, picking up the residue at vo and

changing integration variables, we have

Y -ikv_|y-y']
Lty _ _. o ! o
G](Q)p ) = "1 v LPSO(X)\PSO(X )e

° ] (13)
. e . "ik\) Y-Y i
—-& J[W (w,x)¥ (w,x )e _ Gw
co co 2
0 N (w)
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which follow will be poor in these neighborhoods, we may make them on the
contour of integration away from these points and subsequently deform

it in any permissible fashion. The only restriction will be that the
mean-square error over the contour be small compared to the magnitude

of the integral itself.2 We shall obtain more quantitative error criteria
below.

Equation (5) now becomes

Gy = Gy * Gy (14)
where
: Y. -ikv |s-s
G, = —iv—oe P Llls(x,R)‘i’S(x',R) (15)
o]
(' (1) z
iv kg M R (KR FY R g (kR (2)
Yo (xR) = 4$ ap 2" : 2) H\)ZkR(kp)
o éU[Hka(kR) ‘*‘YOH\)kR(kR)]\)z\)p o (16)
G, = - ﬂgﬁ f o Tikv]ss IH\Ei‘l(ka{H\EL%(ko() -H\Eig(kp<)P(v,R)}
) (17)
(x = p-R)

the square root in (16) being chosen so that WS-+ wso as R » w.

At present st and WS are exact, and in particular retain the attenuative
character of the surface-wave as it propagates around the bend. We shall,
in solving the integral equation (12), find it convenient to use an

approximation for ?S in order to simplify the calculations. This is

derived in Appendix A.

2Compare, e.g. Rulf's treatment [24,25] of a similar probliem, where

the restrictions imposed seem somewhat more stringent than necessary.
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On Cé, now, we replace the Hankel functions in (17) by a suitable

asymptotic representation for kR >> 1. The Debye formulas are such a

-2/3

representation if we avoid circles of radius O[(kR) 1 around the

turning points, =1, ia>[20,pp. 710-712; 26; 271. A representation which
<

is continuous on all of Cé and whose exponentially dominant part is

correct at all points of this contour is

I { -1/ 4] 2
(2) g (Eemi[KRAG-TW v v
r(kRa) ~ (=) 773 (LOKR, )+ o= MOUKR ——)}
(a™-v°) o (0" =v5) o
Lo -m/4] 2 . 2
(1) g b i [kRAL-T v v L (2)
HY 2 (kRa) ~ (=) (LWkR, ) - — Y M (VkR,%) 7} - (kRo)
kR R (2 - 2 w2t o2 HokR
where
z= (1 - v2/u2)% - (v/a)arccos (v/a)
= (1 - vz/az)% + i(v/a)enl(v/a) +1 (1 -vz/az)%]
52 2 2 23
81 (-2 ) + 462(——) + 385(——2-)
L(\)kR,pz) =1 - ]— 1- p ]—p +
HSZ(\)kR)
2
3'*5('£L7Z )
1-p
M(\)kR,PZ) = — * -
2y KR

The branch cuts from V = *o are shown in Fig. 6, and are defined by
imZ=0 or Im{+rv/a) =0 and V-Tr<arg(l—v2ﬁx2)%< -n/2 . The
Riemann sheet is taken as the one where arg g =arg(l-vzﬁa2)% = -7/2
on the real axis for v > oa. Neither L nor M exhibits any branch cut
behavior. Let us repeat that only the dominant part of the asymptotic

expansion is given correctly by the above expressions on all of Cé; the

3Note that it is at this point that the Watson poles disappear and
are replaced by branch cuts.
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subdominant part is incorrect, for example, below the real axis in the
right half-plane. For purposes of constructing an approximate continuous
mode spectrum, however, the dominant part will suffice.

The derivatives of the Hankel functions are similarly expanded as

1
2 2\% . 2 . 2
(2) e 203 (@7v9) " -i[kRaz-w/4] v v v
Hka(kRa) I(ﬂkR) m e {N(VkR,-E' —73——37;-Q(ka,—59}
a (@™-v") a
1 2 2.4 . 2 Lo 2 1
(1) w1247 @5v9)F i kRag-m/4] v v vy, (2)
H i (KRa) '(nkR) = e {N(WkR, =) + TT%Q(\)kR,——)} Hor (KRa)
a (a™-v
where 9 2 9 2 3
135(-F=) + 594(-E)  + 4s5(-L—)
N(\)kR,pz) - ] + ]‘p ]"gl ]'p + e
2 1152 (vkR)“ .
9+ 7(—2—59
2 I-p
QVKR,p%) = R *
and again, neither N nor Q exhibits any branch cut behavior. In all
the above expressions, it has been assumed that o (whiqh is equal to
either 1, o or o, here) is positive real.
Inserting all of the foregoing into equation (5) results in
. -ikv|s-s ' |-ikh. S .
S " Iw f ST S:{elkh<sl_ + TR s SI bdv (18)
€, (3-v)*(al-v)" > < <
<
h + 2 iv VZ
where ST = L(VkR,% ) + ——Y M(VkR, %)
L, 2 2 2,4 ‘ 2
p as @) - v7) o
< < <

W[N+(iv/w)Q]~iYo[L - (iv/wiM]

PR = = oy I G
hy = R{(ai*vz)% “w- v arccos(v/a>)i+v arccos v}
< < <

Q> 2 1
<R z
|- e

R VR
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Here, o = p>/R and L,M,N and Q denote the above asymptotic series with
<

<
p2 = v2. At this point, the effect of the Watson poles has been approxi-

mated by replacing them with a set of branch cuts [28], and the structure

of G2 now bears a great deal more similarity to that of : G in (4) than

1
previously. Additionally, a number (dependent upon how many terms in the
asymptotic series in the denominator of TI(v,R) have been retained) of
spurious poles clustered in the neighborhood of v = %l have appeared,

which must also be removed.

The branch points at v = ia> can be removed by expanding all

<
functions of a_ in the integrand of (18) in a Taylor series about the
<
point x, =0 where x, = p,- R. For small enough x/R this is valid
< < <
again outside the vicinity of the turning points v =%1, o which have
<
already been avoided. Thus
2Rkx
2 2\ - 2, - >
@ - v) B = (-v)Pp- —~+ ) (19)
< kRw
and
. . 2 22
tikh _  *ikwx kTxTV
e = e {1+ KRS + } (20)

Finally, avoiding the surface-wave pole vp (and the unperturbed pole vo)
we develop T(v,R) as an asymptotic series in (kR)—], thus losing the

previously mentioned spurious poles:

F(W,R) ~ T (W) + = T (V) + - (21)

where Fo(v ) is given in (4) and

. 2
_o_ 3+2v
W

r,v) + :
W(W+IYO)
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If in (18) we regard the expansions (19), (20) and (21) for these
quantities as formally substituted into the integral, the integrand now
possesses branch points onfy at v= *1, If we move the branch cuts around
as in Fig. 7, so that the Riemann sheet is the same as;that (Fig. 4) used
for G], the analogy with G] is then complete. It is now obvious that
the analogy to the straight waveguide is possible when the radius of
curvature is large, i.e. kR >> 1, and when one is interested in a region
where x/R << 1.

To arrive at a representation G2 like that of (ﬂ3), it remains

to deform C. over the cut in the lower half-plane. Siince all of the

2
preceding series developments generate successively higher powers of w

in the denominator, it may occur that a contour deformation over the cut
produces a residue term or an apparently divergent branéh cut integral.
Although the (kR)—] terms determined below do not exhibit this phenomenon,
it is possible that higher order terms may do so. Sinc% the integral is
known to be finite before the contour deformation, a me;hod for dealing
with this eventuality is presented in Appeﬁdix B.

With this understanding we perform the contour deformation in (18).

Changing the integration variable to w (on the contour shown in Fig. 8),

©o 1 1
i mikvs-s'| ~ikhe, 1-v2 ¥ 1-vZ F L ikn
e e TG () s

6 - i -
2¢c b J 2) 2) S te S #
a>-\) o2 -\)< > <
+ F(v,R)e_'kh< st pdw
Lem v
!
. +ikhe |
(recall that the expressions e ,I'(V,R), etc., are to be

understood as series developments). Changing variables from w to -w,
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w- pl
- Y c -
\_\.~ ’/
e Bty
Fig. 8

Integration contour in w-plane. On contour C,
1
v=(1 Wi >0 for lw] <1, \)=—i(w2—l)5 for

lw| > 1.
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noting that T(V,R) > 1/T'(V,R) under this transformation,

[o0]

1
. ol e ] s B2 F .2 % -ikh
G, ~ - —L-y/ne lkvls s Ie+|kh>( il ) (] Y ) s! {e <S+ +
2c Ly 2 2 2 2 L
oo al-v - ‘ L
1 +ikhe =1 dw
* TV.R) © S'L } ¥
Adding the previous two expressions gives
. ®  —ikv]s-s'] 2k .
¢0 T (V,R) as-V > >
(22)
v ikhe - “ikhg tq-dw
- (5 ) [e s +T@,Re s 1
ag-v <

where 1/T(V,R) is to be understood as the formal inverse of (21):
~ b ...
1/T,R) ~ [I/T_(MHI - = [T, (W)/T ()] + } (23)

From the manner of its construction it is clear that the integrand of
{22) is an even function of w, and so cannot contribute a residue from
a pole at w = 0, as was suggested above.

Finally, by splitting T'(V,R) into the square of its (once again,
formal) square root, we can express (22) in the manner of (13) as an

integral of a product of continuous ''quasi-eigenfunctions"

i./” e—ikvls-s'] '
- - € . ¥ ;
GZC L} Joo ) \yC(W,X,R) C(W,X ,R)dW

vNZ(w
; S>e-ikv!s-s'} (24)
= - - s ¥ (w,x;R) ¥ (w,x';R)dw
. 2_00 \)NZ(W) C C j
i
where |
r 1
2 \F[pT (V) \ 2 ) z .
1 1-v 0 . - _ikh T'(v,R) . + -ikh
y_(w,x;R) = —( ) ( > (wriy )S, e +(—— (w-iy )S, e
c 2\p2/R2—V2 F(V,R) o Lp Fo(vi o Lp

(25)
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and we understand (from (21) and (23))

( TO(V) ) R
TR/ T VTR Ao (26)
r(v,R) \* . A

Combining (24) and (15) we have

Y -ikv s-s'l :
G, = -i v—oe p‘ ¥ (xR) ¥ (x5R) -
o
(28)
.o e-ukv{s s'|
- = Y (w,x;R) ¥ (w,x;R)dw
2 fo \)N (w) c c

Equation (28) is now formally analogous to the modal expansion used in
the straight waveguide section as given in (13). Thus, siimilar to the
situation encountered in a straight waveguide, the field of a point source
in the curved section can also be expanded in a modal representation con-
sisting of a '"‘pseudo''-surface wave mode WS(X;R), and a continuous set of
pseudo'' radiation modes, Tc(x;R). Here we note the word ''pseudo' is
used to emphasize the fact that these modes do not necessarily constitute
the legitimate description of the field everywhere in a curved waveguide
section like their counterpart§ do in a straight waveguide section. They
are however a correct alternative representation of the exact formulation
only in the region where the radial observation distance x = p-R s
much smaller than R, and provided that kR >> 1. (Thié of course poses
no practical restriction in the application of this theory to optical

waveguiding systems.) Thus, we should stress that the theory to be
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developed in the following is an asymptotic one, valid in the sense that

kR =+ o while x/R << 1,

In Appendix A it is shown that

WS(X;R) ~ Wso(x) P ysl(x) Foeee

kR
where 9 9 (29)
“ky x| k"x"v 1 .
Yo (x) = e -
s Z'Yo 29 2'Y lmzy3
. Q'0 0'0
Further, it is straightforward to show from (25) that
1
Tc(w,x,R) ~ Wco(w,x) +-E§—~WC](W,X) + ..
where (30)
2 22
+ikwx, .. kx ik x v i
v {w,x) = ¥{e (wHiy ) [- + - 1 o+
cl o' 2 2w " W‘*‘Yi )
‘ 222 ;
=i . ik
+ e lkwx(w_lYo) [ - k; _dkxve o, 2: ; 1}
2w 2w 2w (w +YO)

We now make the following remarks. The (kR)-] term of the

integrand in (28) is

e-ikv]s-sll

sz(w) [Wco(w,x) WC](Waxi) + WCQ(W,X')WC](W,X)]

it is readily seen that this expression remains finite at w = 0, and so
the precautions in Appendix B are not needed here. We end this section
by presenting the following integrals which will be required in the

next section.
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[ee]

j; ¥ ()Y (x)dx = 1/(8kv§) (31)
s w(\)2+\)§)

/; v_ ()Y ()dx = W (32)
o 2uv?

/; ¥ (Y (x)dx = - ;(—W%*‘Y—(z))z_ (33)

IV.  Perturbation Solution of the Integral Equation
We return now to consideration of the solution ¢f the integral
equation given in (12). We may expand f(x) in terms jof the transverse

cross~-section modes of the straight guide:

flx) =AY (x) + [ A)Y_ (w,x)dw (34)

Jo

Inserting (34) into(2), and using (13) along with the |straight guide

orthogonality relations gives |
A, = -ikv {1 + 2ky_[A C__ +fo Aw)C_ (w)dw]} (35)

A(W) = - —':1'2(— {AOCS (W) + A(W W,W w } 3
w) 0

where

[¢e]

> i H
C.q = /; ¥ ()Y (x") [K,7K, ] dx dx

C, () = f Y GOV wox') [Ky=K, T dx dx’
6] O

Clw,w') = jf7@’O(W,X)Tco(wl,x')[KZ—K]]dxdx'
0/0 ¢

S

From our study of G2 in section ill, it is clear that Css’ Cs(w) and

C(w,w') are all small quantities to order (kR)—], that Ao is a zeroth-

order quantity, and A{(w) is of order (kR)_].
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By formally expanding [K2 - KI} in inverse powers{of kR, we have

1 (O) 1 (I)
ss ~ kR ss (kR) ss

_ 1 (o) 1 (1)
CS(W) H’\- CS (W) * (@ CS G‘w) oo

L1 (o) 1 (1)
Clw,w ) we(w, w') + (kR)z ¢ (w,w') +

[f one assumes corresponding expansions for the mode amplitudes

o a0 1 (),
A0 nkv + KR A + (kR) O

p A+ L
kR

A solution of (35)-(36) can be obtained by matching coefficients of like

inverse powers of kR. Thus in particular

(0)

Ay = mikv {Zak\)yc(o)} (37)
3
k" vy
0) o (0)
(W)= - € (w) (38)
W NZ(W) s
(m_ _. .2 (_ ,, 5422 (0).2 & ® 2 00), 2 dw
Ay = miky 21k v e - by e 102k voyofo v, w)] NZ(W)}
(39)
Al ) - - kzw eV - 20y v ¢80 )-i 7009 () () DL
N (w) s o Yo fo s N2 (')
(ko)

Substitution of (13) and (34) into (8) and (10) now gives the field

in the straight section as
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EZ = ?so(x)[e Ikvoy + Qelkvoy] + ‘/?B_(w)wco(w,x)eikvydw
’ (y <o) (41)
where the reflection coefficient Q is given by
Q= 1-iA /ky_ ~ (kR)"’[zikzvoyocs(‘s))]+ (42)
and
B_(w) = - iA(w)/kv ~ (kR)"[ikszcs (w)/Nz(w)] 4+ - (43)

On the other hand, the substitution of (28) and (34) into (9) gives the

fields in the curved section as

Tikvys -ikvs
E, = TWS(X,R)e Py .Z;B+(W)TC(W,X,R)6 dw (L4)
(s >0)

where the transmission coefficient T is given by

T = ZIE {A j;‘PS(X,R)‘WSO(X)dX + j;A(w) LWS(X,R)TCO(w,x)dxdw}
(1-8ik2v3¢ {0y ()
R ] Yo 0°ss ] (1) ..
1+ R [ 5 ] + 5 T +
ln)o (kR)".
and
. (0)
(V) _ ~ lkYocss . (1 .. 3.2 (0).2
T = 2k fwsz(x)\yso(x)dx - o - kv e -2k [e ]
o 0
(0)
o i (w)  -2v w
-ikv f " |57 - ikzcs(o)(w]dw
©Jo  NT(w) (w™y?)

In addition,
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B, (w) =W {AOLwSO(X)‘i’C(W,X;R)dX'*‘ foA(w‘)/OYCO(fo)‘PC(w,x;R)dx dw'}

_ kv iw(vie?)
~ (kR)7{ - 5 ° 5 g 5+ kC(O)(w{]_ oo (46)
N"(w)  kv(w +YO) >

In obtaining these expressions, (31)-(33) and (37)-(39) have been used.
Equation (41) isthe proper modal representation of éhe electrfc field
in the straight wavequide section. We see that, for an incident surface-
wave field of unit amplitude, the scattered field due to the curvature dis-
continuity now consists of a reflected surface-wave of amplitude 2, given
by (42), and a reflected radiation field expressed in terms of a continuous
modal spectrum B_(w), given by (43). Similarly, we have in the curved
section, a transmitted pseudo-surface wave of amplitude T given by (45),
and a radiation field expressed in terms of a pseudo-cgntinuous modal
spectrum B+(w) given by (46) which is analogous to tqe one obtained in

the straight waveguide section. In order to obtain a more explicit expression,

use is made of (13) and (28) for the evaluation of coefficients Cio) and
Cig) in a straightforward manner.
(0) i (0) iw (Vo_\))2
Cs = 733 3 G W == 5= (47)
8k vy 2k.v (w +y0)
so that
g Yo 7 )
Q= (kR) ’L 5|
4y” 5
° wy (v ~v)
B_(w) = (kR)™1 | —° ° ]
L4V o | ([{8)
W, ()2 } |
B, (w) = (kR)
* LZvNZ(w) (w2+y§)2‘
T+ (k) 27t J
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(M)

and T has simplified to

1) Vo 2 wzkvo+\92(vo'v)2dw

(1) {"“ .
TV =2ky Y o (x)y {x)dx-ikv C 7 +
o) 3f0 s2 so o ss Ekj; \)N%Z('w) (w2+Y(?;)l*

(49)
Further, since
R N AN v, g e
C = = —— ./.W X} ¥ (x)dx - - ;
ss kv, Jy 5207 so 6Lik2\)(5> 2k Jo ‘sz(w)(szi)h
(50)

we have finally

_ o 20h 22
T“)— i _y&o VVW0+&% + ) "
B L m 2,.2\5
32v o vlw +YO)
Y2 YV “fﬂfzsinze[vh+6V2cosze + coshelde
. __0o _ oo oo
32V " © (sin’6 + YCZ))5
VARV © wz(\)h+6\)2\)2+\)l+)
_; Jo'o o o dw
H A A e

(1)

For subsequent power conservation discussions, only the real part of T

will be needed:

TR S R S A o
Re T T T ER (51)
o o'o Yo

Equation (48) represents the first non-vanishing corrections to all the

relevant fields in the problem.
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V. The Far-Field of the Scattered Radiation

Consider the radiation field
e Fikvy
EZ —.[ B (w)Wco(w,x)e dw
0

+
on a section of straight guide. If B~ has, at worst, singularities
of the type v_] and is finite at w=0, the application of a saddle-

point integration yields the followving far-field expansion {4, p.27]:

VRS ; -ikr+in/h
EZ (EEF' F(8)e

(52)
-iq(6)

where

L+
F(8) = *cos © (sinze +Y§)2B_(w=sin6 ; V=z2cos e

and tan 8 =x/y, tan q(6)==YO/sin 6, and kr==k(x2+y2)% >> 1. This is
the usual method for obtaining the radiation pattern F(8).

Now consider the field

Ez = jﬂ Bi(w)Wc(w,x;R)e?lkvsdw
(0]

+
on a section of curved guide. Restricting the singularities of B
as above, we obtain in the same manner as (52), the far-field expression
on a curved section:

~ikr+in/k

~ (T EF 2
Ez (EE?J F(6)e (53)

where F is formally the same as in (52), but with 6 replaced by 8,
~ 1

where tan 6 = x/s, and kr = k(x2+sz)E >> 1. The substitution of s

for y appears to distort the far-field in the curved section relative

to the straight section, but recalling the condition x/R << 1, we arrive

at the situation illustrated in Fig. 9. As long as kR >> kr >> 1 (regionA),
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the pattern (53) is valid for all observation angles D'<5‘<ﬁ, and

furthermore within this range, 6=6 and ©r = r, so tha& no distortion of

~

the pattern appears. For O = 0 or w, the field is small, and has
negligible effect when another discontinuity (e.g. a transition back to
a straight section) is encountered (see region B). Outside the boundary
layer (region C) ?C no longer accurately describes the radiated fields;
however, since the fields near the surface are known accurately, some
form of Kirchhoff-Huyghen's principle may be used to continue the fields
beyond this boundary layer [3,5,33]. Physically, of course, the radiation
lobes are not expected to bend along with the impedance surface as (53)
would seem to indicate if x/R is not small, but should continue outward
as if the impedance surface were absent.

From (48), (52) and (53) then, we can calculate the radiation pattern

of the discontinuity in the present case as

HOIR vi sin'e (54)
F(o)[% =
ﬂz(vi-cosze)(vo-cos e)h(kR)Z

{t is easily seen that this pattern consists of a single lobe whose
maximum (for Yo/vo << 1, a typical situation in optical waveguides) is
located at

g = YO/Z,
i.e., the pattern is strongly endfirewith radiation in the backward
direction nearly absent. Obviously, when two or more discontinuities are
present on the same structure, the fields scattered from each one will
interfere to produce an overall radiation of much more complicated structure.

We remark finally that both (52) and (53) must be modified in the
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presence of singularities of Bi more severe than allowed above, to account
~for the possibility of their proximity to the saddle-point (especially in
region B). This may be done in the manner described in [20, pp. 399-410],
and assures the overall finiteness of the far-field expressions as does the
Hadamard finite part in the spectral integral (Appendix B). AAdditionally,
for any modification of the saddle-point technique to be valid, Bi must
have no exponéntia] behavior of any consequence (i.e., comparable to kr or

k¥) which would substantially affect the location of the saddle point.

VI. Power and Orthogonality
One implication of the mode orthogonality statements following (13)
for the straight wavequide is that the total power flow through a guide
cross-section is simply the sum {(or in the case of continuous modes, the
integral) of the powers carried by the individual modes. Thus, taking

positive power flow to be in the +y direction, the surface-wave mode

*ikv vy
+
E =BY ©
z 0'so
carries the time-average power
R > Vo - 2
P =-‘2~Ref ExH"‘-adx=i22 f]EZl dx
SO o Y o Jo
(55)
v /Y .
ol vl Y
WH o

whereas the collection of radiation modes

+

E =]‘B(MW Omﬂeﬂkwtm
z o co

carries the power



o

+ ~ o ovorns oy Fikvy, o Fikv'y, ®
P =t o Re[O/;{B (W)B *(w') [e 1v'e 1

o]

fo ¥ (w0, x)¥_ (', x)dx} dw din' (56)

=% v’ +y2) (85 (w) |2
- fo Wt Y )[BT (W) |

by virtue of the orthogonality properties of these modes.

It is useful to inquire whether, on the curved sectiion, similar
orthogonality statements might apply to the asymptotic made functions
WS and WC, in order that we be able to similarly discuss the power transport
properties of the modes and pseudo-modes. We first ﬁonsider the surface-wave:

*ikv s

E =8 ¥ (x;R)e P
rd (o] S

Since v (before it is expanded asymptotically) is an exact eigenfunction of

the guide, it may be shown, using the relation [26, p. 484]

f\)kR(kp) ukR(kp)g ° = —P—1( ka(kaukR(kp ﬂukR(kp)C\)kR(ko)]

(uz-vz)kR

(57)

where C: and /7‘are arbitrary cylinder functions, that

0o R \)/\)
v, (s R)] Sdp =~ £ (58)
R LS p 2KY
o
where the limit p=»>v = vp has been taken in (57), and (16), the boundary

condtions, and the Wronskian of the relevant cylinder functions have been used.
Comparing this expression with (55), it is clear that (58) cannot give

a statement of power orthogonality, inasmuch as the exact eigenfunction is

known to be lossy because of radiation of the surface-wave [2] . In the

asymptotic form of q; found in Appendix A, however, these losses have been
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neglected; hence, since in the approximation involved in equation (29) we
have

(12 ko)1 * = - HsziR(kp)

we may write down the following 'asymptotic'' power relation in analogy with

(55):
E - h, P 2w
P"='5RefE><H*~5d=i—Pf]E]"dp (59)
s R o p ZZO R Z P
Vo/Yo £.2 +2s
= h 8] e Tp
wp o

re v =h -ioa; h,a > 0. When ¥  is represented in the form (29),
whe P P P PP s P

the relation (58) is to be understood as an asymptotic relation rather than
an equality. That is, if N terms in the expression (29) are retained,

expression (58) is valid to O[KkR)—(N+])]

It is important to note that,
at s=0, equation (59) reduces to (55) as R » « (as it must), and that it

is independent of kR.

‘A similar orthogonality statement is derived in Appendix C for the pseudo-

modes ¥ o
c

o]

2
Y (w,x;R)¥ (wis;R) E—dp N H—iﬂl{é(w—w') - S(wtw')}
R c c o} k
2 (60)
= ) 0 <w, w<w)
The sense of (60) is similar to that of (58): if N terms in the development

(30) are retained, the integration (60) will result in (say)

2 .
ﬂ—éﬂl §lw-w') + M) (e yor (kr) =1

Since the sense of generalized functions is always that they be integrated

with an infinitely differentiable "'test function' ¢(w'), any such integration

will produce the result
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2

V) + o™ oy (W,

understood in the ordinary asymptotic sense. It may be similarly shown

that the asymptotic relation

f ¥ (x;R)¥ (w,x;R)E dp 0[(kR)_N 1 (for any N) (61)
R S c p

as kR » in the above sense, that is, the result of an integration of

(61) over w will be asymptotically smaller than any power of (kR)_] .
Possessing these orthogonality statements, it is now meaningful to

formulate a statement similar to (55) for the curved section. Thus a

collection of radiation modes

e ]

EZ :\/‘ Bi(w)WC(w,x;R)e+lkvsdw
0

corresponds to a total radiated power

1 o
p:—)' S~ f viw? + Y(Z))IBi(w)lzdw (62)
o) [¢]

We remark that, for the curvature discontinuity preblem, (55), (56),

(59) and (62) imply that the condition of bower conservation
™Y ] _
1= |T)% = faf? - =2 f\)(w2 +yB W) [2+ (87w [ Phaw (63)
o 0

holds to the retained order of accuracy in kR. It is a straightforward
manner to verify (63) to the order (kR)_2 for the expressions given in (48)

and (51).
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VIi. Discussion and Comparison with Other Results

Shevchenko [4] considers a two-junction problem in which the curved
section is terminated with another straight section. [f we solve the
second junction problem in entirely the same manner as the first (but see
also Appendix E), it is easy to show that Shevchenko's results are identical
to ours, and furthermore, to explicitly giye physical significance to
individual terms entering into the two-junction problem. A major
advantage of the present method is that the effects of each junction can
be examined separately, and the result proves to be much more general than
initially perceived by Shevchenko.

With the various corrections which appear in this problem in mind,
we can examine the result of Maley [5]. This solution accounts only for
the first order change, v, in phase velocity of the surface-wave on the
curved section. We have seen that the reflected surface-wave, the geo-
metrical distortion of the surface-wave fields, and continuous mode contri-
butions are all of the same (1/kR) order as the phase velocity correction,

and hence their neglect in [5] explains the difference in radiated fields.

The radiation pattern of one of the discontinuities as found in [5] is

2 2
vo - cos © (64)
F(B8) =
ﬂthiYi(vo-cos G)A(kR)2

The discrepancy between (54) and (64) is rather serious near the point of

maximum radiation (6= YO/Z)-

qNote, however, some misprints in [4], especially involving the reflection
coefficient.
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It is interesting to note that an analysis of the plane wave
diffraction problem at a curvature discontinuity [34] gives an expression
for the scattered field identical to the present oné, if a complex angle of
incidence (with cosa = vo) is formally inserted into their result
(even though only real angles of incidence were considered).

The approach outlined in this report can be considerab]y simplified
by avoiding the derivation given in section I, and instead (and with
considerable hindsight) making an ansatz regarding the existence and
asymptotic expansions of WS and YC. We may then construct the terms in
these series directly from the differential equation as shown in Appendix D.
Furthermore, our investigation of the Green's function showed that the modal
functions were (as always, asymptotically) complete. Once again regarding
completeness along with orthogonality (see Appendix D) as an ansatz, we
may avoid the use of Green's theorem and formulation of an integral equation
by assuming a priori a field expansion in the curved section (Appendix E).

Let us then summarize the limitations we found to this approach.

. 2
The Debye expansions were valid for kR large (more precisely (kR) /3 >>1).

The Taylor series required that x/R << 1. Thus, this technique is

a) asymptotic, and

b) local to the guide surface.

As such it bears a great deal of similarity to various asymptotic theories
of surface-wave propagation [14-19] , which have previously been developed
only when the directrix of the guiding structure is smooth. Further work

along these lines should prove quite useful.
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The next important proBlem to be attacked by this method is that of
the concave bend, The main difference presented by thés problem is the
possibility of non-attenuating, ''whispering-gallery' type modes. Energy
converted into such modes from the surface-wave must not only be considered
as loss, but the possibiiity of interference with and consequently FTurther
degradation of the signal makes these modes potentially more destructive
than the more straightforward losses considered in this report.

Finally, let us compare the scattered radiation loss determined above
with the continuous attenuation suffered by the§surfate-wave propagating
around the bend. The latter is proportional to the total angle @ of bend,

and is given by [23]

Jé-exp(l/vz)exp[— %(voé)-]](é/ﬁ) (65)
o]

surf = Y,

P

for § = Vo/(ngR) << 1, whereas by equations (51) and (61), the scattered
power (both radiated and in the reflected surfade wave) is

2, 2 2, 2
Re T(])_ v, (v0+4) ) (vo+4)

P = - = = (66)
scat (kR)z l6yg(kR)2 16
In Fig. 10, Psurf and PScat are compared for a bend angle of ¢ = 300. it

is seen that for extremely small (g .05)8, the scattering loss will dominate
whereas for larger § (but still small compared to 1), the exponential
dependence of (65) causes a dramatic increase in the attenuation of the
surface wave. Figu;gw1ﬁ shows the crié&cal angle ¢, at which the two-
power losses become equal. Though quite a sensitive function of § near

the transition point § = .05, it is seen to be relatively insensitive to

changes in Yoo outside of its dependence in & . Since vy, = 0.1 would be
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0 5 10 15 20 xl10-2

Fig. 10

Power lost by the surface~wave in a bend of ¢ = 30°
versus the scattered power at a curvature discontinuity.
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Fig. 11

Angle ¢C of bend at which PSurf = Pscat

20 x10-2
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a quite typical value in an optical wayeguide situation, this indicates

the possibility that either type of radiation loss might be most important.
Indeed, the experimentalsituationof [35] for the dielectric slab turns. out
to be quite‘close to the cross-over point shown in Fig. 10, which is
consistent with the fact that neither type of loss alone could explain the

obtained results.

Acknowledgments

The authors are pleased to acknowledge many helpful comments by and
discussion with Prof. L. Lewin and Prof. S. Maley. This project was
initiated by work done in the program entitled '"Surface wave mode coupling
of straight and curved dielectric optical waveguides' sponsored by the

Air Force Office of Scientific Research during 1972-1974.



-4o-

Appendix A

Asymptotic form of the surface-wave mode function

In this Appendix an asymptotic expression for the mode function WS(X,R)
defined by (16) is derived. For purposes.of solving the integral equation,
such an expression need only be valid on the zperture, i.e., for s =s'

It is thus unnecessary to calculate thg attenuative part of this mode, since
this will be significant only after the surface-wave has traversed an appre-
ciablie distance aréund the bend. Once the excitation of the mode at the
aperture has been determined, these corrections (which are calculable as in
[2], [23]) may be made to properly account for the attenuation away from

the aperture.

Since we may expand HéziR(kp) in much the same way as was done on
the”contour Cé , the main p?ob]em is to properly expand the term in brackets
in (16). Using the Debye expansions given in section 111 for the Hankel

(M g w1

functions, it is clear that the parts of H which are pro-
1 . .
portional to H(z) and H(z) respectively will contribute nothing to the

residue, hence the bracket term in (16) becomes

'{vosz N(vP,R) eikRC
Y _9
LMo goel)

where
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and here

o
. . 2
S S N .2V §
w
. a2
D](v) = - —lE- + El- (3+§V ) D (v)
2w w
We can thus write
v \)2
Vo~V o+ — 4 + ... ) (A.2)

p o} kR (kR)z

which is determined as the zero of D(v,R) which appraaches v, as kR > o |

Thus [23] we have

v, = —D](vo)/Dé(vo) etc.

by expanding the Di(v) in Taylor series about vo and equating coefficients

of like powers of (kR) ] to zero. The derivative can be expanded similarly as

P V05 (v) + ()

3 '
3y LPOVRI = piv ) {1+ = R + ...}
P 00
Thus
N(v,R) No(vo) i leé(vo) * N](Vo) No(vo)[vlog(vo)+0{(vo)]
5200 (v,R)] CA 06 Vo) [0} (v_)1?
V=V

In the present situation the above results in

v, = I/(ZVOYO)
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2y2
N(Vv,R 2
(v,R) —> [S(R)]
B—\)U[D(\),R)] B (¢]
V=
where
2
1 2y, t 13y + 5
o o
SRy~ "’k?{ 23
24v" v
o 'o
Using the Debye expansion for HéziR (kp)
p
VR
. _-—ikh 0 *
‘{Js(x,R) ~ e o[ 5 2} S(R
o -vp

Finally, if the

p-terms remaining are expanded in a Taylor series about

] + . (A.3)
in (16) then gives
+
)SL (A. L)
o
X =

in (kR)_], we have finally

and remembering that Vp is also a series
~ ]
Ws(x,R) = Tso(x) * R Wsl(x) + .
where (A.5)
222 2 2 7
k™v x Y +V
_ -ky x 0 o] 0
y ](x) = e o 5 - 73
° Yo Ly
o 'o
The form of 4;0 and the x2 term of qg] agree, with the exception of a

sign error which appears to result from improperly evaluating the residue,

with the result of Molotkov [17], who has obtained them using a constructive

approach beginning with the differential equation.

This approach is used in

Appendix D to calculate both the surface-wave and continuous modal functions,

thus avoiding the tedious procedures of this Appendix and section Il}.
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Appendix B

Handling of singularities in the contour deformation

Terms of higher order in (kR)—] in (22) may require the evaluation of
an integral of the form

A(w)d
[ Al (8.1)
C w

where the integral is over the contour shown in Fig. 8, n is a positive
integer, and A(w) is an even analytic function of w . The integration is
assumed to converge suitably at infinity.

By deforming the contour away from the real axis to some contour ('

(the broken line in Fig. 8) and writing (B.1) as

Aw) - A(0) - W-Z—A"(o) - et alzn-2l ()
A(w) 2! C o (en-2)
2 dw = 2 dw
ctow" ¢! w"
. nil A[ZJ](O) [ dw (5.2)

= —
i=0 2 c W2(n i)

Al terms of the sum vanish since w ' > 0 as w -+ for “p > 1 . But the

integrand of the remaining integral is finite at w =0 and so C' may be

deformed back onto the real axis, and the integrai is an ordinary one:

*® Alw) - A(0) - ﬁZ—A“(o) - w2 A[2n-2}(0)
[ Aw)dw _ f W 5T e T N
Jc Wzn ~ o0 W?_n
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dw (8.3)

-0 W

a notion introduced by Hadamard [29,30]. It is a generalization of the notion
of Cauchy principal values, and in many cases retains the desirable properties
of ordinary integrals. The finite part may also be regarded as an evaluation

of the integral in the sense of generalized functions [30,31].
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Appendix €

Proof of the orthogonality of the pseudo-modes in the asymptotic sense

It will facilitate the proof if we note that we can rewrite (25) for

0 <w< o (i.e., on the left side of the lower cut in the v-plane) as

v riR) v BB e 0,1 ) ko) - P o,R) W) (ko))

where
P(v,R) ~ -T(v,R) expl[2i(kRz - n/4)]
To cover the case - <w < 0 , we utilize the relation

Wc(w,x;R) = (sgn w) WC(le,x;R)

(c.1)

Note that it is not necessarily claimed that (C.1) represents a valid mode

function for the structure, but only that we can utilize the asymptotic

equivalence in proving a general (asymptotic) orthogonality relation.

Using formula (57), the boundary conditions at p = R and the asymptotic

forms of H(]) and H(z) for kp >~ = , we obtain

Nojs

i . i) Roap o ey et NG N
[R Wc(w,x,R) Wc(w ,X3R) 5 dp (sgn w) (sg ) kﬂ(vlz - vz)
(P (R T2 [P (v R)]E & KRTOOTVI/Z oy R) 172 P (vt ,R) 1

e—ikRﬂ(v—v')/z}

As kR =+ o | (C.2) has the asymptotic sense of a generalized function.

Reinserting the asymptotic form of P(v,R) gives

(c.2)



-4

Q0 1
. 112 ]
Yo (w,x;R) ¥ {w',x;R) £{-dp v (sgn w)(sgn w') v i N(w) N(w')
C C p 2 |2
R ki (w™-w'")

- -1

r L —J
F(v,R) "* ikR[f(w)-f(w')] |T(V',R) * -ikR[f(w)-f(w')]
%(v-,a); & v, | ¢ (€.3)
where f(w) = ¢ + mv/2 = lwl - vlarccos v - 7w/2]
The sense of (C.3) is as follows. Consider, for example, the relation
e—iu(x-x')
T ’\J"ITiS(X'X‘) (Ot—*°°) (Cli)

This statement is valid in the sense that

S 9(x) dx' v -mig(x) +ol™)  (a+e)

for any positive N , if g(x) is an infinitely differentiable function which

decays, along with its derivatives, suitabie rapidly at = (i.e., a '‘good"

function [31, p. 41]). This follows from the asymptotic properties of Fourier

transforms of generalized functions [31, pp. 316-319].

Equation (C.3) can thus be written

JR ¥ (w,x;R) ¥ _(w',x;R) g'dpm- e [*N (wji(') (sgn w) (sgn w') [Flw) - flw')]

k(wz—w'z)
1 1
(TR rr(v',R)]z o
hvm} o S[F(w) - Flw)] (€.5)
This expression is zero unless f(w) = f(w') , which can occur only at w' = #fw .

Now the rules for change of variable in the delta-function state that, under

suitable conditions on h(x) [31, p. 256]:
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6(x-xm)
S[h(x)] = z 17;7;:71

where x. are the (simple) zeroes of h . Since

f'(w) = -(w/V) arcsin v

the right hand side of {C.5) becomes

L1 san(e) saner) i) M) P < ) [0 ) +fr<v-,a>]% .
k

72 | T(v',R) LTT0R) |
S{w-w') + S(wtw')
| (w/v) arcsin v
NZ (w)
= {S§{w-w') - S(w+w')} (C.6)

This is precisely the relation which obtains in the straight waveguide [4, p. 29].

When restricted to 0 < w, w' <« , (C.6) becomes simply

which is the form quoted following equation (13).
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Appendix D
Constructive method for determining the modal functions

Once the modal functions are derived directly from the Green's function
and their structure is realized, a much simpler method for their calculation
can be used (that of Lewin [32], Jouéuet [36], or Molotkov [17], with certain
generalizations), permitting extension of this method to more complicated struc-
tures. We present this method for both discrete and continuous modal functions
in the present Appendix.

The wave equation can be written as

2 3%y
2

3s

(x+R)—3X-[(x+R)g%ii]+R +k2(x+R)2‘P=0 (0.1)

We consider first the surface wave. Assume that ¥ (x,R) and vp have the
s

asymptotic expansions

1

v + — + . . . D.2

Y Yoo TR ¥ (D.2)
i

\)p Y \)O+k_R\)] + . . . (DB)

. . -1
Substituting (D.2) and (D.3) into (D.1) and equating like powers of R to

zero gives

g4 k2(1 - \)2) ¥y =0 (D.4)

SO O SO

¥ oo+ k2(1 - vz) Y o= -2kx ¥ - k¥ o+ ?.kz(\) v, - kx) V¥ (D.5)

sl o' si S0 so o] SO

" 2 o2 o 2 240 2 ] 2 2 .22

Wsz + k(1 \)O) \ysz = -k“x \yso -k x ‘Psofk (2v0v2‘+y] k“x )WSO
(D.6)

" - i 2 -
2kx Ws] k ‘PS] + 2k (\)0\)] kx)lysl
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and so on. Similarly the boundary condition becomes

1 = H =
{wsj + Ky, wsj}x=0 0 j=0,1,2, . .. (D.7)

In the above, primes denote differentiation with respect to x . Condition
(D.7) for j =0 and (D.4) now give

y o o= e_kYOx
%)

where the (arbitrary) amplitude has been set equal to one.

Proceeding to (D.5), we have the general solution

_ “kygx
= Ae KYox + BekYOx + S {2k3x(1 - ZYO\)O\)]) + 2k

¥ 2
(2ky,)

4 2 2
52 XV

Yol (0.8)
Rejecting the exponentially growing part of the solution as incompatible with

the surface wave, we have B = 0 . Then applying the boundary condition (D.7)

for j =1, we find that

<
il

] 1/(2ono)

and

k2x2v2

\}152 = e‘kYoX {A +TO}
O

With no more conditions to apply, it would appear that the constant A must
remain arbitrary. Lewin [37] hao poivted ont that thia cabitsar inea. may be
seen from the fact that o nmodal function way be nultiplied by any constanlt
. . : ] . . ) -1
which is itscll developable in an asymptotic serice in o (ki) o b, thie
calcutation of cach ¥ . will introduce a fturther arbitrary conntant. Ve hoose
S)

seen in scction V, however (sce equation (57)) that an orthogonalily property
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holds when the mode functions are derived in the Green's function:

OO

2 R
\)pJR [‘Ps(x,R)] o o vo/(Zkyo) (D.9)

or, developing the left-hand side in inverse powers of kR :

2 ] =2 *
vy fm YT (x) dx + Wi J Tso(x) dx + 2vo J WS](X) Wso(x) dx
o 0 0
-V fm kx W (x) dxl +
o SO ’ -
0 J

3§ vo/(zkyo) (D.10)
. i.e., all higher-order terms on the left must vanish identically. In particular,

requiring the term in curly brackets in (D.10) to vanish results in
_ .2 2 32
A= (vo + yo)/(hyovo)

in agreement with equation (29). With condition (D.10), this process may be
continued to find higher order terms of WS

Now we consider the continuous spectrum modal functions. We now assume

‘ ]
Iy —_—
WCKW,X,R) 4y qco(w,x) + R ¥C](w,x) + ... (D.11)

but no perturbation on w , which is real and nonnegative. Proceeding as above,

we obtain

v+ k2w2 Y
co co

(D.12)

1!
o

=2kx ¥ -k ¥! -2k3x Y (D.13)
co co co

Yoo+ k2w2 ¥
c

cl 1

2 4 2

2 = -kzxz Y0ig = Kix Yo = kx™ ¥ - 2kx ¥y - k Ye - 2k3x Yeu

¥+ k w2 be
c

c2 2

(D.14)
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with boundary condition (D.7) holding now for the wcj . (D.7) and (D.12)

now give

- ikwx ikwx]

co [w =iy ) e *wriy) e

N | =

where again the arbitrary amplitude has been chosen to match the straight

waveguide modal function. From (D.13), now, we obtain the general solution

; . . 2.2 2
_ ~ikwx Pkwx 1, . —ikwx o kx . kTvTx
Yy =Ae + B\e + 2(w IYO) e [ ;;2 P ]
(D.15)
; 2.2 2
L b . ikwx o kx . kTVvTx
‘ Z(W * IYo) € [ 2W2 o 2w ]

Use of the boundary conditions gives

Alw + iyo) - B(w - iyo) = i/2w

As before, we are apparently left with one arbitrary constant; however, if we

enforce the orthogonality condition (59), we find that

] 00
' Y ’ ' : , "yx)dx
{: Wco(w,x) WCO(W LX) dx + R { ; Wco(w,x) WC](W ,X) dx + L) WC](W x) Wco(w x)dx

~
- J kxt  (w,x) ¥ (w',x) dx+ + .
0 co co

) 5w = w') - S(w + w')] (D.16)

whence we require the term in curly brackets to vanish. Now, it can be easily
shown using standard results from the theory of generalized functions (see

[4] or [31]) that
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f: kaCO(w,x) Wco(w:x) dx = EE‘{‘ZI(WW' - yi) A(w+ w') = 2i(ww' + Yi) At (w ~ w')

—ZYOS(W +w') + 2y06(w - w')}

(0 » ; . 4
and Wco(w,x) Wcl(w',x) dx = 1WIA5W_) + B(w') ) N _(w) [§(w-w') - S{wtw')]

o _ A Yo Wt iYo k
C et Pt eyl v Pt e D) 20 e 2]
k(wz _ W.2)3
2
Y Y V
0 (8w w') = 8w - w)] e (8wt W)+ S (- w)]

where

A{u) = V.p. (a{ﬂ

implies that the principal value is to be understood in arn integration involving
A, and similarly the higher order singularities in the above equations imply

the Hadamard finite part (see Appendix B). Thus we have

, ‘
N™ {w) . . Alw?) B(w') Aw)
" [S(w - w') = 8w+ w')] e iYO * iYO * = iYO
\
ot
w + IYO

or, simply

Alw + iYO) + B(w - iYO) =0

We then finally have
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which is in agreement with equation (30). Thus, we have shown that with proper
enforcement of an orthogonality condition natural to the curved guide, it is
possible to construct the asymptotic modal functions in-.a manner much simpler
than that given in the text. As usual for this kind of construction, however,
the restrictions on the validity of these constructed functions cannot be
obtained from the construction alone, and we must rely on the more careful

derivation in the text for such information.
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Appendix E

Solution of the aperture field by a "mode-matching' method

Let us begin by assuming the expansions (41) and (44) with £, B, (w)

and T as unknowns to be determined. We have in addition

“iwa H o= BE_/3y (y <0)
(E.1)
-iwu Hp = (R/p) GEZ/E)S (s > 0)
Continuity of tangential E and H at the aperture (y = s = 0) gives
(1 + Q) v (x) +[ B (w) ¥ (w,x) dw = T¥ (x,R) + j B (w) ¥ (w,x,R) dw
S0 o co S: 0 + c
(E.2)
0 roo
- _ = R
vo(l §2) ?;O(x) fo VB (w) Wco(w,x)dw [vaW {x,R) + J0v8+(w) ‘{’C(w,x,R)dw]5

Now we multiply successively by 4g and Y , and integrate over x ,
o] co

utilizing the orthogonality properties:

(1 + Q) 2k¢o = T[O ‘PSO‘ (x) ws (x,R)dx + [o B+(w) P {w,R)dw (a)
| o R l o |

Vo(] - W) ZkYO = va [0 ﬁ;;'ﬂso(x) ‘2 (x,R)dw + JO B+(w) vQ (w,R)dw (b)

9 - (E.3)

N7 (w)
B_(w) === =T W(w,R) + J B, (w') S{w,w',R)dw’ (c)

0

- NZ(W) . foo i NS 1 ) : (d)
VB (w) ” = vp T V(w,R) + J B+(w ) viU{w,w',R)dw

0
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Similariy operating with ‘PS and ‘PC , and using (57) and (59):

{e ¢}

v
T \)—O ZK; = (1 + Q) J ~RE—X ‘PSO (x) ‘PS(X,R)dx + J B (w) V(w,R)dw (a)
p o] 0 0
] 00 {o0]
T\)o TY; = \)O(I - ) JO Lyso (x) ‘PS (x,R)dx - Jo B (w) wW(w,R)dw (b)
(E. &%)
N2 (w) "
o, 0 B = (e @) am) + |8 ) UGt R e (c)
0
N (w) "
\)B+(w) kw = \)O(l - 2) P(w,R) - jo B (w') v'S(w',w,R)dw' (d)
in (E.3) and (E.4) we have abbreviated
(w,R) jw (wyx,R) ¥ (x) '[W(vzwf’n
P{w,R) = ¥ (w,x,R) ¥ x)dx v — P+
o © SO kR k(w2 . Y(Z))Z,
00 ~ 2wy
[T ey, N DI
Q(w,R) = J Tl (w,x,R) ¥ O(x)dx VR iy ), Yi)zJ "

-
*© 2
U(w,w',R) = J Ry (wx) ¥ (w'x,R)dx v N (1) S(w - w') +
0 R+x C
YR P w(v® + V) A
V{w,R) = { —— ¥  (w,x) ¥ (x,R)dx Ml e T
(“' | 2wvo
W(w,R) = Yo {w,x) ¥ (x,R)dx Vv =] - —_____._] + .
Jo co s kR | k(w2+yc2))2

tquations (32), (33) and (60) have been used in the above. Furthermore,



OO —
i 1
(x) ¥ (x,R)dx ~ + . +
fo 50 2ky, " KR g, 2|
o

OO \)

R ] o 103

Ry (x) v (x,R) Ao O .__.__}
fo Rtx 'so s 2ky Vo kR L8kv§.

where (31) and (57) have been used. Then to the order of accuracy retained

in the above, solving (E.3) or (E.4) (which are equivalent) yields

—
1]

2
L+ 0(D)

»
I( ())- 1,2
= —|— 1+ 0(=)
kR hvi kR

B (w) = E%' [ 5 WVOZ 5 (v - v)z] + O(E%)2
2N (w) (WO y)T O -
g "o 2 1,2
8, ) =R [Zsz(w)<wz Y (Vg + V) ]+ Ty

o

agreeing with (48). Higher-order terms can, of course, be obtained by computing

the integrals P, Q, S, U, V, W to the desired accuracy.
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