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Abstract

Saxena, Ankit (M.S., Electrical Engineering)

Design of a Computational Biomarker for Epileptogenesis: A Machine Learning Approach

Thesis directed by Prof. François G. Meyer

We describe here the recent results of a multidisciplinary effort to design a biomarker that

can actively and continuously decode the progressive changes in neuronal organization leading to

epilepsy, a process known as epileptogenesis. Using an animal model of acquired epilepsy, we

chronically record hippocampal evoked potentials elicited by an auditory stimulus. Using a set of

reduced coordinates, our algorithm can identify universal smooth low-dimensional configurations

of the auditory evoked potentials that correspond to distinct stages of epileptogenesis. We use a

continuous distribution hidden Markov model to learn the dynamics of the evoked potential, as it

evolves along these smooth low-dimensional subsets. We provide experimental evidence that the

biomarker is able to exploit subtle changes in the evoked potential to reliably decode the stage of

epileptogenesis and predict whether an animal will eventually recover from the injury, or develop

spontaneous seizures.
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Chapter 1

Introduction

Epilepsy is a neurological disorder that is characterized by the occurrence of several unpro-

voked seizures. Distinct etiologies (gene mutations, injuries, etc.) have been proposed for the

different types of epilepsies. Despite various causes of epilepsy and varying degrees of disease sever-

ity in the human population, hippocampal sclerosis is the most consistent neuropathological feature

of temporal lobe epilepsy [35].

At present, Epilepsy is the fourth most common[21] neurological disorder. When the incidence

of epilepsy1 is looked over a life time, one in 26[20] people will develop epilepsy sometime in their

life. In the United States, the current estimate of the prevelance of epilepsy2 is 2.2 million people

or 7.1 for every 1000[21] people. Also, epilepsy accounts for eight to seventeen[44] percent of the

total number of deaths. There is yet no cure for epilepsy and the medication only helps to manage

the seizures.

Animal models have been developed to study the neuronal changes underlying the clini-

cal manifestations of epilepsy (chronic-spontaneous seizures). One popular model relies on con-

trolled administration of a convulsant drug (e.g., pilocarpine) to induce status-epilepticus, a life-

threatening condition in humans characterized by loss of consciousness and generalized convulsive

tonic-clonic seizures. This condition is followed by a latent seizure-free period of weeks to months,

where progressive neuronal damage and network reorganization eventually leads to the development

of spontaneous seizures.

1 Looks at the number of new cases of epilepsy in a given year. Usually represented as a ratio of ’x’ out of 1000.
2 Looks at the total number of people suffering from epilepsy. Usually given in millions of people or a ratio
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Most of our understanding of the progression of epilepsy, or epileptogenesis, is derived from

such animal models. It is therefore critical to define a biomarker to monitor epileptogenesis and

understand the mechanisms that lead to epilepsy. An accurate biomarker would be invaluable for

the design of novel anti-epileptogenic drugs and could eventually be translated into a diagnostic

tool for humans. Unfortunately, there are very few measurable biological variables that can be

used to consistently monitor epileptogenesis and predict disease onset; none of these variables can

actively probe the hippocampal circuit in living animals during epileptogenesis.

The presented work addresses this problem and proposes for the first time a “computational

biomarker” that relies on actively probing the excitability of the hippocampus using an auditory

stimulus. The biomarker is validated experimentally using a status epilepticus rat animal model

of acquired temporal lobe epilepsy. We borrow the concepts from continuous distribution hidden

Markov model, which have found extensive application in Automatic Speech Recognition (ASR)[36]

methods, and apply them to the acquired temporal lobe epilepsy model. We aim to study the

progression of the disorder without having any access to the physiology of the animal other than

recording the response to the auditory stimulus. In doing so, we describe formal methods that can

be used to track epileptogenesis.

1.1 Organisation

The remainder of the thesis is organised as follows. The next chapter introduces the methods

used for measuring the excitability of the hippocampus using electrophysiological electrodes. The

third chapter gives an overview of the approach being proposed. The fourth chapter describes the

implementation in detail. The fifth chapter provides a detailed description of the experiments and

their results. The last chapter is the conclusion.



Chapter 2

Active Evoked Responses: A Measurement of Epileptogenesis

2.1 Introduction

The chapter introduces two different approaches that are undertaken towards the develop-

ment of predictive biomarkers: passive recording and active recording. We advocate the latter

because the active approach is more reliable and can yield an estimate of the progression of the

disorder. In comparison, the passive recording is a ’wait and watch’ approach, where we monitor

the electroencephalography recordings and look for the high frequency oscillations (HFO) or the

interictal spikes (IIS)[41]. We argue that the passive approach does not provide sufficient informa-

tion to observe early changes in the neuronal excitability. In the presented work, we are interested

in actively monitoring the evoked response from the hippocampus to study progressive changes

in the neuronal organization. This process of modification in neuronal organization is known as

epileptogenesis and leads to the development temporal lobe epilepsy. The monitoring is performed

by taking electrical measurements from the electrodes placed on the hippocampus. In this chap-

ter, we discuss the concept of epiletogenesis by presenting the evidence obtained from the actively

monitored evoked responses from the hippocampus in response to an auditory stimulus.

2.2 From Passive Recording to Active Sensing

Current efforts toward the development of a reliable and predictive biomarker of epilepto-

genesis (e.g., see [34] and references therein) fall in three main classes: molecular and cellular

biomarkers [26], imaging biomarkers [40], and electrophysiological biomarkers [41]. The presented
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work focuses on the electrophysiological class of biomarkers that rely on recordings of the electrical

activity associated with neuronal firing. The development of electrophysiological biomarkers has

focused on the analysis of both epileptiform spikes[22], and high frequency oscillations [14]. While

recordings of spontaneous neuronal spiking can be indicative of neuronal excitability, and therefore

correlate with the propensity for seizures, one could argue that the passive electrophysiological

recordings may not provide enough information to observe early changes in neuronal excitability

associated with epileptogenesis.

By contrast, we advocate an active approach whereby we probe the excitability of the hip-

pocampus, a brain region known to be epileptogenic [18]. Because the hippocampus also receives

several sensory inputs (through the entorhinal cortex), we propose to record in the hippocampus

the evoked potential elicited by an auditory stimulus. Since epilepsy does not modify the primary

auditory cortex, any alterations in the evoked potential should be indicative of neuronal changes in

the hippocampus underlying epileptogenesis. To quantify the property of this biomarker, we use a

pilocarpine animal model of temporal lobe epilepsy, and chronically record hippocampal auditory

evoked potentials during epileptogenesis. We design a decoding algorithm to demonstrate that

changes in the morphology of the hippocampal auditory evoked potential have universal predictive

value and can be used to accurately quantify the progression of epilepsy.

We can see in Figure 2.1, that there are subtle changes in the evoked responses between

the different states. In baseline (blue), we show the natural response to the auditory stimulus.

However in silent (cyan), the response is almost flat. This is attributed to the fact that the rat

is still recovering from the injection of pilocarpine. When the rat wakes up, the latent (green)

period, we can see that there is a subtle change in the shape of the response. In the chronic (red)

state, when the rat has developed spontaneous seizures , we see the response has slightly different

characteristics as compared to the responses in the latent period.
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Figure 2.1: Active Recording: Averaged evoked potentials of all states for rat H41. Baseline (blue),

Silent(cyan), Latent(green) and Chronic(red).

Thus, we can see from Figure 2.1 that there is evidence of the progression of epilepsy by just

visually inspecting the shape of the evoked responses. In the next chapter we discuss our approach

on extracting information about the shape of the evoked responses using stationary discrete wavelet

coefficients. This forms the mathematical basis of our visual interpretation about the shape of the

evoked responses in relation to the process of epileptogenesis.

2.3 Related Work

The authors are not aware of any work that uses machine learning methods to construct a

biomarker of epileptogenesis. Counter to this situation, the study of the mechanism underlying the

generation of seizures, known as ictogenesis [37] – a related and yet completely different problem

– has been intensively explored using statistical methods. Specifically, time-delay embedding has

been used to try to predict seizures using intracranial EEG recordings [28]. Time-delay embedding

was also used in conjunction with machine learning classifiers to predict seizures in [27]. More
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recently, reinforcement learning has been used in [6] to control seizure using electrical simulation.

Another feature of our approach involves the geometric analysis of the low-dimensional sets formed

by embedding time-delay coordinates. This question has been extensively explored using linear

methods (e.g., [47] and references therein). Recently nonlinear methods, such as those used to

learn the geometry of manifolds, have also been proposed [4, 43]. An important note is in order

here: unlike earlier works on ictogenesis, we find it problematic to rigorously apply the deterministic

Takens’ embedding theorem, or some stochastic version thereof [47]. Rather, we use the time-delay

wavelet coordinates to characterize the local dynamics ofw(k) at time k, the denoised representation

that is extracted from the evoked potential (see sub-section 4.2.1 for a detailed discussion).

2.4 Discussion

Though the idea and approach is straightforward, there are some inherent challenges in

dealing with these electrical recordings. Firstly, the recordings are highly susceptible to noise

as the evoked potentials are only a few hundred microvolts and since the animal is allowed to

move freely, further noise is introduced in the recordings. Secondly, rats are primarily nocturnal

animals, thus most of the recordings during the night emit weak response to the auditory stimulus.

Therefore, we have to filter almost half of the electrical measurements. We now move on to the next

chapter where we describe the animal model and the decoding framework using these hippocampal

auditory evoked potentials. We use the pilocarpine model of temporal lobe epilepsy[11] to describe

our animal model. This model rests on the use pilocarpine to artificially induce status epilepticus

(SE), which is the onset of epileptogenesis. Later on, the presence of hippocampal sclerosis leads to

reorganization of neuronal networks and ultimately occurrence of sporadic seizures in the rat.



Chapter 3

Overview of the Approach

3.1 Introduction

With the electrical recording described in the previous chapter, we move on to establishing

formal methods of processing this information. This chapter details the pilocarpine model of

temporal lobe epilepsy[11] to give the reader a perspective of the setup of the laboratory experiment.

We describe the decoding framework which briefly outlines our approach to develop a computational

biomarker. We then describe our approach to handle the noise in the measurement by looking at

very specific regions of the waveform to extract meaningful information.

3.2 The Animal Model: a Pilocarpine Model of Temporal Lobe Epilepsy

Figure 3.1 provides a detailed timeline, along with the nomenclature of the different periods

associated with the progress and eventual onset of epilepsy. All procedures were performed in ac-

cordance with the University of Colorado Institutional Animal Care and Use Committee guidelines

for the humane use of laboratory rats in biological research. The data of the evoked response was

collected from the laboratory of Professor Daniel Barth. The data was generated for the purpose

of another study being conducted.

Twenty-four male Sprague-Dawley rats (200-250 gm) were implanted with a hippocampal

wire electrode, a ground screw, and a reference screw.
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potential

duration

baselinecondition

1 week 72 hours weeks − months

latent chronic

2−6 months

silent

evoked

intervention pilocarpine paraldehyde

event status epilepticus (SE) first spontaneous seizure

h  (t)
(0)

h  (t)
(1)

h  (t)
(k)

Figure 3.1: Timeline and nomenclature of the different conditions.

Animals were tethered to an electrode harness and slip-ring commutator permitting free movement

for 24/7 video and EEG monitoring. The 24 rats were divided into two groups: a group of 17 rats

that received lithium-pilocarpine, and a control group of 7 rats. The control group was composed

of 2 rats that received all drug injections associated with the lithium-pilocarpine model except for

pilocarpine, which was substituted with saline; and 5 rats that received no drugs. After full recovery

from the electrode implantation (2 weeks) and at least one additional week of chronic recording

of baseline video/EEG, 17 rats were given an injection of lithium chloride followed by an injection

of pilocarpine hydrochloride 24 hours later (see Fig. 3.1). After one hour of status epilepticus,

the animals were administered a dose of paraldehyde to terminate convulsions. Throughout the

experiment at every ∆t = 30 minutes, an auditory stimulus composed of a sequence of 120 square-

wave clicks (0.1 ms duration, 2 sec ISI, 45dB SPL) was played in a top-mounted speaker. The 300

ms hippocampal responses to each click were filtered and sampled at 10 kHz, and the average of

the 120 responses was computed. In the remainder of the paper, we denote by h(k) the average

evoked potential, measured at time k∆t. To further simplify the exposition, h(k) is simply referred

to as the evoked potential measured at time k.

We conclude this section with the description of the names that we use to describe the

different stages of epileptogenesis (see Fig. 3.1). The period before the injection of pilocarpine is

called baseline. Conversely, the period following the first spontaneous seizure is called chronic.

We further define the silent period to be the 72 hour period of recovery immediately following the

termination of status epilepticus, and the latent period to be the remaining period leading to the

eventual onset of the first spontaneous seizure.
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Figure 3.2: Top: average wavelet coefficients with the average evoked potential (across all animals).

Bottom: average approximation coefficients. Only the scales j = 3 (top) to 10 (bottom) are

displayed. White rectangles delineate the time-frequency blocks used to construct w(k).

3.3 Denoising the Input Data

For each animal r, the evoked potentials h
(k)
r , k = 0, 1, . . . were normalized such that the av-

erage energy computed during the baseline condition, 〈h2
r〉, for that animal was one. In order to use

the noisy evoked potentials to predict the state of epileptogenesis, we extract a denoised represen-

tation of h(k). We use a discrete stationary wavelet transform (CDF 9-7) to compute a redundant

representation of h(k). Among the 10 scales and 3,000 time samples of the wavelet and approxima-

tions coefficients, we only retain the time intervals and the scales that most significantly separated

(after controlling for false discovery rate[42]) the evoked potentials taken from the four conditions,

across all the animals. Specifically, we form a vector w(k) of 2,000 entries composed of 1,000 wavelet

coefficients from the time-frequency region [0, 100] ms× [5, 10] Hz, and 1,000 approximation coeffi-

cients from the time-frequency regions [70, 120] ms× [10, 20] Hz and [100, 150] ms× [5, 10] Hz (see

Fig. 3.2). This representation is consistent with reports of disruption in the θ rhythm (4-12 Hz)

during the latent period preceding the onset of epilepsy [9].
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Figure 3.3: Overview of the decoding algorithm. ,1 : a vector of wavelet coefficients, w
(k)
r , is

computed from the evoked potential h
(k)
r . A vector of time-delay wavelets coordinates, z

(k)
r , is

formed by concatenating τ consecutive w
(k)
r . ,2 : spectral embedding maps w

(k)
r to ζ

(k)
r . ,3 : the

distance between ζ
(k)
r and the low-dimensional structure formed by each condition is computed.

3.4 The Decoding Framework: Notations and Overview of the Approach

We present here a brief overview of the decoding approach. Given an animal r = 1, . . . , 24, we

consider the sequence of evoked potentials h
(0)
r , h

(1)
r , . . .. The first stage involves the construction

of a denoised representation of h
(k)
r (see ,1 in Fig. 3.3). We decompose h

(k)
r (t) using a discrete

stationary wavelet transform and retain a vector of s (carefully chosen; shown in 3.2 and given in 3.3)

wavelet and scaling coefficients, w
(k)
r , (see ,1 in Fig. 3.3). The second stage involves characterizing

the association between the condition of the disease (baseline, silent, latent, or chronic) and the

vector of wavelet coefficients w
(k)
r . We tackle this question by lifting w

(k)
r into Rτ×s using time-

delay embedding: we concatenate the consecutive vectors w
(k)
r , . . . ,w

(k+τ−1)
r to form a τ×s vector,

z
(k)
r , of time-delay wavelet coordinates (see ,1 in Fig. 3.3). Low-dimensional structures, which

uniquely characterize the stage of epileptogenesis, emerge in the high-dimensional space. We use

spectral embedding to parametrize these low-dimensional structures, and map z
(k)
r to ζ

(k)
r (see ,2

in Fig. 3.3). The first decoding stage involves geometrically computing the likelihood that a given
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vector ζ
(k)
r corresponds to one of the four conditions. To this end, we quantify the distance of ζ

(k)
r

to the low-dimensional cluster formed by each condition (see ,3 in Fig. 3.3). In the final decoding

stage, we use a hidden Markov model to capture the intrinsic dynamics of epileptogenesis.

To alleviate the notation in the following discussion, and unless we explicitly compare or

combine several animals, we dispense with the subscript r, denoting the dependency on rat r, when

we discuss the analysis of the evoked potentials for a fixed animal.

3.5 Discussion

Figure 3.2 delineates the time frequency windows (white) for which the discrete stationary

wavelet transform was computed. The wavelet transform coefficients are the denoised representa-

tion, w(k) of the evoked potentials h(k). We can see in figure 3.2 that the region of h(k) that we are

interested in is the trough that occurs in the time-frequency window of [0, 100] ms× [5, 10] Hz and

the peak that occur in the time-frequency window of [70, 120] ms× [10, 20] Hz and [100, 150] ms×

[5, 10] Hz. The idea is to extract the relevant information from the shape of these peaks and troughs

that occur in the evoked responses. From the figure we can see that there are subtle differences in

the shape of h(k) as the animal goes from baseline to chronic, with silent being the exception.

We provide a brief summary in Figure 3.3 of approach adopted to develop a biomarker for

epileptogenesis. The framework establishes a step by step approach from computing the wavelet

coefficients from the evoked responses to spectral embedding the time delayed coefficients. Spectral

embedding effectively maps the evoked responses, h
(k)
r ∈ R3000, to the low-dimensional space ζ(k) ∈

Rd where d� 3000. This is a huge deal as now we implement machine learning algorithms that take

advantage of the low-dimensional space for classification of the different states of epiletogenesis.

Since the notion of time is not lost when mapping from h(k) 7→ ζ(k), we can use a Markovian chain

to define the intrinsic dynamics of epileptogenesis by using a hidden Markov model.



Chapter 4

Universal Configuration of Epileptogenesis

4.1 Introduction

This chapter walks the reader through the process of developing a computational biomarker.

We first talk about time delay embedding which transforms the extracted denoised representation,

w(k) ∈ R2000, to a higher dimensional space, z(k) ∈ R12000. In this high dimensional space we

stipulate that the trajectory of the embedded vector actually lies in a low dimensional subspace.

To extract this low dimensional space we use a graph Laplacian and come to the conclusion that

the dimensions of the data set is actually five, i.e. ζ(k) ∈ R5. We move on to address the under-

lying process of epileptogenesis which, as we have assumed, moves through four different stages

and spends an indefinite amount of time in each state. This give a sense of time and evolution of

dynamics which can be modelled by the Continuous Distribution Hidden Markov Model. The in-

herent properties of this model makes it a suitable choice to implement a computational biomarker.

Lastly, we address a practical issue that arises due to the not having sufficient data populations of

each state. We overcome this issue by developing a pseudo model using a Gaussian mixture model

and then re-sampling it to obtain equal representation from each state. The intuition behind this

approach arises from our assumption that epileptogenesis has a universal configurations which can

be learned using statistical models.
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4.2 Time Delay Embedding

We now describe the construction of universal (stable across all animals) low-dimensional

smooth sets formed by all the hippocampal auditory evoked potentials collected during the same

stage of epileptogenesis. These sets are created by lifting the wavelet coefficients w(k) of each h(k)

into high-dimension. This lifting effectively creates smooth low-dimensional coherent structures

that can then be parametrized with a drastically smaller number of coordinates.

4.2.1 Lifting the Evoked Potential to a High-Dimensional Space

Given the time series
{
w(k), k = 0, 1, . . .

}
for a given animal, we analyze the dynamics of this

time series by considering the time-delay wavelet coordinates formed by concatenating τ consecutive

vectors of wavelet coefficients,

z(k) =

[
w(k) w(k+1) · · · w(k+τ−1)

]
. (4.1)

We characterize the changes in the dynamics of the evoked potentials by studying the geometric

structures formed by the trajectory of z(k) in Rτ×s, as k evolves. To help gain some understanding

about the geometric structures formed by the z(k), we make the following elementary observation.

We note that we can compute a p-point (p ≤ τ − 1) forward finite difference of w(k) from the

time-delay wavelet coordinates, ∆pw(k) =
∑p

j=0 ajw
(k+j)/(∆t)p. If this finite difference is small,

then
∣∣∣∑p

j=0 ajw
(k+j)

∣∣∣ ≈ 0. This last statement can be translated as follows: the distance of z(k)

to the hyperplane defined by the vector [a0 a1 · · · ap 0 0]T is small. We conclude that if the

vector of wavelet coefficients w(k) varies slowly, then the trajectory of z(k) lies near the intersection

of several such hyperplanes. Furthermore, if the temporal derivatives of w(k) are small for many

orders p = 1, 2, . . ., then the trajectory of z(k) will be confined to a set of small dimension. We

notice this phenomenon in our data; shortly after status epilepticus, the evoked potentials h(k) are

very flat and exhibit very little variability across time k and across animals. Consequently, the

evoked potentials measured during the silent period are clustered around a very low-dimensional

region of the configuration space (see Fig. 4.1). In practice, the number of time-delay vectors, τ ,
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is determined using cross-validation. We found that τ = 12, which corresponds to six hours, yields

the optimal results.

To learn the geometry of the set formed by the different trajectories z
(k)
r , k = 0, 1 . . ., we

consider the union – over all the animals – of the vectors z
(k)
r , and define the set,

Z =
⋃

r ∈ all animals

{
z(k)
r , k = 0, 1, . . .

}
. (4.2)

4.3 Nonlinear Low-Dimensional Embedding of the Time-Delay Wavelet

Coordinates

In order to identify the separate regions of Rτ×s that correspond to the four conditions

(baseline, silent, latent, and chronic), we seek a smooth low-dimensional parametrization of Z. Our

results (not shown) indicate that the traditional linear approach (singular spectral analysis [47])

provides a very poor parametrization of the set Z. A nonlinear approach, spectral embedding [17],

yields a low-dimensional parametrization of Z that naturally clusters the different conditions into

coherent disconnected smooth subsets. Briefly, we define a similarity matrix K that quantifies how

any two evoked potentials h(k) and h(l) extracted from the same or from different conditions, and

from the same or from a different animal, at the respective times k and l co-vary,

K(k, l) = exp
(
−‖z(k) − z(l)‖2/σ2

)
. (4.3)

The scaling constant σ was chosen to be a multiple of the median distance ‖z(k) − z(l)‖, k, l =

0, 1, . . .. We used the d eigenvectors of K that optimally separated the dataset Z into four clusters

[25] related to the four conditions. The ith eigenvector of K provided the ith reduced coordinate,

ζ(k)(i), of z(k),

ζ(k) =

[
ζ(k)(1) · · · ζ(k)(d)

]T
. (4.4)

In all our experiments, we found that d = 5 provided the optimal decoding performance.
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Figure 4.1: The training set of evoked potentials, Z, displayed using the reduced coordinates ζ(k).

Each condition, baseline (blue), silent (cyan), latent (green), and chronic (red), forms a coherent

sub-cloud.

Figure 4.1 displays the nonlinear parametrization of Z. Each dot represents an evoked poten-

tial h
(k)
r measured at a time k from an animal r, and parametrized by the reduced coordinates ζ

(k)
r .

The color indicates the condition during which h
(k)
r was recorded. When collapsed across animals

and time of recordings, four distinct clusters can be visually discerned, which can be interpreted in

terms of the corresponding conditions. As expected, the evoked potentials in the silent condition

are tightly grouped together around a low dimensional structure. Conversely, the latent condition

displays the largest spread: some evoked potentials are morphologically close to silent evoked po-

tentials while others are close to chronic evoked potentials. We also note that one can still separate

the baseline evoked potentials from the chronic ones, despite their mutual proximity. To further

help with the interpretation of this nonlinear representation of Z, we trace the trajectory of ζ
(k)
r ,

k = 0, 1, . . . for a single rat (H37) over several weeks of recordings (see thick black line in Fig. 4.1).

The animal first spends several days in the baseline cluster (blue), then briskly traverses the entire

space to reach the silent cluster (cyan) after status epilepticus has been induced. Eventually, as

the animal recovers, it joins the latent condition (green) and advances toward the chronic cluster

(red). Four representative evoked potentials are shown along this trajectory, confirming changes in
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the morphology of h(k) during epileptogenesis.

4.3.1 What Are the Reduced Coordinates Telling Us About Epileptogenesis?

We observe in Fig. 4.1 that the evoked potentials in the training set Z organize around

smooth low dimensional subsets. The natural division of Z into coherent subsets, which correspond

to well defined stages of epileptogenesis, suggests that a purely geometric algorithm could be used

to quantify the development of epilepsy. Indeed, given an unclassified evoked potential, ζ(k), the

distance from ζ(k) to each of the four clusters (baseline, silent, latent, and chronic) should provide

an estimate of the likelihood of being in the corresponding condition at time k.

4.4 Estimating the Geometry and Dynamics of Epileptogeneis

Given the progression of epileptogenesis, the dynamics of the process seems to be dependent

on the current state and the previous state. Concluding from experimental evidence we assume

that these dynamics can be represented by a Markovian description. Therefore, we introduce

a Continuous Distribution Hidden Markov model, Figure 4.2. The advantage of a continuous

distribution model is that each state of epileptogenesis can be represented as a mixture of Gaussian.

Our intuition is to model the geometry of each cluster, Zc, separately as we assume that the training

ζ(k)′s can give us a good sense of the geometric structure of each cluster.

We denote by Zc, c = 0, 1, 2, 3, the four clusters formed by the evoked potentials in Z that were

respectively collected during the baseline, silent, latent, and chronic conditions. Many techniques

are now available to estimate the local geometry of point clouds (see e.g., [19, 10, 33, 7] and

references therein). We found that using a mixture of Gaussian with a small number of components

gives us a reasonable estimate of the geometric structure described by each Zc. Furthermore, unlike

other models, a Gaussian mixture model does not require the stringent assumption that Zc be a

smooth sub-manifold. For the purpose of this thesis, a Gaussian mixture model (a mixture of

Gaussian densities A) is being used to describe the different stages of epilepsy. Thus each epoch,

baseline, silent, latent and chronic, are described by their own mixture model.
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Figure 4.2: Continuous Distribution Hidden Markov Model: A = aij is the probability state

transition matrix, P (q = j|q = i) and π0 = P (q = z0). ϕθk is the emission probability distribution,

p(ot|q = k), given by a mixture of Gaussian (MOG). Each mixture model is defined per state,

k, as ϕθk(ot) =
∑M

i=1wiN (ot|µki,Σki),
∑M

i=1wi = 1 and N (ot|µki,Σki) is a multivariate Gaussian

distribution. Zc, c = 0, 1, 2, 3 are the clusters for baseline, silent, latent and chronic respectively.

zc, c = 0, 1, 2, 3 are the baseline, silent, latent and chronic states of epileptogenesis respectively.

All the models are initialized with the k-means++ algorithm[2][3] and the EM algorithm is

used to maximize the likelihood. Please refer A for a detailed explanation of EM for a Gaussian

mixture model and B for continuous distribution hidden Markov model.

4.4.1 Modified Approach to Continuous Distribution HMM

Even though the Continuous Distribution HMM provides us with a rich perspective to model

the reduced coordinate system, ζ(k), we found that the results were not satisfactory. The problem

was narrowed to insufficient evoked potential recordings. We found there was not enough data to

estimate the mixture model parameters and that results from the decoded Viterbi path did not

represent the actual hidden states. Given our data set of evoked potentials, we find that chronic

state has the most number of recording as compared to the other three states.

We propose a new approach to implement the continuous distribution hidden Markov model

and attempt to fix the issue of under representation from baseline, silent and latent clusters models.

Firstly, we learn the geometry of each cluster by modelling it as a mixture of Gaussian densities.

We define the number of mixture components, M , for each state, Q ∈ [0, 3]. The number of mixture
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Algorithm 1 Oversampled Training of Continuous Density HMM

1: for r ← 1, N ∈ Training Set do . Concatenate the reduced coordinates of each cluster
2: while e← 0, 3 do
3: Ze ← Ze ∪ Zer
4: end while
5: end for
6: while e← 0, 3 do
7: GMM e(µe,Σe, πe)←EM for Ze . Learn the parameters of GMM from each cluster
8: Zenew ←T samples from GMM e(µe,Σe, πe) . Form new training set
9: end while

10: λtfinal ← λt0(Znew, Q,M) . Input Parameter to HMM for maximization using EM

components can be varied to get a better fit for the geometry of the respective cluster. Using the EM

algorithm we learn the parameters of the mixture model. The learned parameters of the geometry

are the means, µc, covariances, Σc and the posterior probability of each mixture component, πc

where c = 0, 1, 2, 3. With these learned geometric parameters, we generate new training samples,

ζ
(k)
new and group them in clusters, Zcnew, c = 0, 1, 2, 3. These new clusters have the equal number

of representative members from each state. We use the new clusters, Zcnew, c = 0, 1, 2, 3, as our

new training set and learn the parameters of the continuous distribution hidden Markov model

using the Baum-WelchB (EM for HMM’s) algorithm. This approach is also given in an algorithmic

representation here 1.

4.5 Discussion

In this chapter, we have discussed in greater details our approach which was presented as

an overview in the previous chapter. We talk about lifting the evoked potentials to the high

dimensional space, z(k), and using non-linear dimension reduction techniques we obtain a low

dimensional representation, ζ(k), which is extremely helpful in visualizing the evoked potentials

as clusters and implementing mixture models which define the geometry of each cluster. We also

talk about modelling the intrinsic dynamics of epileptogenesis using continuous distribution hidden

Markov models and propose a new method of dealing with under represented clusters. In the next

chapter we provide experimental evidence of the methods described in this chapter.



Chapter 5

Experiments

5.1 Introduction

In this chapter we present the experimental evidence that was obtained by implementing the

approaches described in the previous chapter. We present a sequence of the experiments and the

goal of each experiment is to validate every aspect of the proposed approach. Due to challenges

presented by the analysis of the real data, we first validate the algorithm using a series of synthetic

datasets. These datasets become increasingly realistic and eventually we proceed to the evaluation

of the real dataset using a leave one animal out cross validation scheme.

The computational biomarker was trained on ten epileptic rats and evaluated with one animal

that was not part of the training data. For each animal in the set, the algorithm computes the

stationary wavelet coefficients, time delayed embedded coefficients and the spectral embedding.

Then the training animals are used to learn the geometry of various stages and the hidden Markov

model is used to model the dynamics of epileptogenesis.

MATLAB R© has been used to implement the machine learning algorithms. The Bayes Net

Toolbox (BNT) for Matlab[30] has been used to implement the continuous density hidden Markov

model.
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Algorithm 2 Pure Simulation Model

1: procedure Simulation Test(Z) . Z is the Training set
2: T = 250, τ = 25
3: for r ← 1, N ∈ Training Set do . Concatenate the reduced coordinates of each cluster
4: while e← 0, 3 do
5: Ze ← Ze ∪ Zer
6: end while
7: end for
8: while e← 0, 3 do
9: GMM e(µe,Σe, πe)←EM for Ze . Learn the parameters of GMM from each cluster

10: Zenew ← T samples from GMM e(µe,Σe, πe) . Form new training set
11: end while
12: λtfinal ← λt0(Znew, Q,M) . Input Parameter to HMM for maximization using EM
13: while e← 0, 3 do . Generating simulated test set
14: T enew ← τ samples from GMM e(µe,Σe, πe) . Form new test set
15: end while
16: [δ]M×τ = V iterbi(λtfinal , Tnew) . Decoding most likely sequence of hidden states
17: end procedure
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Figure 5.1: Epilepsy model fit using real data. M=3 components per state

5.2 The Simulation Model

We start by defining the model that is going to be used for this experiment. The model, as

defined in Figure 4.2, has four states, Q = 4, three mixture component per state, M = 3. Thus,

the total number of mixtures is Q×M = 12. Therefore, the data is modelled by twelve Gaussian
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densities each belonging to one of the four states. The dimensionality of the data is two, d = 2

and the length of the training set is chosen to be 900 and the testing set in chosen to be 100, thus

T = 1000 which is the combined number of samples. The number of simulated training rats is

10. Thus, each rat is represented by 100 samples equally divided into baseline, silent, latent and

chronic. Using leaving one rat out approach, we divide the dataset into nine simulated training

rats and one simulated testing rat.

We now train a mixture model using the training samples from the real data, Zc, c = 0, 1, 2, 3.

The intuition is to learn the parameters from the real data and simulate the reduced coordinates,

ζ
(k)
sim and try to predict the progression of dynamics using the continuous distribution hidden Markov

model. Figure 5.1 gives the mixture model fit of the real data with a mixture of Gaussian. The

model is shown in 2D to emphasize the overlapping in the clusters. Table 5.1 lists the parameter

obtained after training the mixture model with the real data. We next re-sample the mixture of

Gaussian by the parameters defined in 5.1 to create a new set of training samples, 900 samples;

100 samples/rat for nine simulated training rats, Znew. We now create the test set by re-sampling

as well, 100 samples for one rat, Tnew. We define the continuous distribution hidden Markov model

with four states, Q = 4, and two mixture components per state, M = 2. A lesser number of mixture

components is chosen to test the robustness of the model. Thus, we have a total of Q ×M = 8

mixtures for the model. We train the continuous distribution hidden Markov model using the new

training set, Znew and implement the Viterbi decoding algorithm using the new simulated test

set, Tnew. Figure 5.2 shows the trained continuous distribution hidden Markov model with eight

centres. Table 5.2 shows the new learned parameters of the mixture of Gaussian. Figure 5.3 shows

the probability of the decoded Viterbi path of the most likely hidden states. The test sequence has

25 samples from each state as can be seen from the figure.

The results demonstrates the robustness of the continuous distribution hidden Markov model.

As we can see from 5.3 that there is no error in the predicted states. Even when the training

model was provided with fewer components the prediction was still accurate. An algorithmic

representation of the procedure followed in this test is given in 1.
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M π µ Σ

Baseline
1 0.3583

(
0.0098
−0.0279

)
1 ∗ 10−4

[
0.0452 0.0088
0.0088 0.9441

]
2 0.4618

(
0.0083
−0.0373

)
1 ∗ 10−5

[
0.2155 −0.1302
−0.1302 0.1849

]
3 0.1798

(
−0.0099
−0.0203

)
1 ∗ 10−3

[
0.2592 −0.1635
−0.1635 0.1059

]

Silent
1 0.1736

(
−0.0485
0.0040

)
1 ∗ 10−6

[
0.7738 0.0957
0.0957 0.3012

]
2 0.1300

(
−0.0533
0.0057

)
1 ∗ 10−6

[
0.1082 −0.0190
−0.0190 0.0077

]
3 0.6964

(
−0.0513
0.0050

)
1 ∗ 10−6

[
0.8978 −0.2270
−0.2270 0.1612

]

Latent
1 0.4678

(
0.0169
0.0086

)
1 ∗ 10−3

[
0.0040 0.0218
0.0218 0.8044

]
2 0.2630

(
−0.0229
0.0007

)
1 ∗ 10−3

[
0.5476 −0.0844
−0.0844 0.1657

]
3 0.2692

(
0.0200
−0.0184

)
1 ∗ 10−4

[
0.0016 0.0007
0.0007 0.2030

]

Chronic
1 0.2760

(
0.0191
−0.0187

)
1 ∗ 10−4

[
0.0229 −0.0351
−0.0351 0.3870

]
2 0.1973

(
0.0193
0.0518

)
1 ∗ 10−5

[
0.0068 0.0297
0.0297 0.3016

]
3 0.5267

(
0.0153
0.0247

)
1 ∗ 10−3

[
0.0083 0.0296
0.0296 0.2128

]
Table 5.1: Epilepsy model parameters before re-sampling

We find that the continuous distribution hidden Markov model provides a reliable method

to estimate hidden states in a mixture of Gaussian with large overlap of the mixture components.

We now try and test the limits of this design by reducing the number of simulated test samples for

each state.
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Figure 5.2: Epilepsy model fit after re-sampling. M=2 components per state

M π µ Σ

Baseline
1 0.8165

(
0.0088
−0.0329

)
1 ∗ 10−4

[
0.0388 0.0162
0.0162 0.7140

]
2 0.1835

(
−0.0114
−0.0193

)
1 ∗ 10−3

[
0.2705 −0.1663
−0.1663 0.1053

]
Silent

1 0.2520

(
−0.0525
0.0055

)
1 ∗ 10−6

[
0.9764 −0.2259
−0.2259 0.0601

]
2 0.7480

(
−0.0503
0.0046

)
1 ∗ 10−5

[
0.2192 −0.0538
−0.0538 0.0353

]
Latent

1 0.6991

(
0.0180
−0.0009

)
1 ∗ 10−3

[
0.0048 −0.0066
−0.0066 0.5487

]
2 0.3009

(
−0.0208
−0.0020

)
1 ∗ 10−3

[
0.4160 −0.0910
−0.0910 0.2116

]
Chronic

1 0.6511

(
0.0161
0.0309

)
1 ∗ 10−3

[
0.0088 0.0411
0.0411 0.2879

]
2 0.3489

(
0.0192
−0.0182

)
1 ∗ 10−4

[
0.0327 −0.0632
−0.0632 0.4093

]
Table 5.2: Epilepsy model parameters after re-sampling
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Figure 5.3: Estimated posterior probability of being in one of the states

Algorithm 3 Simulation Model: Oversampling State Space Test

1: procedure Simulation Oversampled Test(Z, T ) . Z, T are the Training and Test sets
2: T = 900
3: for r ← 1, N ∈ Training Set do . Concatenate the reduced coordinates of each cluster
4: while e← 0, 3 do
5: Ze ← Ze ∪ Zer
6: end while
7: end for
8: while e← 0, 3 do
9: GMM e(µe,Σe, πe)←EM for Ze . Learn the parameters of GMM from each cluster

10: Zenew ← T samples from GMM e(µe,Σe, πe) . Form new training set
11: end while
12: λtfinal ← λt0(Znew, Q,M) . Input Parameter to HMM for maximization using EM
13: while e← 0, 3 do . Generating simulated test set
14: τ ← sizeof(T e)
15: T enew ← τ samples from GMM e(µe,Σe, πe) . Form new test set
16: end while
17: [δ]M×τ = V iterbi(λtfinal , Tnew) . Decoding most likely sequence of hidden states
18: end procedure

5.3 Simulated Model: Oversampling State Space Test

From the previous experiment we saw that the continuous distribution hidden Markov model

is extremely reliable for decoding hidden states from mixture of Gaussian. We want to have another
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test which is closer to the real dataset. For the purpose of this experiment, the number of simulated

test samples generated will be governed by the real dataset.

We start by providing the design of this test. The model, as defined in Figure 4.2, has four

states, Q = 4, three mixture component per state, thus M = 3, so total number of mixture is

Q×M = 12. Therefore, the data is modelled by twelve Gaussian each belonging to one of the four

states. The dimensionality of the data is two, d = 3 and the length of the training set is chosen to

be 3600 and the length of the testing set will be determined from the real data. Thus T = 3600 + τ

where τ is the number of simulated test samples to be determined from the testing set. The number

of simulated training rats is 10. Thus, each of the simulated training rats are represented by 900

samples equally divided into baseline, silent, latent and chronic. But the simulated test rat samples

are determined by real dataset. Thus, τ c, c = 0, 1, 2, 3 are the number of test samples from each

state. Using leaving one rat out approach, we divide the dataset into nine simulated training rats

and one simulated testing rat.

We now train a mixture model using the training samples from the real data, Zc, c = 0, 1, 2, 3.

The intuition is to learn the parameters from the real data and simulate the reduced coordinates,

ζ
(k)
sim and try to predict the progression of dynamics using the continuous distribution hidden Markov

model. Figure 5.4 gives the mixture model fit of the real data with a mixture of Gaussian. The

model is shown in 3D to emphasize the overlapping in the clusters. Table 5.3 lists the parameter

obtained after training the mixture model with the real data. We next re-sample the mixture of

Gaussian by the parameters defined in 5.3 to create a new set of training samples, 3600 samples;

900 samples/rat for nine simulated training rats, Znew. We now create the test set by re-sampling

as well. For this experiment τ0 = 32, τ1 = 13, τ2 = 33 and τ3 = 43, 121 samples for one rat,

Tnew. We define the continuous distribution hidden Markov model with four states, Q = 4, and

three mixture components per state, M = 3. Thus, we have a total of Q ×M = 12 mixtures for

the model. We train the continuous distribution hidden Markov model using the new training set,

Znew and implement the Viterbi decoding algorithm using the new simulated test set, Tnew. Figure

5.5 shows the trained continuous distribution hidden Markov model with twelve centres. Table 5.4
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shows the new learned parameters of the mixture of Gaussian. Figure 5.6 shows the probability of

the decoded Viterbi path of the most likely hidden states. The test sequence has 121 samples in

total and τ0 = 32, τ1 = 13, τ2 = 33 and τ3 = 43 is the number of samples from each state.

As we can see from 5.6 that there is no error in the predicted states. The results show

that the oversampled fit can represent the geometry of the structure accurately. An algorithmic

representation of the procedure followed in this test is given in 1.

The result from this experiment are encouraging. We find that the decoding works extremely

well this approach. We can suggest that the number of samples is key to approximating the

geometry of this model. This results give us confidence to test out the real test vectors based on

the model over sampled training data.
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Figure 5.4: Observed epilepsy model using real data. M=3 components per state
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M π µ Σ

Baseline
1 0.1334

−0.0165
−0.0160
0.0247

 1 ∗ 10−3

 0.1779 −0.1097 0.1548
−0.1097 0.0703 −0.0974
0.1548 −0.0974 0.1366


2 0.4401

 0.0083
−0.0372
0.0403

 1 ∗ 10−4

 0.0159 −0.0110 −0.0380
−0.0110 0.0203 0.0121
−0.0380 0.0121 0.1151


3 0.4266

 0.0097
−0.0290
0.0286

 1 ∗ 10−4

 0.0533 0.0078 −0.1866
0.0078 0.8670 −0.4026
−0.1866 −0.4026 0.9033



Silent
1 0.3020

−0.0512
0.0048
−0.0093

 1 ∗ 10−6

 0.3102 −0.0937 0.2972
−0.0937 0.0520 −0.1066
0.2972 −0.1066 0.2967


2 0.4135

−0.0498
0.0045
−0.0081

 1 ∗ 10−5

 0.1887 −0.0526 0.1755
−0.0526 0.0464 −0.0727
0.1755 −0.0727 0.1811


3 0.2846

−0.0528
0.0056
−0.0112

 1 ∗ 10−6

 0.3449 −0.0880 0.3475
−0.0880 0.0587 −0.1185
0.3475 −0.1185 0.3751



Latent
1 0.3775

 0.0188
−0.0216
−0.0401

 1 ∗ 10−3

 0.0040 0.0104 −0.0372
0.0104 0.0426 −0.0901
−0.0372 −0.0901 0.3522


2 0.3733

 0.0171
0.0196
−0.0032

 1 ∗ 10−3

 0.0046 0.0124 −0.0125
0.0124 0.4583 0.2563
−0.0125 0.2563 0.2546


3 0.2493

−0.0249
0.0004
0.0078

 1 ∗ 10−3

 0.4948 −0.0994 0.3040
−0.0994 0.1797 −0.1487
0.3040 −0.1487 0.2405



Chronic
1 0.3973

0.0183
0.0454
0.0110

 1 ∗ 10−4

0.0184 0.0992 0.0123
0.0992 0.6194 0.1155
0.0123 0.1155 0.0383


2 0.3194

0.0140
0.0161
0.0067

 1 ∗ 10−3

 0.0086 0.0172 −0.0149
0.0172 0.1139 −0.0162
−0.0149 −0.0162 0.0393


3 0.2833

 0.0191
−0.0181
−0.0420

 1 ∗ 10−3

 0.0023 −0.0046 −0.0259
−0.0046 0.0538 0.0708
−0.0259 0.0708 0.3004


Table 5.3: Epilepsy model parameters before re-sampling
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Figure 5.5: Trained epilepsy model fit after re-sampling. M=3 components per state
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M π µ Σ

Baseline
1 0.4405

 0.0084
−0.0373
0.0402

 1 ∗ 10−4

 0.0152 −0.0102 −0.0357
−0.0102 0.0173 0.0127
−0.0357 0.0127 0.1051


2 0.3911

 0.0097
−0.0290
0.0287

 1 ∗ 10−4

 0.0538 0.0098 −0.1933
0.0098 0.9559 −0.4553
−0.1933 −0.4553 0.9763


3 0.1683

−0.0156
−0.0164
0.0255

 1 ∗ 10−3

 0.1614 −0.0995 0.1398
−0.0995 0.0642 −0.0883
0.1398 −0.0883 0.1233



Silent
1 0.2963

−0.0528
0.0056
−0.0111

 1 ∗ 10−6

 0.3846 −0.1033 0.3910
−0.1033 0.0641 −0.1351
0.3910 −0.1351 0.4229


2 0.4072

−0.0497
0.0045
−0.0080

 1 ∗ 10−5

0.1904 −0.0519 0.1765
−0.051 0.0462 −0.0720
0.1765 −0.0720 0.1815


3 0.2964

−0.0512
0.0049
−0.0094

 1 ∗ 10−6

 0.3423 −0.0983 0.3245
−0.0983 0.0543 −0.1115
0.3245 −0.1115 0.3204



Latent
1 0.3712

 0.0189
−0.0214
−0.0408

 1 ∗ 10−3

 0.0038 0.0099 −0.0352
0.0099 0.0426 −0.0845
−0.0352 −0.0845 0.3341


2 0.2396

−0.0249
0.0020
0.0067

 1 ∗ 10−3

 0.4487 −0.0629 0.2562
−0.0629 0.1806 −0.1318
0.2562 −0.1318 0.2051


3 0.3892

 0.0172
0.0189
−0.0045

 1 ∗ 10−3

 0.0041 0.0130 −0.0098
0.0130 0.4810 0.2762
−0.0098 0.2762 0.2605



Chronic
1 0.2842

 0.0192
−0.0180
−0.0434

 1 ∗ 10−3

 0.0022 −0.0048 −0.0246
−0.0048 0.0479 0.0714
−0.0246 0.0714 0.2872


2 0.3306

0.0140
0.0161
0.0065

 1 ∗ 10−3

 0.0075 0.0126 −0.0135
0.0126 0.1085 −0.0051
−0.0135 −0.0051 0.0415


3 0.3852

0.0184
0.0462
0.0111

 1 ∗ 10−4

0.0187 0.0996 0.0118
0.0996 0.6213 0.1160
0.0118 0.1160 0.0396


Table 5.4: Epilepsy model parameters after re-sampling

5.4 The Computational Biomarker

This experiment is similar in every way to the previous experiment except for the dimension-

ality of the data and the fact that we are using the real reduced coordinates for the test rat.

We start by providing the design of this test. The model, as defined in Figure 4.2, has four
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states, Q = 4, three mixture component per state, thus M = 3, so total number of mixture is

Q×M = 12. Therefore, the data is modelled by twelve Gaussian each belonging to one of the four

states. The dimensionality of the data is two, d = 4 and the length of the training set is chosen to

be 3600 and the length of the testing set will be same as the real data. Thus T = 3600 + τ where

τ is the number of test samples. The number of training rats is 10. Thus, each of the training rats

are represented by 900 simulated reduced coordinate samples equally divided into baseline, silent,

latent and chronic. But the test rat samples are given by real dataset. Thus, τ c, c = 0, 1, 2, 3 are

the number of test samples from each state. Using leaving one rat out approach, we divide the

dataset into nine simulated training rats and one simulated testing rat.

We now train a mixture model using the training samples from the real data, Zc, c = 0, 1, 2, 3.

The intuition is to learn the parameters from the real data and simulate the reduced coordinates,

ζ
(k)
sim and try to predict the progression of dynamics using the continuous distribution hidden Markov

model. Table 5.5 lists the parameter obtained after training the mixture model with the real data.

We next re-sample the mixture of Gaussian by the parameters defined in 5.5 to create a new set

of simulated training reduced coordinates, 3600 samples; 900 samples/rat for nine training rats,

Znew. For this experiment τ0 = 32, τ1 = 13, τ2 = 33 and τ3 = 43, 121 samples for one rat, T .

We define the continuous distribution hidden Markov model with four states, Q = 4, and three

mixture components per state, M = 3. Thus, we have a total of Q ×M = 12 mixtures for the

model. We train the continuous distribution hidden Markov model using the new training set,

Znew and implement the Viterbi decoding algorithm using the new simulated test set, T . Table 5.6

shows the new learned parameters of the mixture of Gaussian. Figure 5.6 shows the probability of

the decoded Viterbi path of the most likely hidden states. The test sequence has 121 samples in

total and τ0 = 32, τ1 = 13, τ2 = 33 and τ3 = 43 is the number of samples from each state.

Figure 5.7 show the probability of being in either state. We can see that the computational

biomarker is able to predict the onset of chronic state even before it occurs. An algorithmic

representation of the procedure followed in this test is given in 1.
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M π µ Σ

Baseline
1 0.2680


0.0095
−0.0250
0.0284
−0.0064

 1 ∗ 10−3


0.0043 0.0045 −0.0151 −0.0045
0.0045 0.0934 −0.0599 −0.1720
−0.0151 −0.0599 0.0808 0.1001
−0.0045 −0.1720 0.1001 0.3248


2 0.5951


0.0088
−0.0369
0.0373
0.0199

 1 ∗ 10−4


0.0357 −0.0025 −0.1361 0.0425
−0.0025 0.0290 −0.0360 −0.0697
−0.1361 −0.0360 0.6228 −0.0733
0.0425 −0.0697 −0.0733 0.2139


3 0.1369


−0.0160
−0.0164
0.0252
−0.0030

 1 ∗ 10−3


0.1839 −0.1152 0.1599 0.0075
−0.1152 0.0751 −0.1021 −0.0116
0.1599 −0.1021 0.1410 0.0104
0.0075 −0.0116 0.0104 0.0177



Silent
1 0.4680


−0.0501
0.0046
−0.0084
0.0031

 1 ∗ 10−5


0.2510 −0.0723 0.2366 −0.2533
−0.0723 0.0506 −0.0904 0.0378
0.2366 −0.0904 0.2397 −0.2127
−0.2533 0.0378 −0.2127 0.3008


2 0.2918


−0.0512
0.0048
−0.0093
0.0042

 1 ∗ 10−6


0.3297 −0.0905 0.3098 −0.3324
−0.0905 0.0399 −0.0957 0.0704
0.3098 −0.0957 0.2988 −0.2978
−0.3324 0.0704 −0.2978 0.3655


3 0.2403


−0.0528
0.0056
−0.0112
0.0057

 1 ∗ 10−6


0.4617 −0.1175 0.4661 −0.5888
−0.1175 0.0366 −0.1245 0.1466
0.4661 −0.1245 0.4759 −0.5921
−0.5888 0.1466 −0.5921 0.7556



Latent
1 0.3728


0.0189
−0.0215
−0.0406
0.0104

 1 ∗ 10−3


0.0036 0.0097 −0.0340 −0.0081
0.0097 0.0412 −0.0836 −0.0477
−0.0340 −0.0836 0.3239 0.0642
−0.0081 −0.0477 0.0642 0.0711


2 0.2444


−0.0256
0.0011
0.0073
−0.0131

 1 ∗ 10−3


0.4807 −0.0734 0.2896 −0.2637
−0.0734 0.1538 −0.1290 −0.0328
0.2896 −0.1290 0.2278 −0.1091
−0.2637 −0.0328 −0.1091 0.2496


3 0.3828


0.0169
0.0182
−0.0026
−0.0117




0.0000 0.0000 −0.0000 0.0000
0.0000 0.0005 0.0002 0.0005
−0.0000 0.0002 0.0003 0.0001
0.0000 0.0005 0.0001 0.0012



Chronic
1 0.3525


0.0140
0.0167
0.0069
−0.0442

 1 ∗ 10−3


0.0072 0.0131 −0.0132 0.0174
0.0131 0.1112 −0.0031 0.0771
−0.0132 −0.0031 0.0417 −0.0184
0.0174 0.0771 −0.0184 0.1397


2 0.3712


0.0186
0.0467
0.0108
0.0271

 1 ∗ 10−3


0.0009 0.0052 0.0007 0.0207
0.0052 0.0430 0.0134 0.1469
0.0007 0.0134 0.0069 0.0365
0.0207 0.1469 0.0365 0.5354


3 0.2763


0.0191
−0.0187
−0.0428
0.0046

 1 ∗ 10−3


0.0023 −0.0034 −0.0249 0.0163
−0.0034 0.0390 0.0522 −0.0829
−0.0249 0.0522 0.2822 −0.2036
0.0163 −0.0829 −0.2036 0.2222


Table 5.5: Epilepsy model parameters before re-sampling
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M π µ Σ

Baseline
1 0.6013


0.0088
−0.0368
0.0371
0.0197

 1 ∗ 10−4


0.0358 −0.0029 −0.1369 0.0441
−0.0029 0.0325 −0.0375 −0.0792
−0.1369 −0.0375 0.6293 −0.0712
0.0441 −0.0792 −0.0712 0.2413


2 0.3987


0.0022
−0.0227
0.0283
−0.0056

 1 ∗ 10−3


0.1785 −0.0713 0.0530 −0.0185
−0.0713 0.1054 −0.0818 −0.1253
0.0530 −0.0818 0.1028 0.0788
−0.0185 −0.1253 0.0788 0.2467



Silent
1 0.4890


−0.0500
0.0046
−0.0084
0.0030

 1 ∗ 10−5


0.2526 −0.0736 0.2382 −0.2532
−0.0736 0.0508 −0.0914 0.0390
0.2382 −0.0914 0.2412 −0.2131
−0.2532 0.0390 −0.2131 0.2989


2 0.5110


−0.0520
0.0052
−0.0102
0.0049

 1 ∗ 10−5


0.1045 −0.0416 0.1130 −0.1042
−0.0416 0.0186 −0.0465 0.0390
0.1130 −0.0465 0.1233 −0.1110
−0.1042 0.0390 −0.1110 0.1077



Latent
1 0.6382


0.0008
0.0122
0.0007
−0.0137

 1 ∗ 10−3


0.5850 0.1574 −0.0191 −0.0459
0.1574 0.3856 0.0130 0.2141
−0.0191 0.0130 0.2510 0.0113
−0.0459 0.2141 0.0113 0.7658


2 0.3618


0.0190
−0.0217
−0.0418
0.0107

 1 ∗ 10−3


0.0033 0.0087 −0.0317 −0.0070
0.0087 0.0374 −0.0753 −0.0427
−0.0317 −0.0753 0.3046 0.0551
−0.0070 −0.0427 0.0551 0.0645



Chronic
1 0.6296


0.0164
0.0000
−0.0165
−0.0207

 1 ∗ 10−3


0.0116 −0.0408 −0.0861 0.0808
−0.0408 0.4036 0.4756 −0.4379
−0.0861 0.4756 0.8136 −0.7403
0.0808 −0.4379 −0.7403 0.7991


2 0.3704


0.0185
0.0463
0.0107
0.0256

 1 ∗ 10−3


0.0009 0.0052 0.0009 0.0201
0.0052 0.0442 0.0144 0.1490
0.0009 0.0144 0.0071 0.0398
0.0201 0.1490 0.0398 0.5340


Table 5.6: Epilepsy model parameters after re-sampling
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Algorithm 4 Computational Biomarker

1: procedure Computational Biomarker(Z, T ) . Z, T are the Training and Test sets
2: T = 900
3: for r ← 1, N ∈ Training Set do . Concatenate the reduced coordinates of each cluster
4: while e← 0, 3 do
5: Ze ← Ze ∪ Zer
6: end while
7: end for
8: while e← 0, 3 do
9: GMM e(µe,Σe, πe)←EM for Ze . Learn the parameters of GMM from each cluster

10: Zenew ← T samples from GMM e(µe,Σe, πe) . Form new training set
11: end while
12: λtfinal ← λt0(Znew, Q,M) . Input Parameter to HMM for maximization using EM
13: [δ]M×τ = V iterbi(λtfinal , T ) . Decoding most likely sequence of hidden states
14: end procedure
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Figure 5.7: Estimated posterior probability of being in one of the states

5.5 Discussion

We can see from Figures 5.3 and 5.6 that the framework of continuous distribution hidden

Markov models is successful in handling highly overlapped mixture models. We then are able to

confirm in the last experiment that the computational biomarker can not only detect the onset of

the chronic state but also predict before it happens 5.7. We have yet to test this biomarker on rats

that do not develop epilepsy even though they were artificially induced with status epilepticus. But

we are hopeful that this biomarker will give us promising results there as well.



Chapter 6

Conclusion

6.1 Introduction

This work provides experimental evidence that it is possible to decode a quantifiable and

reliable measure of the alterations in the neuronal circuitry triggered by an insult to the hippocam-

pus. This novel computational biomarker was able to exploit subtle changes in the evoked potential

elicited by an auditory stimulus, which was recorded from the hippocampus. Solely based on the

shape of the evoked potential, the algorithm was able to predict whether an animal will eventually

recover from the injury, or develop spontaneous seizures. The decoding combined three key con-

cepts. First, the subtle variations in the morphology of the noisy evoked potentials were extracted

using a stationary wavelet transform. Second, a time-delay embedding of the wavelet coefficients

combined with a spectral embedding provided a reduced set of coordinates for each evoked poten-

tial. These coordinates revealed the presence of smooth low-dimensional structures, which were

stable across all the animals, and corresponded to well defined stages of epileptogenesis. These

“universal structures” could be used reliably to determine the stage of epileptogenesis. Combined

with a hidden Markov model, the decoding algorithm estimated the posterior probability that a

given animal be in one of the four stages of epileptogenesis, based on the evoked potential. In

conclusion , the presented work leads the path to a new generation of computational biomarkers of

epeleptogenesis.
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6.2 Limitations

There are a few limitation with our current implementation. We identify a few of them as

follows:

(1) We noticed that both the latent and the chronic conditions had the largest spread of the

reduced coordinates. This suggests that these conditions need to be further subdivided.

Indeed, there is evidence that the chronic stage is in fact a dynamic condition, wherein

seizures reactivate mechanisms contributing to ongoing cumulative damage. A finer gra-

dation of the latent and chronic conditions could provide a deeper understanding of the

evolution of epileptogenesis

(2) The Markov Chain in an HMM is a model of the dynamics of the system. These dynamics

solely model the internal evolution of the system and do not take into consideration the

external effects. However, this is not true for out test case. We induce status epilepticus

(SE) in the rat, which is not an internal process. Perhaps, a better model would be to start

with silent and then model the evolution to latent and chronic. Though this model will be

more suited for the premise defined by the Markov Chain, there are however some animals

that do return to baseline after spending time in chronic. This would cause a problem as

the model will not have enough training data to model the baseline state.

6.3 From Animal to Clinical Model

We would like to discuss the possibility for this research to transition into a clinical study.

Currently, the electrophysiological electrodes are directly inserted on the hippocampus of the rats

brain. This is a highly invasive procedure with inherent risks and might not be feasible for clinical

trials. The question we ask here is that Is there another credible source of the such in-

formation?. A lot of studies have shown the EEG recording have been helpful in predicting the

onset of seizures but this study doesn’t have any experimental results which can show its efficacy

in implementing an efficient biomarker.
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Appendix A

Gaussian Mixture Model

A.1 Introduction

One of the most widely used models is the mixture of Gaussians (MOG), also called a Gaussian

Mixture Model or GMM. The model has the form [31, chapter 11, p. 339]

p(xi|θ) =

K∑
k=1

wkN (xi|µk,Σk) (A.1)

K∑
k=1

wk = 1 (A.2)

N (xi|µk,Σk) =
1

(2π)d/2|Σk|1/2
e{−

1
2

(xi−µk)TΣ−1
k (xi−µk)} (A.3)

The equation describes a distribution with K Gaussian components with πk posterior probabilities.

xi is an d-dimensional vector and µk & Σk are the means and covariances respectivel,y of the kth

component. GMM’s have found their application in various fields such as computer vision, speech

recognition, speaker verification and many more in biometric systems. GMM parameters are

estimated by using either Expectation Maximization (EM) algorithm[12][39][16][23][50][31, chapter

11, p. 350].

A.1.1 Expectation Maximisation (EM) Algorithm for GMMs

In this section we provide an outline for the EM algorithm for GMMs. The mixture has K

components and with posterior probabilities πk. [31, chapter 11, p. 349-351]
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A.1.1.1 Log-likelihood

Let xi be the observed variables and zi are the hidden variables. The goal is to maximize the

log likelihood of the observed variable.

l(θ) =

N∑
i=1

log p(xi|θ) =

N∑
i=1

log p(xi, zi|θ) (A.4)

This is hard to optimize as the log cannot be pushed inside the sum. Thus we define the complete

data log likelihood to be

lc(θ) ,
N∑
i=1

log p(xi, zi|θ) (A.5)

Since zi is unknown we define an auxiliary function Q to give us the expected sufficient

statistics. The expectation is taken with respect to the old parameters θt−1 and the observed

data D.

Q(θ, θ(t−1)) = E
[
lc(θ)|D, θt−1

]
(A.6)

We optimize the function Q in the M Step with respect to θ

θt = arg max
θ
Q(θ, θt−1) (A.7)

A.1.1.2 Auxiliary Function

Q(θ, θ(t−1)) , E

[∑
i

log p(xi, zi|θ)

]
(A.8)

=
∑
i

E

[
log

[
K∏
k=1

(πkp(xi|θk)I(zi=k))

]]
(A.9)

=
∑
i

∑
k

E [I(zi = k) log [πkp(xi|θk)]] (A.10)

=
∑
i

∑
k

p(zi = k|xi, θt−1) log [πkp(xi|θk)] (A.11)

=
∑
i

∑
k

rik logwk +
∑
i

∑
k

rik log p(xi|θk) (A.12)
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where rik , p(zi = k|xi, θ(t−1)) is the responsibility that cluster k takes for the data point i. This

is computed in the E step.

A.1.1.3 E Step

The E Step is straight forward

rik =
wkp(xi|θt−1

k )∑
k′ πk′p(xi|θ

t−1
k′ )

(A.13)

A.1.1.4 M Step

We optimize Q with respect to π and θk. For π we have

wk =
1

N

∑
i

rik =
rk
N

(A.14)

where rik ,
∑

i rik is the weighted number of points assigned to cluster k. To derive the M Step

for the µk and Σk terms.

µk =

∑
i rikxi
rk

(A.15)

Σk =

∑
i rikxix

T
i

rk
− µkµTk (A.16)

After computing the new estimates we set θt = (wk, µk,Σk)∀k ∈ [1,K] and go on to compute the

next E Step.

A.2 Discussion

Above we have defined the training of the mixture of Gaussian model using the EM algorithm.

This mixture model is used as the continuous observation model for hidden Markov Model.
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Continuous Density Hidden Markov Models

B.1 Introduction

First order Markov chains are modelled with the assumption that the immediate past, qt−1,

capture all relevant information about the history of model. With complex dynamics like the

epilepsy model, we assume that the underlying dynamics can be modelled by first order Markov

chains and the data is a noisy observation of the process. This result is known as a Hidden

Markov Model or HMM. The HMM has hidden dynamics are modelled by a hidden variable,

qt, at time t. The transition model can be defined as a conditional probability distribution of

p(qt|qt−1). The observation model is given by the conditional probability distribution of p(ot|qt).

Depending on the type of process being modelled the observation model may vary. The

observation could be discrete, continuous or may even be modelled by a mixture model. We are

interested modelling the observations as mixture model. These are also known as Continuous

Density HMMs[46]. The observation model is

p(ot|qt = j, λ) =

M∑
k=1

gjkN (ot|µjk,Σjk)

where λ are the HMM parameters and the continuous distribution is a Gaussian Mixture Model.

At each time step, the Continuous Density HMM generates a hidden state, qt, as per the

state to state transition model. Next, the model chooses a component, mt, as per the state to

component emission model. Once the component has been determines, the observation vector, xt,

is probabilistically chosen according to the Gaussian Probability distribution. For simplicity each
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state is assumed to have the same number of components. The variable, vjk, is used to represent

the component k given the current state as j. qt and mt are random variables used to represent

the state and the component respectively.

Pλ(ot|vjk) = Pλ(ot|qt = j,mt = k) = N (ot|µjk,Σjk) (B.1)

where µjk and Σjk is the mean and covariance respectively of the kth cluster belonging to the jth

state.

Given a state j, the system randomly chooses one its possible components according to the

state to component emission probability, gjk = P (mt = k|qt = j). It is important to note that this

probability is independent of the time, t, and thus is represented without the time index. Using

equation B.1, the emission probability is now

bj(ot) = Pλ(ot|qt = j) =

M∑
i=1

P (mt = i|qt = j)P (ot|qt = j,mt = i) (B.2)

bj(ot) =

M∑
i=1

gjiN (ot|µji,Σji) (B.3)

For each state, gji, should satisfy the stochastic constraint

M∑
i=1

gji = 1 (B.4)

gji ≥ 0,∀j ∈ [1, N ], i ∈ [1,M ] (B.5)

so that bj(·) are normalized, i.e., ∫
RK

b(ot)dot = 1 (B.6)

B.1.1 Continuous Density HMM Training

We describe the complete set of parameters for a Continuous Density HMM as

λ = (A,B, π) (B.7)

where A is the transition probability matrix, B is the emission probability matrix and π is the

initial probability of each state. There are three basic approaches that we are focused on[5]
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(1) Forward-Backward Algorithm: Find p(O|λ) for some O = (o1, o2, ..., oT ). We use this

because it is more efficient that directly evaluating the Continuous Density HMM.

(2) Baum-Welch Algorithm: Also know as the EM algorithm for Continuous Density HMM.

This algorithm provides a method to estimate λ? = arg max
λ

p(O|λ)

(3) Viterbi Algorithm: Given the model parameters O and λ, find the best state sequence

q = (q1, q2, ..., qT ) that increases the likelihood of O.

B.1.1.1 Forward-Backward Algorithm

The probability of seeing a partial sequence and ending up in state i given the model param-

eters is

αi(t) = p(O1 = o1, · · · , Ot = ot, Qi = i|λ) (B.8)

This is know as the forward procedure. We can efficiently calculate αi(t) recursively

αi(1) = πibi(o1) (B.9)

αj(t+ 1) =

[
N∑
i=1

αi(t)aij

]
bj(ot+1) (B.10)

p(O|λ) =
N∑
i=1

αi(T ) (B.11)

Equation B.9 is the initialization step, B.10 is the recursive step and B.11 is the terminating step.

The backward procedure is similar to the forward procedure

βi(T ) = 1 (B.12)

βi(t) =
N∑
j=1

aijbj(ot+1)βj(t+ 1) (B.13)

p(O|λ) =

N∑
i=1

βi(1)πibi(o1) (B.14)

Equation B.12 is the initialization step, B.13 is the recursive step and B.14 is the terminating step.
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B.1.1.2 Expectation Maximisation (EM) Algorithm

Also know as the Baum-Welch algorithm for Hidden Markov Models, is used to train the

Continuous Density HMM. The EM algorithm is used to estimate the parameters for the Continuous

Density HMM. The algorithm is as follows[5]

We consider an observation sequence O = (o1, · · · , oT ) and its underlying state sequence to be

q = (q1, · · · , qT ), which is hidden. The incomplete-data likelihood function is give by P (O|λ) and

the complete-data likelihood is P (O, q|λ). Thus, the auxiliary function, Q, is defined as

Q(λt, λt−1) =
∑
q∈Q

logP (O, q|λt)P (O, q|λt−1) (B.15)

where λt−1 is the current estimate and Q is the space of all the hidden states.

Given a particular state sequence P (O, q|λt−1) is given by

P (O, q|λt−1) = πq0

T∏
t=1

aqt−1qtbqt(ot) (B.16)

The Q function becomes:

Q(λt, λt−1) =
∑
q∈Q

log πq0P (O, q|λt−1)

+
∑
q∈Q

(
T∑
t=1

log aqt−1qt

)
p(O, q|λt−1)

+
∑
q∈Q

(
T∑
t=1

log bqt(ot)

)
P (O, q|λt−1)

(B.17)

The parameter set λ which maximizes the equation is subject to stochastic constraints

N∑
i=1

πi = 1 (B.18)

N∑
i=1

aij = 1, 1 ≤ i ≤ N (B.19)

M∑
m=1

gjm = 1, 1 ≤ j ≤ N (B.20)

Now optimizing each term of the B.17 individually. Thus, the first term of B.17 is

∑
q∈Q

log πq0P (O, q|λt−1) =
N∑
i=1

log πip(O, q0 = i|λt−1) (B.21)
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Since by selecting all q ∈ Q we are simply repeatedly selecting values of q0, so the right hand side

is just a marginal expression for time t = 0. Adding the Lagrange multiplier[24], γ, and using the

constraint B.18 and setting the derivative to zero

∂

∂πi

(
N∑
i=1

log πip(O, q0 = i|λt−1) + γ

(
N∑
i=1

πi − 1

))
= 0 (B.22)

Taking the derivative, summing it over i to get γ, and solving for πi we get:

πi =
P (O, q0 = i|λt−1)

P (O|λt−1)
(B.23)

The second term of B.17 is

∑
q∈Q

(
T∑
t=1

log aqt−1qt

)
p(O, q|λt−1) =

N∑
i=1

N∑
j=1

T∑
t=1

log aijP (O, qt−1 = i, qt = j|λt−1) (B.24)

because for this term, for each t, we are looking over all transitions from i to and weighting that

by the corresponding probability − the right hand side is just sum of the joint-marginal for time

t−1 and t. In a similar way, we can use a Lagrange multiplier[24] with the constraint B.19 to get:

aij =

∑T
t=1 P (O, qt−1 = i, qt = j|λt−1)∑T

t=1 P (O, qt−1 = i|λt−1)
(B.25)

The third term of B.17 becomes

∑
q∈Q

(
T∑
t=1

log bqt(ot)

)
P (O, q|λt−1) =

N∑
i=1

T∑
t=1

log bi(ot)p(O, qt = i|λt−1) (B.26)

because for this term, for each time t, we are looking for emissions for all the states and weighting

each possible emission by the corresponding probability − the right side is just the sum of marginal

for time t. For Gaussian mixtures, the for of the auxiliary function is different, i.e., the hidden

variables must include not only the hidden state sequence, but also a variable indicating the mixture

component for each state at each time. Therefore, we can write Q as:

Q(λt, λt−1) =
∑
q∈Q

∑
m∈M

logP (O, q,m|λt)P (O, q,m|λt−1) (B.27)

where m is a vector m = {mq11, · · · ,mqTT } that indicates the mixture component for each state

at each time. If we expand this as B.17, the first and second terms remain unchanged as they are
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not dependent on the mixture components. Thus, the third term becomes:

∑
q∈Q

∑
m∈M

(
T∑
t=1

log bqt(ot,mqtt)

)
P (O, q,m|λt−1) =

N∑
i=1

M∑
l=1

T∑
t=1

log(gilbil(ot))p(O, qt = i,mqtt = l|λt−1)

(B.28)

To find the expression for gil, we introduce the Lagrange multiplier[24] with the constrain B.20 to

get:

gil =

∑T
t=1 P (qt = i,mqtt = l|O, λt−1)∑T

t=1

∑M
l=1 P (qt = i,mqtt = l|O, λt−1)

(B.29)

µil =

∑T
t=1 otP (qt = i,mqtt = l|O, λt−1)∑T
t=1 P (qt = i,mqtt = l|O, λt−1)

(B.30)

Σil =

∑T
t=1(ot − µil)(ot − µil)TP (qt = i,mqtt = l|O, λt−1)∑T

t=1 P (qt = i,mqtt = l|O, λt−1)
(B.31)

B.23,B.25,B.29,B.30 and B.31 are implemented recursively till we obtain the most likely fit or the

maximum number of iterations elapse.

B.1.1.3 Viterbi Algorithm[36]

Given a the model for the Continuous Density HMM, λ = (A,B, π), it can be useful for

decoding the most likely hidden states sequence, q̂ = (q1, · · · , qt), give then observation vector

sequence, O = (o1, · · · , oT ).

The most likely state sequence, q̂, is calculates in a way similar to that for the forward

algorithm, which is also refferred to as the Viterbi Algorithm[48][15]. Let δt(i) be the likelihood of

the most likely state sequence ending in the ith state at time t.

δi(t) = max
q1,··· ,qt−1

p(q1, · · · , qt−1, qt = i, o1, · · · , ot|λ) (B.32)

and ψt(i) be the array to keep track. The procedure to calculate the most likely state sequence is

(1) Initialise

δ1(t) = πibi(o1) (B.33)

ψ1(i) = 0 (B.34)
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(2) Recursion

δt(j) = max
i

[δt−1(i)aij ] bj(ot) (B.35)

ψt(i) = arg max
i

[δt−1(i)aij ] (B.36)

(3) Termination

P̂ = max
i

[δT (i)] (B.37)

q̂ = arg max
i

[δT (i)] (B.38)

(4) Back-Tracking

q̂ = ψt+1(q̂t+1) (B.39)

The difference between the forward algorithmB.9-B.11 and Viterbi algorithm is the maximisation

stepB.35.

B.2 Discussion

Above we have defined the training of the Continuous Density hidden Markov model using

the EM algorithm or Baum-Welch algorithm. This is model is used to learn the dynamics of

epileptogenesis.


