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Abstract

Saxena, Ankit (M.S., Electrical Engineering)
Design of a Computational Biomarker for Epileptogenesis: A Machine Learning Approach

Thesis directed by Prof. Frangois G. Meyer

We describe here the recent results of a multidisciplinary effort to design a biomarker that
can actively and continuously decode the progressive changes in neuronal organization leading to
epilepsy, a process known as epileptogenesis. Using an animal model of acquired epilepsy, we
chronically record hippocampal evoked potentials elicited by an auditory stimulus. Using a set of
reduced coordinates, our algorithm can identify universal smooth low-dimensional configurations
of the auditory evoked potentials that correspond to distinct stages of epileptogenesis. We use a
continuous distribution hidden Markov model to learn the dynamics of the evoked potential, as it
evolves along these smooth low-dimensional subsets. We provide experimental evidence that the
biomarker is able to exploit subtle changes in the evoked potential to reliably decode the stage of
epileptogenesis and predict whether an animal will eventually recover from the injury, or develop

spontaneous seizures.
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Chapter 1

Introduction

Epilepsy is a neurological disorder that is characterized by the occurrence of several unpro-
voked seizures. Distinct etiologies (gene mutations, injuries, etc.) have been proposed for the
different types of epilepsies. Despite various causes of epilepsy and varying degrees of disease sever-
ity in the human population, hippocampal sclerosis is the most consistent neuropathological feature
of temporal lobe epilepsy [35].

At present, Epilepsy is the fourth most common[21] neurological disorder. When the incidence
of epilepsyE] is looked over a life time, one in 26[20] people will develop epilepsy sometime in their
life. In the United States, the current estimate of the prevelance of epilepsyE] is 2.2 million people
or 7.1 for every 1000[2I] people. Also, epilepsy accounts for eight to seventeen[44] percent of the
total number of deaths. There is yet no cure for epilepsy and the medication only helps to manage
the seizures.

Animal models have been developed to study the neuronal changes underlying the clini-
cal manifestations of epilepsy (chronic-spontaneous seizures). One popular model relies on con-
trolled administration of a convulsant drug (e.g., pilocarpine) to induce status-epilepticus, a life-
threatening condition in humans characterized by loss of consciousness and generalized convulsive
tonic-clonic seizures. This condition is followed by a latent seizure-free period of weeks to months,
where progressive neuronal damage and network reorganization eventually leads to the development

of spontaneous seizures.

! Looks at the number of new cases of epilepsy in a given year. Usually represented as a ratio of ’x’ out of 1000.
2 Looks at the total number of people suffering from epilepsy. Usually given in millions of people or a ratio



Most of our understanding of the progression of epilepsy, or epileptogenesis, is derived from
such animal models. It is therefore critical to define a biomarker to monitor epileptogenesis and
understand the mechanisms that lead to epilepsy. An accurate biomarker would be invaluable for
the design of novel anti-epileptogenic drugs and could eventually be translated into a diagnostic
tool for humans. Unfortunately, there are very few measurable biological variables that can be
used to consistently monitor epileptogenesis and predict disease onset; none of these variables can
actively probe the hippocampal circuit in living animals during epileptogenesis.

The presented work addresses this problem and proposes for the first time a “computational
biomarker” that relies on actively probing the excitability of the hippocampus using an auditory
stimulus. The biomarker is validated experimentally using a status epilepticus rat animal model
of acquired temporal lobe epilepsy. We borrow the concepts from continuous distribution hidden
Markov model, which have found extensive application in Automatic Speech Recognition (ASR)[36]
methods, and apply them to the acquired temporal lobe epilepsy model. We aim to study the
progression of the disorder without having any access to the physiology of the animal other than
recording the response to the auditory stimulus. In doing so, we describe formal methods that can

be used to track epileptogenesis.

1.1 Organisation

The remainder of the thesis is organised as follows. The next chapter introduces the methods
used for measuring the excitability of the hippocampus using electrophysiological electrodes. The
third chapter gives an overview of the approach being proposed. The fourth chapter describes the
implementation in detail. The fifth chapter provides a detailed description of the experiments and

their results. The last chapter is the conclusion.



Chapter 2

Active Evoked Responses: A Measurement of Epileptogenesis

2.1 Introduction

The chapter introduces two different approaches that are undertaken towards the develop-
ment of predictive biomarkers: passive recording and active recording. We advocate the latter
because the active approach is more reliable and can yield an estimate of the progression of the
disorder. In comparison, the passive recording is a ’wait and watch’ approach, where we monitor
the electroencephalography recordings and look for the high frequency oscillations (HFO) or the
interictal spikes (IIS)[41]. We argue that the passive approach does not provide sufficient informa-
tion to observe early changes in the neuronal excitability. In the presented work, we are interested
in actively monitoring the evoked response from the hippocampus to study progressive changes
in the neuronal organization. This process of modification in neuronal organization is known as
epileptogenesis and leads to the development temporal lobe epilepsy. The monitoring is performed
by taking electrical measurements from the electrodes placed on the hippocampus. In this chap-
ter, we discuss the concept of epiletogenesis by presenting the evidence obtained from the actively

monitored evoked responses from the hippocampus in response to an auditory stimulus.

2.2 From Passive Recording to Active Sensing

Current efforts toward the development of a reliable and predictive biomarker of epilepto-
genesis (e.g., see [34] and references therein) fall in three main classes: molecular and cellular

biomarkers [26], imaging biomarkers [40], and electrophysiological biomarkers [41]. The presented



work focuses on the electrophysiological class of biomarkers that rely on recordings of the electrical
activity associated with neuronal firing. The development of electrophysiological biomarkers has
focused on the analysis of both epileptiform spikes[22], and high frequency oscillations [14]. While
recordings of spontaneous neuronal spiking can be indicative of neuronal excitability, and therefore
correlate with the propensity for seizures, one could argue that the passive electrophysiological
recordings may not provide enough information to observe early changes in neuronal excitability
associated with epileptogenesis.

By contrast, we advocate an active approach whereby we probe the excitability of the hip-
pocampus, a brain region known to be epileptogenic [18]. Because the hippocampus also receives
several sensory inputs (through the entorhinal cortex), we propose to record in the hippocampus
the evoked potential elicited by an auditory stimulus. Since epilepsy does not modify the primary
auditory cortex, any alterations in the evoked potential should be indicative of neuronal changes in
the hippocampus underlying epileptogenesis. To quantify the property of this biomarker, we use a
pilocarpine animal model of temporal lobe epilepsy, and chronically record hippocampal auditory
evoked potentials during epileptogenesis. We design a decoding algorithm to demonstrate that
changes in the morphology of the hippocampal auditory evoked potential have universal predictive
value and can be used to accurately quantify the progression of epilepsy.

We can see in Figure [2.I] that there are subtle changes in the evoked responses between
the different states. In baseline (blue), we show the natural response to the auditory stimulus.
However in silent (cyan), the response is almost flat. This is attributed to the fact that the rat
is still recovering from the injection of pilocarpine. When the rat wakes up, the latent (green)
period, we can see that there is a subtle change in the shape of the response. In the chronic (red)
state, when the rat has developed spontaneous seizures , we see the response has slightly different

characteristics as compared to the responses in the latent period.
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Figure 2.1: Active Recording: Averaged evoked potentials of all states for rat H41. Baseline (blue),

Silent(cyan), Latent(green) and Chronic(red).

Thus, we can see from Figure that there is evidence of the progression of epilepsy by just
visually inspecting the shape of the evoked responses. In the next chapter we discuss our approach
on extracting information about the shape of the evoked responses using stationary discrete wavelet
coefficients. This forms the mathematical basis of our visual interpretation about the shape of the

evoked responses in relation to the process of epileptogenesis.

2.3 Related Work

The authors are not aware of any work that uses machine learning methods to construct a
biomarker of epileptogenesis. Counter to this situation, the study of the mechanism underlying the
generation of seizures, known as ictogenesis [37] — a related and yet completely different problem
— has been intensively explored using statistical methods. Specifically, time-delay embedding has
been used to try to predict seizures using intracranial EEG recordings [28]. Time-delay embedding

was also used in conjunction with machine learning classifiers to predict seizures in [27]. More



recently, reinforcement learning has been used in [6] to control seizure using electrical simulation.
Another feature of our approach involves the geometric analysis of the low-dimensional sets formed
by embedding time-delay coordinates. This question has been extensively explored using linear
methods (e.g., [47] and references therein). Recently nonlinear methods, such as those used to
learn the geometry of manifolds, have also been proposed [4, [43]. An important note is in order
here: unlike earlier works on ictogenesis, we find it problematic to rigorously apply the deterministic
Takens’ embedding theorem, or some stochastic version thereof [47]. Rather, we use the time-delay
wavelet coordinates to characterize the local dynamics of w*) at time k, the denoised representation

that is extracted from the evoked potential (see sub-section for a detailed discussion).

2.4 Discussion

Though the idea and approach is straightforward, there are some inherent challenges in
dealing with these electrical recordings. Firstly, the recordings are highly susceptible to noise
as the evoked potentials are only a few hundred microvolts and since the animal is allowed to
move freely, further noise is introduced in the recordings. Secondly, rats are primarily nocturnal
animals, thus most of the recordings during the night emit weak response to the auditory stimulus.
Therefore, we have to filter almost half of the electrical measurements. We now move on to the next
chapter where we describe the animal model and the decoding framework using these hippocampal
auditory evoked potentials. We use the pilocarpine model of temporal lobe epilepsy[I1] to describe
our animal model. This model rests on the use pilocarpine to artificially induce status epilepticus
(SE), which is the onset of epileptogenesis. Later on, the presence of hippocampal sclerosis leads to

reorganization of neuronal networks and ultimately occurrence of sporadic seizures in the rat.



Chapter 3

Overview of the Approach

3.1 Introduction

With the electrical recording described in the previous chapter, we move on to establishing
formal methods of processing this information. This chapter details the pilocarpine model of
temporal lobe epilepsy[11] to give the reader a perspective of the setup of the laboratory experiment.
We describe the decoding framework which briefly outlines our approach to develop a computational
biomarker. We then describe our approach to handle the noise in the measurement by looking at

very specific regions of the waveform to extract meaningful information.

3.2 The Animal Model: a Pilocarpine Model of Temporal Lobe Epilepsy

Figure [3.1] provides a detailed timeline, along with the nomenclature of the different periods
associated with the progress and eventual onset of epilepsy. All procedures were performed in ac-
cordance with the University of Colorado Institutional Animal Care and Use Committee guidelines
for the humane use of laboratory rats in biological research. The data of the evoked response was
collected from the laboratory of Professor Daniel Barth. The data was generated for the purpose
of another study being conducted.

Twenty-four male Sprague-Dawley rats (200-250 gm) were implanted with a hippocampal

wire electrode, a ground screw, and a reference screw.



condition baseline chronic
duration 1 week 72 hours weeks — months 2—6 months
evoked | [0 [\ | # NN
potentialW TALA T N \/L‘
intervention pilocarpineJ L paraldehyde
event

first spontaneous seizure

Figure 3.1: Timeline and nomenclature of the different conditions.

Animals were tethered to an electrode harness and slip-ring commutator permitting free movement
for 24/7 video and EEG monitoring. The 24 rats were divided into two groups: a group of 17 rats
that received lithium-pilocarpine, and a control group of 7 rats. The control group was composed
of 2 rats that received all drug injections associated with the lithium-pilocarpine model except for
pilocarpine, which was substituted with saline; and 5 rats that received no drugs. After full recovery
from the electrode implantation (2 weeks) and at least one additional week of chronic recording
of baseline video/EEG, 17 rats were given an injection of lithium chloride followed by an injection
of pilocarpine hydrochloride 24 hours later (see Fig. . After one hour of status epilepticus,
the animals were administered a dose of paraldehyde to terminate convulsions. Throughout the
experiment at every At = 30 minutes, an auditory stimulus composed of a sequence of 120 square-
wave clicks (0.1 ms duration, 2 sec ISI, 45dB SPL) was played in a top-mounted speaker. The 300
ms hippocampal responses to each click were filtered and sampled at 10 kHz, and the average of
the 120 responses was computed. In the remainder of the paper, we denote by h%) the average
evoked potential, measured at time kAt. To further simplify the exposition, h(*) is simply referred
to as the evoked potential measured at time k.

We conclude this section with the description of the names that we use to describe the
different stages of epileptogenesis (see Fig. . The period before the injection of pilocarpine is
called baseline. Conversely, the period following the first spontaneous seizure is called chronic.
We further define the silent period to be the 72 hour period of recovery immediately following the
termination of status epilepticus, and the latent period to be the remaining period leading to the

eventual onset of the first spontaneous seizure.
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Figure 3.2: Top: average wavelet coefficients with the average evoked potential (across all animals).
Bottom: average approximation coefficients. Only the scales j = 3 (top) to 10 (bottom) are

displayed. White rectangles delineate the time-frequency blocks used to construct w®),

3.3 Denoising the Input Data

For each animal r, the evoked potentials hgk), k=0,1,... were normalized such that the av-
erage energy computed during the baseline condition, (h2), for that animal was one. In order to use
the noisy evoked potentials to predict the state of epileptogenesis, we extract a denoised represen-
tation of h(¥). We use a discrete stationary wavelet transform (CDF 9-7) to compute a redundant
representation of h(%). Among the 10 scales and 3,000 time samples of the wavelet and approxima-
tions coefficients, we only retain the time intervals and the scales that most significantly separated
(after controlling for false discovery rate[42]) the evoked potentials taken from the four conditions,
across all the animals. Specifically, we form a vector w*) of 2,000 entries composed of 1,000 wavelet
coefficients from the time-frequency region [0, 100] ms x [5,10] Hz, and 1,000 approximation coeffi-
cients from the time-frequency regions [70,120] ms x [10,20] Hz and [100, 150] ms x [5, 10] Hz (see
Fig. [3.2). This representation is consistent with reports of disruption in the § rhythm (4-12 Hz)

during the latent period preceding the onset of epilepsy [9].
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Figure 3.3: Overview of the decoding algorithm. (: a vector of wavelet coefficients, w, ", is

computed from the evoked potential hgk). A vector of time-delay wavelets coordinates, zﬁk), is

formed by concatenating 7 consecutive wfak). @): spectral embedding maps w,(«k) to ng). ®: the

distance between C,(k) and the low-dimensional structure formed by each condition is computed.

3.4 The Decoding Framework: Notations and Overview of the Approach

We present here a brief overview of the decoding approach. Given an animal r =1,...,24, we
consider the sequence of evoked potentials hq(ao), h,(«l), .... The first stage involves the construction

of a denoised representation of hgk) (see @ in Fig. . We decompose hgk)(t) using a discrete

stationary wavelet transform and retain a vector of s (carefully chosen; shown in[3.2]and given in3.3)

wavelet and scaling coefficients, 'wﬁk), (see @D in Fig. . The second stage involves characterizing

the association between the condition of the disease (baseline, silent, latent, or chronic) and the

vector of wavelet coefficients wﬁk). We tackle this question by lifting wﬁk) into R™% using time-

(k) (

delay embedding: we concatenate the consecutive vectors w, ", ..., 'wrk+7_1) to form a 7 X s vector,
(k) — . - o : :

zy ', of time-delay wavelet coordinates (see D in Fig. |3.3). Low-dimensional structures, which

uniquely characterize the stage of epileptogenesis, emerge in the high-dimensional space. We use

spectral embedding to parametrize these low-dimensional structures, and map zf«k) to Cﬁk) (see @

in Fig. . The first decoding stage involves geometrically computing the likelihood that a given
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vector ng) corresponds to one of the four conditions. To this end, we quantify the distance of C,Ek)
to the low-dimensional cluster formed by each condition (see @) in Fig. . In the final decoding
stage, we use a hidden Markov model to capture the intrinsic dynamics of epileptogenesis.

To alleviate the notation in the following discussion, and unless we explicitly compare or
combine several animals, we dispense with the subscript r, denoting the dependency on rat r, when

we discuss the analysis of the evoked potentials for a fixed animal.

3.5 Discussion

Figure delineates the time frequency windows (white) for which the discrete stationary
wavelet transform was computed. The wavelet transform coefficients are the denoised representa-
tion, w® of the evoked potentials h¥). We can see in figure that the region of h(*¥) that we are
interested in is the trough that occurs in the time-frequency window of [0, 100] ms x [5,10] Hz and
the peak that occur in the time-frequency window of [70, 120] ms x [10, 20] Hz and [100, 150] ms X
[5,10] Hz. The idea is to extract the relevant information from the shape of these peaks and troughs
that occur in the evoked responses. From the figure we can see that there are subtle differences in
the shape of h(%) as the animal goes from baseline to chronic, with silent being the exception.

We provide a brief summary in Figure of approach adopted to develop a biomarker for
epileptogenesis. The framework establishes a step by step approach from computing the wavelet
coefficients from the evoked responses to spectral embedding the time delayed coefficients. Spectral

)

embedding effectively maps the evoked responses, hﬁk € R3090 t5 the low-dimensional space ¢ (k) ¢

R? where d < 3000. This is a huge deal as now we implement machine learning algorithms that take
advantage of the low-dimensional space for classification of the different states of epiletogenesis.

(k

Since the notion of time is not lost when mapping from A*) — ¢¥), we can use a Markovian chain

to define the intrinsic dynamics of epileptogenesis by using a hidden Markov model.



Chapter 4

Universal Configuration of Epileptogenesis

4.1 Introduction

This chapter walks the reader through the process of developing a computational biomarker.
We first talk about time delay embedding which transforms the extracted denoised representation,

w®) € R2000 6 a higher dimensional space, z(¥) e R12000,

In this high dimensional space we
stipulate that the trajectory of the embedded vector actually lies in a low dimensional subspace.
To extract this low dimensional space we use a graph Laplacian and come to the conclusion that
the dimensions of the data set is actually five, i.e. ¢¥) € R®. We move on to address the under-
lying process of epileptogenesis which, as we have assumed, moves through four different stages
and spends an indefinite amount of time in each state. This give a sense of time and evolution of
dynamics which can be modelled by the Continuous Distribution Hidden Markov Model. The in-
herent properties of this model makes it a suitable choice to implement a computational biomarker.
Lastly, we address a practical issue that arises due to the not having sufficient data populations of
each state. We overcome this issue by developing a pseudo model using a Gaussian mixture model
and then re-sampling it to obtain equal representation from each state. The intuition behind this

approach arises from our assumption that epileptogenesis has a universal configurations which can

be learned using statistical models.
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4.2 Time Delay Embedding

We now describe the construction of universal (stable across all animals) low-dimensional
smooth sets formed by all the hippocampal auditory evoked potentials collected during the same
stage of epileptogenesis. These sets are created by lifting the wavelet coefficients w(*) of each h(¥)
into high-dimension. This lifting effectively creates smooth low-dimensional coherent structures

that can then be parametrized with a drastically smaller number of coordinates.

4.2.1 Lifting the Evoked Potential to a High-Dimensional Space

Given the time series {w(k), k=0,1,.. } for a given animal, we analyze the dynamics of this
time series by considering the time-delay wavelet coordinates formed by concatenating 7 consecutive

vectors of wavelet coefficients,
2F) = | o) kD) o D) (4.1)

We characterize the changes in the dynamics of the evoked potentials by studying the geometric
structures formed by the trajectory of z(®) in R7*%, as k evolves. To help gain some understanding
about the geometric structures formed by the z(*), we make the following elementary observation.
We note that we can compute a p-point (p < 7 — 1) forward finite difference of w® from the
time-delay wavelet coordinates, APw®*) = Z?:o a;w* ) /(At)P. Tf this finite difference is small,
then Z?:o ajw(k+j) ~ 0. This last statement can be translated as follows: the distance of z(*)
to the hyperplane defined by the vector [ag a; --- ap 0 O]T is small. We conclude that if the

k) varies slowly, then the trajectory of z(*) lies near the intersection

vector of wavelet coefficients w(
of several such hyperplanes. Furthermore, if the temporal derivatives of w'¥) are small for many
orders p = 1,2,..., then the trajectory of z(*) will be confined to a set of small dimension. We
notice this phenomenon in our data; shortly after status epilepticus, the evoked potentials (%) are
very flat and exhibit very little variability across time k£ and across animals. Consequently, the

evoked potentials measured during the silent period are clustered around a very low-dimensional

region of the configuration space (see Fig. [4.1)). In practice, the number of time-delay vectors, T,
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is determined using cross-validation. We found that 7 = 12, which corresponds to six hours, yields
the optimal results.

To learn the geometry of the set formed by the different trajectories zﬁk),k =0,1..., we

(k)

consider the union — over all the animals — of the vectors z,; "/, and define the set,

z-/J {z§k>,k=o,1,...}. (4.2)

r € all animals

4.3 Nonlinear Low-Dimensional Embedding of the Time-Delay Wavelet

Coordinates

In order to identify the separate regions of R™™* that correspond to the four conditions
(baseline, silent, latent, and chronic), we seek a smooth low-dimensional parametrization of Z. Our
results (not shown) indicate that the traditional linear approach (singular spectral analysis [47])
provides a very poor parametrization of the set Z. A nonlinear approach, spectral embedding [17],
yields a low-dimensional parametrization of Z that naturally clusters the different conditions into
coherent disconnected smooth subsets. Briefly, we define a similarity matrix I that quantifies how
any two evoked potentials h*) and h() extracted from the same or from different conditions, and

from the same or from a different animal, at the respective times k£ and [ co-vary,
K(k,1) = exp (—Hz(k) - z<l>||2/a2) . (4.3)

The scaling constant o was chosen to be a multiple of the median distance ||z*¥) — 20|, k1 =
0,1,.... We used the d eigenvectors of K that optimally separated the dataset Z into four clusters

[25] related to the four conditions. The i*! eigenvector of K provided the i** reduced coordinate,

¢M(0), of 2%,
T

¢H = |e®ay ... W@y - (4.4)

In all our experiments, we found that d = 5 provided the optimal decoding performance.
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Figure 4.1: The training set of evoked potentials, Z, displayed using the reduced coordinates ¢*).
Each condition, baseline (blue), silent (cyan), latent (green), and chronic (red), forms a coherent

sub-cloud.

Figure displays the nonlinear parametrization of Z. Each dot represents an evoked poten-
tial hf«k) measured at a time k from an animal r, and parametrized by the reduced coordinates C,(,k).
The color indicates the condition during which h,(ﬂk) was recorded. When collapsed across animals
and time of recordings, four distinct clusters can be visually discerned, which can be interpreted in
terms of the corresponding conditions. As expected, the evoked potentials in the silent condition
are tightly grouped together around a low dimensional structure. Conversely, the latent condition
displays the largest spread: some evoked potentials are morphologically close to silent evoked po-
tentials while others are close to chronic evoked potentials. We also note that one can still separate
the baseline evoked potentials from the chronic ones, despite their mutual proximity. To further
help with the interpretation of this nonlinear representation of Z, we trace the trajectory of C,gk),
k=0,1,... for a single rat (H37) over several weeks of recordings (see thick black line in Fig. |4.1]).
The animal first spends several days in the baseline cluster (blue), then briskly traverses the entire
space to reach the silent cluster (cyan) after status epilepticus has been induced. Eventually, as

the animal recovers, it joins the latent condition (green) and advances toward the chronic cluster

(red). Four representative evoked potentials are shown along this trajectory, confirming changes in
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the morphology of h(¥) during epileptogenesis.

4.3.1 What Are the Reduced Coordinates Telling Us About Epileptogenesis?

We observe in Fig. that the evoked potentials in the training set Z organize around
smooth low dimensional subsets. The natural division of Z into coherent subsets, which correspond
to well defined stages of epileptogenesis, suggests that a purely geometric algorithm could be used
to quantify the development of epilepsy. Indeed, given an unclassified evoked potential, ¢*), the
distance from ¢*) to each of the four clusters (baseline, silent, latent, and chronic) should provide

an estimate of the likelihood of being in the corresponding condition at time k.

4.4 Estimating the Geometry and Dynamics of Epileptogeneis

Given the progression of epileptogenesis, the dynamics of the process seems to be dependent
on the current state and the previous state. Concluding from experimental evidence we assume
that these dynamics can be represented by a Markovian description. Therefore, we introduce
a Continuous Distribution Hidden Markov model, Figure [£.2] The advantage of a continuous
distribution model is that each state of epileptogenesis can be represented as a mixture of Gaussian.
Our intuition is to model the geometry of each cluster, Z¢, separately as we assume that the training
¢®)’s can give us a good sense of the geometric structure of each cluster.

We denote by Z$ ¢ = 0,1, 2, 3, the four clusters formed by the evoked potentials in Z that were
respectively collected during the baseline, silent, latent, and chronic conditions. Many techniques
are now available to estimate the local geometry of point clouds (see e.g., [19, 10, B3] [7] and
references therein). We found that using a mixture of Gaussian with a small number of components
gives us a reasonable estimate of the geometric structure described by each Z°. Furthermore, unlike
other models, a Gaussian mixture model does not require the stringent assumption that Z°¢ be a
smooth sub-manifold. For the purpose of this thesis, a Gaussian mixture model (a mixture of
Gaussian densities is being used to describe the different stages of epilepsy. Thus each epoch,

baseline, silent, latent and chronic, are described by their own mixture model.
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Figure 4.2: Continuous Distribution Hidden Markov Model: A = a;; is the probability state

transition matrix, P(q = j|g = i) and mp = P(q = 2"). ¢p, is the emission probability distribution,
p(otlg = k), given by a mixture of Gaussian (MOG). Each mixture model is defined per state,
k, as @, (01) = Zf‘il wiN (o¢| ki Xki), Zi\il w; = 1 and N (o¢|pgi, Lki) is a multivariate Gaussian
distribution. Z¢ ¢ = 0,1,2,3 are the clusters for baseline, silent, latent and chronic respectively.

z¢ ¢ =0,1,2,3 are the baseline, silent, latent and chronic states of epileptogenesis respectively.

All the models are initialized with the k-means++ algorithm[2][3] and the EM algorithm is
used to maximize the likelihood. Please refer [A] for a detailed explanation of EM for a Gaussian

mixture model and [B] for continuous distribution hidden Markov model.

4.4.1 Modified Approach to Continuous Distribution HMM

Even though the Continuous Distribution HMM provides us with a rich perspective to model
the reduced coordinate system, ¢(*), we found that the results were not satisfactory. The problem
was narrowed to insufficient evoked potential recordings. We found there was not enough data to
estimate the mixture model parameters and that results from the decoded Viterbi path did not
represent the actual hidden states. Given our data set of evoked potentials, we find that chronic
state has the most number of recording as compared to the other three states.

We propose a new approach to implement the continuous distribution hidden Markov model
and attempt to fix the issue of under representation from baseline, silent and latent clusters models.
Firstly, we learn the geometry of each cluster by modelling it as a mixture of Gaussian densities.

We define the number of mixture components, M, for each state, @ € [0, 3]. The number of mixture
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Algorithm 1 Oversampled Training of Continuous Density HMM
1: for r < 1, N € Training Set do > Concatenate the reduced coordinates of each cluster
2 while e «+ 0,3 do

3 Z°—Z° U Z;

4 end while

5: end for
6
7
8
9

: while e <~ 0,3 do

GMM*€(u°, 3¢, m¢) <EM for Z° > Learn the parameters of GMM from each cluster
Z¢ ., < T samples from GM M€(u®, 3¢, 7¢) > Form new training set

: end while
10: Alinal «— NO(Z, 00, Q, M) > Input Parameter to HMM for maximization using EM

components can be varied to get a better fit for the geometry of the respective cluster. Using the EM
algorithm we learn the parameters of the mixture model. The learned parameters of the geometry
are the means, u, covariances, 3¢ and the posterior probability of each mixture component, 7¢

where ¢ = 0,1,2,3. With these learned geometric parameters, we generate new training samples,

c

mews ¢ = 0,1,2,3. These new clusters have the equal number

Q(IIZL, and group them in clusters, Z

of representative members from each state. We use the new clusters, Z7.,,c = 0,1,2,3, as our
new training set and learn the parameters of the continuous distribution hidden Markov model
using the Baum—Welc (EM for HMM’s) algorithm. This approach is also given in an algorithmic

representation here

4.5 Discussion

In this chapter, we have discussed in greater details our approach which was presented as
an overview in the previous chapter. We talk about lifting the evoked potentials to the high

k) and using non-linear dimension reduction techniques we obtain a low

dimensional space, z(
dimensional representation, ¢®), which is extremely helpful in visualizing the evoked potentials
as clusters and implementing mixture models which define the geometry of each cluster. We also
talk about modelling the intrinsic dynamics of epileptogenesis using continuous distribution hidden

Markov models and propose a new method of dealing with under represented clusters. In the next

chapter we provide experimental evidence of the methods described in this chapter.



Chapter 5

Experiments

5.1 Introduction

In this chapter we present the experimental evidence that was obtained by implementing the
approaches described in the previous chapter. We present a sequence of the experiments and the
goal of each experiment is to validate every aspect of the proposed approach. Due to challenges
presented by the analysis of the real data, we first validate the algorithm using a series of synthetic
datasets. These datasets become increasingly realistic and eventually we proceed to the evaluation
of the real dataset using a leave one animal out cross validation scheme.

The computational biomarker was trained on ten epileptic rats and evaluated with one animal
that was not part of the training data. For each animal in the set, the algorithm computes the
stationary wavelet coefficients, time delayed embedded coefficients and the spectral embedding.
Then the training animals are used to learn the geometry of various stages and the hidden Markov
model is used to model the dynamics of epileptogenesis.

MATLAB® has been used to implement the machine learning algorithms. The Bayes Net
Toolbox (BNT) for Matlab[30] has been used to implement the continuous density hidden Markov

model.
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Algorithm 2 Pure Simulation Model

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:

procedure SIMULATION TEST(Z) > Z is the Training set

T =250,7 =25
for r + 1, N € Training Set do > Concatenate the reduced coordinates of each cluster
while e < 0,3 do
Z° —Z°UZ;
end while
end for
while e < 0,3 do
GMME€(uc, 3¢, 7€) «+EM for Z¢ > Learn the parameters of GMM from each cluster

Z: .., < T samples from GM M*®(u¢, 3¢, w°) > Form new training set
end while
Neginat ¢ NO(Z, 00, Q, M) > Input Parameter to HMM for maximization using EM
while e < 0,3 do > Generating simulated test set
7., < 7 samples from GM M€(u®, X¢, 7€) > Form new test set
end while
(8] v xr = Viterbi(Atrinat Ty e0) > Decoding most likely sequence of hidden states

17: end procedure

5.2

01k -

015 | | | |
-0.15 -0.1 -0.05 0 0.05 0.1

Figure 5.1: Epilepsy model fit using real data. M=3 components per state

The Simulation Model

We start by defining the model that is going to be used for this experiment. The model, as

defined in Figure has four states, () = 4, three mixture component per state, M = 3. Thus,

the total number of mixtures is ) x M = 12. Therefore, the data is modelled by twelve Gaussian
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densities each belonging to one of the four states. The dimensionality of the data is two, d = 2
and the length of the training set is chosen to be 900 and the testing set in chosen to be 100, thus
T = 1000 which is the combined number of samples. The number of simulated training rats is
10. Thus, each rat is represented by 100 samples equally divided into baseline, silent, latent and
chronic. Using leaving one rat out approach, we divide the dataset into nine simulated training
rats and one simulated testing rat.

We now train a mixture model using the training samples from the real data, Z¢,¢ = 0,1, 2, 3.
The intuition is to learn the parameters from the real data and simulate the reduced coordinates,
Cgfgl and try to predict the progression of dynamics using the continuous distribution hidden Markov
model. Figure [5.1] gives the mixture model fit of the real data with a mixture of Gaussian. The
model is shown in 2D to emphasize the overlapping in the clusters. Table lists the parameter
obtained after training the mixture model with the real data. We next re-sample the mixture of
Gaussian by the parameters defined in to create a new set of training samples, 900 samples;
100 samples/rat for nine simulated training rats, Z,c,. We now create the test set by re-sampling
as well, 100 samples for one rat, Tpe,. We define the continuous distribution hidden Markov model
with four states, ) = 4, and two mixture components per state, M = 2. A lesser number of mixture
components is chosen to test the robustness of the model. Thus, we have a total of ) x M = 8
mixtures for the model. We train the continuous distribution hidden Markov model using the new
training set, Z,¢, and implement the Viterbi decoding algorithm using the new simulated test
set, Thew. Figure [5.2] shows the trained continuous distribution hidden Markov model with eight
centres. Table shows the new learned parameters of the mixture of Gaussian. Figure [5.3|shows
the probability of the decoded Viterbi path of the most likely hidden states. The test sequence has
25 samples from each state as can be seen from the figure.

The results demonstrates the robustness of the continuous distribution hidden Markov model.
As we can see from that there is no error in the predicted states. Even when the training
model was provided with fewer components the prediction was still accurate. An algorithmic

representation of the procedure followed in this test is given in
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0.0098 _4 [0.0452  0.0088
Buseline 03583 ( 0. 0279) 110 [0.0088 0.9441]
0.4618 0.0083 1%10-5 [ 0.2155  —0.1302]
‘ —0.0373 |—0.1302  0.1849 |
0.0099 _3[0.2592  —0.1635]
01798 ( 0. 0203) 110 |—0.1635  0.1059 |
0.0485 _6 [0.7738  0.0957
Silent 0.1736 < 0.0040 ) 110 [0.0957 0.3012]
01300 | (09533) | o6 [0.1082  —0.0190]
' 0.0057 |—0.0190  0.0077 |
0.0513 _¢ | 0.8978  —0.2270]
0.6964 < 0.0050 ) D107 2970 0.1612 |
0.0169 _4 [0.0040 0.0218]
Lotent 04678 (0 0086) L1077 0.0218  0.8044]
0.9630 | (90229 | |, 103 [ 0.5476  —0.0844]
' 0.0007 |—0.0844  0.1657 |
0.0200 _, [0.0016 0.0007]
02692 < 0. 0184) 110 10.0007 0.2030]
0.0191 4 10.0229  —0.0351]
Chromic 02760 < 0. 0187) 110 |—0.0351  0.3870 |
01973 | (00193 L% 10-5 [0.0068 0.0297]
‘ 0.0518 10.0297 0.3016]
0.0153 _3 [0.0083 0.0296]
05267 <0.0247) L1070 0206 0.2128)]

Table 5.1: Epilepsy model parameters before re-sampling
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We find that the continuous distribution hidden Markov model provides a reliable method

to estimate hidden states in a mixture of Gaussian with large overlap of the mixture components.

We now try and test the limits of this design by reducing the number of simulated test samples for

each state.
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Figure 5.2: Epilepsy model fit after re-sampling. M=2 components per state

T 7 by

0.0088 _4 [0.0388 0.0162

Baseline 0-8165 <—0.0329) 1x10 [0.0162 0.7140]
—0.0114 _3[0.2705 —0.1663]
0-1835 <—0.0193) 110 |—0.1663  0.1053 |
—0.0525 6| 0.9764  —0.2259]
Silent 0.2520 ( 0.0055 ) 110 |—0.2259  0.0601 |
—0.0503 _5 [ 0.2192  —0.0538]
0.7480 ( 0.0046 ) 1+10 |—0.0538  0.0353 |
0.0180 _310.0048 —0.0066]
Latent 06991 <—0.0009) L+ 10 |—0.0066  0.5487 |
—0.0208 _3[0.4160 —0.0910]
03009 <—0.0020) L1077 00010 0.2116 |

0.0161 _5[0.0088 0.0411

Chronic 06511 (0.0309) Lx10 [0.0411 0.2879]
0.0192 _4 [ 00327  —0.0632]
03489 <—0.0182> 1+10 |—0.0632  0.4093 |

Table 5.2: Epilepsy model parameters after re-sampling
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Figure 5.3: Estimated posterior probability of being in one of the states
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Algorithm 3 Simulation Model: Oversampling State Space Test

1: procedure SIMULATION OVERSAMPLED TEST(Z,7) > Z,T are the Training and Test sets
2 T =900

3 for r < 1, N € Training Set do > Concatenate the reduced coordinates of each cluster
4 while e + 0,3 do

5: Z¢+ Z2°UZ°

6 end while

7 end for

8 while e + 0,3 do

9: GMMe(puc, 3¢, 7€) «EM for Z° > Learn the parameters of GMM from each cluster
10: Z; ., < T samples from GMM*®(u®, X¢, 7°) > Form new training set
11: end while
12: Aeginat ¢ \O(Z, 00, Q, M) > Input Parameter to HMM for maximization using EM
13: while e + 0,3 do > Generating simulated test set
14: T < sizeof(T°)
15: T < T samples from GMM®(p®, X¢, 7¢) > Form new test set
16: end while
17: (8] prscr = Viterbi(AUinal Tpew) > Decoding most likely sequence of hidden states

18: end procedure

5.3 Simulated Model: Oversampling State Space Test

From the previous experiment we saw that the continuous distribution hidden Markov model

is extremely reliable for decoding hidden states from mixture of Gaussian. We want to have another
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test which is closer to the real dataset. For the purpose of this experiment, the number of simulated
test samples generated will be governed by the real dataset.

We start by providing the design of this test. The model, as defined in Figure has four
states, Q = 4, three mixture component per state, thus M = 3, so total number of mixture is
@ x M = 12. Therefore, the data is modelled by twelve Gaussian each belonging to one of the four
states. The dimensionality of the data is two, d = 3 and the length of the training set is chosen to
be 3600 and the length of the testing set will be determined from the real data. Thus 7' = 3600 + 7
where 7 is the number of simulated test samples to be determined from the testing set. The number
of simulated training rats is 10. Thus, each of the simulated training rats are represented by 900
samples equally divided into baseline, silent, latent and chronic. But the simulated test rat samples
are determined by real dataset. Thus, 7¢,¢ = 0,1, 2,3 are the number of test samples from each
state. Using leaving one rat out approach, we divide the dataset into nine simulated training rats
and one simulated testing rat.

We now train a mixture model using the training samples from the real data, Z¢,¢ = 0,1, 2, 3.
The intuition is to learn the parameters from the real data and simulate the reduced coordinates,
Céfgl and try to predict the progression of dynamics using the continuous distribution hidden Markov
model. Figure gives the mixture model fit of the real data with a mixture of Gaussian. The
model is shown in 3D to emphasize the overlapping in the clusters. Table [5.3] lists the parameter
obtained after training the mixture model with the real data. We next re-sample the mixture of
Gaussian by the parameters defined in [5.3] to create a new set of training samples, 3600 samples;
900 samples/rat for nine simulated training rats, Z,e,. We now create the test set by re-sampling
as well. For this experiment 70 = 32,7! = 13,72 = 33 and 7> = 43, 121 samples for one rat,
Tnew- We define the continuous distribution hidden Markov model with four states, Q = 4, and
three mixture components per state, M = 3. Thus, we have a total of Q x M = 12 mixtures for
the model. We train the continuous distribution hidden Markov model using the new training set,
Z,.., and implement the Viterbi decoding algorithm using the new simulated test set, Tpew. Figure

B8 shows the trained continuous distribution hidden Markov model with twelve centres. Table [5.4]
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shows the new learned parameters of the mixture of Gaussian. Figure shows the probability of
the decoded Viterbi path of the most likely hidden states. The test sequence has 121 samples in
total and 70 = 32, 7! = 13,72 = 33 and 7 = 43 is the number of samples from each state.

As we can see from that there is no error in the predicted states. The results show
that the oversampled fit can represent the geometry of the structure accurately. An algorithmic
representation of the procedure followed in this test is given in

The result from this experiment are encouraging. We find that the decoding works extremely
well this approach. We can suggest that the number of samples is key to approximating the
geometry of this model. This results give us confidence to test out the real test vectors based on

the model over sampled training data.

Figure 5.4: Observed epilepsy model using real data. M=3 components per state
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—0.0165 [ 0.1779  —0.1097  0.1548 ]|
1 10.1334 —0.0160 1%1073 [—0.1097 0.0703 —0.0974
Baseline 0.0247 | 0.1548 —0.0974 0.1366 |
0.0083 [ 0.0159 —0.0110 —0.0380]
2 ] 0.4401 —0.0372 1%107% [-0.0110 0.0203  0.0121
0.0403 |—0.0380 0.0121  0.1151 |
0.0097 [ 0.0533  0.0078 —0.1866]
3 | 0.4266 —0.0290 1%107% | 0.0078  0.8670 —0.4026
0.0286 | —0.1866 —0.4026  0.9033 |
—0.0512 [ 0.3102  —0.0937 0.2972 ]|
1 | 0.3020 0.0048 1%107% | -0.0937 0.0520 —0.1066
Silent —0.0093 | 0.2972  —0.1066  0.2967 |
—0.0498 [ 0.1887 —0.0526  0.1755 |
2 1 0.4135 0.0045 1%107° [—0.0526 0.0464 —0.0727
—0.0081 | 0.1755 —0.0727  0.1811 |
—0.0528 [0.3449 —0.0880  0.3475 |
3 | 0.2846 0.0056 1%107% | —0.0880 0.0587 —0.1185
—0.0112 | 0.3475 —0.1185  0.3751 |
0.0188 [0.0040  0.0104 —0.0372]
1 10.3775 —0.0216 11073 | 0.0104  0.0426 —0.0901
Latent —0.0401 |—0.0372 —0.0901  0.3522 |
0.0171 0.0046 0.0124 —0.0125
2 103733 0.0196 1%1073 | 0.0124 0.4583 0.2563
—0.0032 —0.0125 0.2563 0.2546
—0.0249 0.4948 —0.0994 0.3040
3 | 0.2493 0.0004 1%1073 [—0.0994 0.1797 —0.1487
0.0078 0.3040 —0.1487  0.2405
0.0183 0.0184 0.0992 0.0123
1 10.3973 0.0454 1%107% [0.0992 0.6194 0.1155
Chronic 0.0110 0.0123 0.1155 0.0383
0.0140 [0.0086 0.0172 —0.0149]
2 1 0.3194 0.0161 11073 | 0.0172  0.1139 —0.0162
0.0067 | —0.0149 —0.0162  0.0393 |
0.0191 [0.0023 —0.0046 —0.0259]
3 | 0.2833 —0.0181 1%1073 [ —0.0046 0.0538  0.0708
—0.0420 | —0.0259 0.0708  0.3004 |

Table 5.3: Epilepsy model parameters before re-sampling
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Figure 5.5: Trained epilepsy model fit after re-sampling. M=3 components per state

baseline
post-SE
——pre-SRS

——SRs

02

SE PRE-SRS SRS

Figure 5.6:

20 40 60 80 100 120 140
Timeline

Estimated posterior probability of being in one of the states

28



M us W by
0.0084 [ 0.0152  —0.0102 —0.0357]
1 | 0.4405 —0.0373 1%107% [-0.0102 0.0173  0.0127
Baseline 0.0402 | —0.0357 0.0127  0.1051 |
0.0097 [ 0.0538  0.0098 —0.1933]
2 103911 —0.0290 1%107% | 0.0098  0.9559 —0.4553
0.0287 |—0.1933 —0.4553  0.9763 |
—0.0156 [ 0.1614 —0.0995 0.1398 ]|
3 | 0.1683 —0.0164 1%1073 | —0.0995 0.0642 —0.0883
0.0255 | 0.1398 —0.0883  0.1233 |
—0.0528 [0.3846  —0.1033  0.3910 |
1 |0.2963 0.0056 1%107% [-0.1033 0.0641 —0.1351
Silent —0.0111 | 0.3910 —0.1351  0.4229 |
—0.0497 0.1904 —0.0519 0.1765
2 10.4072 0.0045 1%1075 | —0.051 0.0462 —0.0720
—0.0080 0.1765 —0.0720 0.1815
—0.0512 [0.3423  —0.0983  0.3245 |
3 | 0.2964 0.0049 1%1075 | —-0.0983 0.0543 —0.1115
—0.0094 | 0.3245 —0.1115 0.3204 |
0.0189 [0.0038  0.0099 —0.0352]
1 |0.3712 —0.0214 11073 | 0.0099  0.0426 —0.0845
Latent —0.0408 | —0.0352 —0.0845 0.3341 |
—0.0249 [0.4487 —0.0629 0.2562 ]|
2 1 0.2396 0.0020 1%1073 | —0.0629 0.1806 —0.1318
0.0067 | 0.2562 —0.1318  0.2051 |
0.0172 0.0041 0.0130 —0.0098
3 | 0.3892 0.0189 1%1073 | 0.0130 0.4810 0.2762
—0.0045 —0.0098 0.2762 0.2605
0.0192 [0.0022 —0.0048 —0.0246]
1 |0.2842 —0.0180 1%1073 [—0.0048 0.0479  0.0714
Chronic —0.0434 | —0.0246 0.0714  0.2872 |
0.0140 [ 0.0075  0.0126 —0.0135]
2 | 0.3306 0.0161 11073 | 0.0126  0.1085 —0.0051
0.0065 | —0.0135 —0.0051  0.0415 |
0.0184 0.0187 0.0996 0.0118
3 | 0.3852 0.0462 1%107%[0.0996 0.6213 0.1160
0.0111 0.0118 0.1160 0.0396

5.4 The Computational Biomarker

Table 5.4: Epilepsy model parameters after re-sampling
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This experiment is similar in every way to the previous experiment except for the dimension-

ality of the data and the fact that we are using the real reduced coordinates for the test rat.

We start by providing the design of this test. The model, as defined in Figure has four
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states, () = 4, three mixture component per state, thus M = 3, so total number of mixture is
@ x M = 12. Therefore, the data is modelled by twelve Gaussian each belonging to one of the four
states. The dimensionality of the data is two, d = 4 and the length of the training set is chosen to
be 3600 and the length of the testing set will be same as the real data. Thus T' = 3600 + 7 where
T is the number of test samples. The number of training rats is 10. Thus, each of the training rats
are represented by 900 simulated reduced coordinate samples equally divided into baseline, silent,
latent and chronic. But the test rat samples are given by real dataset. Thus, 7¢,¢ = 0,1,2,3 are
the number of test samples from each state. Using leaving one rat out approach, we divide the
dataset into nine simulated training rats and one simulated testing rat.

We now train a mixture model using the training samples from the real data, Z°,¢ =0, 1,2, 3.
The intuition is to learn the parameters from the real data and simulate the reduced coordinates,
Cé% and try to predict the progression of dynamics using the continuous distribution hidden Markov
model. Table lists the parameter obtained after training the mixture model with the real data.
We next re-sample the mixture of Gaussian by the parameters defined in to create a new set
of simulated training reduced coordinates, 3600 samples; 900 samples/rat for nine training rats,
Z,cw. For this experiment 70 = 32,7! = 13,72 = 33 and 73 = 43, 121 samples for one rat, 7.
We define the continuous distribution hidden Markov model with four states, ) = 4, and three
mixture components per state, M = 3. Thus, we have a total of @ x M = 12 mixtures for the
model. We train the continuous distribution hidden Markov model using the new training set,
Z,,c, and implement the Viterbi decoding algorithm using the new simulated test set, 7. Table[5.6]
shows the new learned parameters of the mixture of Gaussian. Figure [5.6|shows the probability of
the decoded Viterbi path of the most likely hidden states. The test sequence has 121 samples in
total and 70 = 32, 7! = 13,72 = 33 and 72 = 43 is the number of samples from each state.

Figure show the probability of being in either state. We can see that the computational
biomarker is able to predict the onset of chronic state even before it occurs. An algorithmic

representation of the procedure followed in this test is given in
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