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Spin-orbit coupling exists in materials in general. However, it entangles the spin and or-

bital degrees of freedom and complicates the model. Thus, theorists usually neglect the effects

induced by spin-orbit coupling first and consider spin-orbit coupling as perturbation next. The

non-perturbative effects brought up by spin-orbit coupling are thus often less studied or overlooked.

On the other hand, the majority in the study of interacting topological order focusing on the

general structure of theories and made significant advances by leaving material details behind. It is

thus important to find possible microscopic models that could realize the new phases in laboratories

and benefits from the progress of theories to make experimental predictions.

In this thesis, we study the physical effects due to strong spin-orbit coupling from the per-

spective of searching new quantum orders and the non-trivial responses.

(i) The first project, we propose the nontrivial dipolar-octupolar(DO) doublets on the py-

rochlore lattice. By studying the most general symmetry allowed model at the localized and the

itinerant limit for DO doublets, we found two 3D symmetry enriched topological orders and topo-

logical insulator correspondingly. (ii) In the second project, we analyze the 2D model descending

from the localized limit of DO doublets on pyrochlore. The discrete onsite symmetry and space

group symmetry could lead to a symmetry-enriched topological order with symmetry fractionaliza-

tion pattern that cannot emerge from a spin model with continuous spin rotational symmetry. The

non-trivial symmetry fractionalization pattern contributes to the striking numerical signal that can

help identifying the topological order. (iii) In the third project, we develop a theory to understand

the high-energy Raman signal in Sr2IrO4.
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Chapter 1

Introduction

1.1 General introduction

One of the most important question in physics is: ”What are the quantum phases of

matter? ”. The question is not only centrally important for physics but also to move the frontiers

of materials science. The band theory successfully characterizes a large family of weakly interacting

electron systems and is the underpinning of many advances in the study of semiconductors. The

abilities to predict and manipulate semiconductors assists the development of computer era. The

study of band theory is one corner of the study of quantum phase of matter where interaction effect

can be understood perturbatively. It is interesting to ask: are there quantum phases that cannot

be explained using the perturbative picture of the microscopic degrees of freedom? A broad way to

rephrase the question is: what kind of quantum emergent phenomena are possible in nature? How

to realize those quantum emergent phenomena?

There are two different philosophical concepts in the research of Physics- emergence and

reductionism[1]. Condensed matter systems are formed by electrons, protons, and neutrons which

are well-understood particles. From the reductionists’ point of view, all we need to do to understand

condensed matter systems is to find a powerful computer to simulate how all the building blocks

interact with each other. The study of condensed matter systems is thus an area with only technical

challenges based on the reductionists’ view of nature.

However, reductionists’ cogent statement is too limited and fails to appreciate the beauty of

condensed matter physics. In the highly influential article ”More is different” by Philip Anderson[2],
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he points out the fallacy of this kind of thinking is the reductionist hypothesis does not imply the

ability to start from the microscopic components and reconstruct the macroscopic phenomena. Also,

the exact wavefunction with a macroscopic number of quantum particles will be so complicated

that it is challenging or even impossible to extract useful information to predict its behavior or to

develop possible applications.

In contrast to reductionism, emergence is a concept that takes an entirely different point

of view. We might understand how the building blocks in our system very well. However, the

complexity of the systems could lead to qualitatively new phenomena which only emerge at the

thermodynamic limit. Thus the phenomena are intrinsically many-body phenomena and cannot be

understood using its building blocks alone.

Emergent phenomena are ubiquitous in physics. One of the most important concepts- spon-

taneous symmetry breaking- is an emergent phenomenon. Only when the number of degrees of

freedom reaches the thermodynamic limit, the symmetry could be spontaneously broken. The

concept of emergence points out quantitative change could lead to qualitative change and can be

generalized in different fields of physics[3]. The idea of emergence thus brings immense possibilities

to condensed matter systems and becomes the backbone of modern condensed matter physics.

Landau introduced a general theory that describes the phases of matter and the transitions

between different phases[4]. The idea behind Landau’s theory is to classify different phases of

matter according to the global symmetry and the order parameter. Transitions among the various

phases are thus the change of symmetry of the order parameters. The order parameter is a local

phenomenological quantity that emerges from microscopic degrees of freedom. For example, the

crystal phase spontaneously breaks continuous translation symmetry, and the order parameter is a

vector defined in a unit cell; the Bose-Einstein condensate is a phase spontaneously breaks particle

number conservation U(1) symmetry, and the order parameter is a complex number with modulus

1; the nematic phase spontaneously breaks SO(3) rotational symmetry, and the order parameter

is a quadrupolar operator. Such order parameters emerge from the complex interactions between

underlying microscopic degrees of freedom. The order parameters for different systems are defined
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in various spaces. The order parameter for the crystal phase in 2D is defined in a torus space, the

order parameter for Bose-Einstein condensation is defined in S1, and the order parameter for the

nematic phase is defined in RP 2[5].

The Landau theory describes a broad class of matter and forms the cornerstone to understand

and to characterize different phases of matter according to its symmetry. One natural question to

ask is: are there other scenarios to describe different phases? Are there new phases that cannot

be described by Landau theory ? There are various attempts to go beyond the Landau theory.

It is reasonable to question the axiom of the existence of the locality of order parameters to find

new phases beyond Landau theory. Another possibility is to find new phases that have the same

symmetry but have very different physical properties.

The discovery of Berezinskii-Kosterlitz-Thouless(BKT) transition suggests the nontrivial role

played by the topology of the system[6, 7, 8]. In a two dimensional system with U(1) symmetry,

the Goldstone mode will destroy the spontaneous order and suggest no spontaneous symmetry

breaking in such system. However, different asymptotics of correlation functions at high- and

low- temperature limits indicate there should be a transition point that separates the two distinct

behavior. It turns out such transition is characterized by the proliferation of topological defects,

U(1) vortices. The topological defect is characterized by ”classical topology.” The proliferation of

vortices is driven by thermal fluctuations and is of classical nature.

Spontaneously symmetry breaking and the BKT transition are emergent phenomena with

a classical interpretation. However, there are emergent phenomena without any classical analogy

and must be understood in quantum picture. The main subject of this thesis, topological order,

is a quantum emergent phenomena without classical description. F. Wegner invented Ising gauge

theory in 1971[9]. The model is a quantum model. The gauge structure of the theory turns the

model into a quantum gauge theory. According to Elitzur’s theorem, the local symmetry cannot

be broken. However, the model still has nontrivial phase diagram with phases that cannot be

characterized by a local order parameter. Wegner’s theory thus shed much light’s on the novel

concept of quantum phase transition without local order parameter. One of the key structure for
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the Ising gauge theory is the constrained Hilbert space which is non-local. The Hilbert space is

non-local in a sense that it cannot be described by direct products of local Hilbert spaces. The basis

of the Hilbert space can have a classical interpretation. However, superposition of the basis leads

to long-range entangled wave functions. Thus, the Hilbert space is long-range entangled in that

sense. Such structure is closely related to the later development of string-net picture[10, 11, 12, 13].

The long-range entangled state is intrinsically quantum state and has no classical analogy.

Many such states share similar behavior that the low energy effective theory is a topological

field theory. Therefore, those states are called topological order. During the development, people

found symmetry alone is not enough to describe the topological order. The most famous examples

for such physics are the chiral spin liquid[14, 15] and fractional quantum Hall effect(FQHE)[16].

Later, people realize chiral spin liquid and FQHE are just tips of the iceberg for a huge class of topo-

logical order. From experimental perspectives, FQHE is experimentally measured[16]. However,

searching for quantum spin liquids in the lab is still a challenging and ongoing research topic[17, 18].

Now, let’s change gear to another line of important but more abstract thinking and discuss

how it helps us in studying quantum spin liquids.

The discovery of topological insulator sparks a huge wave of research activities on the study

of quantum phases[19, 20, 21, 22, 23, 24, 25, 26, 27]. People realize that topological insulator is

just a tip of the iceberg of a huge family of phases which is dubbed symmetry protected topological

orders (SPTs)[28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. SPTs are non-trivial phases that are protected

by certain symmetries. A topological insulator can be considered as a non-trivial phase protected

by time-reversal symmetry. When time reversal symmetry is preserved, the wave function of a topo-

logical insulator can not be adiabatically transformed into the wave function of a trivial insulator

without closing the bulk gap.

The discovery of topological insulator not only indicates the nontrivial effect of spin-orbit

coupling in materials but also raises the interesting question of the interplay among symmetry and

topological orders.

The useful idea initiated from the discovery of topological insulator gives new insight to the
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study of topological order[38]. The new advances on the line of study of topological order is that

symmetry alone can not pin down which topological order it is. However, symmetry divides the

parameter space of a topological order such that we have a finer classification for topological order.

The topological excitations will carry non-trivial quantum numbers that can distinct the topolog-

ical order in this finer classification scheme. Thus, symmetries could provide useful experimental

signatures to probe the underneath topological order. After imposing symmetry on topological or-

ders, we have more topological orders with different physical properties. Thus, the new topological

order is ”enriched” from the parent topological order. The new generation of topological order are

thus called symmetry enriched topological order(SETs)[39, 40, 41, 42, 43, 44, 45, 46, 47].

The new understanding of SPTs and SETs ignites the study of new quantum phases in the

last decade. SPTs and SETs are both macroscopic quantum phases. Both of them have energy gap

in the bulk. The energy gap provides a well-defined topological structure. That is, we can change

the parameters of the Hamiltonian, as long as the gap is not closed by tuning of parameters, the

phase should remain in the same topological phase. Thus, the parameter space of the Hamiltonian is

divided into different topological phases. As the Hamiltonian followed a particular path of change

of parameters, if the path crosses the boundary of distinct topological phases, the gap closes,

and the Hamiltonian could go from one topological phase to the other topological phase. When

symmetry is broken, the SPTs will collapse into a trivial product state. On the other hand, the

SETs will collapse into a topological order which is still a nontrivial long-range entangled wave

function. Specifically, a topological insulator is an SPT protected by time-reversal symmetry and

electron number conservation. When time reversal symmetry or electron number conservation is

broken, the wave function can be adiabatically connected to product states of atomic orbitals. A

Z2 topological order can be enriched by space group symmetry thus the spinon/vison transform

nontrivially under space group. When the symmetry is removed, only the topological structure like

fusion and braiding is left and we have a generic Z2 topological order.

Now, we can get back to the challenge to find the material realization of quantum spin liquids.

There are several difficulties to realize quantum spin liquids in experiments. One of the challenges
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for seeking quantum spin liquids is the microscopic mechanism for the emergent phenomena is not

clear. Exactly solvable models are powerful tools to analyze the properties of topological orders.

However, it is laborious or even impossible to relate the results from exactly solvable models to

real materials and provide useful experimental predictions. Because of that, the experimentally

relevant measurement which can positively identify topological order is lacking. To shed new lights

on the problem of how quantum spin liquids emerges from realistic microscopic models, simple

models with physical realizations that can be simulated by numerical techniques will be essential.

Another major obstacle is the smoking gun evidence of quantum spin liquid. Most experimental

measurements are local probes. It is thus tough to devise a probe to extract the global quantum

structure.

In this thesis, I will tackle the two issue accordingly. In chapter 2, I would like to strengthen

the weak link between theory and material by proposing realistic models in new parameter region

of the material- strong spin-orbit coupled 4f and 5d pyrochlores. The new model demonstrates in-

teresting physics from different perspectives. First, it is the minimum model to capture spin-orbit

coupling for certain rare earth pyrochlore material. Second, it lies in a sweet spot that interest-

ing theoretical proposal can be tested by unbiased large-scale quantum Monte Carlo simulation.

The advantage of this model puts itself in a good position to study three dimension long range

entangled quantum states. Because of the general symmetry argument, it could be relevant to

realize topological insulator for 5d transition metal compounds in the future. In chapter 3, I would

like to connect the newly developed theoretical concepts to a closely related model by proposing

signals that can be measured by numerical simulation and potentially can be measured in future

experiments. In chapter 4, I will discuss the work I collaborate with a local experiment group to

construct a theoretical model to understand the Raman scattering experiment in Sr2IrO4. The

spin-orbit coupling leads to different selection rules that reveal the possible microscopic dynamics

in this material.

In summary, this thesis explores how novel quantum orders emerge from strong spin-orbit

coupling in materials. Through the understanding of spin-orbit coupling and symmetry, we can



7

identify the unique response to probe new quantum orders or the possible microscopic dynamics

from the experiment.

1.2 Quantum spin ices and topological phases from dipolar-octupolar dou-

blets on the pyrochlore lattice 1

We consider a class of d- and f -electron systems in which dipolar-octupolar Kramers doublets

arise on the sites of the pyrochlore lattice. For such doublets, two components of the pseudospin

transform like a magnetic dipole, while the other transforms like a component of the magnetic

octupole tensor. Based on a symmetry analysis, we construct and study models of dipolar-octupolar

doublets in itinerant and localized limits. In both limits, the resulting models are of surprisingly

simple form. In the itinerant limit, we find topological insulating behavior. In the localized limit,

the most general nearest-neighbor spin model is the XYZ model. We show that this XYZ model

exhibits two distinct quantum spin ice (QSI) phases, that we dub dipolar QSI, and octupolar

QSI. We conclude with a discussion of potential relevance to real material systems.

1.3 Theory of quantum Kagome ice and vison zero modes2

We derive an effective Z2 gauge theory to describe the quantum kagome ice (QKI) state

that has been observed by Carrasquilla et. al. in Monte Carlo studies of the S = 1/2 kagome

XYZ model in a Zeeman field[50]. The numerical results on QKI are consistent with, but do not

confirm or rule out, the hypothesis that it is a Z2 spin liquid. Our effective theory allows us to

explore this hypothesis and make a striking prediction for future numerical studies, namely that

symmetry-protected vison zero modes arise at lattice disclination defects, leading to a Curie defect

term in the spin susceptibility, and a characteristic (Ndis − 1) ln 2 contribution to the entropy,

where Ndis is the number of disclinations. Only the Z2 Ising symmetry is required to protect the

1 This section has been published as a portion of Yi-Ping Huang, Gang Chen, Michael Hermele, Phys. Rev.
Lett. 112, 167203,[48] copyright 2014 American Physical Society, and is reproduced here in accord with the copyright
policies of the American Physical Society.

2 This section has been published as a portion of Yi-Ping Huang and Michael Hermele, Phys. Rev. B 95,
075130,[49] copyright 2017 American Physical Society, and is reproduced here in accord with the copyright policies
of the American Physical Society.
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vison zero modes. This is remarkable because a unitary Z2 symmetry cannot be responsible for

symmetry-protected degeneracies of local degrees of freedom. We also discuss other signatures of

symmetry fractionalization in the Z2 spin liquid, and phase transitions out of the Z2 spin liquid to

nearby ordered phases.

1.4 High-energy electronic excitations in Sr2IrO4 observed by Raman scat-

tering 3

Spin-orbit interaction in Sr2IrO4 leads to the realization of the Jeff = 1/2 state and also

induces an insulating behavior. Using large-shift Raman spectroscopy, experimentalists found two

high-energy excitations of the d-shell multiplet at 690 meV and 680 meV with A1g and B1g sym-

metry respectively. As temperature decreases, the A1g and B1g peaks narrow, and the A1g peak

shifts to higher energy while the energy of the B1g peak remains the same. We show that both

pseudospin-flip and non-pseudosin-flip dd electronic transitions are Raman active, but only the

latter are observed. Our analysis and experiments place significant new constraints on the possible

electronic structure of Sr2IrO4.

3 This section has been published as a portion of Jhih-An Yang, Yi-Ping Huang, Michael Hermele, Tongfei Qi,
Gang Cao, and Dmitry Reznik, Phys. Rev. B 91, 195140,[51] copyright 2015 American Physical Society, and is
reproduced here in accord with the copyright policies of the American Physical Society.



Chapter 2

Quantum spin ices and topological phases from dipolar-octupolar doublets on

the pyrochlore lattice 1

2.1 Introduction

Finding new phases of matter is a problem of fundamental importance in condensed matter

physics. This search motivates in part the exploration of new classes of materials, where novel

parameter regimes can lead to phases not realized elsewhere, and other new phenomena. Recently,

there has been intense interest in materials combining strong spin-orbit coupling (SOC) with sub-

stantial electron correlation, especially in compounds with heavy elements [52]. SOC entangles the

spin and orbital degrees of freedom, and microscopic models including SOC have in many cases

not yet been constructed and studied. Spin-orbital entanglement can lead to rather complicated

models, but this need not always be the case.

In this chapter, we study a class of systems where strong SOC leads to surprisingly simple

microscopic models that – in different limits – naturally realize not only a topological band insulator,

but also two distinct quantum spin ice (QSI) phases. One of these is the familiar QSI phase [53, 54],

here dubbed dipolar QSI (dQSI), while the other is a novel octupolar QSI (oQSI). dQSI and oQSI

are two distinct symmetry enriched U(1) quantum spin liquids, with space group symmetry playing

the crucial role.

Much of the recent activity in strong-SOC systems has focused on 5d iridates and 4f py-

1 This chapter has been published as a portion of Yi-Ping Huang, Gang Chen, Michael Hermele, Phys. Rev.
Lett. 112, 167203,[48] copyright 2014 American Physical Society, and is reproduced here in accord with the copyright
policies of the American Physical Society.
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rochlores. Various novel models and phases have been predicted for iridates with pyrochlore

[55, 56, 57, 58, 59, 60], hyperkagome[61, 62, 63, 64, 65, 66], honeycomb[67] and hyperhoneycomb

lattices[68, 69], while the dQSI phase has been predicted in 4f pyrochlores[70, 71, 72, 73, 74]. In

many of these systems, SOC and other interactions lead to Kramers doublets on the d or f ions,

which in turn are the building blocks for minimal effective models to capture the low-energy physics.

Any Kramers doublet is associated with a time-reversal odd pseudospin operator τµ (µ = x, y, z),

but not all Kramers doublets transform identically under space group symmetry [75]. The most

familiar possibility, which holds in the above recently studied 4f and 5d systems, is that, just like

a true spin-1/2 moment, τµ transforms as a magnetic dipole (i.e. as a pseudovector) under space

group operations.

In this chapter, focusing on the pyrochlore lattice of corner-sharing tetrahedra, we consider a

class of systems with Kramers doublets arising from d or f ions, where (in suitable local coordinates

discussed below) τ z and τx both transform like the z-component of a magnetic dipole, while τy

transforms as a component of the magnetic octupole tensor. Models of such dipolar-octupolar (DO)

doublets have striking properties in both weak and strong correlation limits. We note that a similar

type of Kramers doublet has been considered on other lattices[76, 77].

More specifically we consider both A2B2O7 pyrochlores and AB2O4 spinels, where the py-

rochlore A-site, and B-sites in both families, form a pyrochlore lattice. We consider two principal

situations: (1) In both pyrochlores and spinels, B is a transition metal in d1 or d3 electron configu-

ration and A is non-magnetic. (2) In pyrochlores, A is a trivalent rare earth with a partially filled

4f shell, and B is non-magnetic. Both cases can lead to effective models of DO doublets on the

pyrochlore lattice.

Case (1). The magnetic ions reside at the center of a trigonally-distorted oxygen octahedron;

the single-ion physics has been treated e.g. in [75]. Due to the cubic crystal field only the t2g

manifold is relevant. Projection P of orbital angular momentum L into the t2g manifold is PLP =
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−`, where the `µ are spin-1 matrices. The single-site Hamiltonian within the t2g manifold is

H = −λ ` · S +Htri +Hint, (2.1)

with λ the strength of SOC and S the spin operator. Htri = ∆3(`zi)2 is the trigonal crystal field

allowed by D3d site symmetry. The zi-axis is the local C3 axis (i = 1, . . . 4 is the sublattice index),

and xi, yi-axes are specified in the section 2.3. The interaction Hint is of Kanamori form, and is

treated in the atomic limit where it is characterized by Hubbard interaction U and Hund’s coupling

JH (see section 2.2).

Defining an effective total angular momentum jeff = `+S, SOC alone splits the t2g manifold

into an upper doublet (jeff = 1/2) and lower quadruplet (jeff = 3/2). Effective models of jeff = 1/2

doublets are relevant for 5d5 iridates [78, 79] and have received significant attention[61, 55, 67, 59,

68, 69]. While the jeff = 1/2 doublet is dipolar, it does not obey a näıve Heisenberg exchange

model due to strong SOC [77, 80].

The trigonal crystal field Htri splits the quadruplet into two Kramers doublets, for a total

of three doublets. If ∆3 > 0, the lower and upper doublets are dipolar and transform as the Γ+
4

irreducible representation of the D3d double group [81]. The middle doublet is a DO doublet; it

has jzieff = ±3/2, and transforms as Γ+
5 ⊕ Γ+

6 (Fig. 2.1). The doublet is half-filled for d3 electron

configuration, or (if ∆3 < 0) for d1 configuration.

While Hubbard interaction does not affect the single-site energy spectrum for a fixed number

of electrons, Hund’s coupling plays an important role. When ∆3 > 0, we find the d3 ground state

multiplet remains a DO doublet even for large JH (see section 2.2). However, as JH increases, the

energy gap between the ground state and the dipolar doublet first excited state decreases, vanishing

in the limit of large JH where we recover a spin-3/2 moment. The splitting between the ground

and first excited doublets is substantial only when JH . λ, and increases with ∆3/λ (see section

2.2). Hund’s coupling has no effect for d1 configuration.

Case (2). Here A is a trivalent rare earth, where the ground state has angular momentum

J . The D3d-symmetric crystal field Hamiltonian is Hcf = 3B0
2(Jz)2 + · · · [82]. If J = 9/2 or 15/2,
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Figure 2.1: (Color online.) (a) The evolution of d electron states under cubic crystal field, SOC and
trigonal distortion. (b) The energies for the three local doublets under different trigonal distortions.
Compression (elongation) along the C3 axis corresponds to ∆3 > 0 (∆3 < 0).
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and B0
2 < 0 and dominates the other crystal field terms, then the ground state is a DO doublet

with Jz = ±J , transforming as Γ+
5 ⊕ Γ+

6 under D3d site symmetry. The DO doublet nature of the

ground state is robust even when the other crystal field terms are appreciable, as long as the ground

state is adiabatically connected to the Jz = ±J doublet. Among the lanthanides, only Nd3+, Dy3+

and Er3+ have the required values of J . Of these, B0
2 < 0 only for Nd3+ and Dy3+ [82]. Indeed,

the crystal field ground state of Nd3+ in Nd2Ir2O7 is a DO doublet [83], and a DO doublet ground

state is predicted for Dy3+ in Dy2Ti2O7[84].

The action of Fd3̄m space group symmetry on DO doublets is given in the supplementary

material (see section 2.6). The D3d site symmetry is generated by a 3-fold rotation C3, a mirror

plane M , and inversion I, with: C3 : τµ → τµ, M : τx,z → −τx,z, M : τy → τy, and I : τµ → τµ.

These transformations are not those of a pseudovector, and imply that τx,z transform like the zi-

component of a magnetic dipole, while τy transforms like a component of the magnetic octupole

tensor (see section 2.6).

We now proceed to construct effective models using a single DO doublet on each pyrochlore

lattice site as the basic building block. We assume throughout that higher-energy on-site degrees

of freedom can be ignored. Even when this is not quantitatively accurate, our models may still be

valid as minimal low-energy effective models.

We consider limits of itinerant and localized electrons, constructing tight-binding and spin

Hamiltonians, respectively, in the two limits. The Hamiltonian contains all electron hopping terms

(itinerant limit) or spin exchange terms (localized limit) allowed by time reversal and Fd3̄m space

group symmetry, up to a given spatial range. We note that tight-binding and exchange mod-

els of dipolar Γ+
4 doublets have been extensively studied in the context of iridate and rare-earth

pyrochlores[85, 55, 86, 59, 60, 73, 72].

In the itinerant limit we ignore electron interactions, and the general form of the model is

HTB =
∑

(r,r′)

[
c†rTrr′cr + h.c.

]
. (2.2)

Here, r labels pyrochlore lattice sites, the sum is over all pairs of sites, and cTr = (cr+, cr−).
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Trr′ = T †r′r is a 2 × 2 matrix describing tunneling between sites r and r′. The operator c†r±

creates an electron at site r with jzieff = ±3/2 in case (1), or Jzi = ±J in case (2). Pseudospin

operators are τµr = (1/2)c†rσ
µcr, where σµ are the Pauli matrices. Time reversal symmetry implies

Trr′ = t0rr′ + itµrr′σ
µ.

For nearest-neighbor sites, the hopping matrix Trr′ has a remarkably simple form. Choosing

an appropriate orientation of bonds (see section 2.4.2), we find Trr′ = i[t1nnσ
1 + t3nnσ

3], taking the

same form for all nearest-neighbor bonds. A global rotation about the y-axis in pseudospin

space can thus eliminate t1nn, leading to T̃r,r′ = it̃3nnσ
3, where the tilde indicates we are working in

the transformed basis. The nearest-neighbor model thus has a U(1) spin symmetry, and the purely

imaginary (spin-dependent) hopping is similar to models considered in [87]. A highly unstable

Fermi surface coincides with a surface of intersection between two bands (see section 2.4.2).

Evidently the nearest-neighbor tight-binding model is highly fine-tuned, so we also include

second-neighbor hopping, which is specified by parameters (w̃0, w̃x, w̃z) (see section 2.4.2). Second-

neighbor hopping breaks the U(1) spin symmetry and gaps out most of the nearest-neighbor Fermi

surface. One finds either a metallic state, or a semi-metal with isolated band touchings occurring

at the W points (see Fig. 2.2). These W-point touchings are in fact unstable and are gapped out

by fourth-neighbor hopping, leading to a strong topological band insulator (see section 2.4.2).

0.0

0.5

1.5

1.0

-0.5

-1.0

-1.5
0 0 0 0

Figure 2.2: Phase diagram of the tight-binding model wtih first- and second-neighbor hopping, as a
function of (w̃0, w̃x, w̃z), setting t̃3nn = 1. Very small fourth-neighbor hopping is included to remove
unstable band touchings at the W-point. Metallic (M) and strong topological insulator (TI) phases
are found. The phase diagram is symmetric under w̃x → −w̃x and w̃0 → −w̃0.

We now consider the large-U limit of localized electrons, where the degrees of freedom are the
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pseudospin-1/2 moments τµr . We find that the most general symmetry allowed nearest-neighbor

exchange is Hex =
∑
〈rr′〉[Jxτ

x
r τ

x
r′ + Jyτ

y
r τ

y
r′ + Jzτ

z
r τ

z
r′ + Jxz(τ

x
r τ

z
r′ + τ zr τ

x
r′)], where the sum is over

nearest-neighbor bonds. Quite remarkably, the exchange is identical in form on every bond. Similar

to the itinerant limit, the Jxz term can be eliminated by a global pseudospin rotation (see section

2.4.1). After this transformation, the exchange is of the remarkably simple XYZ form:

HXYZ =
∑
〈rr′〉

J̃xτ̃
x
r τ̃

x
r′ + J̃y τ̃

y
r τ̃

y
r′ + J̃z τ̃

z
r τ̃

z
r′ . (2.3)

This result should be contrasted with the case of dipolar doublets on the pyrochlore lattice, where

the form of nearest-neighbor exchange varies according to the orientation of each bond [71].

Beyond simplicity of form, this pyrochlore XYZ model supports two distinct QSI phases. To

see this, we first review the XXZ model (J̃⊥ ≡ J̃x = J̃y), where QSI was identified in a study of the

regime J̃z > 0, J̃z � |J̃⊥| [53]. For simplicity we concentrate on J̃⊥ < 0, where quantum Monte

Carlo [88] found QSI for |J̃⊥|/J̃z < c, with c ≈ 0.1. When |J̃⊥|/J̃z > c, magnetic order is present.

It is important to note that QSI is robust to arbitrary symmetry breaking perturbations, and thus

survives away from the XXZ line.

The physics of QSI can be understood by mapping to a compact U(1) gauge theory, which is

exact for large J̃z [53]. The centers of pyrochlore lattice tetrahedra r form a diamond lattice, and

each pyrochlore site r corresponds to a unique nearest-neighbor diamond link (r, r′). We introduce

lattice vector fields Err′ = τ̃ zr and eiArr′ = τ̃xr + iτ̃yr , where r (r′) lies in the diamond A (B) sublattice,

and Err′ = −Er′r, Arr′ = −Ar′r. E (A) can be interpreted as the electric field (vector potential) of

a compact U(1) lattice gauge theory, of which QSI is the deconfined phase, supporting a gapless

photon, and gapped electric charge and magnetic monopole excitations.

So far we have been describing dQSI, so named because the electric field Err′ = τ̃ zr is a

magnetic dipole. In the low-energy continuum theory, the electric field is odd under time reversal

and transforms under the Γ+
4 (pseudovector) representation of the Oh point group. [The magnetic

field is time reversal even, and transforms under the Γ−4 (vector) representation.] The same dQSI

phase occurs for large J̃x > 0 (J̃y,z < 0 for simplicity), where Err′ = τ̃xr , which transforms identically
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to τ̃ zr under symmetry.

The novel oQSI phase arises for J̃y > 0 large (J̃x,z < 0 for simplicity), so that Err′ = τ̃yr . In

this case the electric field is purely octupolar. In the continuum theory, the electric field is still time

reversal odd, but transforms under the Γ+
5 representation of Oh (neither vector nor pseudovector).

The magnetic field transforms as Γ−5 .

oQSI and dQSI are thus distinguished by the action of space group symmetry on electric

and magnetic fields, and can be viewed as distinct symmetry enriched U(1) quantum spin liquids.

This means that dQSI and oQSI are distinct phases in the presence of space group symmetry, but

weak space-group-breaking perturbations take dQSI and oQSI into the same U(1) quantum spin

liquid phase (which is robust to arbitrary weak perturbations regardless of symmetry). In terms

of physical properties, dQSI and oQSI both have a T 3 contribution to specific heat from gapless

photons; in f -electron realizations, this is expected to be about 1000 times the phonon contribution

[72]. Dipolar spin correlations, as measured e.g. by neutron scattering, will, however, be quite

different, as illustrated by the fact that, neglecting effects of long-range dipolar interaction, equal-

time dipolar correlations fall off as 1/r4 in dQSI [53], but as 1/r8 in oQSI (see section 2.7). In

future work, it would be interesting to compare the dynamic spin structure factor in dQSI and

oQSI. Neutron scattering signatures of dQSI have been discussed in [72].

So far, we have avoided discussing the case J̃⊥ > 0; here, less is known for the XXZ model,

due to the presence of a sign problem in quantum Monte Carlo. In the |J̃⊥|/J̃z � 1 limit, J̃⊥ favors

QSI with π flux of the vector potential Arr′ through each pyrochlore hexagon, unlike for J̃⊥ < 0,

where zero flux is favored (see section 2.8). We have not considered the properties of the resulting

π-flux versions of dQSI and oQSI, leaving this for future work. QSI is expected to persist over a

larger range of J̃⊥ > 0, since in this case both J̃z and J̃⊥ interactions are frustrated [73].

We now discuss the phase diagram of the XYZ model. The simplest magnetically ordered

phases appear ferromagnetic in local coordinates; for instance, if J̃z < 0 and is dominant, 〈τ̃ zr 〉 =

md 6= 0. This is the “all-in-all-out” (AIAO) state, where dipoles point along the local zi axes,

toward (away from) pyrochlore tetrahedron centers lying in the diamond A (B) sublattices (or vice
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Figure 2.3: (Color online). Left: Unit cube in (J̃x, J̃y, J̃z) parameter space of the XYZ model.
Shaded regions were analyzed via gMFT. Right: gMFT phase diagram on the J̃z = 1 surface of the
cube, where dQSI, all-in-all-out (AIAO), and anti-ferro-octupolar (AFO) phases are found. Within
gMFT, the phase transition is 1st order (2nd order) at the dashed (solid) boundary. The dotted
line is the XXZ line. We did not apply gMFT for J̃x + J̃y ≥ 0. There, the exchange is frustrated,
and QSI is likely to be more stable than for J̃x + J̃y < 0 [73]. The phase diagram on the other
surfaces of the cube can be obtained by relabeling parameters, with the nature of phases changing
according to the anisotropic character of τ̃µr . dQSI occurs on the J̃z = 1 and J̃x = 1 faces, while
oQSI occurs on the J̃y = 1 face.
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versa). Since τ z and τx transform identically under space group, the same AIAO state arises when

J̃x < 0, |J̃x| � J̃y,z. A distinct magnetically ordered phase, with 〈τ̃yr 〉 = mo 6= 0, is obtained when

J̃y < 0, |J̃y| � J̃x,z. This state has anti-ferro-octupolar order, and no on-site dipolar order.

To study the phase diagram away from the simple limits discussed above, we employ gauge

mean field theory (gMFT)[72, 73] to our model (see section 2.8). gMFT makes the U(1) gauge

structure explicit via a slave particle construction, and is capable of describing both QSI and

magnetic phases. For simplicity, we limited our analysis to the shaded regions shown (Fig. 2.3) on

the faces of a cube in (J̃x, J̃y, J̃z) space. We find only the two QSI and magnetically ordered phases

discussed above. In the same regions of parameter space we analyzed via gMFT, the XYZ model

can be studied via quantum Monte Carlo without a sign problem (see section 2.8).

We now comment on the prospects for applying the models discussed above to real materials.

Promising systems to realize the XYZ model are Nd2B2O7 pyrochlores. B = Zr,Sn compounds

are insulators exhibiting antiferromagnetic order at low temperature [89, 90]. While the B = Ir

compound is known to carry a DO doublet [83], the physics is complicated by the presence of Ir

conduction electrons[58]. Synthesis of other Nd pyrochlores has been reported [91]. The validity

of the XYZ model description could be ascertained and the exchange couplings measured directly

via neutron scattering in applied magnetic field, as was done in the dipolar case for Yb2Ti2O7

[92]. DO doublets are likely in Dy pyrochlores [84], but the large moment of Dy3+ means dipolar

interactions must be included. DO doublets may also occur in B-site rare earth spinels, and there

is evidence for this in CdEr2Se4 [93]. More broadly, strongly localized d-electron Mott insulators

with S = 3/2 and D3d site symmetry comprise another class of systems where DO doublets may

be the low-energy degrees of freedom.

5d systems are a likely setting for itinerant (or weakly localized) DO doublets. Cd2Os2O7,

believed to exhibit AIAO order below a finite-temperature metal-insulator transition[94, 95], has

Os3+ in 5d3 configuration. Microscopic calculations indicate a DO doublet ground state, but show

a very small splitting between ground and first excited doublets [96], likely due to Hund’s coupling.

Moreover, electronic structure calculations do not show a clear separation between DO doublet and
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other energy bands [97, 98]. Thus 5d1 systems, perhaps on other lattices, may be more promising

for the realization of itinerant DO doublets.

In summary, we have pointed out that Kramers doublets with dipolar-octupolar character

can arise on the sites of the pyrochlore lattice in both d- and f -electron systems. We studied

effective models of DO doublets in itinerant and localized limits, finding topological insulation in

the former case, and two distinct quantum spin ice phases in the latter.

2.2 On-site interaction for d3 electron configuration

As discussed in the main text, for d3 electron configuration, the on-site interaction plays an

important role and must be included. For a fixed lattice site, the interaction Hint projected into

the t2g manifold is of Kanamori form,

Hint =
U

2

∑
m

∑
σ 6=σ′

d†mσd
†
mσ′dmσ′dmσ

+
U ′

2

∑
m6=m′

∑
σ,σ′

d†mσd
†
m′σ′dm′σ′dmσ

+
J

2

∑
m 6=m′

∑
σ,σ′

d†mσd
†
m′σ′dmσ′dm′σ

+
J ′

2

∑
m 6=m′

∑
σ,σ′

d†mσd
†
mσ′dm′σ′dm′σ. (2.4)

Here, d†mσ creates an electron in the t2g orbital labeled by m = 1, 2, 3, with spin σ =↑, ↓, and

U,U ′, J, J ′ are the Kanamori parameters. For simplicity, we take the atomic limit by setting

U = U ′ + J + J ′ and J = J ′ ≡ JH , where JH is the Hund’s coupling.

We have assessed the effect of on-site interaction by direct diagonalization of the on-site

Hamiltonian [Eq. (1) in the main text], including spin-orbit coupling λ, trigonal crystal field split-

ting ∆3, as well as the interaction parameter JH . For a fixed number of electrons, the Hubbard

interaction U has no effect and can be neglected. In Fig. 2.4a, the energy spectrum is plotted as

a function of JH/λ for ∆3 = λ. The ground state is a DO doublet, and the first excitation is a

dipolar doublet; we denote the splitting between these levels by δ. Independent of JH , we find that

the DO doublet remains the ground state (δ > 0), but δ/λ becomes small for JH & λ, as large
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JH favors a S = 3/2 ground state. The splitting δ is plotted in Fig. 2.4b for different values of

∆3/λ; it is apparent that larger trigonal splitting leads to larger separation between the two lowest

doublets.

2.3 Lattice geometry

The pyrochlore lattice is a FCC lattice with four-site basis. Setting the FCC lattice constant

to unity, we choose the FCC primitive vectors to be

a1 =
1

2
(0, 1, 1) (2.5)

a2 =
1

2
(1, 0, 1)

a3 =
1

2
(1, 1, 0).

The basis vectors are taken to be

bi = −
√

3

8
ẑi, (2.6)

where ẑi is defined below, and i = 1, . . . , 4 is the sublattice index. The pyrochlore lattice can

be viewed as composed of corner-sharing tetrahedra whose centers form a diamond lattice. The

A-sublattice diamond sites are {R}, and the B-sublattice sites are {R+ 1
4(1, 1, 1)}, where R is an

arbitrary FCC Bravais lattice vector. The basis vectors themselves form the A-sublattice tetrahe-

dron centered at the origin. In the following we will use serif symbol r, r′ to label the sites on the

dual diamond lattice and r, r′ to label the sites on the pyrochlore lattice. Pyrochlore sites are also

labeled by the pair (R, i), where r = R+ bi.

It is convenient to introduce local coordinate systems for each sublattice. These are given by

unit vectors (x̂i, ŷi, ẑi) defined as follows,

ẑ1 =
1√
3

(1, 1, 1) ŷ1 =
1√
2

(0, 1,−1),

ẑ2 =
1√
3

(1,−1,−1) ŷ2 =
1√
2

(−1, 0,−1),

ẑ3 =
1√
3

(−1, 1,−1) ŷ3 =
1√
2

(−1,−1, 0),

ẑ4 =
1√
3

(−1,−1, 1) ŷ4 =
1√
2

(−1, 1, 0), (2.7)
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Figure 2.4: (a) The energy spectrum of the single-site Hamiltonian for d3 electron configuration,
as a function of JH/λ at ∆3 = λ. (b) Plot of the splitting δ between the first excited and ground
doublets as a function of JH/λ for three different values of ∆3/λ.
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and x̂i ≡ ŷi × ẑi. ẑi the local 3-fold axis of the D3d site symmetry, and points toward the center of

the A-sublattice tetrahedra.

2.4 Symmetry analysis

2.6

The Fd3̄m space group is generated by the following operations: (1) Symmetries of the

tetrahedron centered at r = 0, forming the group Td. (2) Inversion I about the site r = b1. (3)

Primitive FCC translations Ta1 , Ta2 , Ta3 . We also consider time reversal symmetry T .

The Td group preserving the r = 0 tetrahedron is generated by C3,1 and Mxȳ. Here, C3,1

is a 3-fold rotation preserving the site r = b1, and Mxȳ is a mirror reflection sending x ↔ −y.

Explicitly,

C3,1 : r → C3,1r ≡


0 0 1

1 0 0

0 1 0

 r, (2.8)

and

Mxȳ : r →Mxȳr ≡


0 −1 0

−1 0 0

0 0 1

 r. (2.9)

Below, we work out the effect of these symmetries on DO doublets, first for the simpler case

of localized pseudospins, then for the case of itinerant electrons in DO doublets.

2.4.1 Localized case

For concreteness, we begin by considering f -electron magnetic moments on the sites of the

pyrochlore lattice, with total angular momentum J = 3/2, 9/2, 15/2. We suppose that crystal field

splitting leads to a ground state DO doublet, with the same symmetry as the doublet Jzi = ±J .

(Note that we do not assume the ground state doublet is exactly given by Jzi = ±J , only that it

transforms identically under symmetry.) Letting P project onto the Jzi = ±J subspace, we define
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the pseudospin operators by

τ zRi =
1

2J
PJziRiP (2.10)

τ+
Ri =

1

(2J)!
P(J+i

Ri)
2JP, (2.11)

where τ−Ri = (τ+
Ri)
†, τ±Ri = τxRi±iτ

y
Ri, and J±iRi = JxiRi±iJ

yi
Ri. With these conventions, the pseudospin

operator τµRi (µ = x, y, z) has eigenvalues ±1/2. We can now proceed to determine the symmetry

transformations of τµRi in terms of the known transformations of JRi.

The above discussion applies directly to DO doublets obtained from d-electrons [case (1)

in the main text], upon replacing JRi with jeff
Ri, and J with 3/2. Both JRi and jeff

Ri transform

identically under symmetry, namely as time-reversal odd pseudovectors.

The generators of the symmetry group act on Jr as follows:

Tai : Jr → Jr+ai (2.12)

I : Jr → JIr (2.13)

C3,1 : Jr → CT3,1JC3,1r (2.14)

Mxȳ : Jr → −MT
xȳJMxȳr (2.15)

T : Jr → −Jr. (2.16)

For each symmetry operation S, we let ÛS be the unitary operator representing it. The above

notation is short-hand for conjugation of Jr by the appropriate unitary or anti-unitary operators

representing each symmetry, e.g. I : Jr → ÛIJrÛ
†
I = JIr.
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From the above relations and the definition of τµr , it is straightforward to show

Tai : τµr → τµr+ai
(2.17)

I : τµr → τµIr (2.18)

C3,1 : τµr → τµC3,1r
(2.19)

Mxȳ : τx,zr → −τx,zMxȳr
(2.20)

Mxȳ : τyr → τyMxȳr
(2.21)

T : τµr → −τµr . (2.22)

It is notable that τµr transforms trivially under C3,1 and that τyr transforms trivially under all space

group operations. This is a direct reflection of the octupolar character of τy (see Sec. 2.5).

The space group transformation properties can be simply stated without choosing specific

generators. Consider the diamond lattice formed by the tetrahedron centers r. Every space group

operation either preserves the diamond A-sublattice (and hence also the B-sublattice), or it ex-

changes A- and B-sublattices. We refer to the former operations as A/B-preserving, and the latter

as A/B-exchanging. For improper A/B-preserving operations (e.g. mirror planes), τx,zr is odd.

(More precisely, if S is such an operation, then S : τx,zr → −τx,zSr .) For proper A/B-preserving

operations, τx,zr is even. This is reversed for A/B-exchanging operations, with τx,z even under

improper operations and odd under proper operations. Finally, τyr is even under all space group

operations.

2.4.2 Itinerant case

Here, we work out the effect of space group and time reversal symmetry on electron operators,

as required to construct models of itinerant electrons in DO doublets. Rather than pursuing a

direct microscopic analysis, we adopt an indirect approach. The idea is to first write down, for each

generator, the most general transformation of the electron operator consistent with the pseudospin

transformations derived above. Each such transformation involves unknown phase factors, and in

general the resulting transformations do not satisfy the relations defining the symmetry group. We
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show that, up to gauge transformations, the phase factors are completely determined by requiring

the group relations to hold.

We let c†Riα, where α = ±, create an electron at site (R, i) in pseudospin state τ zRi = 1/2 for

α = +, and τ zRi = −1/2 for α = −. It is convenient sometimes to suppress the pseudospin index

and write c†Ri, which we can think of as a two-component row vector of operators. Sometimes we

suppress both spin and basis indices, writing c†R, an 8-component row vector of operators. The

pseudospin operator is τµRi = 1
2c
†
Riσ

µcRi.

Since translations Tai commute, a gauge can be chosen in which

Tai : c†R → ÛTai
c†RÛ

†
Tai

= c†R+ai
. (2.23)

The residual gauge freedom preserving this form of Tai is c†Ri → αgi c
†
Ri, where αgi ∈ U(1).

The most general action of time reversal consistent with Eq. (2.22) is T : c†R → T c
†
RT −1 =

c†RU
T
R , where

UTR =



αTR1(iσy) 0 0 0

0 αTR2(iσy) 0 0

0 0 αTR3(iσy) 0

0 0 0 αTR4(iσy)


, (2.24)

where αTRi ∈ U(1). Using the fact that ÛTaiT = T ÛTai , it is easy to show αTRi ≡ αTi . Moreover, we

can make a gauge transformation to set αTi = 1, and thus T : c†Ri → c†Ri(iσ
y). The residual gauge

freedom preserving the form of both translations and time reversal is still c†Ri → αgi c
†
Ri, but now

each αgi ∈ {±1}.

The most general form of C3,1 rotation consistent with the pseudospin transformations is

C3,1 : c†R → ÛC3,1
c†RÛ

†
C3,1

= c†C3,1R
U
C3,1

R , (2.25)
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where the 8× 8 matrix U
C3,1

R is given in 2× 2 block form by

U
C3,1

R =



αCR0 0 0 0

0 0 0 αCR1

0 αCR2 0 0

0 0 αCR3 0


, (2.26)

for αCRi ∈ U(1). This is simplified by noting that ÛC3,1ÛTai = ÛTC3,1ai
ÛC3,1 implies αCRi ≡ αCi , and

T ÛC3,1 = ÛC3,1T gives αCi ∈ {±1}.

To proceed further, we employ the relation [ÛC3,1 ]3 = −1, where the minus sign reflects the

S = 1/2 nature of electrons. This implies that αC1 = −1, and αC2 α
C
3 α

C
4 = −1. It is then possible set

all αCi = −1, by making a gauge transformation of the form αg1 = 1, and αgi ∈ {±1} (for i = 2, 3, 4).

The resulting form of C3,1 rotation is still preserved by gauge transformations with αg1 ∈ {±1} and

αgi = 1 (for i = 2, 3, 4).

Next we consider the mirror reflection Mxȳ, which acts on electron operators by

Mxȳ : c†R → ÛMxȳ
c†RÛ

†
Mxȳ

= c†MxȳR
U
Mxȳ

R , (2.27)

where

UMxȳ =



0 0 0 αMR1(iσy)

0 αMR2(iσy) 0 0

0 0 αMR3(iσy) 0

αMR4(iσy) 0 0 0


, (2.28)

where αMRi ∈ U(1). The relation ÛMxȳ ÛTai = ÛTMxȳai ÛMxȳ implies αMRi ≡ αMi , and T ÛMxȳ = ÛMxȳT

gives αMi ∈ {±1}.

Viewing Mxȳ as the composition of a C2 rotation and an inversion, we require the relation

[ÛMxȳ ]
2 = −1, which implies αM1 = αM4 . The relation [ÛMxȳ ÛC3,1 ]4 = −1 then implies αM2 =

−αM3 . To fix the remaining free parameters, in addition to gauge freedom, we have the freedom

to redefine ÛMxȳ → −ÛMxȳ , which allows us to set αM2 = −1, αM3 = 1. We can then make a
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gauge transformation of the form αg1 ∈ {±1}, αgi = 1 (for i = 2, 3, 4), to set αM1 = αM4 = 1, thus

completely fixing the form of ÛMxȳ .

The only remaining generator is inversion, which acts on electron operators by

I : c†Ri → ÛIc
†
RiÛ

†
I = c†[−R+2(b1−bi)],iα

I
Ri, (2.29)

for αIRi ∈ U(1). The relation ÛTai ÛI = ÛIT−ai implies αIRi ≡ αIi , and T ÛI = ÛIT gives αI ∈

{±1}.

To proceed further, considering the action of the relation ÛIÛC3,1 = ÛC3,1ÛI on c†Ri, for

R = 0, gives αI2 = αI3 = αI4 . Similarly, acting on c†0,0 with ÛTa3
ÛIÛMxȳ = ÛMxȳ ÛI gives αI1 = αI4 ,

and thus all the αIi are equal. We can then set αIi = 1 by exploiting the freedom to send ÛI → −ÛI .

We have thus completely fixed the action of symmetry on electron operators. To summarize,

we have obtained the following results:

Tai : c†R → c†R+ai
(2.30)

I : c†Ri → c†[−R+2(b1−bi)],i (2.31)

C3,1 : c†R → c†C3,1R
UC3,1 (2.32)

Mxȳ : c†R → c†MxȳR
UMxȳ (2.33)

T : c†Ri → c†Ri(iσ
y), (2.34)

where the 8× 8 matrices UC3,1 and UMxȳ are given in 2× 2 block form by

U
C3,1

R =



−1 0 0 0

0 0 0 −1

0 −1 0 0

0 0 −1 0


, (2.35)

UMxȳ =



0 0 0 (iσy)

0 −(iσy) 0 0

0 0 (iσy) 0

(iσy) 0 0 0


. (2.36)
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We have also obtained the same results directly from a microscopic analysis[99], but prefer

the indirect approach presented here both for its greater technical simplicity, and the additional

insight it provides.

2.5 Dipolar-octupolar nature of the doublets

Here, we consider the transformation of τµ under the D3d site symmetry. We show that τx,z

transform like mz, the z-component of a magnetic dipole, while τy does not transform like any

component of a magnetic dipole. Instead, τy transforms like a component of the magnetic octupole

tensor Tµνλ. In this section, we will consider a fixed site r. We consider dipole mµ and octupole

Tµνλ tensors in the local coordinates introduced in Sec. 2.3, suppressing the basis index i to simplify

the notation.

The D3d site symmetry is generated by 3-fold rotation C3, inversion I, and a mirror plane

M . (There are three different mirror planes; we arbitrarily choose one of these to be a generator.)

The dipole mµ transforms as a pseudovector under these operations, as does each index of Tµνλ. It

follows from Sec. 2.4.1 that

C3 : τµ → τµ (2.37)

M : τx,z → −τx,z (2.38)

M : τy → τy (2.39)

I : τµ → τµ. (2.40)

It is clear that τµ does not transform as a pseudovector. We observe that τ z and τx transform

identically to one another, and also to mz; therefore the µ = x, z components of τµ are dipolar.

On the other hand, τy does not transform as any component of mµ. Note that inversion does not

play an important role, acting trivially on τµ, mµ and Tµνλ.

Instead, τy transforms identically to a component of Tµνλ. To identify the appropriate com-
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ponent, we change coordinates from µ = x, y, z to α = +,−, z by writing

mα = Rαµmµ (2.41)

Tαβγ = RαµRβνRγλTµνλ, (2.42)

where

R =


1 i 0

1 −i 0

0 0 1

 . (2.43)

We have transformation laws

C3 : m± → e±2πi/3m± (2.44)

C3 : mz → mz (2.45)

M : m± → e±iφMm∓ (2.46)

M : mz → −mz, (2.47)

with the same transformations holding for each index of Tαβγ . Here, φM = π, π/3,−π/3, depending

on which of the three D3d mirror planes is chosen for M . For our purposes, the phase factor φM is

unimportant, as it drops out in the transformation of T+++ and T−−−; that is

M : T+++ → −T−−− (2.48)

M : T−−− → −T+++. (2.49)

Using these transformations, we can identify

τy ∼ i(T+++ − T−−−). (2.50)

As desired, the right-hand side is real and time-reversal odd, since time reversal T : m± → −m∓.

2.6 Tight-binding model

Here we describe the symmetry allowed tight-binding model for itinerant electrons in DO dou-

blets on the pyrochlore lattice, and provide more information on the analysis of the corresponding

electron band structures.
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Figure 2.5: Orientations of nearest-neighbor bonds for which the nearest-neighbor hopping takes
an identical form on every bond. The sites are numbered by basis index i = 1, . . . , 4. The center of
the tetrahedron on the right (solid line bonds) lies in the diamond A-sublattice, while that of the
left-hand tetrahedron (dashed-line bonds) lies in the diamond B-sublattice.
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Requiring Fd3̄m space group and time reversal symmetry, the symmetry transformations

given in Sec. 2.4.2 can be used to determine the most general tight-binding model allowed by

symmetry. The electron hopping has the general form given in Eq. (2) of the main text

HTB =
∑

(r,r′)

[
c†rTrr′cr′ + h.c.

]
, (2.51)

where the sum is over all bonds, with some arbitrary but fixed choice of orientation for each bond.

Time reversal symmetry implies Trr′ = t0rr′ + itµrr′σ
µ. For nearest-neighbor bonds 〈rr′〉, space

group symmetry implies

T〈rr′〉 = it1nnσ
x + it3nnσ

z, (2.52)

with the orientation shown in Fig. 2.5. The nearest-neighbor hopping Hamiltonian thus has an

identical form on every bond. A pseudospin rotation about the local yi axes can eliminate one

hopping parameter, resulting in

Hnn =
∑
〈rr′〉

c̃†r(it̃3nnσ
z)c̃r′ + h.c., (2.53)

where t̃3nn =
√

(t1nn)2 + (t3nn)2 and c̃r, c̃
†
r are electron operators in the rotated basis.

The nearest-neighbor model at half-filling has a non-generic and highly unstable Fermi surface

specified by cos kx2 + cos
ky
2 + cos kz2 = 0, which coincides with a surface of intersection between two

bands. The corresponding band structure is plotted in Fig. 2.6(a). This highly fine-tuned Fermi

surface is unstable to further-neighbor hopping, and it is thus crucial to include at least second-

neighbor hopping in the tight-binding model.

Letting (rr′)2 label second-neighbor bonds, we specify the second-neighbor hopping by giving

Trr′ on a reference bond (r0r
′
0)2, where r0 = b2, r′0 = −1

4(1, 1, 1)− b4. We have

T(r0r′0)2
= w0 + iwxσ

x + iwzσ
z, (2.54)

where wy is forbidden by the C2 rotation symmetry taking the bond into itself. The reference bond

can be mapped into any second-neighbor bond by an appropriate space group operation, so all

T(rr′)2
can be obtained from T(r0r′0)2

. Unlike for nearest-neighbor hopping, the form of T(rr′)2
varies
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from bond to bond. The global pseudospin rotation resulting in Eq. (2.53) for nearest-neighbor

hopping affects the second-neighbor hopping merely by transforming the parameters (w0, wx, wz)→

(w̃0, w̃x, w̃z).

Including second-neighbor hopping, we find that the ground state is either a metal [Fig. 2.6(b)]

or semimetal with isolated four-fold band touchings at the W-points. [Fig. 2.6(c)]. The phase

diagram is discussed in the main text. The putative semi-metal phase is an incipient topological

band insulator. Because there is a gap at all time reversal invariant momenta, the Z2 invariant can

be computed using the Fu-Kane formula [100], and is found to correspond to a strong topological

insulator. This implies that any time reversal preserving perturbation that opens a full gap leads

to a strong topological insulator.

In fact, the W point band touching in the semimetal phase is unstable, and its presence

is an artifact of restriction to only first- and second-neighbor hopping. Upon including fourth-

neighbor hopping, a gap opens at the W point, resulting in a strong topological insulator (third-

neighbor hopping does not open a gap). To establish this, among the 6 distinct W points, we focus

on kW = (2π, π, 0). Letting H(k) be the 8 × 8 Bloch Hamiltonian including first- and second-

neighbor hopping, we observe that H(kW ) is block-diagonalized by the unitary transformation

H̃(k) = U †WH(k)UW , where

UW =
1√
2



1 0 1 0

0 1 0 1

i 0 −i 0

0 i 0 −i


⊗ 12×2. (2.55)

Here 12×2 is the identity matrix acting in the DO doublet pseudospin space. We find, in 4×4 block

form

H̃(kW ) =

 εF14×4 0

0 K

 , (2.56)

where the upper-left block acts in the manifold of the 4-fold touching, εF is the Fermi energy, and

K is a Hermitian 4× 4 matrix with eigenvalues not equal to εF .
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To proceed, we consider the 4 × 4 effective Hamiltonian Heff(q) that describes the splitting

of the band touching for k = kW + q, where q is small compared to the Brillouin zone size. In

principle, this can be constructed by expanding the Bloch Hamiltonian H(kW + q) in powers of q,

and treating the q-dependent terms via degenerate perturbation theory.

For the present purposes, it is more useful to determine the most general form of Heff(q)

allowed by symmetry. The group of the wavevector for kW is isomorphic to C4v, and is generated

by the four-fold rotation-reflection S4y = C3,1Mxȳ and the mirror reflection Mx = IC2x, where

C2x ∈ Td is a π-rotation about the (100) axis. In addition, the composition of inversion and

time reversal IT is an anti-unitary symmetry leaving all k-points invariant. Using the results

of Sec. 2.4.2, and the transformation UW , we determined the action of these symmetries in the

4-dimensional manifold of the band touching. To quote the results, we introduce the operators

Tµ = σµ ⊗ 12×2 and Σµ = 12×2 ⊗ σµ; any 4 × 4 Hermitian matrix can be written as a real linear

combination of 14×4, Tµ, Σµ, and TµΣν . The symmetries act as follows:

S4y : Σx,z → −Σx,z (2.57)

S4y : Σy → Σy (2.58)

S4y : T x → −T y (2.59)

S4y : T y → −T x (2.60)

S4y : T z → −T z (2.61)

S4y : (qx, qy, qz) → (qz,−qy,−qx), (2.62)

and

Mx : Σµ → Σµ (2.63)

Mx : T x → −T y (2.64)

Mx : T y → −T x (2.65)

Mx : T z → −T z (2.66)

Mx : (qx, qy, qz) → (−qx, qy, qz), (2.67)
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and finally

IT : Σµ → −Σµ (2.68)

IT : T x → T y (2.69)

IT : T y → T x (2.70)

IT : T z → T z (2.71)

IT : q → q. (2.72)

The most general Hamiltonian respecting IT is

Heff(q) = ε0(q)14×4 + fa(q)γa, (2.73)

where a = 1, . . . , 5, the fa(q) are arbitrary functions of q, and

γ1 =
1√
2

Σx(T x − T y) (2.74)

γ2 =
1√
2

Σy(T x − T y) (2.75)

γ3 =
1√
2

Σz(T x − T y) (2.76)

γ4 =
1√
2

(T x + T y) (2.77)

γ5 = T z. (2.78)

The γa matrices satisfy the γ-matrix algebra {γa, γb} = 2δab, and it follows that the energy spectrum

of Heff(q) is

E±(q) = ε0(q)±

√√√√ 5∑
a=1

[fa(q)]2, (2.79)

where each (non-zero) energy level is two-fold degenerate. A band touching occurs at q only when

fa(q) = 0 for all a. In the putative W-point semi-metal, there is an isolated touching at q = 0, and

ε0(0) = εF .

The remaining symmetries S4y and Mx constrain the form of the fa(q). Keeping terms up



35

through second order in q, we find:

f1(q) = c1yqy + c1xx(q2
x − q2

z) (2.80)

f2(q) = m+ c2yyq
2
y + c2xx(q2

x + q2
z) (2.81)

f3(q) = c3yqy + c3xx(q2
x − q2

z) (2.82)

f4(q) = c4xzqxqz (2.83)

f5(q) = c5xzqxqz (2.84)

ε0(q) = εF + e0yyq
2
y + e0xx(q2

x + q2
z). (2.85)

There is clearly a 4-fold touching at q = 0 only if m = 0, so evidently it happens that m

vanishes if we only include first- and second-neighbor hopping. This can be understood by recalling

that first- and second-neighbor hopping do not involve the σy Pauli matrix in the DO doublet

space, and thus the 8× 8 Bloch Hamiltonian can be written in the form

H(k) = M0(k)⊗ 12×2 +M1(k)⊗ σx +M3(k)⊗ σz, (2.86)

where the M0,1,3(k) are 4× 4 Hermitian matrices. It follows from the form of UW that also

H̃(k) = M̃0(k)⊗ 12×2 + M̃1(k)⊗ σx + M̃3(k)⊗ σz (2.87)

Now, Heff(q = 0) is simply the upper-left 4×4 block of H̃(kW ), and we thus see that Σy and ΣyTµ

terms cannot appear. In particular, since γ2 = Σy(T x − T y)/
√

2, this implies that f2(0) = 0. This

result holds unless we consider hopping that involves σy in the DO doublet space; it turns out that

the shortest-range hopping for which this occurs is fourth-neighbor.

Now we consider the effect of a small m 6= 0 on the energy spectrum. We are interested in

the presence or absence of a gap. We first note that, in the quadratic approximation for fa(q),

and for generic values of the parameters c1y, c1xx, etc.,
∑

a6=2[fa(q)]2 6= 0 for q 6= 0. Then since

f2(0) = m,
∑

a[fa(q)]2 6= 0 for all q, and a full gap is opened. For generic parameters, this result is

also expected to hold beyond the quadratic approximation, since each fa(q) = 0 defines a surface in

q-space, and the four surfaces for a = 1, 3, 4, 5, apart from intersecting at q = 0, are not expected

to have other intersections.
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Figure 2.6: Band structure along high symmetry lines with energy in units of t̃3nn. (a) Only
nearest-neighbor hopping is considered. (b) The metallic phase when both nearest-neighbor and
second-neighbor hoppings are present. (c) The semimetal phase with W-point band touchings when
nearest-neighbor and second-neighbor hoppings are present. (d) The strong topological insulator
phase after the fourth-neighbor hopping is included on top of the nearest-neighbor and second-
neighbor hopping. The topological invariant of the strong topological insulator is (ν; ν1, ν2, ν3) =
(1; 0, 0, 0).
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The above discussion implies that a small fourth-neighbor hopping will open a gap at the

W point, which we have directly verified. A band structure illustrating this effect is shown in

Fig. 2.6(d).

2.7 XYZ model and quantum spin ice

Here, we mention some features of the XYZ Hamiltonian

HXYZ =
∑
〈rr′〉

J̃xτ̃
x
r τ̃

x
r′ + J̃y τ̃

y
r τ̃

y
r′ + J̃z τ̃

z
r τ̃

z
r′ , (2.88)

and discuss its dQSI and oQSI phases.

First, we note that HXYZ has an extra Z2 × Z2 spin symmetry, which is not expected to be

preserved upon including longer-range or multi-spin exchange. Keeping this in mind, for simplicity

we have confined our attention to the nearest-neighbor model.

The XYZ Hamiltonian has no quantum Monte Carlo sign problem over a substantial portion

of its parameter space. This is seen upon expressing HXYZ in terms of τ̃ z and τ̃± = τ̃x± iτ̃y, where

HXYZ =
∑
〈rr′〉

[
Jzz τ̃

z
r τ̃

z
r′ − J±(τ̃+

r τ̃
−
r′ + h.c.)

+J±±(τ̃+
r τ̃

+
r′ + h.c.)

]
. (2.89)

Here, Jzz = J̃z, J± = −1
4(J̃x+ J̃y), and J±± = 1

4(J̃x− J̃y). The XYZ Hamiltonian is thus similar to

the model discussed in Ref. [73], but is simpler in that it lacks the bond-dependent phase factors

of the latter model. Because the transformation τ̃+ → iτ̃+ sends J±± → −J±± without affecting

the other terms, there will be no sign problem when J̃x + J̃y < 0, in world-line or stochastic series

expansion quantum Monte Carlo. By cubic permutations, the sign problem is also absent when

J̃y + J̃z < 0 or J̃x + J̃z < 0.

Now, we discuss quantum spin ice in the perturbative regime [53], where Jzz > 0 and

Jzz � |J±|, |J±±|. In the limit of J± → 0 and J±± → 0, the resulting Hamiltonian produces

an extensively degenerate ground state manifold that is spanned by the so-called “two-in-two-out”

spin ice configurations.
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Quantum dynamics is turned on with small J± and J±±. Standard degenerate perturbation

theory generates an effective low energy Hamiltonian that acts within the spin-ice manifold. The

leading-order effective Hamiltonian is

Heff = Jring

∑
hexagon

(
τ̃+

1 τ̃
−
2 τ̃

+
3 τ̃
−
4 τ̃

+
5 τ̃
−
6 + h.c.,

)
(2.90)

where 1, 2, · · · , 6 label the 6 spins on the perimeter of a pyrochlore hexagon, and Jring ∝ J3
±/J

2
zz.

J±± does not contribute to Heff at third-order.

Heff can be mapped to a U(1) lattice gauge theory [53] by writing

τ̃ zr = Err′ , (2.91)

τ̃±r = e±iArr′ , (2.92)

where the pyrochlore site r corresponds to the link rr′ of the dual diamond lattice, and E and A

are a lattice electric field and vector potential defined on the diamond links. This definition holds

for r in the diamond A-sublattice and r′ in the diamond B-sublattice. In order to interpret E and

A as lattice vector fields, we choose Err′ = −Er′r and Arr′ = −Ar′r.

The Hamiltonian Heff can be interpreted as the Maxwell term suppressing magnetic flux

through each hexagon. We focus on J± ≥ 0, where Jring < 0, which favors a ground state with zero

flux through each hexagon.

Quantum spin ice can be understood as the deconfined phase of U(1) gauge theory [53], and

is in fact the ground state of the ring exchange Hamiltonian Heff [88]. The low-energy effective

Hamiltonian density is simply H = Ke
~E2 +Kb

~B2, where ~E, ~B are continuum electric and magnetic

fields. So far we have been describing dQSI. Upon permuting the axes in pseudospin space, the

same discussion applies to oQSI, which arises when J̃y > 0 is large. The difference lies only in the

space group transformations of the electric and magnetic fields.

In the continuum theory, we consider transformations of ~E and ~B under the Oh point group

to distinguish dQSI and oQSI. It is straightforward to identify the irreducible representations of

Oh under which ~E and ~B transform. In dQSI, ~E transforms as Γ+
4 (pseudovector representation)
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with ~B transforming as Γ−4 (vector representation). In oQSI, on the other hand, ~E transforms as

Γ+
5 , with ~B transforming as Γ−5 . In both dQSI and oQSI, ~E ( ~B) is odd (even) under time reversal.

The oQSI transformations can be simply understood by noting that Oh = Td × Z2, where

Td is the group of symmetries of a pyrochlore tetrahedron, and the Z2 is generated by inversion I.

Then any g ∈ Oh can be uniquely written g = Ist, where s = 0, 1, and t ∈ Td. Letting DΓ±4,5
(g) be

the representation matrices for g ∈ Oh, we have

DΓ±5
(t) = DΓ∓4

(t) (2.93)

DΓ±5
(It) = −DΓ∓4

(It). (2.94)

Therefore, we can say that Γ+
5 agrees with the vector representation on Td, but for g /∈ Td, the

transformations come with an extra minus sign. Similarly, Γ−5 agrees with the pseudovector repre-

sentation on Td.

In dQSI, equal-time dipolar spin correlations are given by 〈 ~E ~E〉 electric field correlations,

which fall off as 1/r4. The above results can be used to determine the corresponding (but more

subtle) result for oQSI. First, we note that τ zr can be viewed as a vector field on the diamond

lattice, transforming as a time-reversal odd pseudovector (i.e. identical to ~E in dQSI). Therefore,

in the long wavelength limit, τ zr transforms as Γ+
4 .

To proceed, we need to construct the operator in the (Gaussian) oQSI continuum theory

with smallest scaling dimension, that also transforms as Γ+
4 and is time-reversal odd. We have

dim ~E = dim ~B = 2, and dim ∂µ = 1. Also, the derivative ∂µ transforms as Γ−4 . For example,

we need to consider operators of the form ∂µ ~Eν , which transforms as Γ−4 ⊗ Γ+
5 . Decomposing

this into irreducible representations, we find that Γ+
4 does not appear in the tensor product, and

this operator does not contribute to the dipolar spin correlations. Proceeding in this fashion, the

desired operator is instead of the form Oµνλ = ∂µ∂ν( ~E)λ, with dimOµνλ = 4. The corresponding

correlations fall off as a power law with exponent twice the scaling dimension, so the oQSI dipolar

correlations fall off as 1/r8.

This result ignores the role of long-range dipolar interaction, which is potentially significant
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in f -electron systems, but its main purpose is to illustrate a sharp difference between dQSI and

oQSI. In addition, if one restricts to the XYZ Hamiltonian only (i.e. includes no longer-range

exchange), the Z2×Z2 symmetry actually implies that dipolar correlations fall off exponentially in

oQSI, since both τ z and τx transform non-trivially under Z2 × Z2.

2.8 Gauge Mean Field Theory

The formalism of gauge mean field theory (gMFT) for the pyrochlore lattice was introduced

in Refs. [72, 73]. This mean-field theory is anchored to the QSI phase known to occur in the easy-

axis limit [88], and allows one to assess the competition between QSI and magnetically ordered

phases. Here, we adapt the gMFT formalism specifically to the pyrochlore XYZ model.

2.8.1 Slave particles

The ground state of Heff [Eq. (2.90)] is a U(1) quantum spin liquid whose low energy physics

is described by compact quantum electrodynamics in 3 + 1 dimensions[53, 88]. In the gauge theory

language, the “two-in-two-out” spin ice rule becomes Gauss’ law, and the τ̃±r breaks the ice rule by

creating electrically charged spinon excitations on neighboring tetrahedra. The J± term describes

the hopping of spinons on the dual diamond lattice sites.

Following Refs. [72, 73], to make the spinons and gauge field explicit, we enlarge the physical

Hilbert space by writing the spin operators as

τ̃+
r,r+ei

= Φ†rs
+
r,r+ei

Φr+ei
(2.95)

τ̃ zr,r+ei = szr,r+ei , (2.96)

where r is an A sublattice site of the diamond lattice, and ei connects r to its neighbors on the

dual diamond lattice. Φ†r (Φr ) is the spinon creation (annihilation) operator at site r, and szrr′ , s
±
rr′

are spin-1/2 operators that act as gauge fields. Since the spinons are bosonic, we further write

Φ†r = eiφr (Φr = e−iφr), where φr is a 2π periodic angular variable and Φ†rΦr = 1 by construction.

In the above equations, the physical Hilbert space has been enlarged to the the combined space



41

of the spinons and gauge field. To project back to the physical Hilbert space, we implement the

following constraint,

Qr = ηr
∑
i

szr,r+ηrei , (2.97)

where ηr = ±1 for r ∈ A/B sublattice. Here Qr is the spinon number operator and satisfies

[φr, Qr′ ] = iδrr′ . (2.98)

The XYZ model Hamiltonian [Eq. (2.89)] can be rewritten as

HXYZ =
Jzz
2

∑
r

Q2
r − J±

∑
r

∑
i 6=j

Φ†r+ηreiΦr+ηrejs
−ηr
r,r+ηreis

+ηr
r,r+ηrej

+
J±±

2

∑
r

∑
i 6=j

(
Φ†rΦ

†
rΦr+ηreiΦr+ηrejs

ηr
r,r+ηreis

ηr
r,r+ηrej + h.c.

)
+ constant. (2.99)

The J±± term now appears as an interaction between spinons. The above Hamiltonian is manifestly

invariant under the local U(1) gauge transformation (Φr → Φre
−iχr , s±rr′ → s±rr′e

±i(χr′−χr)).

2.8.2 Mean field theory

Following Ref. [73], we now decouple the Hamiltonian in Eq. (2.99) by mean field theory. As

an illustration, the spinon hopping term is decoupled as follows,

Φ†r+ηreiΦr+ηrejs
−ηr
r,r+ηreis

+ηr
r,r+ηrej

→
(
Φ†r+ηreiΦr+ηrej − 〈Φ

†
r+ηreiΦr+ηrej 〉

)
〈s−ηrr,r+ηrei〉〈s

+ηr
r,r+ηrej 〉

+ 〈Φ†r+ηreiΦr+ηrej 〉
(
s−ηrr,r+ηrei〈s

+ηr
r,r+ηrej 〉+ 〈s−ηrr,r+ηrei〉s

+ηr
r,r+ηrej − 〈s

−ηr
r,r+ηrei〉〈s

+ηr
r,r+ηrej 〉

)
. (2.100)

Similar decouplings can also be made to the J±± term. The microscopic Hamiltonian is now reduced

to mean field Hamiltonians for both spinon sector HΦ and gauge sector Hs,

HXYZ → HgMFT = HΦ +Hs. (2.101)
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Here, HΦ is given by

HΦ =
Jzz
2

∑
r

Q2
r − J±∆2

∑
r

Φ†r+ηreiΦr+ηrej

+
J±±∆2

2

∑
r∈A

∑
i 6=j

[
Φ†rΦ

†
rχ

B
ij + χA

0
∗
Φr+ei

Φr+ej
+ 2
(
Φ†rΦr+ei

ξj + Φ†rΦr+ej
ξi
)

+ h.c.
]

+
J±±∆2

2

∑
r∈B

∑
i 6=j

[
Φ†rΦ

†
rχ

A
ij + χB

0
∗
Φr−eiΦr−ej + 2

(
Φ†rΦr−eiξ

∗
j + Φ†rΦr−ejξ

∗
i

)
+ h.c.

]
.

(2.102)

We have chosen a mean-field state where the spinons feel zero magnetic flux through each hexagon,

as appropriate for Jring < 0 and J± < 0, and have thus chosen a gauge in which the spinon hopping

is uniform. We have introduced the sublattice mixing parameters,

ξi ≡ 〈Φ†rΦr+ηrei〉 for r ∈ A, (2.103)

the onsite pairing parameters,

χA
0 = 〈ΦrΦr 〉 for r ∈ A, (2.104)

χB
0 = 〈ΦrΦr 〉 for r ∈ B, (2.105)

and the inter-site pairing

χA
ij = 〈Φr−eiΦr−ej 〉 for r ∈ B, (2.106)

χB
ij = 〈Φr+ei

Φr+ej
〉 for r ∈ A. (2.107)

Finally, the parameter ∆ is defined as ∆ = 〈s±r,r±ei〉 is chosen uniformly on all bonds due to the

above gauge choice. Hs only contains Zeeman terms for sµrr′ and is trivially solved, leading to

∆ = 1/2.

The ground state of HΦ in Eq. (2.102) is then solved self-consistently under the constraint

Φ†rΦr = 1. The gMFT ground state is selected by optimizing the variational energy 〈HXYZ〉 in

Eq. (2.99). Magnetic ordering appears when the spinon field is condensed with the physical order

parameter given by 〈τ̃+
r,r+ei

〉 = 〈Φ†r 〉〈s+
r,r+ei

〉〈Φr+ei
〉. We find that, the pairing parameters always
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vanish when the spinon field is not condensed, indicating the absence of an intermediate Z2 quantum

spin liquid in this mean field approach. Therefore, the phase boundary of the phase diagram in the

main text is obtained when the spinon field condensation takes place.

2.9 Conclusion and future work

The neutron data suggest the existence of dipolar-octupolar doublets in pyrochlore material.

The dipolar component can be measured easily in the experiment. One important question is to

understand the possible physical effect induced by the octupolar exchange interaction. How to

probe the octupolar fluctuation is a challenging and exciting subject for future study.

Also, the physical effects of the dipolar-octupolar doublets to transport measurement is also

interesting. How to understand the quantum nature of dipolar-octupolar doublets and its coupling

with the itinerant electron is also important to study related materials.



Chapter 3

Theory of quantum Kagome ice and vison zero modes1

3.1 Introduction

Quantum spin liquids (QSLs) are remarkable zero-temperature phases of insulating spin

systems.[101, 102, 18] These states lack any sort of symmetry-breaking order, but instead exhibit

long-range quantum entanglement. Some QSLs are stable phases with gapless excitations, while

others are gapped and topologically ordered, supporting fractional excitations, as in fractional quan-

tum Hall liquids. Over the last several years, a number of candidate materials for gapless QSLs

have emerged (see [[18]] and references therein). Recent Knight shift[103] and inelastic neutron

scattering[104] measurements suggest a gapped spin liquid ground state in ZnCu3(OD)6Cl2, but

interpretation of these results is complicated by significant impurity effects, while other measure-

ments point to a gapless state [18, 105, 106]. It remains an important problem to find candidate

materials for gapped QSLs.

In a closely related development, numerical studies of simple and fairly realistic quantum

spin models have found evidence for two types of gapped QSLs, namely Z2 QSLs,[107, 108, 109,

110, 111, 112, 113, 114, 115] and chiral spin liquids.[?, ?] There is evidence for a Z2 QSL in the

S = 1/2 kagome Heisenberg antiferromagnet,[116, 117, 118, 119] although there are also contrary

indications that the ground state may be gapless.[120, 121, 122, 123] In the same model, a chiral

spin liquid phase arises upon adding second and third neighbor interactions, with or without XXZ

1 This section has been published as a portion of Yi-Ping Huang and Michael Hermele, Phys. Rev. B 95,
075130,[49] copyright 2017 American Physical Society, and is reproduced here in accord with the copyright policies
of the American Physical Society.
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anisotropy.[124, 125, 126] Recently, in the S = 1/2 J1 − J2 triangular Heisenberg antiferromagnet,

density matrix renormalization group studies have found evidence of a gapped spin liquid,[127, 128]

although a variational wave function approach favors a gapless spin liquid.[129] These works raise

the prospects for finding gapped QSLs in real materials, and provide clues where to look for such

states. However, especially given that gapped QSLs are not conclusively established in some of

these models, it continues to be important to identify simple, fairly realistic candidate models for

gapped QSLs.

1 VBS?

0

Ja
Jz

h

Jz

QKI FM

Figure 3.1: Schematic zero-temperature phase diagram of the XYZh model, based on the quantum
Monte Carlo results of Ref. [50], showing quantum kagome ice (QKI), ferromagnetic (FM) and
valence bond solid (VBS) states. Only h > 0, Ja > 0 is shown, as the phase diagram is symmetric
under h → −h and Ja changes sign under unitary π/2 spin rotation. At small Ja/Jz, the system
can be mapped to a honeycomb lattice quantum dimer model where we believe VBS order is the
most likely possibility,[130] although VBS order was not observed in Ref. [50]; this point is discussed
further in the text. The phase transition from QKI to FM was found to be first-order.

In an exciting addition to this body of work, Carasquilla, Hao and Melko (CHM) have

identified a gapped, quantum disordered phase in a S = 1/2 XYZ model on the kagome lattice

in a z-axis Zeeman magnetic field (XYZh model).[50] CHM proposed this state, dubbed quantum

kagome ice, to be a gapped Z2 QSL.

The XYZh model has potential relevance to f -electron pyrochlore magnets where effective

spin-1/2 degrees of freedom transform not as magnetic dipoles, but instead as dipolar-octupolar

Kramers doublets.[48] Together with G. Chen, we showed that such systems are described by

a XYZ model, which was argued to be particularly relevant for A2B2O7 pyrochlores with A =

Nd;[48] experiments have found evidence for dipolar-octupolar doublets in some such systems.[83,

131, 132, 133] Following prior work on the “kagome ice” state of classical spin ice pyrochlores,[134,
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135, 136, 137, 138, 139, 140, 141] CHM noted that the pyrochlore XYZ model descends to the

XYZh model on approximately decoupled kagome layers upon applying a magnetic field.

In more detail, CHM considered the Hamiltonian

HXYZh =
∑
〈r,r′〉

JzS
z
rS

z
r′ − h

∑
r

Szr (3.1)

−
∑
〈r,r′〉

[
J⊥
2

(
S+
r S
−
r′ + h.c.

)
+
Ja
2

(
S+
r S

+
r′ + h.c.

)]
where Jz > 0, r labels Kagome lattice sites, and 〈r, r′〉 denotes nearest-neighbor bonds. CHM set

J⊥ = 0 and used quantum Monte Carlo to obtain the phase diagram as a function of Ja/Jz and

h/Jz, finding two “lobes” of QKI centered at h/Jz = ±1, as shown in Fig. 3.1

CHM examined various candidate orders in the QKI state and concluded that it lacks

symmetry-breaking order. Moreover, following prior works,[142, 72, 73] they showed that HXYZh

can be exactly rewritten as a U(1) gauge theory, with the Ja term a pair-hopping of spinons that can

lead to condensation of spinon pairs and thus to a Z2 QSL. Based on this insight, CHM described

how to obtain this state within a gauge mean-field treatment.[72]

For small Ja/Jz, the XYZh model onto a honeycomb lattice quantum dimer model, which

can be seen using degenerate perturbation theory. The phase diagram of two-dimensional bipartite

dimer models, including on the honeycomb lattice,[130] is dominated by different types of valence

bond solid (VBS) order, and we believe that a VBS state is likely present within the lobe for

sufficiently small Ja. However, we are aware of no general argument ruling out, for instance, a Z2

QSL or a trivial quantum paramagnet in the honeycomb dimer model. Indeed, it has recently been

shown that a trivial paramagnet can occur for S = 1/2 spins on the honeycomb lattice. This is

likely also possible for the dimer model, because it can viewed as an effective theory for such a spin

model. It is important to note that CHM did not observe VBS order, but this may be due to a

small temperature scale or problems with equilibration at small Ja.

The results of CHM are consistent with the hypothesis that quantum kagome ice is a Z2 QSL,

but this has not been directly confirmed or ruled out. No Lieb-Schultz-Mattis type theorem[143,

144, 145] is believed to hold for the XYZh model, so that a trivial quantum paramagnet is expected
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to be a possible ground state2 and is also consistent with the results of CHM. It is therefore

important to devise signatures that can distinguish the Z2 QSL and trivial paramagnet, as well as

other possible states.

In this paper, we derive an effective gauge theory of QKI as a Z2 QSL, study its properties,

and use it to make a striking prediction that we expect can be tested in future quantum Monte

Carlo studies. In particular, we show that lattice disclination defects host vison zero modes, i.e.

there is no energy cost to insert a vison at a disclination. The resulting degeneracies only require the

Z2 Ising symmetry of the XYZh model for their protection, which is remarkable because a unitary

Z2 symmetry cannot protect degeneracies of local degrees of freedom. The vison zero modes lead

to a Curie spin susceptibility localized at the defects. In addition, in a system without boundary

where Ndis disclinations host vison zero modes, there are 2Ndis/2 degenerate states associated with

the zero modes, where the factor of 1/2 comes from the global constraint of an even number of

visons. The resulting (Ndis − 1) ln 2 contribution to the entropy directly distinguishes vison zero

modes from local doublets bound to disclinations, which would have a degeneracy of 2Ndis . We also

discuss other possible signatures related to the symmetry properties of spinon and vison excitations,

both within the Z2 spin liquid phase and at phase transitions to nearby symmetry-breaking phases.

In Sec. 3.2 we derive the effective Z2 gauge theory, starting from an exact rewriting of the

XYZh model as a U(1) gauge theory.[50, 142, 72, 73] We then discuss the role of symmetry in the

Z2 QSL (Sec. 3.3). We find that the spinon has non-trivial symmetry fractionalization, while the

symmetry fractionalization of the vison is trivial; the computation of the symmetry fractionalization

is discussed in Appendix 3.7. Section 3.4 describes the vison zero modes at lattice disclinations

their signatures in spin susceptibility and entropy. Other properties of the Z2 QSL, including

phase transitions to nearby phases, are discussed in Sec. 3.5, and the paper concludes with a brief

discussion (Sec. 3.6).

We would like to note other current work on the theory the spin liquid state in the XYZh

model, using an approach complementary to our own.[146]

2 Our effective theory allows us to confirm this expectation.
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Pd

PyT1

T2

r r′

r′′

r r′

r′′

J⊥ Ja

Figure 3.2: (a) The sites of the kagome lattice, where spins of the XYZh model reside, are identified
with nearest-neighbor links of the honeycomb lattice. Honeycomb sites, which correspond to kagome
triangles, naturally divide into A and B sublattices, shown as open and closed circles, due to the
bipartite nature of the honeycomb lattice. The generators of the p6m space group are shown, with
Pd and Py reflections (dashed lines) and T1 and T2 translations (thick arrows). (b) and (c) illustrate
the hopping processes in the U(1) gauge theory that correspond to J⊥ and Ja terms, respectively.

3.2 Derivation of effective gauge theory

Our effective gauge theory is based on an exact rewriting of the XYZh model as a U(1)

gauge theory. Before getting into details, we motivate the rewriting by considering the classical

limit J⊥ = Ja = 0 and h = Jz, where the ground states are configurations of Szr with two spins

up and one spin down on every triangle. Kagome sites correspond to nearest-neighbor links of the

dual honeycomb lattice, while kagome triangles correspond to honeycomb sites (Fig. 3.2a). We can

view up-up-down spin configurations as dimer coverings of the honeycomb lattice, associating down

spin (up spin) with presence (absence) of a dimer. Moving slightly away from the classical case by

allowing 0 6= Ja, J⊥ � Jz, we obtain a honeycomb quantum dimer model, which is a U(1) gauge

theory.

Now we proceed to rewrite the XYZh model as a U(1) gauge theory, without making any

assumptions about the size of the various couplings in the Hamiltonian. This rewriting follows

CHM,[50] who in turn followed Refs. [142, 72, 73]. We first introduce the Hilbert space and

operators of the gauge theory, and then describe their relationship to the Hilbert space and spin

operators of the XYZh model. We label the sites of the honeycomb lattice by sans serif letters r.

On each honeycomb link we place a U(1) quantum rotor, with number err′ that will be the electric

field, and phase arr′ that will be the vector portential. On the same link, these operators satisfy the

commutation relation [arr′ , err′ ] = i, and we define er′r = −err′ (similarly for arr′). On honeycomb
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sites we also place U(1) quantum rotors with number nr and phase θr, satisfying [θr, nr] = i. The

site degrees of freedom are matter fields carrying the U(1) gauge charge. To fully specify the gauge

theory Hilbert space we need to specify the Gauss’ law constraint, which we take to be

(div e)r = 2ηr +Qr, (3.2)

where Qr ≡ nr is the gauge charge at r, 2ηr is a static background charge, and we have defined ηr

to be 1 (−1) for r in the A (B) sublattice. The lattice divergence is defined by (div e)r =
∑

r′∼r err′ ,

where the sum is over the three neighbors of r.

The gauge theory Hilbert space is identical to that of the spin model, if we impose the

additional “hardcore” constraint err′ = 0, 1, with r in the A sublattice. Then we impose the relation

err′ = ηr(S
z
rr′ + 1/2), (3.3)

where we take Szrr′ ≡ Szr′r. This says that Ising spin configurations are the same as electric field

configurations. Gauss’ law then determines Qr, giving

Qr = ηr
(∑
r∈4

Szr − 1/2
)
, (3.4)

where 4 is the triangle whose center is r. We see that Qr is zero for triangles in an up-up-down

spin configuration, and measures the deviation of the total spin on a triangle from 1/2. In fact, we

included the background charge 2ηr in Gauss’ law in order to make this property hold.

To complete the mapping between the gauge theory and spin model, we write

S+
rr′ = exp

(
iηr(θr − θr′ + arr′)

)
, (3.5)

where again we take S+
rr′ ≡ S+

r′r. This formula has a simple interpretation, namely that S+
rr′ hops a

gauge charge between two neighboring sites of the honeycomb lattice.

Taking h = Jz for simplicity, which puts us at the center of one of the lobes of QKI, in terms
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r

r′′

r′

Figure 3.3: Illustration of how Ja and J⊥ terms can combine to give nearest-neighbor charge-two
hopping. Three different Ja coordinated hopping processes are shown. Two of these are shown
with red dashed arrows, one with green solid arrows. Acting in succession with the two red/dashed
processes gives a charge-one hopping from r′′ to r, the same process as the J⊥ term. Combining
this with the green/solid process then gives a charge-two hopping from r′′ to r′.
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of the gauge theory degrees of freedom the XYZh Hamiltonian becomes

Hgauge =
Jz
2

∑
r

n2
r + U

∑
r∈A

∑
r′∼r

(err′ − 1/2)2 (3.6)

− J⊥
∑
〈〈r,r′′〉〉

cos(θr − θr′′ + arr′ + ar′r′′)

− Ja
∑
〈〈r,r′′〉〉

cos(2θr′ − θr − θr′′ + ar′r + ar′r′′).

The sum in the latter two terms is over pairs of next-nearest neighbor honeycomb sites r, r′′, with r′

the site “in between” r and r′′ as shown in Fig. 3.2b,c. In order to obtain a useful effective theory,

we have softened the hardcore constraint on electric fields with the U term, which restores this

constraint in the limit U → ∞, where the original spin model is recovered. We see that the J⊥

term is a next-nearest neighbor hopping of gauge charges (Fig 3.2b). The Ja term is a coordinated

hopping, which moves unit charges from sites r and r′′ together into site r′ (Fig. 3.2c).

The coordinated Ja hopping can loosely be thought of as motion of a charge-two object.

As was suggested for very similar U(1) gauge theories on the pyrochlore lattice,[73] and in the

present context by CHM,[50] it is thus reasonable that Ja may drive condensation of a charge-two

field, while leaving single charge excitations gapped. Such a condensation breaks the U(1) gauge

structure down to Z2,[147] thus leading to a Z2 spin liquid.

We note that a nearest-neighbor charge-two hopping can indeed be generated from the Ja

hopping process, or from Ja and J⊥ processes together, as illustrated in Fig. 3.3. This motivates

us to introduce a charge-two field with number Nr and phase Θr, which represents a bound state

of two unit θr gauge charges. We add the following terms to the Hamiltonian:

δH = u2

∑
r

N2
r −∆

∑
r

cos(Θr − 2θr) (3.7)

− t2
∑
〈rr′〉

cos(Θr −Θr′ + 2arr′)−K
∑
7

cos((∇× a)7).

The first term is a repulsive interaction for the new charge-two field. The second term corresponds

to a process where two unit charges convert to a single double charge, and the third term is nearest-

neighbor hopping of double charges. The last term is a Maxwell term for the U(1) gauge field, where
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the sum is over honeycomb hexagons and (∇× a)7 is the discrete line integral of arr′ around the

perimeter of a hexagon. The discrete line integral of arr′ around the perimeter of a hexagon is

defined as

(∇× a)7 =
∑
rr′∈7
	 arr′ . (3.8)

The Maxwell term suppresses U(1) gauge fluctuations, and is the leading dynamical term generated

in degenerate perturbation theory when J⊥, Ja � Jz. While we do not work in that limit, the fact

that the Maxwell term is generated there makes it reasonable to add it explicitly to our effective

Hamiltonian. For consistency, we also redefine Qr ≡ nr + 2Nr in Eq. (3.2).

We now take the ∆ and t2 terms in δH to be large. The t2 term drives condensation of the

charge-two field, while ∆ is taken large for convenience. Provided K is sufficiently large, this drives

the system into the Z2 QSL phase and allows us to obtain an effective gauge theory describing it.

Taking t2 large and treating the cosine as a constraint, we have

arr′ =
1

2
Θr′ −

1

2
Θr + αrr′ , (3.9)

where αrr′ takes values 0, π. There is an ambiguity in multiplying a U(1) phase by 1/2, which is

the same as the ambiguity in defining the square root for complex numbers. We pick a branch by

associating a U(1) phase φ with the corresponding real number lying in the interval [−π, π), for

which multiplication by 1/2 is defined in the usual way.

The other effect of treating the t2 term as a constraint is that only operators commuting

with the term survive in the low-energy Hilbert space. In particular, err′ does not commute with

the constraint, but

σxrr′ ≡ exp(iπerr′) (3.10)

does, and becomes the Z2 electric field. We also define the Z2 vector potential σzrr′ ≡ exp(iαrr′),

which anticommutes with σxrr′ on the same link, justifying the Pauli matrix notation.

Similarly, taking ∆ large gives the constraint

θr =
1

2
Θr + tr, (3.11)
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where tr = 0, π and we define τ zr ≡ exp(itr). We also introduce τxr ≡ exp(iπnr), which, unlike nr or

Nr, commutes with the ∆ term.

To write the low-energy effective Hamiltonian, those terms commuting with the constraints

can straightforwardly be simplified using Eqs. (3.9,3.11). Terms not commuting with the constraint

need to be replaced by new terms acting within the low-energy Hilbert space. Rather than try to

determine those terms systematically, we simply write down the simplest such terms consistent

with symmetry (taking input from Sec. 3.3), and use physical arguments to further constrain the

corresponding parameters. The effective Hamiltonian is

Heff = −K
∑
p

Bp − J
∑
〈〈r,r′′〉〉

τ zr σ
z
rr′σ

z
r′r′′τ

z
r′′

− v
∑
〈rr′〉

σxrr′ − u
∑
r

τxr , (3.12)

where the first sum is over hexagonal plaquettes p and Bp ≡
∏

rr′∈p σ
z
rr′ . The first term is obtained

directly from the K term in δH, and the J term from the J⊥ and Ja terms of the original Hamil-

tonian. The latter two terms are the simplest symmetry-allowed terms giving dynamics to σzrr′ and

τ zr , in accord with the discussion above. The Z2 gauge constraint is obtained by exponentiating

Eq. (3.2) and is
∏

r′∼r σ
x
rr′ = τxr . It should be noted that the background U(1) gauge charge 2ηr has

dropped out.

We are free to choose u, v > 0 by making unitary transformations τx → −τx (σx → −σx)

to change the sign of u (v). Each of these transformations introduces a minus sign into the gauge

constraint, which becomes
∏

r′∼r σ
x
rr′ = ±τxr , with an undetermined sign that we now fix below by

a physical argument.

First, we need to describe the excitations of the Z2 spin liquid phase that the model enters

when K is sufficiently large compared to the other terms in Heff. This puts the Z2 gauge field in

its deconfined phase. There are two types of gapped excitations: spinons carrying the Z2 gauge

charge, and visons carrying the Z2 gauge flux. τx = −1 (+1) indicates the presence (absence) of a

spinon, so that u controls the spinon gap. Visons reside on hexagons with Bp = −1.

To fix the sign of the gauge constraint, we recall our expectation that a VBS state is the most
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likely possibility to occur adjacent to the Z2 spin liquid for Ja, J⊥ � Jz, based on the mapping to

the honeycomb quantum dimer model (see Sec. 3.1). We suppose that this VBS can be accessed

by condensation of either the spinons or visons of the Z2 spin liquid. In the same limit where VBS

occurs, spinons correspond to defect triangles that violate the up-up-down constraint, and thus

have a large energy gap. Therefore vison condensation is the only option to access the VBS.

We can integrate out spinons to obtain a pure Z2 gauge theory, keeping only the K and u

terms of Heff , with gauge constraint
∏

r′∼r σ
x
rr′ = ±1, corresponding to presence (−1) or absence

(+1) of a background gauge charge. It should be noted that this background charge has no direct

connection to the background charge 2ηr in the U(1) gauge theory. Visons reside on sites of the

dual triangular lattice (honeycomb hexagons), and feel a background charge as a π flux. With

zero flux, the minimum of the vison dispersion lies at the Γ point of the Brillouin zone, and we

expect visons to condense at zero momentum if v is made sufficiently large. This leads to a confined

phase without breaking lattice symmetry. On the other hand, visons hopping in background π flux

have degenerate dispersion minima at the zone corners (K points), so that lattice symmetries are

necessarily broken when large enough v drives their condensation, and the confined phase is a VBS.

Therefore we take the gauge constraint to be

∏
r′∼r

σxrr′ = −τxr . (3.13)

It should be noted that the presence of background Z2 gauge charge is a non-universal feature

of our effective theory, that in principle can be changed by tuning parameters (although it is not

clear which parameter to tune in the XYZh model to achieve this). If v is reduced and eventually

made negative, we can make a unitary transformation σxrr′ → −σxrr′ to again make the coefficient of

σx negative in Heff , and remove the background charge from Gauss’ law. This can be done while

remaining within the Z2 spin liquid phase, and can be thought of as simply reversing the sign of

the vison hopping matrix element. From this new point in parameter space of the Z2 spin liquid, it

is clearly possible to condense visons at zero momentum and enter a trivial phase. This shows that

a trivial quantum paramagnet is indeed possible in the XYZh model, although to access this phase
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it may be necessary to add additional symmetry-allowed terms to the Hamiltonian. We remark

that this situation is distinct from that occurring in effective theories for other Z2 spin liquids. For

instance, a gapped Z2 spin liquid in the S = 1/2 kagome Heisenberg model [with SU(2) symmetry]

necessarily has a background Z2 gauge charge, which is tied to the odd number of S = 1/2 moments

in each unit cell and to the impossibility of a trivial quantum paramagnet in such a model.[148]

We emphasize that the sign of the gauge constraint, as a non-universal property, does not

affect the presence of vison zero modes at disclinations.

3.3 Symmetry in the Z2 spin liquid

The symmetry group of the XYZh model is G = ZI2×ZT2 ×p6m, where ZI2 (generated by I) is

the Ising spin symmetry given by a π rotation about the z-axis in spin space, and p6m is the space

group of the kagome lattice. While the Zeeman field h breaks the usual time reversal symmetry for

spin systems, the XYZh Hamiltonian does enjoy a modified time reversal symmetry (ZT2 , generated

by T ) that leaves both Szr and S+
r invariant; this is the natural time reversal operation if we view

the XYZh model as a hardcore boson system.

Szr S±r θr nr arr′ err′

g Szg(r) S±g(r) εgθg(r) εgng(r) εgag(r),g(r′) εgeg(r),g(r′)
I Szr −S±r θr nr arr′ + π err′

T Szr S±r −θr nr −arr′ err′

- - τ zr τxr σzrr′ σxrr′
g - - τ zg(r) τxg(r) σzg(r),g(r′) σxg(r),g(r′)
I - - τ zr τxr −σzrr′ σxrr′
T - - τ zr τxr σzrr′ σxrr′

Table 3.1: Action of symmetry operations g, I, T on the operators of the spin model and U(1)
gauge theory (above double line), and Z2 effective gauge theory (below double line). Here g is an
element of the p6m space group and εg = +1 (−1) when g preserves (exchanges) the A and B
honeycomb sublattices. The transformations of Θr and Nr are the same as those of θr and nr.

Table 3.1 shows how the variables of the spin model and U(1) and Z2 gauge theories trans-

form under symmetry. Because θr and arr′ are not gauge invariant, there is a gauge arbitrariness

in choosing their symmetry transformations. We have made particular choices to simplify the dis-
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cussion of the effective Z2 gauge theory; it is possible to make other gauge-equivalent choices, but

this has no effect on the physics and does not lead to different possible effective theories. The

transformations in Table 3.1 can be obtained from the definitions of the operations quoted for spin

operators, by using the expressions that relate the U(1) and Z2 gauge theory variables to spin

operators and to one another.

With the symmetry transformations in hand, we can compute the action of symmetry on the

spinon and vison excitations of the Z2 spin liquid. Because these are fractional excitations, their

behavior under symmetry is an instance of symmetry fractionalization.[39, 149, 150, 151] By

computing the symmetry fractionalization of the spinons and visons, we characterize the Z2 spin

liquid as a symmetry enriched topological (SET) phase,[39, 149, 152, 153] which is a starting point

for determining its universal properties tied to symmetry.

To characterize the spinon and vison symmetry fractionalization, we first specify the sym-

metry group in terms of generators and relations. We choose generators I, T , Pd, Py, T1 and T2,

where the p6m generators are described graphically in Fig. 3.2a. The generators obey the relations

I2 = T 2 = IT IT = 1 (3.14)

(Pd)
2 = (Py)

2 = (PdPy)
6

= T1T2T
−1
1 T−1

2 = T1PyT
−1
1 Py = 1 (3.15)

T2 = PdT1Pd;T2Py = PyT1T
−1
2 . (3.16)

In addition, there are six more relations dictating that T and I commute with Pd, Py and T1 (it

then follows from the other relations that the internal symmetries also commute with T2). Taken

together, these relations completely specify the group multiplication.

We introduce operators Ie and Im, and similarly for the other generators, giving the action

of symmetry on spinons (e) and visons (m). These operators obey the same relations up to minus

signs, and the pattern of minus signs for all the relations specifies the symmetry fractionalization

of the corresponding excitation. The spinon and vison symmetry fractionalizations are computed

in Appendix 3.7. For the visons, we find that all the relations hold with positive signs; that is,
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the vison has trivial symmetry fractionalization. On the other hand, the spinon has non-trivial

symmetry fractionalization; we find

IeP ey = −P eyIe, (3.17)

while all other relations hold with a positive sign. This means that, acting on spinons, the Ising

symmetry anticommutes with space group operations that exchange the A and B sublattices, but

commutes with operations not exchanging the sublattices.

There have been many studies of Z2 spin liquids on the kagome lattice with continuous spin

symmetry, either U(1) spin rotations about the z-axis, or full SU(2) symmetry. It is interesting to

ask whether the QKI Z2 spin liquid is related to any of these states. In fact, it is impossible to start

with such a state, and obtain the QKI Z2 spin liquid by weak explicit breaking of the continuous

spin symmetry down to ZI2 . This is so because with continuous spin symmetry, the I operation can

be continuously deformed to the identity, so that Ie must commute with all the discrete symmetry

generators, which is not consistent with Eq. (3.17).

3.4 Vison zero modes at disclinations

Here, we consider disclination defects of the crystal lattice, and show that the Z2 QSL has

symmetry-protected zero modes bound to these defects. These zero modes are visons that cost

exactly zero energy as long as Ising symmetry is preserved. We describe observable signatures of

the vison zero modes that can be probed in future quantum Monte Carlo studies. We note that

very similar anyon zero modes at symmetry-flux defects of on-site symmetries, and also at lattice

dislocations, have been described previously in Ref. [154].

Figure 3.4 shows a π disclination centered at a hexagon. The disclination is a defect of the

lattice where points related by a π rotation at the disclination center are identified. Apart from

identifying points related by the π rotation, we focus on a special type of disclination where the

Hamiltonian density away from the disclination center is left unchanged, i.e. the Hamiltonian of

the XYZh model on every site and link is the same as in the defect-free system. Such a disclination
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b

c
a
′

×

k

k
′

Figure 3.4: π disclination at a hexagon center of the kagome lattice, with the dual honeycomb
lattice also shown. The disclination is a defect where the shaded region is cut out, and sites of
the remaining lattice that are related by a π rotation about the disclination center are identified.
Equivalently, rather than cut out the shaded region, we can simply identify all sites related by a
π rotation, such as the kagome sites k and k′. Similarly, the honeycomb site a is identified with
a′. The hexagonal honeycomb plaquette at the disclination center becomes a triangular plaquette
with sides ab, bc, ca′ ' ca.
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preserves the Ising symmetry. All of our results continue to hold for more generic π disclinations, as

long as Ising symmetry is preserved, and as long as the Hamiltonian density is unchanged in the far

field of the defect. Our results also hold for any disclination that identifies sites in the A sublattice

with sites in the B sublattice (i.e., for ±π/3 disclinations), but not for ±2π/3 disclinations that

preserve the bipartite structure of the honeycomb lattice.

We first consider the effect of a single disclination in an infinite plane, using the effective Z2

gauge theory of the Z2 QSL. We go to the exactly solvable point of Heff deep within the spin liquid

phase, by setting J = v = 0.3 At this point, the exact eigenstates are labeled by eigenvalues of

the commuting operators τxr and Bp, and the spinon and vison excitations do not propagate. We

observe that all hexagonal plaquettes remain locally unchanged, except for the hexagon pdis at the

disclination center, which becomes a closed loop of three links. This implies that Bpdis is odd

under the Ising symmetry, and in order to preserve Ising symmetry we must set the coupling Kdis

of this term to zero. Therefore, putting a vison at the core of the disclination costs zero energy,

and we have a pair of degenerate vison / no-vison states.

Remarkably, this vison zero mode is protected by the ZI2 Ising symmetry; this is unusual

because normally a unitary Z2 symmetry cannot lead to symmetry-protected degeneracies. To see

the symmetry protection, consider an effective 2 × 2 matrix Hamiltonian for the doublet of vison

/ no-vison states, Hdoublet = axσ
x + ayσ

y + azσ
z. az corresponds to Kdis and is forbidden by Ising

symmetry. The off diagonal terms ax and ay are also forbidden, because no local operator we might

use to perturb the Hamiltonian can create or destroy a vison and flip between σz eigenstates. The

doublet therefore remains degenerate as long as Ising symmetry is preserved – no other symmetries

are needed for its protection. While lattice rotation of the defect-free system plays an important

role, allowing us to introduce the disclination in the first place, it and other point group symmetries

are not needed to protect the zero mode.

We now turn to observable signatures of the vison zero modes. The degeneracy will be lifted

3 At this point, the gauge theory is equivalent to the exactly solvable point of the toric code model on the
honeycomb lattice. See Ref. [115] and Appendix 3.7.
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if the Ising symmetry is broken explicitly, because Kdis 6= 0 is then allowed. Returning to the

XYZh model, this can be achieved by adding a local transverse field

Htransverse = −
∑
r

hx(r)Sxr , (3.18)

where hx(r) non-zero only near the disclination center. This implies that disclinations contribute a

Curie term in the temperature dependence of the transverse spin susceptibility χxx(T ). Since only

the spins near the defect contribute to the Curie susceptibility, to detect this effect it is sufficient to

look at the local susceptibility of spins in some region near the disclination. Indeed, looking at the

local susceptibility is preferable to better separate bulk and impurity contributions to χxx(T ); away

from the disclination, χxx(T ) goes to a constant as T → 0. The Curie behavior should be observable

within a temperature range Tlow < T < Tgap, where Tgap is the lowest bulk energy gap of the XYZh

model in temperature units, and Tlow corresponds to the energy scale for interactions between vison

zero modes on nearby disclinations. Such interactions require visons to tunnel through the bulk

where they are gapped, and thus go to zero exponentially in the separation between disclinations.

The vison zero modes also have an interesting manifestation in entropy as measured by

heat capacity. We consider a finite system without boundary, which has an even number Ndis of

disclinations. Näıvely we might guess the total degeneracy is 2Ndis , but this is not correct due to

the constraint that the total number of visons in the system must be even. This means that the

total degeneracy is in fact 2Ndis−1. In principle, this should be observable in quantum Monte Carlo

by measuring the heat capacity in a small transverse field, and integrating the resulting Schottky

peak to obtain the entropy of (Ndis − 1) ln 2 associated with the gapless defect modes.

This latter signature is important, as it differentiates vison zero modes from a collection of

local doublets bound to disclinations (e.g. Kramers doublets), which would have a degeneracy of

2Ndis . Another way to differentiate these two scenarios would be to add perturbations, localized

near disclinations, breaking all symmetries except ZI2 .4 Adding such perturbations will gap out

local doublets (which cannot be protected by Ising symmetry alone), but will preserve the vison

4 Unfortunately, it appears impossible to break ZT2 while preserving ZI2 , without introducing a Monte Carlo sign
problem.
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zero modes. We note that the presence of local doublets can also be interesting. For example,

following Ref. [155], it can be shown that Kramers doublets bound to disclinations are a sign of a

non-trivial symmetry protected topological phase, protected by the combination of D6 point group

and time reversal symmetry.[156]

The vison zero modes should be thought of as a consequence of the symmetry fractionalization

of spinons and visons, and in particular of the non-trivial spinon symmetry fractionalization. We

make this connection indirectly: Any Z2 QSL in the same phase as the one described here can be

adiabatically continued so that it is described by the same effective theory and has robust vison zero

modes at disclinations, which are a property of the quantum phase. This Z2 QSL is characterized

as a SET phase by the spinon and vison symmetry fractionalization, and only the spinon symmetry

fractionalization is non-trivial, so by process of elimination it must be responsible for the vison zero

modes. For example, if we modified the action of Ising symmetry to be trivial on σx and σz, we

would obtain trivial symmetry fractionalization, and nothing would forbid Kdis 6= 0, so there would

be no vison zero modes. This argument is indirect, and it would certainly be desirable to have a

more direct and explicit connection between symmetry fractionalization and vison zero modes, as

obtained in Ref. [154] for on-site and translation symmetries. We have not currently made such a

connection, which we leave for future work.

3.5 Other properties of the Z2 spin liquid

Here we use our effective theory to discuss other properties of the Z2 QSL. Some of these

properties are likely challenging to test in quantum Monte Carlo, but may instead be accessible to

other numerical approaches.

First, we focus on direct consequences of the non-trivial spinon symmetry fractionalization

within the spin liquid phase. Every state in the single-spinon spectrum is at least doubly degenerate,

because a non-degenerate state is not consistent with anticommuting symmetry generators as in

Eq. (3.17). While the single-spinon spectrum cannot be directly probed, its degeneracies lead to

characteristic features in the two-spinon continuum. Previous works elucidated this structure in
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cases where translations have non-trivial commutation with other symmetry generators, and found

an enhanced periodicity of the two-spinon density of states in crystal momentum.[157, 158, 159]

Here, acting on a single spinon, translations commute with other generators. Nonetheless, similar

structure is present in the density of states, and can be resolved by point group and Ising quantum

numbers.

For simplicity, we focus on Py and I symmetries, and follow the analysis of Ref. [159]. We

consider a two-spinon scattering state |ψ〉, whose energy is such that single spinon excitations

cannot decay (this will always be true near the bottom of the two-spinon continuum). Without loss

of generality, we take |ψ〉 to be an eigenstate of Py and I, with eigenvalues σP = ±1 and σI = ±1,

respectively. The action of symmetry operations on |ψ〉 factorizes into a product of actions on the

two individual spinons, for example

Py|ψ〉 = P ey (1)P ey (2)|ψ〉. (3.19)

We then consider the effect on σP of transforming just one of the spinons by the Ising operation,

|ψ′〉 = Ie(1)|ψ〉. (3.20)

We have

Py|ψ′〉 = P ey (1)P ey (2)|ψ′〉 = −σP |ψ′〉, (3.21)

and we see that σP → −σP . Now, |ψ′〉 is an eigenstate with the same energy as |ψ〉, because Ie(1)

is a symmetry operation, and the two spinons do not interact in a scattering state. Similarly, we

can find a state of the same energy with σI → −σI .

This discussion can be summarized by defining NσP ,σI (ω) to be the density of two-spinon

scattering states with Py-eigenvalue σP and I-eigenvalue σI . We have shown that NσP ,σI (ω) is

independent of σP and σI . In particular, the low-energy threshold for the two-spinon continuum

is the same in all four symmetry sectors.

Another signature of the spinon symmetry fractionalization involves reduction to a one-

dimensional SPT state.[160, 161] We roll the system into a cylinder, so that Py acts effectively
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as an on-site symmetry of the one-dimensional system, i.e. it does not exchange two ends of the

cylinder. Then I and Py generate a Z2×Z2 on-site symmetry, which can protect a single non-trivial

SPT phase, the Haldane phase.[162, 163, 30, 31, 32, 33, 34, 35] In this phase, there are degenerate

end states acting on which I and Py anticommute, just as in Eq. (3.17). We consider two different

minimally entangled states (MES) of the Z2 spin liquid, that are related by creating a pair of

spinons and dragging them to opposite ends of the cylinder. Equivalently, we can start with one

MES and act on it with the string operator transporting a spinon along the cylinder. One of these

MES will be in the trivial Z2 × Z2 SPT phase, while the other will be in the Haldane phase, and

the difference can be detected via the entanglement spectrum.[31]

Now we turn to the properties of continuous quantum phase transitions that may occur

between the Z2 QSL and nearby conventional ordered phases. To access such a transition, we can

either condense spinons or visons. The particle that does not condense is gapped at the transition

and plays no role there.

To study condensation of visons, we integrate out gapped spinon degrees of freedom, which

reduces Heff to a pure Z2 gauge theory obtained from Eq. (3.12) by dropping the u and J terms,

and replacing the gauge constraint with
∏

r′∼r σ
x
rr′ = −1. Condensation of visons in this theory,

which is sometimes referred to as “odd” Z2 gauge theory, has been studied before in [[164, 165]].

The simplest possibility, which is driven by nearest-neighbor hopping of visons on the triangular

dual of the honeycomb lattice, is for visons to condense at the Brillouin zone corners (K points),

which can lead either to columnar or plaquette valence bond solid (VBS) order, depending on the

sign of an anisotropy term. The transition is in the XY universality class, where the physical VBS

order parameter is bilinear in the XY field. Ref. [165] also studied transitions to other types of

VBS states that can be driven by adding additional terms to the gauge theory.

In the present context, VBS order is likely for small Ja due to the mapping to the honeycomb

lattice quantum dimer model (see Fig. 3.1). If this order can be found in quantum Monte Carlo,

depending on the type of VBS order, there could be a continuous transition between the VBS and

Z2 QSL states.
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Turning to condensation of spinons, the first step is to integrate out the gapped vison degrees

of freedom. Before doing that, it is convenient to make a new gauge choice for the action of Ising

symmetry, where

I : σzrr′ → σzrr′ (3.22)

I : τ zr → −τ zr , r ∈ A (3.23)

I : τ zr → τ zr , r ∈ B. (3.24)

The difference from the form given in Table 3.1 is that we have “moved” (by gauge transformation)

the action of I from the gauge field to the matter fields. Integrating out visons corresponds to

freezing the magnetic fluctuations of the gauge field, so we set σzrr′ = 1, and drop the K and v terms

in Heff . The new gauge choice for Ising symmetry makes this procedure manifestly compatible with

the symmetries of the problem.

The effective theory thus becomes two decoupled transverse field Ising models, on the A and

B triangular sublattices of the honeycomb lattice. For simplicity, we assume J > 0 so that these

Ising models are ferromagnetic. The two Ising models will be coupled by other allowed terms not

included in Heff , as is easily taken into account upon passing to a continuum field theory. We

denote the continuum fields for the two Ising models by φA and φB. To construct a Lagrangian for

φA and φB, we need to discuss the action of microscopic symmetries. Both fields change sign under

global Z2 gauge transformations. On the other hand, φA changes sign under Ising symmetry while

φB is invariant. Some of the lattice symmetries (such as Py) exchange A and B sublattices, and

therefore take φA ↔ φB. Taking these symmetries into account, and working in 2 + 1-dimensional

Euclidean space time with coordinates µ = τ, x, y, the continuum Lagrangian is

L =
1

2

[
(∂µφA)2 + (∂µφB)2

]
+
m

2
(φ2
A + φ2

B) (3.25)

+ λ(φ2
A + φ2

B)2 + λ′φ2
Aφ

2
B. (3.26)

Here we have included all quadratic terms with two or fewer derivatives, and all quartic terms with

no derivatives.
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For λ′ = −2λ, L reduces to two decoupled φ4 field theories, which are constrained by sym-

metry to have the same parameters. One can contemplate an Ising × Ising transition, but the

φ2
Aφ

2
B coupling is relevant at this fixed point, so the Ising × Ising transition can only exist as a

multicritical point.

Setting instead λ′ = 0, we have a XY model. The λ′ term is a four-fold anisotropy that is

known to be irrelevant at the XY critical point (see [[166]] and references therein). This suggests

that there can be a continuous transition in the XY universality class between the Z2 QSL, where

〈φA〉 = 〈φB〉 = 0, and an ordered state with a φA, φB condensate. To establish this conclusively, it

would be necessary to consider allowed higher derivative terms and show they are irrelevant.

The nature of the ordered state depends on the sign of λ′. For λ′ > 0, the condensate can

take on four values, namely

〈φA〉 = ±φ0 , 〈φB〉 = 0 (3.27)

〈φA〉 = 0 , 〈φB〉 = ±φ0. (3.28)

The overall sign of the condensate is not physical, because it can be changed by a global Z2 gauge

transformation, so there are two distinct ground states. In this phase, Ising symmetry is preserved,

but those point group symmetries exchanging the A and B sublattices are broken. A microscopic

realization of this ordering pattern is a density wave of S+
r S

+
r′ on nearest-neighbor kagome bonds,

where 〈S+
r S

+
r′〉 = c± δ, with the positive (negative) sign on bonds contained in up-pointing (down-

pointing) triangles.

For λ′ < 0, up to Z2 gauge transformations there are two distinct states, with

〈φA〉 = ±〈φB〉. (3.29)

Here, Ising symmetry is broken, and all lattice symmetries are preserved, so this is the same fer-

romagnetic state observed by CHM in the XYZh model.[50] There, a first-order transition was

found between the QKI regime and the ferromagnetic state. Our analysis suggests that this tran-

sition could potentially be made continuous, and in the XY universality class, by some suitable

modification of the XYZh model.
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3.6 Discussion

In this paper, we derived an effective Z2 gauge theory to explore the hypothesis that the QKI

state observed in the XYZh model is a Z2 QSL.[50] In addition to other properties, we found that

lattice disclination defects in the Z2 QSL host vison zero modes, which lead to striking observable

signatures in the spin susceptibility and entropy. It would be exciting if these predictions can be

tested in future numerical studies of the XYZh model.

The possibility of anyon zero modes at symmetry defects, including flux defects of on-site

symmetries and lattice dislocations, has already been pointed out in Ref. [154]. However, it appears

that little attention has been given to such phenomena so far. In part because anyon zero modes

can give rise to striking observable consequences, as we discussed here, further work on this topic

may be worthwhile.

3.7 Computation of spinon and vison symmetry fractionalization

In the main text, symmetry fractionalization was described in terms of operators giving the

action of symmetry on a single spinon or vison. For exactly solvable toric code type models, such

operators can be explicitly constructed, and used to compute the symmetry fractionalization of

spinons and visons.[167] Here, using the fact that the QKI Z2 spin liquid has a solvable point that

is equivalent to a toric code model, we compute the symmetry fractionalization, largely following

Ref. [167].

The Z2 gauge theory Heff of Eq. (3.12) is exactly solvable when J = v = 0, because Bp

and τxr commute with Heff and form a complete set of commuting operators. To make contact

with Ref. [167], we now exploit the well-known mapping between Z2 gauge theories and toric code

models,[115] which maps the solvable point of the gauge theory to a solvable toric code.

The toric code Hilbert space has a single Ising spin on each link of the honeycomb lattice,

for which we write Pauli operators µzrr′ , µ
x
rr′ . The Hilbert space is a tensor product of single-spin

Hilbert spaces; there are no gauge constraints. The mapping between gauge theory and toric code
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Hilbert spaces is given by

µzrr′ = τ zr σ
z
rr′τ

z
r′ (3.30)

µxrr′ = σxrr′ . (3.31)

It follows that

τxr = −
∏
r′∼r

µxrr′ , (3.32)

where we used the gauge constraint Eq. (3.13). From these mappings and TABLE. 3.1, it is

straightforward to determine the action of symmetry on µzrr′ and µxrr′ . We have

g : µx,zrr′ → µx,zg(r),g(r′) (3.33)

T : µx,zrr′ → µx,zrr′ (3.34)

I : µzrr′ → −µzrr′ (3.35)

I : µxrr′ → µxrr′ , (3.36)

where g is a p6m space group operation.

The gauge theory Hamiltonian Heff maps to the toric code Hamiltonian

H̃toric = u
∑
r

Ar −K
∑
p

Bp, (3.37)

where Ar ≡
∏

r′∼r µ
x
rr′ and Bp =

∏
rr′∈p µ

z
rr′ . The only difference from the usual toric code on the

honeycomb lattice is the sign of the Ar term. We can change this sign by making a basis change,

using the unitary transformation U =
∏

rr′ µ
z
rr′ , which sends µx → −µx, and results in

Htoric = −u
∑
r

Ar −K
∑
p

Bp. (3.38)

The action of the symmetry operations on the Pauli operators remains unchanged in the new basis.

To summarize, we have mapped the problem to the usual toric code model on the honeycomb

lattice. Space group and time reversal act in a trivial way on Pauli operators, but Ising symmetry

acts non-trivially on µz. We can therefore anticipate that the subgroup p6m×ZT2 has trivial sym-

metry fractionalization for both spinons and visons, and that any non-trivial part of the symmetry
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fractionalization must involve the Ising symmetry. We now outline a more detailed calculation of

the symmetry fractionalization, which confirms this expectation.

Before describing the calculation, we first give a more detailed description of what is meant by

the spinon (“e-particle”) symmetry fractionalization.[149] (The description for visons is identical.)

The generators (I, T , Pd, Py, T1 and T2) and relations of the symmetry group are described in

Sec. 3.3. We introduce operators Ie, T e, P ed , P ey , T e1 and T e2 giving the action of each generator on

a single spinon. These operators obey the same relations as in the symmetry group, but only up

to Z2-valued phase factors. That is,

(Ie)2 = σeI , (T e)2 = σeT (3.39)

IeT eIeT e = σeIT (3.40)

(P ed )2 = σepd,
(
P ey
)2

= σepy (3.41)(
P edP

e
y

)6
= σepdpy (3.42)

T e1T
e
2T

e−1
1 T e−1

2 = σet1t2 (3.43)

T e1P
e
yT

e−1
1 P ey = σet1py (3.44)

T e1IeT e−1
1 Ie−1 = σet1I (3.45)

P edIeP e−1
d Ie−1 = σepdI (3.46)

P eyIeP e−1
y Ie−1 = σepyI (3.47)

T e1T eT e−1
1 T e−1 = σet1T (3.48)

P edT eP e−1
d T e−1 = σepdT (3.49)

P eyT eP e−1
y T e−1 = σepyT (3.50)

T2 = PdT1Pd (3.51)

T2Py = PyT1T
−1
2 . (3.52)

Here, each σe parameter can be either +1 or −1. The generators can be redefined by a minus sign

without affecting any physical properties; for example, T e1 → −T 1
e is an allowed redefinition. The

σe parameters are invariant under such redefinitions, and specifying all 14 σe’s gives the spinon
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fractionalization class, which is an element of H2(G,Z2) ' (Z2)14. The last two relations have no

σe parameters because the generators can be suitably redefined to remove any phase factors.

We find that all the σe’s are unity, except σepyI = −1. Since Py is the only p6m generator

that exchanges the A and B honeycomb sublattices, it follows that Ie anticommutes with precisely

those p6m operations exchanging the two sublattices, while it commutes with operations taking

A to A and B to B. For the vison, we find that all the σ parameters are unity; that is, the vison

fractionalization class is trivial.

We now describe how the spinon symmetry fractionalization is computed. We omit the

computation of the vison symmetry fractionalization, as it can be straightforwardly obtained by

the same means. We first follow Ref. [167] to obtain the σe’s involving only unitary operations. We

then determine the σe’s involving time-reversal by a different argument.

In the ground state of the toric code, Ar = 1, and spinons reside at honeycomb sites with

Ar = −1. To create a pair of spinons at r1 and r2, we act on the ground state with a string operator

Les, where s is a path of links on the lattice joining r1 and r2, and Les is a product of µzrr′ over

this path. Such string operators also transport a spinon from one site to another. We consider

two-spinon states

|ψe(s)〉 = Les|ψ0〉, (3.53)

where for simplicity we assume the ground state |ψ0〉 is invariant under all symmetry operations.

The state |ψe(s)〉 only depends on the endpoints of the path s.

We let g be a unitary element of the symmetry group, realized by the operator Ug. Ref. [167]

showed that we can find operators U eg (r) giving the action of g on the spinon at r, satisfying

Ug|ψe(s)〉 = U eg (r1)U eg (r2)|ψe(s)〉. (3.54)

In general,

U eg (r) = fg(r)Lesg(r), (3.55)

where fg(r) ∈ {±1}, and sg(r) is a path joining r to g(r). Only the action of U eg (r) on states of

the form |ψe(s)〉 is of any consequence, and different choices of U eg (r) having the same action are
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considered equivalent. For the toric code model we are considering here, the choice of path sg(r)

(for fixed endpoints) does not affect the action of U eg (r) on |ψe(s)〉, so we can completely specify

U eg (r) by fg(r).

It was shown in Ref. [167] that the operators U eg (r) have a unique action on states |ψe(s)〉

up to projective transformations U eg (r) → λ(g)U eg (r), where λ(g) ∈ {±1}. Working in terms of

generators and relations, these transformations simply express the freedom to redefine U eg (r) by a

minus sign for g a generator.

The σe parameters can then be calculated by acting with appropriate products of U eg (r) on a

state |ψe(s)〉. For example, to calculate σepy, we write

U ePy [Py(r1)]U ePy(r1)|ψe(s)〉 = σepy|ψe(s)〉, (3.56)

and evaluate the left-hand side.

As mentioned above, the operators U eg (r) are completely specified by fg(r). It is not difficult

to see that

fg(r) = 1, (3.57)

for g any space group operation, including the generators T1, T2, Py and Pd. For the Ising symmetry,

we have

fI(r) =

 +1, r ∈ A

−1, r ∈ B

. (3.58)

With this information, it is straightforward to follow the prescription described above and determine

all the σe parameters not involving time reversal. We find that they are all equal to unity except

σepyI = −1.

It would not be difficult to extend the formalism of Ref. [167] to incorporate time reversal,

but to maximize efficiency and minimize the introduction of new formalism, we use a different set

of arguments to determine the remaining five σe parameters involving T . All of these parameters

are associated with particular symmetry-protected degeneracies in the single-spinon spectrum that

we now show are not present.
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First, we consider σeT . If this parameter were −1, spinons would be Kramers doublets, but

a spinon localized on the lattice site r is clearly non-degenerate, implying σeT = 1. Similarly, we

must also have σeIT = 1, since otherwise Ie and T e would anticommute, and a spinon localized to

r would have at least a two-fold degeneracy.

The remaining σe parameters involving time reversal are σet1T , σepdT and σepyT . These param-

eters involve the space group generators, which in general are not symmetries of a spinon localized

at r. Instead, it is convenient to consider single-spinon plane wave states. We perturb the toric code

Hamiltonian by adding δH = −h̃∑rr′ µ
z
rr′ , which breaks ZI2 but preserves p6m× ZT2 . This term is

a nearest-neighbor hopping for spinons, and results in a spinon dispersion with a non-degenerate

minimum at k = 0. If any of σet1T , σepdT or σepyT were equal to −1, time reversal would anticommute

with some space group operations, which is inconsistent with having a non-degenerate single-spinon

energy eigenstate. Therefore, all of the σe parameters involving time reversal are equal to +1.

3.8 Conclusion and future work

The gauge theory description gives some hints to the physics of anisotropic exchange. How-

ever, it is certainly interesting to study the anisotropic exchange further since it is the simplest

term to capture the spin-orbit coupling effect for the pseudo-spin model.

Furthermore, it will be interesting to combine numerical methods to search Z2 topological

order in the parameter space and find vison zero modes.



Chapter 4

High-energy electronic excitations in Sr2IrO4 observed by Raman scattering1

The two most relevant energy scale for strongly correlated electrons are the bandwidth t and

the onsite U which capture the Coulomb interaction between electrons. The competition between

the two energy scale leads to various interesting phenomena such as metal-insulator transition[168],

superconductivity[169], Kondo effects[170] ... e.t.c. The 3d transition metal oxides are the ideal

playground to study the correlated electrons and have been extensively studied for decades.

On the other hand, the discovery of topological insulator exhibits the non-trivial physics

emerges from strong spin-orbit coupling (SOC). SOC is a relativistic effect which entangles the

orbital and spin wave function. It scales as Z4, where Z is the atomic number. SOC is usually

considered as a small perturbation in 3d transition metal oxides. However, for heavy elements, the

quantitative change in SOC could lead to striking qualitative effect.

The two research topics come together in the heavy transition metal compounds with 4d or

5d ions[52]. As the atomic number increases, the SOC coupling increases. On the other hand,

because the orbital wave function is more and more extended, the Coulomb repulsion reduces as

the atomic number increases. It turns out in 4d and 5d transition metal compounds, the three

energy scale, bandwidth t, on-site U and the SOC λ are all relevant. Thus, in search of new phases

of matter, heavy element compound such as iridates plays an important role.

The Sr2IrO4 is one of the materials that attracts much attention due to the unusual effect of

1 This section has been published as a portion of Jhih-An Yang, Yi-Ping Huang, Michael Hermele, Tongfei Qi,
Gang Cao, and Dmitry Reznik, Phys. Rev. B 91, 195140,[51] copyright 2015 American Physical Society, and is
reproduced here in accord with the copyright policies of the American Physical Society.
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SOC. The material is an insulator. According to DFT calculation, it is necessary to include SOC

to open the band gap using reasonable parameters. Sr2IrO4 is thus considered as a SOC-induced

insulator[78]. In addition to the non-trivial effect of SOC, Sr2IrO4 has a local electronic configu-

ration that reminiscent the electronic configuration of cuprates which is the mother compound of

the high-Tc superconductor[171]. The Raman experiment on this material will be useful for future

experimental or theoretical studies.

In this project, the Raman spectroscopy found two peaks with distinct polarization signals

which cannot be described by simple selection rules of magnon or phonon. We would like to

understand what the observed Raman signal suggest about the electronic structure. We propose two

possible excitations that could be responsible for the observed signal. Both of them are electronic

excitation. One scenario corresponds to onsite d-d transitions between different crystal field levels

and the other scenario corresponds to the inter-site electronic transition between an onsite wave

function and a cluster state. From the observed selection rule, the onsite d-d transition should also

contribute to polarization A2g and B2g. The fact that those component are not observed suggest

the second scenario is a more nature explanation. However, from the symmetry analyze, we cannot

rule out the possibility that the electronic transitions contribute to A2g and B2g polarization are

not forbidden by symmetry but with a small cross-section. To finalize the answer, we need more

experiments in the future. The theoretical ideas that are essential to derive the above physical

picture will be explained in the following sections.

4.1 Experimental facts

From the data measured by Yang. The high-energy Raman peak is observed in xx(A1g+B1g),

x′x′(A1g +B2g) and x′y′(A2g +B1g) channel. As shown in FIG. 4.1 The Raman peak is absent in

A2g +B2g channel. Looking at the data more carefully, the big Raman peak at xx is actually two

different peak separated by 10meV with A1g peak at 690 meV and B1g peak at 680 meV. Here,

the representation are the irreducible representation of D4h point group.

This big Raman signal is also observed in cuprate[172]. The charge transfer gap in cuprate
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Figure 4.1: Raman spectra with incident laser wave-length 457.9 nm in four different scattering
configurations measured at 10 K. Broad peaks around 5600 cm1 are electronic (see text) and peaks
around 1400 cm1 are two-phonon scattering. xx probes A1g + B1g symmetry, x’x’(A1g + B2g),
x’y’(B1g +A2g), xy (B2g +A2g).
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Figure 4.2: Raman spectra with different excitation energies in xx, x’x’, and x’y’ scattering con-
figurations. The A1g and B1g peaks keep their positions at different laser energies, indicating that
these peaks are real Raman signals. The spectra were normalized to the same power of incident
lasers.
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is 1.7 ∼ 2eV . The onsite U is about 5eV . Since this big Raman peak is also observed in iridate, it

is nature to ask in what aspects the cuprate and iridate are similar such that we can see this big

Raman peak in both materials?

4.2 The crystal structure: space group and corresponding point group.

4.2.1 Space group of the material

There are several experiments about the determination of this material. However, we assume

the essential structure for our modeling to be of the space group 142 and the corresponding point

group to be D4h [173]. The corresponding structure is shown in FIG. 4.2.1. There are three

positions for oxygen ion. The ratio between O1 and O2 is 861:139.

However, the site symmetry which is the symmetry that leaves the site invariant will have

lower symmetry than the corresponding point group, D4h, of the space group. In this material, the

bending of bond angle lowers the symmetry from D4h to C4h.

Here, we describe the symmetry elements explicitly. D4h had C4z and C2z rotation along

z-axis. C2x, C2y rotation along local x and y-axes. C2xy and C2xȳ rotation along local (1, 1, 0)

and (1,−1, 0) axis and inversion, I. The rest elements are the combination of the operation IC2x,

IC2xy, IC2z, IC2zC4z.

C4h is the sub group of D4h without group elements C2x, C2y, C2xy and C2xȳ.

4.2.2 Crystalline electric field(CEF)

The iridium is surrounded by octahedral crystal field withD4h distortion due to the elongation

along c-axis. The distortion of CEF can be captured by three independent parameter B4, B0
2 and

B0
4 [75].

Htetra = B4

(
O0

4 + 5O4
4

)︸ ︷︷ ︸
cubic

+B0
2O

0
2 +B0

4O
0
4︸ ︷︷ ︸

tetragonal

+48B4 + 48B0
4 + 3B0

2 , (4.1)
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Figure 4.3: (a) Top view.(b) Side view. The red circle denote the most probable oxygen location.
The orange oxygen is the defect of oxygen.

Figure 4.4: The space group structure. To show the structure explicitly, we label some sites. The
site 1 ∼ 5 are related by four fold screw axis with x = y = 0.5. 0 to 1 is by glide a, 0 to 2 by glide
c, 0 to 6 by glide d. Thus, the space group is I41/acd.



77

where the operators O are composed of orbital angular momentum operators

O0
4 = 35L4

z − 30L(L+ 1)L2
z + 25L2

z − 6L(L+ 1) + 3L2(L+ 1)2

O4
4 =

1

2

(
L4

+ + L4
−
)

O0
2 = 3L2

z − L(L+ 1)

O2
2 =

1

2

(
L2

+ + L2
−
)
. (4.2)

The constant shift is just a redefinition of zero energy orbitals to be yz, zx. If we project the angular

momentum operators into the d orbitals, and arrange our basis by yz, zx, xy, 3z2 − r2, x2 − y2, the

angular momentum are represented by

Lx =



0 0 0 −i
√

3 −i

0 0 i 0 0

0 −i 0 0 0

i
√

3 0 0 0 0

i 0 0 0 0


,

Ly =



0 0 −i 0 0

0 0 0 i
√

3 −i

i 0 0 0 0

0 −i
√

3 0 0 0

0 i 0 0 0


,

Lz =



0 i 0 0 0

−i 0 0 0 0

0 0 0 0 2i

0 0 0 0 0

0 0 −2i 0 0


. (4.3)
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For future convenience, we redefine the parameters

∆ = 9B0
2 + 60B0

4

∆′ = 12B0
2 − 60B0

4

120B4 = 10Dq, (4.4)

whereB4 control the Eg and T2g energy splitting and ∆,∆′ are the parameters control the tetragonal

distortion.

Htetra =



0 0 0 0 0

0 0 0 0 0

0 0 ∆ 0 0

0 0 0 ∆−∆′ + 120B4 0

0 0 0 0 ∆ + 120B4


(4.5)

The relation between CEF and SOC are represented in Fig.4.5. According to experimental evidence

Figure 4.5: (a)Cubic(Oh) CEF.(b)Tetragonal distorted(D4h) CEF. (c)Tetragonal distorted
CEF(D4h)+SOC.(d)C4h CEF+SOC (e) Cubic(Oh) CEF+ SOC

which suggest ∆ ∼ 0.075eV, λ ∼ 0.4eV [174], ∆′ ∼ 2eV and 120B4 ∼ 4eV [175]. For Ir4+ which had

valence electron configuration 5d5, the filled state will be in Γ+
7 for tetragonal distorted CEF and

SOC are considered.
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4.2.3 t2g orbital splitting with spin-orbit coupling and tetragonal distortion(D4h).

If we assume the eg orbitals are completely decoupled with t2g orbitals, we can diagonalize

the spin-orbit coupling and tetragonal crystal field distortion analytically at the same time.

Within the t2g Hilbert space, we can write down the tetragonally distorted crystal field as

Htetra =

 1 0

0 1

⊗


0 0 0

0 0 0

0 0 ∆

 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 ∆ 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 ∆


. (4.6)

Here, ∆ represent the energy splitting between xy and yz, zx orbitals and should not be confused

with the 10Dq splitting. The orbital basis of this representation is arranged as yz, zx, xy. The

spin basis is arranged as +,−. In order to make our expression consistent with other notation, we

change basis as

|0̃〉 = idxy

| ± 1̃〉 =
1√
2

(∓idyz + dzx) . (4.7)

Under this basis, the fictitious angular momentum operator can be represented as

lx =


0 0 1√

2

0 0 1√
2

1√
2

1√
2

0

 ; ly =


0 0 − i√

2

0 0 i√
2

i√
2
− i√

2
0

 ; lz =


1 0 0

0 −1 0

0 0 0

 . (4.8)
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The spin-orbit interaction can thus be written as HSOC =
∑

i−λsi ⊗ li.

HSOC =



−λ
2 0 0 0 0 0

0 λ
2 0 0 0 − λ√

2

0 0 0 − λ√
2

0 0

0 0 − λ√
2

λ
2 0 0

0 0 0 0 −λ
2 0

0 − λ√
2

0 0 0 0


(4.9)

The complete single particle Hamiltonian is

H = HSOC +Htetra =



−λ
2 0 0 0 0 0

0 λ
2 0 0 0 − λ√

2

0 0 ∆ − λ√
2

0 0

0 0 − λ√
2

λ
2 0 0

0 0 0 0 −λ
2 0

0 − λ√
2

0 0 0 ∆


. (4.10)

The full Hilbert space is arranged as 1̃,+;−1̃,+; 0̃,+; 1̃,−;−1̃,−; 0̃,−. Or

H =



0 iλ
2 0 0 0 −λ

2

−1
2(iλ) 0 0 0 0 iλ

2

0 0 ∆ λ
2 −1

2(iλ) 0

0 0 λ
2 0 −1

2(iλ) 0

0 0 iλ
2

iλ
2 0 0

−λ
2 −1

2(iλ) 0 0 0 ∆


. (4.11)

with basis choice yz,+; zx,+;xy,+; yz,−; zx,−, xy,−. The eigenvectors that diagonalize H can
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be parameterized by ∆
λ . Here we define some functions for our future convenience.

f(p) =
√

(1− 2p)2 + 8− (1− 2p)

sinδ =
f(∆

λ )√
f(∆

λ )2 + 8

cosδ =
2
√

2√
f(∆

λ )2 + 8

(4.12)

The eigenvectors can be written as

|AΓ+
7 ,+
〉

|AΓ+
7 ,−
〉

|BΓ+
7 ,+
〉

|BΓ+
7 ,−
〉

|CΓ+
6 ,+
〉

|CΓ+
6 ,−
〉



=



0 ei(a+a′) cos(δ) 0 0 0 −ei(a+a′) sin(δ)

0 0 eia sin(δ) −eia cos(δ) 0 0

0 −iei(b+b′) sin(δ) 0 0 0 −iei(b+b′) cos(δ)

0 0 −ieib cos(δ) −ieib sin(δ) 0 0

−iei(c+c′) 0 0 0 0 0

0 0 0 0 −ieic 0





|+ 1̃,+〉

| − 1̃,+〉

| 0̃,+〉

|+ 1̃,−〉

| − 1̃,−〉

| 0̃,−〉



=



iei(a+a′) cos(δ)√
2

ei(a+a′) cos(δ)√
2

0 0 0 −iei(a+a′) sin(δ)

0 0 ieia sin(δ) ieia cos(δ)√
2

− eia cos(δ)√
2

0

ei(b+b
′) sin(δ)√

2
− iei(b+b

′) sin(δ)√
2

0 0 0 ei(b+b
′) cos(δ)

0 0 eib cos(δ) − eib sin(δ)√
2

− ieib sin(δ)√
2

0

− ei(c+c
′)

√
2

− iei(c+c
′)

√
2

0 0 0 0

0 0 0 eic√
2

− ieic√
2

0





|yz,+〉

|zx,+〉

|xy,+〉

|yz,−〉

|zx,−〉

|xy,−〉


(4.13)
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D4h E C4z C2z C2x C2xy I T
Γ+
1 1 1 1 1 1 1 1

Γ+
3 1 -1 1 1 -1 1 -1

Γ+
6

(
1 0
0 1

) (
w 0
0 w∗

) (
i 0
0 −i

) (
0 −i
−i 0

) (
0 w
−w∗ 0

) (
1 0
0 1

) (
0 −1
1 0

)
Γ+
7

(
1 0
0 1

) (
−w 0
0 −w∗

) (
i 0
0 −i

) (
0 −i
−i 0

) (
0 −w
w∗ 0

) (
1 0
0 1

) (
0 −1
1 0

)
Γ−
5

(
1 0
0 1

) (
i 0
0 −i

) (
−1 0
0 −1

) (
0 i
−i 0

) (
0 −1
−1 0

) (
−1 0
0 −1

) (
0 1
1 0

)
Γ−
6

(
1 0
0 1

) (
w∗ 0
0 w

) (
−i 0
0 i

) (
0 1
−1 0

) (
0 w
−w∗ 0

) (
−1 0
0 −1

) (
0 −1
1 0

)
Γ−
7

(
1 0
0 1

) (
−w∗ 0

0 −w

) (
−i 0
0 i

) (
0 −1
1 0

) (
0 w
−w∗ 0

) (
−1 0
0 −1

) (
0 −1
1 0

)

Table 4.1: The double group representation for D4h point group. w = 1+i√
2

with eigenenergies

EA =
1

4

(
2∆ + λ+

√
(2∆− λ)2 + 8λ2

)
EB =

1

4

(
2∆ + λ−

√
(2∆− λ)2 + 8λ2

)
EC = −λ

2
. (4.14)

Here, we use A,B,C to represent different doublets. For Ir4+, we focus on A doublets.

If Γ+
6 had the energy between the two Γ+

7 , we require (EC − EA) (EC − EB) < 0. After some

algebra, that corresponds to the constraint ∆λ < 0.

Here, the phase factors, a, a′, b, b′, c, c′(prime are the relative phase factors),are defined such

that time-reversal operator can be written as T = −iσ2K. The time-reversal operator is represented

as  0 e−i(2b+b
′)

−e−i(2b+b′) 0

 . (4.15)

We choose a = 0,b = c = π
2 , a′ = π, b′ = c′ = 0 as our phase choice.

Under the phase convention, the relevant representation of D4h can be constructed(Table

4.1).

Note that, the subscript Γ+
6 and Γ+

7 labeled how the states transform under symmetry. The

reason we emphasize this is because the confusion when we truncated the eg orbitals. When only

t2g orbitals are considered, the matrix element of REAL angular momentum operator just looks like

the l = 1 angular momentum operator with an additional minus sign, Lt2g = −Ll=1. That helps
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us to label the spin-orbital wave function by jeff . However, this labeling is sometimes confusing.

The real wave function transform according to |t2g〉 ⊗ |s = 1
2〉 ≡ −|l = 1〉 ⊗ |s = 1

2〉. In

most literature, they use |jeff 〉 = |l = 1〉 ⊗ |s = 1
2〉 = |jeff = 3

2〉 ⊕ |jeff = 1
2〉 to label the

states. However, the minus sign is important when considering the representation. We should

keep in mind that the symmetry operation representation constructed by the jeff had a minus

sign difference with how the state really transform. For example, the real C4 rotation should

be constructed as −〈jeff |exp [iθjeff ] |jeff 〉 instead of 〈jeff |exp [iθjeff ] |jeff 〉. Thus, in the jeff

notation, |jeff = 1
2 ,±1

2〉 and |jeff = 3
2 ,±1

2〉 actually did not transform according to real spin.

Instead, it is |jeff = 3
2 ,±3

2〉 transform as real spin. (Note that in the definition we have the minus

sign. However, the definition of C2 should be consistent with the definition of C4 which is C4.C4,

and the extra minus sign is canceled.)

4.2.4 t2g orbital splitting with spin-orbit coupling and C4h site symmetry consid-

ered.

Within the t2g orbitals, the C4h CEF can be parameterized by

HC4h
=


δ1 0 0

0 δ1 0

0 0 δ2.

 (4.16)

Here, the basis is ordered as yz, zx, xy. The matrix is constrained by the time-reversal and C4z

operation. For the d orbitals, under C4z constrain

HC4h
=



δ1 iδ′1 0 0 0

−iδ′1 δ1 0 0 0

0 0 δ2 0 ∆5

0 0 0 δ3 0

0 0 ∆∗5 0 δ4


. (4.17)



84
C4h C4z C2z

Γ+
5 w i

Γ+
6 w∗ −i

Γ+
7 −w i

Γ+
8 −w∗ −i

Table 4.2: Relevant irreducible representation of C4h. Here w = exp[iπ4 ].

Here, all δi are real parameters, ∆5 can, in general, be a complex number. Once time-reversal

symmetry is considered

HC4h
=



δ1 0 0 0 0

0 δ1 0 0 0

0 0 δ2 0 δ5

0 0 0 δ3 0

0 0 δ5 0 δ4


, (4.18)

we need only five real parameters to describe the C4h crystal fields. However, if we truncated the

Hilbert space into t2g manifold, the system did not have the ability to distinguish D4h and C4h

crystal field environment. The only method for dxy orbital to notice the difference between D4h

and C4h is through the coupling with dx2−y2 orbitals. Here, 10Dq ∼ 4eV . The influence of C4h

environment is relevant only when δ5 ∼ 4eV . In our system, it is very unlikely to happen. Thus,

we will have the conclusion that the influence of C4h crystal field effectively change the relative

energies of xy and yz, zx orbitals without changing the symmetry properties of the wave function

significantly. Thus, the effects of C4h environment on t2g orbitals is to renormalize

the value of ∆ without changing the wave function symmetry properties from D4h

irreducible representation significantly.

4.3 On-site electronic Raman effect- group structure and selection rule

In FIG.4.5, we see that the local levels have different schemes of separation. The various

schemes of separation correspond to different selection rules for the electron Raman scattering.

Here we will consider the simplified case without bond angle distortion first. In that case, the site
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symmetry is consistent with the point group D4h. We develop the corresponding selection rule for

D4h point group first. The situation with C4h will be considered later.

4.3.1 Tetragonal distorted cubic CEF(D4h) and selection rule

For tetragonal distorted CEF, d orbitals will split into doublets which transform according

to irreducible representation Γ+
6 or Γ+

7 of D4h point group. The initial and final state for electron

Raman scattering can be described as the FIG. 4.6.

Next, we consider the possible transition and the corresponding polarization. The lowest and

the fourth doublet transform according to Γ+
6 , others transform according to Γ+

7 . Therefore, the

Γ+
7 → Γ+

7 are (a)(c)(h), Γ+
7 → Γ+

6 are (b)(g), Γ+
6 → Γ+

7 are (d)(f), Γ+
6 → Γ+

6 are (e). According to

the Koster’s table[81]

Γ+
7 × Γ+

7 = Γ+
1 + Γ+

2 + Γ+
5

Γ+
7 × Γ+

6 = Γ+
3 + Γ+

4 + Γ+
5

Γ+
6 × Γ+

6 = Γ+
1 + Γ+

2 + Γ+
5

(4.19)

The corresponding polarization are

Γ+
1 (A1g) =


a 0 0

0 a 0

0 0 b

 ; Γ+
2 (A2g) =


0 c 0

−c 0 0

0 0 0

 ; Γ+
3 (B1g) =


d 0 0

0 −d 0

0 0 0



Γ+
4 (B2g) =


0 e 0

e 0 0

0 0 0

 ; Γ+
5 (Eg) =


0 0 f

0 0 0

g 0 0




0 0 0

0 0 f

0 g 0

 . (4.20)

When time-reversal symmetry is considered, only Γ+
1 (A1g) and Γ+

3 (B1g) component are allowed.

The derivation of those matrices is in the appendix 4.5.1.
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Figure 4.6: Different initial and final state for electron Raman scattering. The doublets are arranged
according to FIG. 4.5 (c).
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From above relation, we know those electron transitions should produce peaks that are ob-

servable at the specific polarization. For example, the Γ+
7 ,Γ

+
7 transition should produce a peak

that contains Γ+
1 component. The polarization dependence of the single-ion cross section without

z direction can be obtained from reference.

Γ+
7 → Γ+

7 : |a (exse
x
i + eyse

y
i ) |2

Γ+
6 → Γ+

7 : |d (exse
x
i − eyseyi ) |2 (4.21)

In the experiments, we have xx,x′x′,xy,x′y′ where ex = (1, 0, 0), ey = (0, 1, 0), ex′ = ( 1√
2
, 1√

2
, 0), ey′ =

(− 1√
2
, 1√

2
, 0). Hence, the experiments should be able to be described by those parameters

xx : |a|2 + |d|2

x′x′ : |a|2

xy : 0

x′y′ : |d|2. (4.22)

However, this symmetry argument just gives the possible selection rule but did not provide

the relative amplitude of those components. To estimate the relative intensity we need to do more

detailed calculation. Only processes (a)(d) fit into the right energy window. (a) can contribute the

Γ+
1 (A1g), (b) can contributes the Γ+

3 (B1g) signal.

4.3.2 C4h site symmetry of Ir site and selection rule

The real site symmetry is C4h. The compatibility relation of D4h and C4h is Γ+
6 = Γ+

5 + Γ+
6

and Γ+
7 = Γ+

7 + Γ+
8 . Similarly, we can find the corresponding polarization components. From the

reference, the polarization dependence of the single-ion cross section without z direction can be

obtained from references.

Γ+
5 + Γ+

6 → Γ+
5 + Γ+

6 (Γ+
7 + Γ+

8 → Γ+
7 + Γ+

8 ) : 2Γ+
1 + Γ+

3 + Γ+
4

Γ+
5 + Γ+

6 → Γ+
7 + Γ+

8 : 2Γ+
2 + Γ+

3 + Γ+
4 . (4.23)
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Here,

Γ+
1 =


a c 0

−c a 0

0 0 b

 ; Γ+
2 =


d e 0

e −d 0

0 0 0

 ; Γ+
3 + Γ+

4 =


0 0 f

0 0 h

g i 0




0 0 −h

0 0 f

−i g 0

 (4.24)

The detail is shown in 4.5.2

4.3.3 Band structure argument

The intra-site Raman process can happen when the intermediate state is parity odd. However,

the possible intra-site Raman process will create a hole in the jeff = 3
2 band. Since the bandwidth

of jeff = 3
2 band is much larger than jeff = 1

2 band. The corresponding peak width for intra-site

transition will roughly be of the same order of the bandwidth for jeff = 3
2 band. Thus, in the

experiment, the peak is too broad to be observed.

Because of that, we are supposed to look for inter-site transition which happened within the

jeff = 1
2 band and is possible to be observed in the Raman experiments.

4.4 Inter-site electronic Raman effect

4.4.1 The cluster picture

D4h:Ir4+ ring cluster

The previous process is the intra-site transition. For the inter-site transition, we can try to

apply the cluster picture. For simplicity, we assume the site symmetry is identical with the point

group symmetry D4h of the oxygen cage. When electron tunnel from one Ir4+ to another, it can

tunnel to its four neighbors with equal probability. Thus, the final state supposes to be the linear

combination of the four local state, the A doublets, which transform according to Γ+
7 of D4h as

shown in FIG. 4.7.

The wave function of the outer 4 Ir4+ can generally be written as

|ψout, σ〉 =
1

N
(c1|1, A, σ〉+ c2|2, A, σ〉+ c3|3, A, σ〉+ c4|4, A, σ〉) , (4.25)
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Figure 4.7: (a)The cluster of Ir4+ ion. The light green zone means the wave function of the four
Ir4+ is the linear superposition of the site wave function which transforms according to Γ+

7 of D4h

group. The pink region represents the three-dimensional cluster cage which is formed by oxygen p
orbitals.(b) The real situation where the site symmetry is C4h. Here, C2Y is the C2 rotation along
the global Y axis. (c) The case where the distortion is in another direction.
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where N is the normalization factor and |ci|2 = 1 are the phase factors. σ is the pseudo spin

index. Since the wave function at different sites, in general, may not be orthogonal, |N |2 =∑
i,j c
∗
i cj〈i,Γ+

7 |j,Γ+
7 〉. We temporally switch the label of sites into {1, 2, 3, 4} ≡ {+x,+y,−x,−y}

for notation convenience.

Now we assume the overlap between Γ+
7 for different sites is small. The transformation

properties should not depend on the magnitude of lattice constant. Under that situation, we will

focus on the choice of relative phase factor in the linear combination.

Now, we will discuss how that phase choice transforms under D4h point group. The two

trivial choice are 1
2 (1, 1, 1, 1) which transform according to Γ+

1 and 1
2 (1,−1, 1,−1) which transform

according to Γ+
3 .

The two-dimensional irreducible representation can be constructed as follow. Let’s assume

w = exp
[
iπ4
]
. |1〉 = 1

2

(
w7, w5, w3, w

)
represent the coefficient for site 1,2,3,4. Another state

|2〉 = 1
2

(
w,w3, w5, w7

)
. Those two state form a two-dimensional irreducible representation of D4h.

We can construct the matrix representation of 〈i|C4|j〉 and they are listed below.

C4 ∼

 i 0

0 −i

 ;C2 ∼

 −1 0

0 −1

 ;C2x ∼

 0 i

−i 0

 ;Cx=y ∼

 0 −1

−1 0

 ;

I ∼

 −1 0

0 −1

 (4.26)

From that representation, we can see |1〉 and |2〉 form a two-dimensional representation, Γ−5 .

After giving the representation and basis explicitly above, we are going to argue the three

irreducible representation above is complete.

For one-dimensional irreducible representation, only Γ±1,3 are possible. Since for (c1, c2, c3, c4),

the matrix element of C2x is 1
4 (1 + 1 + c∗2c4 + c2c

∗
4). This value can never be −1. Thus we rule

out half of the one-dimensional irreducible representation. Also, for inversion, the matrix element

will be 1
4 (c∗1c3 + c3c

∗
1 + c∗2c4 + c4c

∗
2) = 1

4

(
|c1 + c3|2 + |c2 + c4|2 − 4

)
. This quantity can be −1 only

when c1 + c3 = c2 + c4 = 0. If it is true, we can construct the character for C4 rotation, it will be
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1
2 (c∗2c1 − c∗1c2) which is a pure imaginary number or zero. No one-dimensional irreducible repre-

sentation satisfied this requirement, so it must be some part of higher dimensional representation.

For two-dimensional irreducible representation, only Γ−5 can be created by this method.

Choosing the two-dimensional basis to be (c1, c2, c3, c4) and (d1, d2, d3, d4), we can calculate the

character for C2x. The character will be 1
4

(
|c2 + c4|2 + |d2 + d4|2

)
. From the character table, we

require this to be zero for both Γ±5 . Thus, we have c2 = −c4 and d2 = −d4. Similarly for C2y

we will have the constraints c1 = −c3 and d1 = −d3. With those constraints, the character for

inversion can be derived to be −2. Thus only Γ−5 is possible.

Thus the ring cluster state, which including the phase factor and the local A doublets, can

only transform according to

|α1,±〉 =
1

2
(|1, A,±〉+ |2, A,±〉+ |3, A,±〉+ |4, A,±〉) ∼ Γ+

1 ⊗ Γ+
7 ∼ Γ+

7

|α2,±〉 =
1

2
(|1, A,±〉 − |2, A,±〉+ |3, A,±〉 − |4, A,±〉) ∼ Γ+

3 ⊗ Γ+
7 ∼ Γ+

6

|β1,±〉 =
1

2

(
w∓7|1, A,±〉+ w∓5|2, A,±〉+ w∓3|3, A,±〉+ w∓1|4, A,±〉

)
∼ Γ−6

|β2,±〉 =
1

2

(
w±7|1, A,±〉+ w±5|2, A,±〉+ w±3|3, A,±〉+ w±1|4, A,±〉

)
∼ Γ−7

|β〉 ∼ Γ−5 ⊗ Γ+
7 ∼ Γ−6 + Γ−7 ∼ |β1〉+ |β2〉. (4.27)

Since the initial state transforms like Γ+
7 , the final state should be |αi〉 because of the parity should

be identical for Raman process. On the other hand, the intermediate state should be Raman

forbidden which could be |βi〉 for Ir-Ir-Ir process.

C4h:

(A small surprise: Under C4h, the Γ+
7 will turn into Γ+

7 + Γ+
8 , which transform according to

| − 3
2〉 and |32〉.)

Since C4h is a proper subgroup of D4h, I would guess the relation is similar

|α′1〉 ∼ Γ+
1 ⊗ (Γ+

7 + Γ+
8 ) ∼ Γ+

7 + Γ+
8 ∼ | ±

3

2
〉

|α′2〉 ∼ Γ+
2 ⊗ (Γ+

7 + Γ+
8 ) ∼ Γ+

5 + Γ+
6 ∼ | ±

1

2
〉

|β′〉 ∼ (Γ−3 + Γ−4 )⊗ (Γ+
7 + Γ+

8 ) ∼ (Γ−5 + Γ−6 ) + (Γ−7 + Γ−8 ). (4.28)
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4.4.2 Selection rules(Site symmetry D4h)

The selection rules of the inter-site process are identical with the intra-site process. Only

diagonal component are allowed under D4h and time-reversal symmetry.

4.4.3 Selection rules(Site symmetry C4h)

Following the conclusion of the inter-site process, the off-diagonal components are allowed if

we only consider site symmetry.

Next, we notice the bond angle is not perfect 180◦. We now try to consider a unit cell

with two Ir4+ where the two CEF are rotated counterclockwise and clockwise as the left green one

and the central red one in FIG.4.8 (b). Also we label the local axis of the sublattice 1(green) as

a1, b1, c1 and sublattice 2(red) as a2, b2, c2. Now consider initial state as |IB〉 = |B1, σ〉 ⊗ |B2,−σ〉

and |IC〉 = |C1, σ〉 ⊗ |C2,−σ〉. Final state as |FB〉 = 1√
2

(|A1, σ〉 ⊗ |B2,−σ〉+ |B1, σ〉 ⊗ |A2,−σ〉)

and |FC〉 = 1√
2

(|A1, σ〉 ⊗ |C2,−σ〉+ |C1, σ〉 ⊗ |A2,−σ〉). The fermionic anti-symmetric properties

can be shown by projecting to real space by 1√
2
(〈|r1|〈r2| − 〈r2|〈r1|).

The Raman operator is Rµν = Rµν1 ⊗ 12 + 11 ⊗Rµν2 .

〈Fs|Rµν |Is〉 =
1√
2

[〈A1, σ|Rµν1 |s1, σ〉+ 〈A2,−σ|Rµν2 |s2,−σ〉] , (4.29)

here, s = B,C as the initial state.

Now, if we consider the C2Y rotation which is equivalent to interchange site 1 and 2 after

making a local C2y rotation. Also, the local C2y and C2x rotation just switch the pseudo spin and

add a phase factor for all doublets we are interests in.

C2x : |±〉 → −i|∓〉

C2y : |±〉 → ±|∓〉 (4.30)

We can see that

〈A2,−σ|Rµν2 |s2,−σ〉 = 〈A2,−σ|C−1
2Y C2YR

µν
2 C−1

2Y C2Y |s2,−σ〉

= 〈A1, σ|(C2YR
µν
2 C−1

2Y )|s1, σ〉. (4.31)
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For theX,Y component of the Raman operator, C2YR
XY
2 C−1

2Y = −RXY1 , which means 〈Fs|Rµν |Is〉 =

0 when µ = X, ν = Y . Therefore, even though the site symmetry does not have the C2x, C2y sym-

metry, the space group has the symmetry C2X , C2Y which provides similar effect to cancel the off

diagonal elements.

4.5 Selection rules

4.5.1 D4h case

Here, we discuss the selection rule for doublets Γ+
6 and Γ+

7 for D4h point group. The part

that determined the selection rule is the Raman tensor Rµν . In the experiment, we only care about

the case where µ, ν = x, y.

The initial and final states can be |Γ+
6 ,±〉 or |Γ+

7 ,±〉. We want to analyze how 〈F |Rµν |I〉

transform under D4h symmetry.

Γj → Γj

For C2z,

〈Γj ,±|xx|Γj ,±〉 C2z−−→ 〈Γj ,±|(∓i)(−x)(−x)(±i)|Γj ,±〉 = 〈Γj ,±|xx|Γj ,±〉,

〈Γj ,±|xx|Γj ,∓〉 C2z−−→ 〈Γj ,±|(∓i)(−x)(−x)(∓i)|Γj ,∓〉 = −〈Γj ,±|xx|Γj ,∓〉,

〈Γj ,±|xy|Γj ,±〉 C2z−−→ 〈Γj ,±|(∓i)(−x)(−y)(±i)|Γj ,±〉 = 〈Γj ,±|xy|Γj ,±〉,

〈Γj ,±|xy|Γj ,∓〉 C2z−−→ 〈Γj ,±|(∓i)(−x)(−y)(∓i)|Γj ,∓〉 = −〈Γj ,±|xy|Γj ,∓〉. (4.32)

Thus, Rµν is diagonal in spin space.

For C4z,

〈Γj ,±|xx|Γj ,±〉 C4z−−→ 〈Γj ,±|(−1)j(exp[±iπ
4

])(y)(y)(−1)j(exp[∓iπ
4

])|Γj ,±〉

= 〈Γj ,±|yy|Γj ,±〉

〈Γj ,±|xy|Γj ,±〉 C4z−−→ 〈Γj ,±|(−1)j(exp[±iπ
4

])(y)(−x)(−1)j(exp[∓iπ
4

])|Γj ,±〉

= −〈Γj ,±|yx|Γj ,±〉. (4.33)
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The off diagonal symmetry part is forbidden, only asymmetry component exist.

For C2x,

〈Γj ,±|xx|Γj ,±〉 C2x−−→ 〈Γj ,∓|(i)xx(−i)|Γj ,∓〉 = 〈Γj ,∓|xx|Γj ,∓〉,

〈Γj ,±|xy|Γj ,±〉 C2x−−→ 〈Γj ,∓|(i)x(−y)(−i)|Γj ,∓〉 = −〈Γj ,∓|xy|Γj ,∓〉. (4.34)

For C2xy,

〈Γj ,±|xx|Γj ,±〉
C2xy−−−→ 〈Γj ,∓|(−1)j(exp[∓iπ

4
])yy(−1)j(exp[±iπ

4
])|Γj ,∓〉 = 〈Γj ,∓|yy|Γj ,∓〉,

〈Γj ,±|xy|Γj ,±〉
C2xy−−−→ 〈Γj ,∓|(−1)j(exp[∓iπ

4
])yx(−1)j(exp[±iπ

4
])|Γj ,∓〉 = 〈Γj ,∓|yx|Γj ,∓〉.

(4.35)

C2x and C2xy did not give further constrain to the matrix R.

Above relation suggest

R =


a c ?

−c a ?

? ? ?

 , (4.36)

for Γj → Γj transition without time-reversal symmetry.

When time reversal symmetry is considered,

〈Γj ,±|xy|Γj ,±〉 T−→ 〈Γj ,∓|(±1)xy(±1)|Γj ,∓〉 = 〈Γj ,∓|xy|Γj ,∓〉. (4.37)

Together with C2x, no off-diagonal components are allowed for Γj → Γj.

R =


a 0 ?

0 a ?

? ? ?

 , (4.38)

when both D4h symmetry and time-reversal symmetry is considered.

Γj → Γj′
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For C2z, Γj and Γj′ transform in the same way. Thus,

〈Γj ,±|xx|Γj′ ,±〉 C2z−−→ 〈Γj ,±|(∓i)(−x)(−x)(±i)|Γj′ ,±〉 = 〈Γj ,±|xx|Γj′ ,±〉,

〈Γj ,±|xx|Γj′ ,∓〉 C2z−−→ 〈Γj ,±|(∓i)(−x)(−x)(∓i)|Γj′ ,∓〉 = −〈Γj ,±|xx|Γj′ ,∓〉,

〈Γj ,±|xy|Γj′ ,±〉 C2z−−→ 〈Γj ,±|(∓i)(−x)(−y)(±i)|Γj′ ,±〉 = 〈Γj ,±|xy|Γj′ ,±〉,

〈Γj ,±|xy|Γj′ ,∓〉 C2z−−→ 〈Γj ,±|(∓i)(−x)(−y)(∓i)|Γj′ ,∓〉 = −〈Γj ,±|xy|Γj′ ,∓〉. (4.39)

Thus, Rµν is diagonal in spin space, also.

For C4z,

〈Γj ,±|xx|Γj′ ,±〉 C4z−−→ 〈Γj ,±|(−1)j(exp[±iπ
4

])(y)(y)(−1)j
′
(exp[∓iπ

4
])|Γj′ ,±〉

= −〈Γj ,±|yy|Γj′ ,±〉

〈Γj ,±|xy|Γj′ ,±〉 C4z−−→ 〈Γj ,±|(−1)j(exp[±iπ
4

])(y)(−x)(−1)j
′
(exp[∓iπ

4
])|Γj′ ,±〉

= 〈Γj ,±|yx|Γj′ ,±〉. (4.40)

The off diagonal asymmetry part is forbidden, only symmetry component exist.

For C2x,Γ+
6 and Γ+

7 transform in the same way. Thus,

〈Γj ,±|xx|Γj′ ,±〉 C2x−−→ 〈Γj ,∓|(i)xx(−i)|Γj′ ,∓〉 = 〈Γj ,∓|xx|Γj′ ,∓〉,

〈Γj ,±|xy|Γj′ ,±〉 C2x−−→ 〈Γj ,∓|(i)x(−y)(−i)|Γj′ ,∓〉 = −〈Γj ,∓|xy|Γj′ ,∓〉. (4.41)

For C2xy,

〈Γj ,±|xx|Γj′ ,±〉
C2xy−−−→ 〈Γj ,∓|(−1)j(exp[∓iπ

4
])yy(−1)j

′
(exp[±iπ

4
])|Γj′ ,∓〉 = −〈Γj ,∓|yy|Γj ,∓〉,

〈Γj ,±|xy|Γj′ ,±〉
C2xy−−−→ 〈Γj ,∓|(−1)j(exp[∓iπ

4
])yx(−1)j

′
(exp[±iπ

4
])|Γj′ ,∓〉 = −〈Γj ,∓|yx|Γj′ ,∓〉.

(4.42)

C2x and C2xy did not give further constrain to the matrix R.

Above relation suggest

R =


d e ?

e −d ?

? ? ?

 , (4.43)
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for Γj → Γj′ transition without time-reversal symmetry.

When time reversal symmetry is considered,

〈Γj ,±|xy|Γj′ ,±〉 T−→ 〈Γj ,∓|(±1)xy(±1)|Γj′ ,∓〉 = 〈Γj ,∓|xy|Γj′ ,∓〉. (4.44)

Together with C2x, no off-diagonal components are allowed for Γj → Γj′.

R =


d 0 ?

0 −d ?

? ? ?

 , (4.45)

when both D4h symmetry and time-reversal symmetry is considered.

4.5.2 C4h case

For C4h, the symmetry operation C2x and C2xy cannot be used. From Koster’s table, we can

know that, under C2z, the eigen states transform exactly as those in D4h case. Thus, R matrix is

diagonal in spin space. Only C4z needs to be discussed.

Note that, the basis is chosen such that time reversal operator satisfied

T |Γ5〉 = |Γ6〉; T |Γ6〉 = −|Γ5〉

T |Γ7〉 = |Γ8〉; T |Γ8〉 = −|Γ7〉. (4.46)

Γ5/6 → Γ5/6 or Γ7/8 → Γ7/8

〈Γ5/6|xx|Γ5/6〉
C4z−−→ 〈Γ5/6|(t∗)yy(t)|Γ5/6〉 = 〈Γ5/6|yy|Γ5/6〉,

〈Γ5/6|xy|Γ5/6〉
C4z−−→ −〈Γ5/6|(t∗)yx(t)|Γ5/6〉 = −〈Γ5/6|yx|Γ5/6〉 (4.47)

. Here, t is just the complex phase factor. The same relation holds for Γ7/8 → Γ7/8.

Next, time-reversal symmetry implies 〈Γ5/6|xx|Γ5/6〉 T−→ 〈Γ6/5|xx|Γ6/5〉 and 〈Γ5/6|xy|Γ5/6〉 T−→
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〈Γ6/5|xy|Γ6/5〉. This constrain also applies on Γ7/8 → Γ7/8. Thus,

R =


a c ?

−c a ?

? ? ?

 . (4.48)

Γ5/6 → Γ7/8

〈Γ5/6|xx|Γ7/8〉
C4z−−→ 〈Γ5/6| − (k∗)yy(k)|Γ7/8〉 = −〈Γ5/6|yy|Γ7/8〉,

〈Γ5/6|xy|Γ7/8〉
C4z−−→ = −〈Γ5/6| − (k∗)yx(k)|Γ7/8〉 = 〈Γ5/6|yx|Γ7/8〉 (4.49)

. Here, k is just the complex phase factor.

Next, time-reversal symmetry implies 〈Γ5/6|xx|Γ7/8〉 T−→ 〈Γ6/5|xx|Γ8/7〉 and 〈Γ5/6|xy|Γ7/8〉 T−→

〈Γ6/5|xy|Γ8/7〉.

Thus,

R =


d e ?

e −d ?

? ? ?

 . (4.50)

4.6 Results and discussion

4.6.1 Selection rules for intra-site and inter-site transitions.

First we compare these results to a simple calculation of what types of on-site and near

neighbor hopping electronic transitions appear in what symmetry and then discuss how the inter-

pretation of the RIXS data proposed in Ref. [176] needs to be reconsidered in light of the Raman

results.

The Raman intensity is proportional to [177]:

I ∝ 1

Z

∑
I,F

∣∣〈F |Rµν |I〉∣∣2e−EI/kBT δ(EF − EI − ~ω), (4.51)
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where I, F label energy eigenstates of the electronic system with energies EI , EF , ω is the Raman

shift, and Z is the partition function. Rµν is the Raman tensor, with µ, ν = x, y, z giving the

direction of linear polarization of scattered and incident light in our experiment, respectively. The

electronic Raman cross section is typically dominated by the first two terms in perturbation theory

[see Eq. (13) of Ref. [177]]. Fig. 4.2 shows that the intensity of the peaks of interest has a strong

laser energy-dependence. Since the first order term does not depend on the laser energy , the second

order term must dominate. Thus we focus on this contribution, which is given by:

Rµν = pµ
1

EI + ~ωI −Hel
pν , (4.52)

where Hel is the electronic Hamiltonian, pµ the electron momentum operator, and ωI is the fre-

quency of incident light. [Note that we have dropped an additional non-resonant second-order term;

see Eq. (13) of Ref. [177].]

In the presence of tetragonal crystal field (CF) and SOC, the t2g manifold splits into three

Kramer doublets labeled with j1, j2 and ̄2 (Fig. 4.8(a)) [178, 179, 180]. The j (Jzeff = ±1/2) and ̄

(Jzeff = ±3/2) doublets transform differently under D4h symmetry and time reversal (See Appendix

B). Note that J2
eff is not a good quantum number under D4h CF.

We adopt a tight-binding description of the electronic states, with f †rα creating an electron at

the Ir lattice site r in the local spin-orbital state α. Here, the spin-orbital state α ≡ (a, σ), where

a = j1, j2, ̄2 labels the local doublets, and σ = 1, 2 is the pseudo-spin. We work in real-space. In

our description of the Raman process, a photon is absorbed near a lattice site r, with the resulting

excited intermediate state propagating over some distance before emission of a photon near site r′.

Far enough away from resonance, the intermediate state will propagate only over a short distance;

this leads to the expansion

Rµν =
∑
r

Mαβ
0;µν(r)f †rαfrβ +Mαβ

1;µν(r)c†rαfrβ + · · · . (4.53)

Here the first term represents on-site transitions, while the second term describes inter-site pro-

cesses, in which an electron moves from a site r to a cluster state created by c†rα. The cluster state



99
Non-pseudospin-flip Pseudospin-flip

j2 → j1 xx, x′x′ (A1g) xy, x′y′ (A2g)

̄2 → j1 xx, x′y′ (B1g) x′x′, xy (B2g)

Table 4.3: Polarization and symmetry of on-site Raman transitions with D4h site symmetry. The
row indicates the doublets between which the transition occurs, and the column indicates whether
a pseudospin flip is involved.

is a linear superposition of spin-orbital states on the four Ir sites nearest to r. Sums over repeated

indices α, β are implied. Longer range terms have been dropped.

To interpret the experimental results, we assume significant local antiferromagnetic correla-

tions to temperatures well above the Neel temperature (TN = 240 K), focusing here on T > TN ,

as the gross features of the Raman spectrum remain largely unchanged as T is lowered through

TN . In the low-temperature antiferromagnetic state, the moments lie in the ab-plane, with small

canting out of the plane that we ignore [79, 181, 182, 183].

We first consider an idealized situation, where the Ir-O-Ir bond angle is 180◦ and the site

symmetry is D4h. We focus on on-site transitions within the t2g manifold, so j2 → j1 and ̄2 → j1 are

relevant (the energy of the main peak is likely too large for purely magnetic j1 → j1 transitions)(Fig.

4.8(a)). The pseudospin structure of each transition is described by the appropriate 2 × 2 block

of the 6 × 6 matrix M0;µν(r). We always find this 2 × 2 matrix to be either proportional to the

identity matrix (no pseudospin flip), or to the σz Pauli matrix (pseudospin flip).

For the on-site transitions, both non-pseudospin-flip and pseudospin-flip processes can occur

(See Appendix A). The former should appear in A1g and B1g symmetry and the latter in A2g and

B2g symmetry (Table 4.3).

For the inter-site transitions, we consider hopping between j1 doublets on neighboring sites.

An electron hops from site r into a parity-even cluster state, constructed by superposing j1 doublets

on the four neighboring sites (Fig. 4.8(b)). There are two such Raman-active cluster states, one with

s-wave symmetry and the other with dx2−y2 symmetry. In addition, there can be an infrared-active,

Raman inactive transition to a p-wave cluster state. The s-wave/dx2−y2 cluster state transforms

identically to the on-site j/̄ doublet. This means the r → s/r → dx2−y2 inter-site process has the
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same selection rules as the on-site j2 → j1/̄2 → j1 transition respectively. Note that pseudospin-

flip processes are forbidden by the combination of local antiferromagnetic correlations and the Pauli

principle (see Fig. 4.8(b)).

So far we assumed D4h site symmetry, but, in reality, the Ir-O-Ir bond angle is away from

180◦ by 22◦, lowering the site symmetry to C4h (the point group remains D4h). In this case, both

j2 → j1 and ̄2 → j1 transitions (and corresponding inter-site transitions) may produce a non-

pseudospin-flip contribution in xy polarization. That this is not seen suggests the site symmetry is

effectively D4h to a good approximation.

4.6.2 Discussion

Raman scattering has different matrix elements from RIXS, and thus highlights different

excitations. RIXS data are consistent with two dispersing modes whose spectral intensity can

be controlled by the scattering angle. These have been assigned (in our notation) to excitons

associated with j2 → j1 and ̄2 → j1 intra-site transitions. However, these transitions should

produce four distinct excitations, considering that the pseudospin flip and non-flip transitions

should have different energies in the presence of magnetic-order. Here we propose that modes

seen in RIXS as well as in our data can also originate from inter-site excitations whose energy

would correspond to on-site repulsion. Thus more analysis and data are needed to understand the

signal seen in RIXS.

In the on-site transitions scenario this means that both pseudospin non-flip transitions are

seen close to 0.7 eV with j2 → j1/̄2 → j1 appearing in the A1g/B1g symmetry respectively. This

scenario necessitates that one or both corresponding pseudospin-flip transitions contribute to the

RIXS peak at 0.6 eV and their Raman matrix element is so small that they are not seen in the

XY-polarized Raman spectrum where they would appear. While this scenario cannot be ruled out

without a better understanding of the Raman matrix elements, we would like to point out that the

Raman data were taken over a wide range of laser energies, which always produced no signal in

this scattering geometry. We will attempt to look for these excitations covering a wider range of
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Figure 4.8: Schematic of the on-site and inter-site transitions. (a) Local states and on-site transi-
tions: The SOC and tetragonal CF split the t2g orbitals into three doublets labeled with j1, ̄2, and
j2. The non-pseudo-spin-flip electronic transition contributes to the A1g and B1g signal, and the
pseudo-spin-flip process contributes the A2g and B2g signal. (b) Inter-site transitions: The ground
state configuration is described in the top block. The electron can tunnel from the central site to
the s-wave/dx2−y2 cluster state which transforms identically to the on-site j/̄ doublet respectively.
The gray oval encloses the states on the same site.
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both laser energies and Raman shifts in a future study. This scenario also implies that the splitting

between the j2 and ̄2 levels is 30 meV, not 137 meV as proposed in Ref. [176].

Another possibility is that the RIXS experiments reveal excitons associated with inter-site

transitions. In this case three peaks come out naturally with transitions to the s-wave/d-wave

cluster states making up the A1g/B1g peaks and the transitions to the p-wave cluster making up

the Raman-inactive peak at a lower energy. We note that pseudospin-flip transitions in this scenario

are not allowed due to the Pauli exclusion principle.

The third possibility is that the three peaks come from some combination of inter-site and

intra-site transitions. We think that this possibility is least likely, because it implies that the on-site

repulsion energy should be very similar to the intra-site level splitting, which would be an unlikely

coincidence.



Chapter 5

Summary and perspectives

Two questions entangle with the search of topological order. First, where to find the topo-

logical order? Second, how to probe topological order? By carefully constructing the microscopic

models, we find it is valuable to investigate the strong spin-orbit coupled system and to analyze

the symmetry fractionalization pattern of the symmetry enriched topological order.

In this thesis, we study the strong spin-orbit coupled materials. On the most frustrated three-

dimensional lattice, pyrochlore lattice, we found the space group allows the existence of the novel

dipolar-octupolar doublets. The dipolar-octupolar doublets realize a long-sought realistic model

which support quantum spin ices. By applying a magnetic field, we can reduce the pyrochlore

lattice to layers of Kagome lattice which could achieve a symmetry-enriched Z2 topological order.

The spin-orbit coupling breaks the continuous spin rotational symmetry and leads to a non-trivial

symmetry fractionalization pattern with striking response to classical disclination defect. The

symmetry enriched topological orders are robust against perturbations. Spin-orbit coupling might

lower the symmetry of the system and make the system difficult to analyze. However, it could be

useful to realize signals that can be detected in future numerics and experiments. The pyrochlore

and Kagome lattice model indicates the subtle relation between space group symmetry and onsite

symmetry when the spin-orbit coupling is included. At the level of modeling, the space group

gives non-trivial constraint to the local degrees of freedom. At the level of studying the symmetry

fractionalization pattern, the combination of space group and discrete onsite symmetry leads to

the vison zero modes.
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At this stage, the general experiment method to identify topological order is still lacking. In

the future, it is interesting to find other realistic models with similar physics and study the general

structure of using space group defects and onsite discrete symmetry to probe topological order.

The nontrivial physics can be traced back to the dipolar-octupolar doublets in the material.

The pseudo spin operator can have very different symmetry properties depends on the quantum

states. Spin-orbit coupling gives another energy scale to select the novel degrees of freedom and

leads to dramatically different model. The mixed multipolar nature of the novel degrees of freedom

also raises another perspective to understand the well-studied classical spin ice materials. How the

new quantum model changes our understanding of the experiments is also an attractive direction.

More broadly, this mechanism could exist in other materials, and its physical consequences are

relatively unexplored.
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[89] H. W. J. Blöte, R. F. Wielinga, and W. J. Huiskamp. Heat-capacity measurements on rare-
earth double oxides R2M2O7. Physica, 43:549, 1969.

[90] Kazuyuki Matsuhira, Yukio Hinatsu, Kenichi Tenya, Hiroshi Amitsuka, and Toshiro Sakak-
ibara. Low-temperature magnetic properties of pyrochlore stannates. Journal of the Physical
Society of Japan, 71(6):1576, 2002.

[91] M. A. Subramanian, G. Aravamudan, and G. V. Subba Rao. Oxide pyrochlores – a review.
Prog. Solid St. Chem., 15:55, 1983.

[92] Kate Ross, Lucile Savary, Bruce Gaulin, and Leon Balents. Quantum Excitations in Quantum
Spin Ice. Phys. Rev. X, 1(2):021002, October 2011.



111
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Ice State in the Dipolar Spin Ice Dy2Ti2O7. Phys. Rev. Lett., 97:257205, Dec 2006.

[141] Andrew J Macdonald, Peter C W Holdsworth, and Roger G Melko. Classical topological
order in kagome ice. Journal of Physics: Condensed Matter, 23(16):164208, 2011.
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Appendix A

Cross section of Raman scattering

Let incident/scattering light denoted by (qi, ωi, eqi) and (qs, ωs, eqs). The Hamiltonian is

written as

H =
N∑
i=1

(pi + (e/c)A(ri))
2

2m
+HCoulomb +Hfields

=

[∑
i

p2
i

2m
+HCoulomb

]
+Hfields +Hint

= H0 +Hfields +Hint. (A.1)

Here, e is the magnitude of electron charge. H0 describe the system we want to probe without light

which satisfied H0|α〉 = Eα|α〉. Here, α can be a combination of band index, wave vector, orbital,

spin qunatum numbers depends on how Coulomb interaction is included into H0. Hfields describe

the free electromagnetic wave. Hint describe how light is coupled to the system we want to probe.

Hint =
e

2mc

∑
i

[pi ·A(ri) +A(ri) · pi] +
e2

2mc2

∑
i

A(ri) ·A(ri) = H1 +H2 (A.2)

Here H1 denote the part with linear dependence of A and H2 denote the part with quadratic

dependence of A. Now, we quantize the vector potential with transverse gauge as usual

A(ri) =

√
1

V

∑
k

[
eik·riAk(t) + c.c.

]
. (A.3)

Since A(ri) is real, we need the second term. Then, replace the Fourier component by

Ak(t)→
√

~c
2|k|ak(t);ak(t) =

∑
η

akηεkη (A.4)
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a†kη, akη are creation and annihilation operators of transversal photon with momentum value k and

polarization direction denoted by real unit vector εkη. The quantized vector potential and electric

field is

A(ri) =
∑
k

√
~c

2V |k|
[
eik·riak(t) + h.c.

]
E(ri) = −1

c

∂A(ri)

∂t
=
∑
k

√
~c

2V |k| (ik)
[
eik·riak(t)− e−ik·ria†k(t)

]
. (A.5)

From above expression, we can see that H1 and H2 corresponds to the process that system

is coupled to one photon and two photons cases.

In order to construct the general expression, we would like to writeHint in second quantization

form.

H1 =
e

mc

∑
i

∑
k,η

√
~c

2V k

[
(pi · εkη) eik·riakη + h.c.

]

=
e

mc

∑
k,η

√
~c

2V k

∑
α,β

〈α|(p · εkη)eik·r|β〉c†αcβ

 akη + h.c.

 (A.6)

H2 =
e2

2mc2

∑
i

1

V

∑
kη,k′η′

[(
eik·ri

√
~c
2k
akη + h.c.

)
εkη ·

(
eik
′·ri

√
~c
2k′

ak′η′ + h.c.

)
εk′η′

]

=
e2

2mc2

1

V

∑
i

∑
kη
k′η′

~c
2
√
kk′

[ (
ei(k+k′)·riakηak′η′

)
+
(
e−i(k+k′)·ria†kηa

†
k′η′

)
+
(
ei(k−k

′)·riakηa
†
k′η′

)
+
(
e−i(k−k

′)·ria†kηak′η′
) ]

(εkη · εk′η′)

=
e2

2mc2

~c
2V

∑
kη
k′η′

εkη · εk′η′√
kk′

[∑
αβ

〈α|ei(k+k′)·r|β〉c†αcβakηak′η′ + 〈α|e−i(k+k′)·r|β〉c†αcβa†kηa
†
k′η′

+〈α|ei(k−k′)·r|β〉c†αcβakηa†k′η′ + 〈α|e−i(k−k
′)·r|β〉c†αcβa†kηak′η′

]
(A.7)

When k · ri � 1, which means electron is bounded in a range ∼ a3. The above exponent can
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be expanded in term of power series.

H1 ∼ e

mc

∑
k,η

√
~c

2V k

∑
α,β

〈α|(p · εkη) (1 + ik · r + · · · ) |β〉c†αcβ

 akη + h.c.


∼ e

mc

∑
k,η

√
~c

2V k

∑
α,β

〈α|(p · εkη)|β〉c†αcβ

 akη + h.c.

 (A.8)

To zeroth order of k · r corresponds to the electric dipole approximation. Using the relation

p =
m

i~
[r, H0] . (A.9)

H1 can be represented by dipole operator conveniently as

H1 ∼ e

mc

∑
k,η

√
~c

2V k

∑
α,β

〈α|(m
i~

[r, H0] · εkη)|β〉c†αcβ

 akη + h.c.


= −i e

mc

∑
k,η

√
~c

2V k

∑
α,β

m

~
(Eβ − Eα)〈α|(r · εkη)|β〉c†αcβ

 akη − h.c.


= −

∑
α,β

〈α|(er)|β〉c†αcβ

 ·∑
k,η

√
~c

2V k
(ik) [εkηakη − h.c.]

= −
∑
i

Di ·E(k · ri = 0). (A.10)

The expression into dipole operator is convenient when we consider local orbitals since the physical

meaning of dipole is transparent. To start from the local picture, dipole operator is easier to work

with. For conductor, k is a good quantum number, the original expression is easier to implement.

Now, if we assume the initial, final and intermediate state to be

|Ψi〉 = |I〉 ⊗ |ni〉

|Ψf 〉 = |F 〉 ⊗ |nf 〉

|Ψν〉 = |ν〉 ⊗ |nν〉. (A.11)

Here, |I, F, ν〉 represent the many electron wave function of the probed system. |ni, nf , nν〉 represent

the photon wave function. With those definition, we can calculate 〈Ψf |T |Ψi〉 ,where

T = H2 +H1
1

E − (H0 +Hfield) + iε
H1. (A.12)
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E = Ei + ~cki = Es + ~cks. The transition rate is

dΓ = 2π|〈Ψf |T |Ψi〉|2ρ(γ)
qs ;

ρ(γ)
qs =

V

(2π)3

d3qs
cdqs

=
V

(2π)3

q2
s

c
dΩ;

dΓ(
V

c
) =

dσ

dΩ
(A.13)

〈Ψf |H2|Ψi〉 =
2e2

2mc2

~c
2V

∑
kη
k′η′

εkη · εk′η′√
kk′

∑
αβ

〈α|e−i(k−k′)·r|β〉〈F |c†αcβ|I〉

 〈nf |a†kηak′η′ |ni〉
=

e2

mc2

~c
2V

ei · es√
qiqs

∑
αβ

(
〈α|eiq·r|β〉

)
〈F |c†αcβ|I〉 =

e2

mc2

~c
2V

1√
qiqs
A2 (A.14)

Above expression is the only non-zero contribution if we assume |ni〉 and |nf 〉 are both single mode

laser. This term represent an incident photon with momentum qi is absorbed by the system and

release a photon with momentum qs. So q = qi − qs.
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Similarly, we can evaluate the contribution of the second term.

〈Ψf |H1
1

E − (H0 +Hfield) + iε
H1|Ψi〉 = 〈Ψf |

e

mc

∑
k,η

√
~c

2V k∑
α,β

〈α|(p · εkη)eik·r|β〉c†αcβ

 akη + h.c.


(∑

ν

|Ψν〉〈Ψν |
)

1

E − (H0 +Hfield) + iε

(∑
ν′

|Ψν′〉〈Ψν′ |
)
H1|Ψi〉

=
( e

mc

)2 ~c
2V

∑
ν

1√
qiqs

{∑
α,β

〈α|(p · es)e−iqs·r|β〉

∑
α′,β′

〈α′|(p · ei)eiqi·r|β′〉


〈F |c†αcβ|ν〉〈nν |〈ν|

1

E − (H0 +Hfield) + iε
|ν ′〉|nν′〉〈ν ′|c†α′cβ′ |I〉〈nf |a†qs |nν〉〈nν′ |aqi |ni〉

+

∑
α,β

〈α|(p · ei)eiqi·r|β〉

∑
α′,β′

〈α′|(p · es)e−iqs·r|β′〉


〈F |c†αcβ|ν〉〈nν |〈ν|

1

E − (H0 +Hfield) + iε
|ν ′〉|nν′〉〈ν ′|c†α′cβ′ |I〉〈nf |aqi |nν〉〈nν′ |a†qs |ni〉

}
=

( e

mc

)2 ~c
2V

1√
qiqs

∑
ν

∑
αα′
ββ′

〈α|(p · es)e−iqs·r|α′〉〈β|(p · ei)eiqi·r|β′〉

[
〈F |c†αcα′ |ν〉〈ν|c†βcβ′ |I〉

(Ei + ni(~ωi))− (Eν + (ni − 1)(~ωi)) + iε
+
〈F |c†βcβ′ |ν〉〈ν|c

†
αcα′ |I〉

Ei − Eν − ~ωs + iε

]

=
( e

mc

)2 ~c
2V

1√
qiqs

∑
ν

∑
αα′
ββ′

〈α|(p · es)e−iqs·r|α′〉〈β|(p · ei)eiqi·r|β′〉

[
〈F |c†αcα′ |ν〉〈ν|c†βcβ′ |I〉
(Ei − Eν + ~ωi + iε

+
〈F |c†βcβ′ |ν〉〈ν|c

†
αcα′ |I〉

Ei − Eν − ~ωs + iε

]
=

e2

mc2

~c
2V

1√
qiqs

A1

m
(A.15)

The collision rate is

dΓ = (2π)

[
e2

mc2

~c
2V

]2
1

qiqs
|A2 +

A1

m
|2 V

(2π)3

q2
s

c
dΩ

=

(
e2

4πmc2

)2(~c
V

)2 V

c

qs
qi
|A2 +

A1

m
|2dΩ (A.16)

And the differential cross section is

dσ

dΩ
= r2

0

qs
qi
~2|A2 +

A1

m
|2. (A.17)
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Differential cross section is

d2σ

dΩdωs
= ~r2

0

ωs
ωi

 1

Z

∑
I,F

e−βEI |MF,I |2δ (EF − EI − ~(ωi − ωs))

 (A.18)

Here, EI , EF corresponds to the many-electron system’s initial and final energy. MF,I = A2 + A1
m

where M is the effective light scattering operator. With this definition, we can calculate

And now we define q = qi − qs which is the momentum transfer to the system by photon.

Usual Raman scattering process with visible light satisfied |q| << kF . Physically, that means the

wave length of light is much larger than lattice constant which is the typical range for electron to

move around. Thus, Raman scattering detect the zero momentum transfer excitation.

MF,I has contribution from H1 and H2. H1 couples the current to a single photon. H2

couples the electron charge to two photons.

Assume we have two bands, the conduction band and the valence band. In the nonresonant

intra band case, H1 couples to the current, which means the photon gives part of its energy to the

electron current which is contributed from the conduction band. Thus we end up with an electron-

hole pair in the conduction band and a photon with lower energy. In the intra band situation, the

valence electron is excited to some intermediate state and decay into the final state with emitted

photon. When the incident or emitted photon energy fits the energy gap separation, it is resonant.

The simple picture says that the electrons near the fermi surface is probed by nonresonant

intra band scattering and excitations that involve inter band transition are probed by intermediate

state scattering.

MF,I = ei · es
∑
α,β

(∫
d3rϕ∗α(r)eiq·rϕβ(r)

)
〈F |c†αcβ|I〉

+
1

m

∑
ν

∑
αα′
ββ′

〈α|p · ese−iqs·r|α′〉〈β|p · eieiqi·r|β′〉

(
〈F |c†αcα′ |ν〉〈ν|c†βcβ′ |I〉
EI − Eν + ~ωi + iε

+
〈F |c†βcβ′ |ν〉〈ν|c

†
αcα′ |I〉

EI − Eν − ~ωs + iε

)
(A.19)
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Or under electric dipole approximation, it can be written in terms of dipole operator

MF,I = ei · es
∑
α,β

(∫
d3rϕ∗α(r)ϕβ(r)

)
〈F |c†αcβ|I〉

+ mc2
∑
ν

∑
αα′
ββ′

〈α|(r) · es|α′〉〈β|(r) · ei|β′〉

(
〈F |c†αcα′ |ν〉〈ν|c†βcβ′ |I〉
EI − Eν + ~ωi + iε

+
〈F |c†βcβ′ |ν〉〈ν|c

†
αcα′ |I〉

EI − Eν − ~ωs + iε

)
. (A.20)

or

MF,I = ei · es
∑
α,β

(∫
d3rϕ∗α(r)ϕβ(r)

)
〈F |c†αcβ|I〉

+
1

m

∑
ν

∑
αα′
ββ′

〈α|(p) · es|α′〉〈β|(p) · ei|β′〉

(
〈F |c†αcα′ |ν〉〈ν|c†βcβ′ |I〉
EI − Eν + ~ωi + iε

+
〈F |c†βcβ′ |ν〉〈ν|c

†
αcα′ |I〉

EI − Eν − ~ωs + iε

)
. (A.21)

The first term should be considered for xx and x′x′ scattering process and it had no resonance

behavior. The xy and x′y′ are purely contribution from the second term.
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Polarization and pseudospin structure

Here, we give details on how symmetry constrains the polarization dependence and pseu-

dospin structure of the electronic Raman transitions considered in the main text. We focus on

on-site transitions; as stated in the main text, the inter-site transitions discussed are of the same

symmetry as on-site transitions, and do not need to be considered separately here. In addition, we

show that the Raman tensor can indeed induce pseudospin-flip processes, even if Rµν is assumed

to act only on orbital (and not spin) degrees of freedom.

Beginning with Eq. (3) of the main text, the objective is to use site symmetry and time

reversal to constrain the matrix elements for on-site transitions, contained in the 6 × 6 matrix

M0;µν . We focus on a single lattice site r and thus drop the site label from our analysis. As

discussed in the main text, we consider an idealized case of D4h site symmetry and only later

consider breaking down to C4h. The analysis proceeds in the high-temperature phase, with no

spontaneous symmetry breaking due to long-range magnetic order.

We focus on two 2×2 blocks of M0;µν , one describing transitions from a j-doublet to another

j-doublet M j→j
µν ), and another describing transitions from a j-doublet to a ̄-doublet (M j→̄

µν ). The

on-site j2 → j1 transition and the inter-site r → s transition are both of j → j type, while the

on-site ̄2 → j1 and inter-site r → dx2−y2 transitions are of j → ̄ type. (The symmetry constraints

on j → ̄ and ̄→ j transitions are the same.)

Ignoring inversion, which acts trivially on the electronic states of interest, D4h is generated by

the operations C4z (four-fold rotation about the z-axis), C2x (two-fold rotation about the x-axis),
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and C2xy (two-fold rotation about the (x̂ + ŷ)-axis). It will also be useful to explicitly consider

C2z = (C4z)
2. We consider the single-ion Hamiltonian obtained by projecting spin-orbit coupling

and D4h crystal field to the t2g manifold, which allows us to obtain wave functions for the electronic

states of interest. Using these wave functions, we find the following matrices representing the action

of D4h symmetry on the j-doublets:

Cj4z = −

 e−iπ/4 0

0 eiπ/4

 (B.1)

Cj2z = −iσz (B.2)

Cj2x = iσx (B.3)

Cj2xy =
−i√

2
(σx + σy), (B.4)

where σx, σy, σz are the usual 2× 2 Pauli matrices. For ̄-doublets we find:

C ̄4z =

 e−iπ/4 0

0 eiπ/4

 (B.5)

C ̄2z = −iσz (B.6)

C ̄2x = iσx (B.7)

C ̄2xy =
i√
2

(σx + σy). (B.8)

In both cases time reversal is given by

T = iσyK, (B.9)

where K is the complex conjugation operator. We note that these forms only depend on the

symmetry properties of the electronic states, which are expected to be captured accurately in our

simple treatment.

Now we analyze the constraints on the matrix elements. First, we consider the action of

symmetry on Rµν , which has to agree with that on the corresponding matrix elements. We only
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need to consider those operations that take a given component of Rµν into itself (or minus itself):

C2z : Rxx → Rxx (B.10)

C2x : Rxx → Rxx (B.11)

C2z : Rx′x′ → Rx′x′ (B.12)

C2xy : Rx′x′ → Rx′x′ (B.13)

C2z : Rxy → Rxy (B.14)

C2x : Rxy → −Rxy (B.15)

C2z : Rx′y′ → Rx′y′ (B.16)

C2xy : Rx′y′ → −Rx′y′ . (B.17)

In addition, Rµν is invariant under time reversal.

Now we consider the matrix elements M j→j
µν and M j→̄

µν . In each case, time reversal allows

the matrices 12×2 and iσµ (µ = x, y, z) to appear with arbitrary real coefficients, where 12×2 is

the 2 × 2 identity matrix. For example, time reversal allows the form M j→j
xx = a0 · 12×2 + aµiσ

µ,

without yet imposing any other symmetries. Using all symmetries gives

M j→j
xx ,M j→j

x′x′ ,M
j→̄
xx ,M j→̄

x′y′ ∝ 12×2 (B.18)

M j→j
xy ,M j→j

x′y′ ,M
j→̄
x′x′ ,M

j→̄
xy ∝ σz. (B.19)

The information provided in Table I of the main text follows from these results. We note in

particular that only pseudospin-flip transitions contribute in xy polarization.

Effect of C4h site symmetry. The true Ir site symmetry is C4h, which is generated by the

operations C4z and inversion. Focusing on effects of this lower symmetry in xy polarization, we

find that M j→j
xy and M j→̄

xy are both allowed to have a non-pseudospin-flip contribution. The fact

that a peak is not seen in xy polarization suggests that the breaking of D4h → C4h is a weak effect,

at least for the electronic states probed by our Raman measurements.

Below Neel temperature. Below the Neel temperature, long-range magnetic order lowers

the site symmetry. Assuming the moments lie in the xy plane and point along the x′ axis, the site
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symmetry is generated by the operations C2zT and C2xy [181, 182, 183]. All components of Rµν

are left invariant by C2zT . This operation acts on both doublets as the matrix C2zT = −iσxK,

and this allows the matrices (with real coefficients) 1, σx, σy, iσz to appear. Focusing again on xy

polarization, there are no further constraints on M j→j
xy and M j→̄

xy , so non-pseudospin-flip transitions

are allowed to contribute in xy polarization. The absence of a peak indicates that Neel order is

not strong enough compared to electronic energy scales to have a significant effect on the Raman

transitions probed.

Raman scattering can flip the pseudospin. In the absence of spin-orbit coupling, the

Raman tensor cannot induce spin-flip processes. This follows from the presence of SU(2) spin

rotation symmetry, and the fact that Rµν commutes with SU(2) spin rotations. In the present

case, there is substantial spin-orbit coupling, and SU(2) spin symmetry is not present, opening the

possibility of pseudospin flips in the Raman process.

To assess whether Rµν indeed contains pseudospin-flip transitions with significant amplitude,

we make the conservative assumption that spin-orbit coupling only enters in the initial and final t2g

states, ignoring spin-orbit coupling in the intermediate state. As a result Rµν commutes with SU(2)

spin rotations, and spin-flip processes are forbidden. However, we find pseudospin-flip processes

are nonetheless Raman active. To illustrate this point we focus on a single lattice site for simplicity

and assume:

Rµν = f †AσR
µν
ABfBσ. (B.20)

Here A,B = yz, xz, xy labels the t2g orbital states, σ =↑, ↓ is electron spin, and the 3 × 3 matrix

Rµν is constrained by site symmetry and time reversal. We are thus assuming that Rµν acts only

on the orbital degrees of freedom. Spin-orbit coupling enters via the single-ion Hamiltonian, whose

local energy eigenstates (the j1, j2 and ̄2 doublets) have mixed spin and orbital character. We

determined the general symmetry-allowed form of Rµν . Then transforming the expression for Rµν

into the basis of spin-orbital energy eigenstates, we find that pseudospin-flip processes are fully

allowed, even though Rµν contains no spin-flip terms. This justifies our analysis of the Raman
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process including both transitions with and without pseudospin flips.


