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AN ANALYSIS OF REDUCED HESSIAN METHODS FOR
CONSTRAINED OPTIMIZATION

by

Richard H. Byrd and Jorge Nocedal

ABSTRACT

We study the convergence properties of reduced Hessian successive quadratic pro-
gramming for equality constrained optimization. The method uses a backtracking
line search, and updates an approximation to the reduced Hessian of the Lagrangian
by means of the BFGS formula. Two merit functions are considered for the line
seach: the £; function and the Fletcher exact penalty function. We give conditions
under which local and superlinear convergence is obtained, and also prove a global
convergence result. The analysis allows the initial reduced Hessian approximation
to be any positive definite matrix, and does not assume that the iterates converge,
or that the matrices are bounded. The effects of a second order correction step,
a watchdog procedure and of the choice of null space basis are considered. This
work can been seen as an extension of the well known results of Powell (1976) for
unconstrained optimization to reduced Hessian methods.

Key words. constrained optimization, reduced Hessian methods, quasi-Newton meth-
ods, successive quadratic programming, nonlinear programming

AMS(MOS) subject classification. 65, 49

1. Introduction.

In this paper we analyze reduced Hessian successive quadratic programming methods for
solving the equality constrained optimization problem

min f(x)

zeR1

(1.1)

subject to ¢(z) = 0,
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where f: R® — R, and ¢ : R® — R are smooth nonlinear functions. These methods,
which we also refer to as reduced Hessian methods, generate at z; a search direction by
solving the quadratic program

1

: T T T
min z d + =d* Zy, By Zit d
dEIll,n g( k) 2 Rk 2k

(1.2)
subject to c(ay) + A(z)Td = 0,

where g is the gradient of f, A(z) = [Vey(z), ..., Vey(z)] is the n X ¢ matrix of constraint
gradients, Zj is a matrix whose columns form an orthonormal basis for the null space of

A(zr)T, and By is a matrix that approximates the reduced Hessian of the Lagrangian
function. The new iterate is given by

Tpq1 = Tg + ardyg,

where the steplength oy is chosen to force progress towards the solution of (1.1). Our
goal in this paper is to develop some practical convergence results for reduced Hessian
methods in which By is updated by the BFGS formula and the initial matrix Bg is an
arbitrary positive definite matrix.

Reduced Hessian methods are a special case of successive quadratic programming
(SQP) methods, which are based on the subproblem

: T, , 1.1
dréllllt}l g(a:k) d+ §d M;d

(1.3)
subject to ¢(zx) + A(zx)Td = 0.

Specifically, problem (1.2) is equivalent to a problem of the form (1.3) with M; =
ZyBrZT. The general equality constrained quadratic program (1.3) is equivalent to
a problem of the form (1.2) if and only if ZF My A(z) = 0.

Solving problem (1.1) by iterative solution of (1.3) is an old idea since, if My =
V2,.L(zg, A\p) and Mg is the multiplier vector of the quadratic program at iteration k — 1,
this is equivalent to Newton’s method on the Kuhn-Tucker conditions for (1.1). An
alternative is to try to make M}, a secant approximation to the Hessian of the Lagrangian,
using a positive definite secant update such as BFGS or DFP. That is, M} would be
updated so that M43 = 7, where 5, = Tr41— Tk, and J is some vector approximately
equal to V2 L(zy, A\;)8g, such as Vo Ll(Zpi1, \k) — ViL(zg, Ap). This idea cannot be
carried out in a straightforward fashion since the Hessian of the Lagrangian at a solution
of (1.1) is not necessarily positive definite. Several approaches have been proposed for
coping with this difficulty, and reduced Hessian SQP is one of these. Before discussing
reduced Hessian methods, we briefly mention some other approaches which instead solve
a problem of the form (1.3) with M} an n X n positive definite matrix.



An early proposal is to update My, so as to approximate the Hessian of the augmented
Lagrangian, V2 L(z, \x) + pArAT, which is positive definite near the solution if the
scalar p is chosen sufficiently large. This was analyzed by Han (1976), Tapia (1977), and
Glad (1979), who showed that if a sufficiently large value of the augmentation parameter is
used, and if o and My are good enough approximations to the solution and to the Hessian
of the augmented Lagrangian, respectively, then the iterates converge Q-superlinearly to
the solution. A different approach, due to Powell, is to update the matrix only part way
so that My18; = 09 + (1 — 0) M3y, where 0 € [0,1] is chosen to preserve a degree of
positive definiteness. Powell (1978) proves that if {2)} converges to the solution, and
if the sequences {|| M|} and {||(ZF M} Z;)~1||} are bounded, then the convergence rate
is R-superlinear. The same result is proved by Fenyes (1987) for his updating scheme,
which preserves positive definiteness only of ZI My Zy. Boggs and Tolle (1985) suggest
that M}, simply be left unchanged in cases when updating would cause a loss of positive
definiteness. They prove that if {z} converges to the solution Q-linearly, and if the
directions produced by the algorithm converge sufficiently fast to the null space of the
constraint derivatives, then {2} converges Q-superlinearly.

The reduced Hessian approach is motivated by the fact that near the solution
zr V2 L(zk, A\g)Z is usually positive definite, and thus it is reasonable to approximate
this matrix using a positive definite update formula. In this case the matrix By, of (1.2)
would be updated so that Bryys, = yi, where s, = Zl(wpqr — zy) and yy is a secant
approximation to ZI'V2_ L(xg, \;)Zysk. The approach also has the advantage that, when
n —t is small relative to n, the Hessian approximation that needs to be stored is smaller.
Reduced Hessian updating methods have been proposed by Murray and Wright (1978),
Gabay (1982), Gilbert (1987), Coleman and Conn (1984), and Nocedal and Overton
(1985). For the last two approaches, their proposers prove that if 2o and By are good
enough approximations to the solution and to the reduced Hessian of the Lagrangian,
respectively, then the iterates converge 2-step Q-superlinearly to the solution. These two
approaches differ primarily in the choice of y;; that of Coleman and Conn is more costly
in function evaluations, but is probably more robust than that of Nocedal and Overton
(which is closer to the first two approaches mentioned). Actually, Coleman and Conn
consider two versions of their algorithm; here we are referring to the version that uses
only one constraint evaluation in the step computation. We also note that Fontecilla
(1988) proposes a full Hessian method analogous to the algorithm of Coleman and Conn
and proves a similar convergence result.

Most of these methods work reasonably well in most cases, but none of them is
regarded as completely satisfactory in theory or in practice (see Powell (1987)). Note
that all the above mentioned analyses either assume a good initial approximation to the
solution and to the Hessian of the Lagrangian at the solution, or they assume that the
iterates converge and that the Hessian approximations are bounded in some way. We
regard these assumptions as undesirable since it is not known when they will be satisfied
in practice. The objective of this work is to develop a convergence theory for reduced
Hessian successive quadratic programming that only assumes of the matrices that the



initial one is positive definite, and does not assume that the iterates converge. Since
we are making no assumptions on By or on the convergence of the iterates, there is no
guarantee that z; + dj, is closer to the solution @, than zj is. In practice a line search
is usually relied on to force progress towards the solution. This is done by using a merit
function ¢(z), and by computing the steplength oy so that @(zr 4+ ardy) is significantly
less than ¢(zy).

We will analyze a procedure of this type and show that, under certain conditions,
if z1 is within a neighborhood of z, this decrease in the merit function will force {z}
to converge to z, R-linearly, whereupon known results will imply that the convergence
is superlinear. Thus our work will be somewhat analogous to the well known paper of
Powell (1976) on the convergence of the BFGS method with inexact line search for a
convex objective function. We have chosen to consider reduced Hessian approaches here
primarily because the issues we are interested in are simpler to deal with than for full
Hessian approaches. Also for simplicity we have chosen to analyze an updating strategy
like that of Coleman and Conn, but many of our results can probably be extended to the
more complex Nocedal and Overton strategy.

The algorithm to be studied is defined in Section 2, and the methods for updating
By, and for performing the line search are laid out precisely. We consider two merit
functions, the ¢; function proposed as a merit function in Han (1977), and the Fletcher
(1970), (1973) exact penalty function.

In Section 3 general results of Byrd and Nocedal (1987) on the BFGS update are
used to show that, if an adequate line search is done, then the merit function is decreased
significantly for at least a fraction of iterates. This fact is then used to prove a somewhat
weak global convergence result. The effect of choice of the weight in the merit function
is taken into consideration.

In Section 4 we consider the local behavior of the algorithm near a point satisfying
the standard strong sufficiency conditions. We prove that, once the algorithm gets close
enough to such a point it will converge R-linearly. The convergence results here and in
Section 3 are somewhat more satisfactory for the £; merit function than for the Fletcher
function.

In Section 5 we study superlinear convergence. We consider the effect of the choice
of null space basis Z; on convergence rate, and look for conditions under which the
algorithm takes unit steplenghts near the solution. This is not a problem for the Fletcher
function, but for the {; function the algorithm needs to be modified. We consider two
modifications, the correction step and the watchdog technique, and show that they allow

for unit steplenghts near the solution, which ensures a two-step Q-superlinear rate of
convergence.

Notation. The Lagrangian function will be defined by

Lz, \) = f(z) + Me(), (1.4)
and we denote the reduced Hessian of the Lagrangian by G, i.e.
Gr = ZFV2, L(zk, M) Zs. (1.5)
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Throughout the paper ||-|| denotes the I vector norm or the corresponding induced matrix
norm. When using thel; or lo, norms we will indicate it explicitly by writing 1111 or [|]lco-
We recall that the /y and I, norms are duals of each other, so that \T¢ < IMloollells- A
solution of the problem (1.1) is denoted by ., and we let e = zj, — ..

2. Reduced Hessian Methods with Line Search

Now we describe a general reduced Hessian SQP algorithm of the type discussed in
§1. We denote the merit function by ¢, and its directional derivative at z in the direction
d, by Dg(z;d). The precise form of ¢ will be discussed later.

Algorithm 2.1
The constants 7 € (0, %) and 7, 7" with 0 < 7 < 7/ < 1 are given.

(1)

(2)

(6)

(7)

Set k = 1 and choose a starting point 2, and a symmetric and positive definite
starting matrix By.

Compute Zj, and obtain dj, by solving the quadratic program
1
in gld+ =d"ZyB,z]d
dglftl}x gpa+ 3 kD) L
subject to ¢ + AFd = 0. (2.1)

Set ap = 1.

Test the line search condition
ek + ardi) < o(ag) + narDo(ag; dy,). (2.2)

If (2.2) is not satisfied, choose a new «y, in [ray, T'ay] and go to (4); otherwise set

Thi1 = Tk + agdy. (2.3)

Compute
Sp = Zg(:vk_{_l - k), (2.4)
Yk = ZL [VeL(2k + aghi, Ap) = VoL(zk, Ak, (2.5)

where Aj is chosen so that (2.12) is satisfied. If s;, # 0 update By using the BFGS
formula

BispsTBr eyl
Biyy = By, — Desk B iy

. 2.6
s%Bksk ykTsk (2:6)

Set k:=k+ 1, and go to (2).



The solution to subproblem (2.1), which gives the step direction, may be expressed
as

dr, = hi + vg, (2.7)
where
hy = —ZkB,ng;?gk’ (2.8)
and
v = —Ap[AT AR er, (2.9)

give an orthogonal decomposition of di, and where g stands for g(zr), etc. The vector
vk is in the range space of Ay and may be regarded as a minimum norm Newton step on
the equation ¢(z) = 0. The vector hy, lies in the null space of AZ, tends to move toward
a stationary point of the Lagrangian and, to first order, leaves the value of ¢ unchanged.
Note that the approximation matrix By only affects the null space component h.

The procedure for choosing a new value of « in step (5) is not specified precisely so that
our analysis can cover a variety of line search strategies. There are several procedures,
such as a safeguarded interpolatory line search algorithm or simple multiplication by a
constant, that would give a new «ay in the specified interval. Note that the line search
always reduces the steplength and thus ax < 1 for all k. This is common in successive
quadratic programming algorithms, and is due to the condition c(zr) + A(zk)Tdy = 0.

In the algorithm, Z, refers to an n x (n—1) matrix satisfying A{Zk =0and Zng = I.
These conditions do not specify Zj, uniquely, and the iteration does depend on our choice
of Zy. It turns out, however, that the results in Sections 3 and 4 are true for any choice
of Zg, and that only to prove superlinear convergence do we need to place additional
restrictions on Zj.

Let us now discuss the choice of the vectors s; and Yr needed in step (6). Since By, is
meant to be an approximation to the reduced Hessian of the Lagrangian ZgV%xL(:c ks M) Zg
based on information at x5 and @1, it is reasonable to define sk by (2.4), or equivalently
by

S = a'kaThk, (2.10)

but we could have replaced Z; by Zj41 in these expressions. The choice of y; is less
obvious. The formula we use in Algorithm 2.1 is that proposed and analyzed by Coleman

and Conn (1984). To motivate this formula for y; note from (2.10), and from the fact
that Znghk = hy, that

ZEVaL(mk, ) Zksi = ZE[V2, Lk, M )owh]
~ Z;Z[Vxl/(:lrk + akhk, /\k) — VxL(xk, Ak)]

Since we want to impose the secant condition Byy18k = yi it is natural to define yy by

(2.5). There are several slight variations of the formula for Y that could be used. For
example we could define

Y = Zi1 [Vel(@ht1, Mes1) = Vol (@rgr — aphy, Akt1)]s



thereby using the most recent information available. We will only consider the definition
(2.5), but the results of this paper also hold for several of these variations.
A significantly different formula for y;, is

Uk = ZFaVoLl(zht1, Met1) = VaeL(zg, Aegp1)]- (2.11)

Formulas of this type have been suggested by Murray and Wright (1978), Gabay (1982),
and Nocedal and Overton (1985). An advantage of using (2.11) is that it requires only
one evaluation of the derivatives of f and ¢ per iteration as opposed to two evaluations
for (2.5). However, Nocedal and Overton note that (2.11) can be subject to instability in
some cases, and in their analysis they stipulate that under certain conditions the update
be skipped. In this paper we will analyze only the choice (2.5), and leave the formulas
like (2.11), whose analysis is more complicated, for subsequent study.

There are several effective ways to estimate the Lagrange multiplier in the Hessian of
the Lagrangian. We require only that A; be chosen so that

Ak = Al < allok — 2] (2.12)

is satisfied for some constant v5. This condition is satisfied by several formulas including

-1
Ap = — [A;;Ak] A{gk (2.13)
and )
Ap = — [AzAk} [A;{gk — ¢k (2.14)

Powell (1976) has shown that the BFGS method for unconstrained minimization has
strong convergence properties if yl's; > 0 for all k, and if the sequence {vFyr/yF s} is
uniformly bounded above. In this paper we will show that these two conditions are also
crucial in the analysis of Algorithm 2.1. The following lemma shows that the definition
(2.5) of yx ensures that these two conditions hold near the solution.

Lemma 2.1 Given an iterate xp, a step aphy and a Lagrange multiplier estimate My,
assume that there exist positive constants m, M such that

m|w|? < wl [ZEViIL(w,/\k)Zk] w < Mwlf?, (2.15)

Jor all w € R™™t, and for all z in the line segment joining xy and xj + agyhg. Then

T
Yk Sk
e >m (2.16)
and ,
”%’““ <M. (2.17)
Yi Sk



Proof: If we define )
Gy =27 / V2, Lz + Tagh, Ap)dr Zs,
0

then we have from (2.5)
Yk = Grsk. (2.18)
Thus (2.16) and (2.17) can be shown to follow from (2.15).
O
We now consider some merit functions to be used in step (4) of the algorithm. The

first merit function used in a successive quadratic programming algorithm was the ¢4
merit function (cf. Han (1976))

Pu(z) = f(@) + plle(z)||1- (2.19)

Han used the {; norm of ¢(z), but other choice of norms are possible. An alternative is
the differentiable function proposed by Fletcher (1973). Tt is given by

®y(2) = f(2) + Ma)Te() + %VIIC(@“)II?, (2.20)

where
(@) = = [A@)TA@)] ™ A(2)Tg(2) (2.21)

is the least squares Lagrange multiplier estimate at z. To compute the derivative of this
merit function requires second order information, due to the term A(z). However Powell
and Yuan (1986) describe a procedure that uses finite differences to approximate these
second order terms with no extra evaluation of 5\(33) In this paper we will assume, for
simplicity, that the derivative of ;\(a:) is computed exactly.

Boggs and Tolle (1984) propose a merit function similar to (2.20), and most of our
results for the Fletcher function can be extended to their merit function, if some additional
assumptions are made. Other merit functions have been proposed by di Pillo and Grippo,
and by Schittkowski (see Powell (1987) for a review), but they will not be studied in this
paper.

It is essential that the step generated by Algorithm 2.1 define a descent direction
for the merit function ¢ used, i.e. that Dp(xy;di) < 0. Indeed, in order to establish a
linear convergence rate, that quantity must be significantly negative. Therefore, we now
calculate these directional derivatives, starting with the £, merit function. Although this
merit function is not differentiable everywhere, it does always have a one-sided directional
derivative, and for the direction dj, generated by Algorithm 2.1, this takes a particularly
simple form, as we now show.

From Taylor’s theorem we have

Pu (@ + adp) = $u(wr) = flan+ adi) = fo + pille(er + ady)|y — prllexl]s
< agldy + prller + AL dy)ly + bya?|d?
— ||kl 1,



for some positive constant ;. (Note that b actually depends on the weight j;.) From
(2.1) we have that ATdy, = —cj, and therefore, assuming a < 1, we have

Sus (w5 + adi) = 8y, (1) < o [gf di — pllexlls] + 00|y (2:22)

Similarly, we obtain the lower bound

Dun s+ adi) = 6, (@) >  [gFdh — mellealls] — a2 fldel®. (2:29)

Taking limits it is therefore clear that

Dy (wis die) = gi di — pue]|ek 1. (2.24)

In order to separate out the effects on the merit function of the null space and range
space components of the step we recall the decomposition djy = hy + vk, given by (2.7)-
(2.9). By (2.9), we have X

give = Mex, (2.25)
where \; = A(z}) is given by (2.21) so that

Dy, (s d) = gf by — pillerlls + A ex. (2.26)

By (2.8) gfhy = —9F 2, B;* ZT gi., and since the matrices {Br} will be forced to be pos-
itive definite, this term is always less than or equal to zero. Therefore to ensure that dj,
is a descent direction for ¢,, it is sufficient to require that py > lAk]lco- Such a condi-
tion is very common when using merit functions with sequential quadratic programming
methods, and appears for example in the global analysis of Han (1977). If the sequence
{\:} is bounded, then a sufficiently large 4 exists satisfying p > 1 Akl|oo for all k. Since,
however, this value is not known in advance, at each step the weight y1, > [|Ax||eo should
be chosen in such a way that it eventually becomes fixed. One way to do this is to choose
1 at each iterate as follows:

e = { HE—1 if pgq > ”/\kHOO +p (2.27)

IAklloo + 20 otherwise,

where p is some positive constant.

From now on we will assume that when the £; merit function @y, is used in Algorithm
2.1, the weight py is chosen by (2.27). Therefore, for any Tk, Ddy, (2p;di) < 0, unless
ZLgr =0 and ¢; = 0, which can occur only at a stationary point of problem (1.1).

As mentioned above, one could use other norms than the £y norm in this merit
function. In fact, all of the results and proofs in this paper involving the merit function
(2.19) remain valid if the ¢; norm is replaced with the £, norm for p € [1, 00], provided
that the {, norm in (2.27) and elsewhere is replaced with the dual norm Ly, where
113 + % = 1. However, we will continue to write ¢; norm for simplicity.



We now consider Fletcher’s merit function (2.20). Since this function is differentiable
we have

V&, () = gk + Ardr + (M) ex + vy Aper, (2.28)

where :\;c is the ¢ X n matrix whose rows are the gradients of the Lagrange multiplier
estimates. Thus, using (2.1) and (2.25) we have

D®,, (xx;dr) = gidy— Afep+ cF Ndy — vi|ex))?

= glhi + cF Ndy — v (2.29)

Again, as with the £, merit function, the first term is non-positive. It is also clear that, for
any k, vy can be chosen large enough so that (2.29) is less than or equal to zero. However
the algorithm for choosing p is more complex than (2.27), and we defer discussion of this
issue to the next section, where we analyze the convergence of the algorithm.

3. Global Behavior of the Algorithm

We now consider the convergence properties of the reduced Hessian SQP algorithm
defined in Section 2. We will show that, for a fraction of the steps, significant decrease in
the merit function can be obtained, and that under appropriate assumptions this implies
global convergence.

Equations (2.26) and (2.29) indicate that the direction generated by the algorithm
is a descent direction for the two merit functions if ti and vy are sufficiently large and
if glhy = g,{Znghk < 0. Therefore the null space component hj; must make an acute
angle with the projection of —g; onto the null space, —ZrZ{ gr. In order to quantify
the decrease in the merit function obtained in a step of the algorithm, we will consider
closely this angle, which is defined by

T
— (ZkZ;;ng) hy
1 ZkZE gelll| ]|
—gf hy,
1ZE gk llllRel]”

cosf, =

(3.1)

since || Zy Z1 gi|| = || ZL gk||. Therefore, from (2.26) and (2.29) we have

Doy, (wrs di) = =1 ZF grllll || cos 0 — p|cklly + Ay, (3.2)

and :
Doy, (zk;dy) = (| Z{ gellllhr]| cos Or + ef Npdi — v|ex|?. (3.3)

From these relations it can be seen that for Ay to provide significant descent we must
require that cos f; not be too close to zero and that hi not be too small in norm. Both
these quantities depend very strongly on the reduced Hessian approximation By. By

10



equation (2.8), hy is computed so that By ZFhy = —Z[ gx, and so by (2.10) we have that

Bysy = —akZ,?gk. Therefore cos 8, can also be written as
T
si Brsy
cosfp = —EEF (3.4)
skl | Brsill”

and we have that

Akl llsell

1ZE gl 1| Brsil]

The following theorem, which is proved by Byrd and Nocedal (1987), establishes
bounds on these quantities that hold for a fraction of the iterates.

(3.5)

Theorem 3.1 Let {By} be generated by the BFGS formula (2.6) where, for all k > 1,
sk # 0 and

T
yl%sk > m>0
SkSk

2
A
Yi. Sk

Then, for any p € (0,1), there exist constants (1, B2, B3 > 0 such that, for any k > 1, the
relations

cost; > fy (3.6)
P2 < 1524 < Bs (3.7)
11l

hold for at least [pk] values of j € [1,k].

This theorem, which is basic for the analysis of this paper, implies that a fraction p
of the iterates with s # 0 are such that the null space component hy gives a significant
reduction in the merit function. Later we will see that the iterates with s; = 0 also
contribute significantly to the decrease in the merit fucntion. Since it will be useful to
refer easily to these two classes of iterates, we will assign a value to p and make the
following definition.

Definition 3.1 Let p of Theorem 3.1 have the value value p = %. We define J to be the
set of iterates for which (3.6) and (3.7) hold, or for which sy = 0. We will call J the set
of “good” iterates.

This definition and Theorem 3.1 imply that, J N [1, k] contains at least [%k] iterates.

We are now ready to analyze the global behavior of the algorithm. We use the term
global because we do not explicitly assume that the iterates are near the solution, but
only make the following assumptions.

11



Assumptions 3.1 The sequence {zj} generated by the algorithm is contained in a
convex set D with the following properties.

(1) The functions f:R"™ — R, and ¢ : R® — R! and their first and second derivatives
are uniformly bounded in norm over D.

(2) The matrix A(z) has full column rank for all # € D, and there is a constant 7o
such that

[ A(@)[A(2)TA(2)] 7| < 70 (3.8)
forall z € D.

(3) Forall k > 1 for which si # 0 we have

T
B2k > m>0 (3.9)
2
Il ¢y a0
k 2k

The following lemma on the relation between ||k|| and ||ZTg||, for the good iterates,
will be useful in deriving bounds on the directional derivative of the merit functions in
the SQP direction. This lemma does not depend on the merit function used.

Lemma 3.2 Suppose that the iterates {z} generated by Algorithm 2.1 satisfy Assump-
tions 8.1. Then for any j € J

IN

1 1
=127 g4l 11l < =127 g3l (3.11)
B3 B2

Id;1/?

IN

ggnz;‘gju? 22l (3.12)

Proof: Let j € J, and first assume that s; # 0. From (3.5) and (3.7), we have that for
JjeJ

1l 1
R (3.13)

which gives (3.11). Using (3.11), (2.9) and (3.8) we have
ldill* = IRl + llvsl®
1
< —glIngjHZ +78le;1*.

If s; = 0 then ZTg; = h; = 0 and the result clearly holds.
J 7 97 J

12



3.1 The ¢{; Merit Function

We now establish some useful results about the behavior of Algorithm 2.1 with the
£y merit function, and use these results to establish a global convergence theorem. The
following lemma shows that all the steps di generated by Algorithm 2.1 define descent
directions for the £; merit function, and that a significant reduction in this merit function
is obtained for the good steps.

Lemma 3.3 Let the iterates {z} be generated by Algorithm 2.1 using the £y merit func-
tion (2.19) with the weights chosen so that

w2 [[A(zk) oo + 2, (3.14)
for all k > 0, where p > 0. Suppose that Assumptions 3.1 are satisfied. Then for all
k>1

Déuy (w3 di) < =11 Zi gillll el cos 6 — pllexlls, (3.15)

and there is a positive constant by such that for all j € J
Déyy (25 d5) < =b [I127 1% + llesla ] (3.16)

Moreover for any value p there is a positive constant vy, such that if j € J and p; = p
then

$u(25) = du(@ir1) = 74 (127 g5ll? + leslls ] - (3.17)

Proof: From (3.2) and (3.14) it follows immediately that (3.15) holds for all £ > 1. Now
suppose j € J. We can apply (3.11) and (3.6) to (3.15) and obtain inequality (3.16) with
by = min(S1/Bs, p).

To consider the decrease in ¢, in one iteration, for j € J, note that the line search
enforces the condition (2.2),

Su;(@j) = du;(j41) 2 —najDé, (5 d;). (3.18)

It is then clear from (3.16) that (3.17) holds, provided the a; can be bounded from below.
Suppose that o; < 1, which means that (2.2) failed for a steplength a:

¢I~4j(m.7 + ad;) - ¢uj($j) > 77&D¢u;(mj3 d;), (3.19)
where
Té& < o (3.20)
(see step 5 of Algorithm 2.1). From (2.22) and (2.24) we have
Su; () + Gdj) = by, (25) < aDGy, (23 d;) + %0 [|dg]1?, (3.21)

where by is a function of y. Combining (3.19) and (3.21) we have

(n = 1)aD@y;(zj d;) < &*b1|d;l* (3.22)

13



From (3.12) and the fact that ||¢;|| is uniformly bounded above we have
;117 < balllZF g1 + lleslla], (3.23)
for b3 = max(1/52, 4 sup,ep |lc(2)]]). Combining (3.22), (3.16) and (3.23)

T3 (3.24)

Thus from (3.20) we conclude that the steplengths «; are bounded away from zero for
all j € J, and (3.17) holds with v}, = nby min{1, (1 — 7)bz/(b1b3)}.
O
Now that we know from (3.15) that the line search can guarantee decrease in ¢ at
every iteration, and from (3.17) that ¢ decreases significantly at the good iterates, we can
prove a global convergence result for the ¢; merit function. (Actually (3.17) is stronger
than we need for global convergence but we will make full use of it in Section 4 to prove
local R-linear convergence).

Theorem 3.4 Let the sequence {z} be generated by Algorithm 2.1 using the {; merit
function with weights {pr} chosen by (2.27). Suppose that Assumptions 3.1 are satisfied.
Then the weights {u} are constant for all sufficiently large k and liminfr—oo (|| ZL gr|| +
llexll) = 0.

Proof: First note that by Assumptions 3.1 and (2.21) {]|Ax]|} is bounded. Therefore,
since the procedure (2.27) increases ug by at least p whenever it changes the weight, it
follows that there is an index ko and a value p such that for all & > ko, pux = u > || As||+ p.
Now by Assumption 3.1-3 there is a set J of good iterates, and by Lemma 3.3 and the
fact that ¢,(zx) decreases at each iterate, we have that for k& > ko,

k
Su(@h) = du(@rr1) = D (Bul®;) = dulzisr))

7=ko

> Y, ($uleg) = duleir))
jeJn[ko,k]

> v > 2] gl + llejlh)-
jGJﬂ[ko,k]

By Assumption 3.1-1 ¢,(z) is bounded below for all z € D, so the sum is finite, and thus
the term inside the square brackets converges to zero. Therefore

. T _
sedim (1125 95l + lleilla) = 0. (3.25)

and since, by Theorem 3.1, J is infinite the theorem follows.
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Actually this result could have been proved with the boundedness of |f| and ||¢|| in
Assumption 3.1 replaced with the assumption that ¢,, is bounded below over D for some
k, but the analysis would have been somewhat more complicated.

3.2 Fletcher’s Merit Function

Now we consider Algorithm 2.1 using Fletcher’s merit function (2.20). Even though
the analysis is similar to that with the £; merit function, we will be forced to make some
additional optimistic assumptions in order to establish convergence.

Recall the directional derivative (3.3),

D®,, (x5 di) = || Z¥ gil||| k]| cos O + cf Nydi — vi||ex]|*. (3.26)

In this case the weight v, appears to be playing the same role as the difference (p—||\z||oo)
does in (3.2). However, since the term involving the derivative of A appears to be of
unpredictable sign, vy may have to be increased to ensure that the descent condition
holds. Considering (3.26) we see that dj is a descent direction if and only if

¢k Ny = 11 Z8 g |1 ]| cos O
llexll? '

(If ||ck|| = O we obtain a strong direction of descent for any choice of vk, and the analysis
that follows becomes very simple. We therefore assume that ||cg|| # 0.) Condition
(3.27) certainly appears more complex than the corresponding condition (3.14) for the
¢y function. Setting that issue aside for the moment, we now show that if we choose vy
to satisfy a slightly stronger condition than (3.27) we can prove a result analogous to
Lemma 3.3.

(3.27)

Lemma 3.5 Let the iterates {z} be generated by Algorithm 3.1 using Fletcher’s merit
function (2.20) where, for all k > 1, the weights are chosen so that

Vi c{;\;gdk -+ %gghk
llexl|?

for some positive constant p. Suppose that Assumptions 3.1 are satisfied. Then for all
k > 1 we have that

] +p=70r+p, (3.28)

D&, (ks dr) < =512 gelll el cos b — pllex]|?, (3:29)
and there exists a positive constant by such that, for all j € J,
D&, (z5d5) < =ba [[12F gl + llesl1?] (3.30)
Moreover for any value v there is a constant 7], such that, if j € J and v; = v,

By, (35) = @, (2541) > 7 (127 g5 + llesl?] - (3.31)
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Proof: From (2.29) and the definition of 7y
D&y, (zx; di) = 59 hi + (s — vi)l|ex], (3.32)

and using (3.28) and (3.1), equation (3.29) follows. Next, note that, for j € J, equation
(3.30) follows from (3.29) using (3.11), and (3.6).

The rest of the proof is analogous to the proof of Lemma 3.3. Since the line search
enforces the condition (2.2), it is clear from (3.30) that (3.31) holds, provided the a; can
be bounded from below. As in the proof of Lemma 3.3 we see that if a; < 1, we have
(3.19) and (3.20) for the Fletcher function. Using Taylor’s theorem we see that (3.21)
also holds in this case, except that b; now stands for a constant different form the one
defined before (2.22). We therefore obtain (3.22). From (3.12) we have

14112 < b5 [[127 g2 + lle;11?] (3.33)
for some positive constant bs. We see, from (3.22), (3.30), and (3.33), that

- (L =n)bs
o > —-l‘,—l'?b;—— (334)
Thus from (3.20) we conclude that the steplengths a; are bounded away from zero for
all j € J.
O
Note that (3.28) gives a computable value, and v; could be increased if necessary, at
each iteration, to satisfy (3.28). In order to use Lemma 3.5 to prove any convergence result
we must know that eventually v becomes fixed while still satisfying (3.28). Therefore,
by analogy with (2.27), we suggest choosing v, at each iteration by

(3.35)

v = 4 Yk ifrp1 2T +0p
Ur + 2p otherwise,

where p is some positive constant.

Note that the sequence {v;} will diverge if {7y} is unbounded, and in that case
Lemma 3.5 cannot be used to prove convergence. Thus it is essential that the sequence
Uk be bounded. However, in contrast to [[:\k”, the quantity 7 depends on dj, and thus
By, as well as on zj, making its boundedness a difficult question. The most we are able
to say about the boundedness of 7y is contained in the following result.

Lemma 3.6 Suppose that the iterates {x} are generated by Algorithm 2.1 using Fletcher’s
merit function (2.20) and that Assumptions 3.1 are satisfied. Then, there is a constant

bg such that for any k,
_ st sk
vi < be +1], (3.36)

sgBkSk

and the sequence {U;} is thus uniformly bounded above for all j € J.
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Proof: By the geometric/arithmetic mean inequality,

. ALh
Fihy = [; Th |—(cl’c k kl) }
9k
1 T 1(Ck)\lhk-)2
< = S E S

since gf hj, < 0. Therefore by (3.28), (2.8)-(2.10), and (3.8)

7. < [(Ck)\'hk)z
2| gF byl

(leall 1341 lsel)?
[ Ty el I ol | o

A2 sFsi
- 2 TB Sk

+ c Akvk} |[Ck||2

+ Yoll AL

Referring to (2.21) we note that by Assumptions 3.1-1 and 3.1-2, ||A4|| is uniformly
bounded for all ;. By (3.6) and (3.7) it follows that {7;} is bounded for all j € J. O

This result is not as strong as one might hope for, since we are not able to bound
the Rayleigh quotient s; T Brsi/sT s;, 8, away form zero for all k. Therefore we cannot rule
out the possibility that a subsequence of these Rayleigh quotients goes to zero in such a
way that {vx} must diverge to yield a descent direction at each iteration. It is not clear
whether this is likely to be a problem in practice or not. It is interesting to note that
Powell and Yuan (1986) avoid these difficulties, when analyzing the Fletcher function, by
assuming a priori that || B|| and || B; || are bounded. Under these conditions they show
that, if v} is chosen by a procedure analogous to (3.28), it will be bounded.

Therefore, to prove a global convergence theorem analogous to Theorem 3.4 we will
simply make the optimistic assumption that the sequence {7} is bounded.

Theorem 3.7 Let the sequence {z1} be generated by Algorithm 2.1 using the Fletcher
merit function with the weights vy, chosen by (3.35). Suppose that Assumptions 3.1 are
satisfied and that the sequence {Uy} defined by (3.28) is bounded above for all k. Then
vk is eventually constant and liminfx_oo(||ZF gk|| + |lcx]]) = 0.

Proof: Since the sequence {74} is bounded, the procedure (3.35) guarantees that vy will
eventually be constant. By Assumptions 3.1, @, is bounded below for all z € D. Then,
using Lemma 3.5, the result follows by the same argument as in the proof of Theorem
3.4.
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4. Local Convergence

Now we consider a local minimizer z, that satisfies the second order sufficiency conditions,
and show that the algorithm is locally and R-linearly convergent to it. We will make
the following assumptions in a neighborhood of z., and for the rest of the paper, these
replace Assumptions 3.1.

Assumptions 4.1 The point z, is a local minimizer for problem (1.1) at which that the
following conditions hold.

(1) The functions f: R® — R, and ¢ : R™ — R are three times continuously differen-
tiable in a neighborhood of z,.

(2) The matrix A(z,) has full column rank. This implies that 2, is a Karush-Kuhn-
Tucker point of (1.1), i.e. there exists a vector A\« € R such that

VoL(2e, M) = g(22) + A(z:) e = 0.

(3) Forall w € R™ ¢ w # 0, we have wlG,w > 0.

Note that (1) and (2) imply that there are constants 4o, vz, such that, for all  near z.,
[A()[A(2) T A(@)]) ] < 7, (4.1)
and for all  and z near z,,
IA(2) = M)l < relle - =), (42)

where A(z) is given by (2.21). Also, (1) and (3) imply that for all (z, A) sufficiently near
(24, A\), and for all w € R™,

m]lw”2 < wTG(a:,/\)w < M|jwl||?, (4.3)

for some positive constants m, M. The condition f,c € C? is only needed for Fletcher’s
function; for the ¢; merit function it suffices to assume that f,c € C? and that their
Hessians are Lipschitz continuous near z..

We need to establish some results about such a local minimizer and its relationship
to the merit functions. First we note that, near z., the quantities ¢(z) and Z(z)Tg(2)
may be regarded as a measure of the error at z. This result is not new (see e.g. Powell
(1978)), but we give a proof for the sake of completeness. We recall that Z(z) stands for
any orthogonal matrix with the property A(z)TZ(z) = 0.

Lemma 4.1 If Assumptions 4.1 hold, then for all z sufficiently near z,
1l =zl < fle(@)]| +112(2) T g(@)]| < ralle — ], (4.4)

for some positive constants vy, ¥3-
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Proof: Define the function H : R*t — Rt by

Hiz, )= [ VoI(z,\) } .

c(z)
Then H(z.,As) =0, and

(a0 = [ Vellagde) 4(ca) ] .

We note that H'(z,, As) is nonsingular, for if H'(z., \.)(uT,v»T)T = 0 for some u € R"
and some v € RY, then

V?ML(:U*, Adu 4+ A(z v =0 (4.5)
A(z)Tu = 0. (4.6)

Thus wT'V2, L(z., \x)u = 0, and by (4.6) and Assumption 4.1-3 this implies that u = 0.
Then, since A(z,) has full rank, (4.5) implies v = 0. Therefore H'(z,, ) is nonsingular.

Let || -||e denote the norm defined by ||(u7,»T)T||, = llu|| + ||v]|, for vectors in R7+t,
and by the corresponding induced matrix norm, for (n + t) X (n + t) matrices. The
differentiability of H at (2, A.) implies that for any € > 0,

< elle = @l + [|]A = A,

€

A=A

H(z,\)— H' (24, \s) { T }

[N

for all (z,A) sufficiently close to (z.,\.). Since H'(z,, \) is nonsingular, if ¢ is taken
sufliciently small it follows that

Nl =l + 1A = All) < [ (2, Mlle < %(le = 2l + 1A = A, (4.7)

where 75 = ||[H'(2x, A\)||e + € and 54 = V[ H (2, M) le — e If we set A = A(z),
the least squares multiplier, in (4.7) then since V,L(z, Az)) = Z(2)Z(z)Tg(z), the left
inequality in (4.4) follows immediately, and the right inequality follows from (4.2) if we
let v2 = ¥5(1 4 7).

0O

Now we show that, for a fixed weight, either merit function may also be regarded as
a measure of the error.

Lemma 4.2 Suppose that Assumptions 4.1 hold at x.. Then Jor any p > |[A\|oo there
exist constants v3 and va, such that for all ||z — x| sufficiently small

vlle = @ll* < Gul2) = Su(e.) < 74 [12(2) 7 g()|12 + le(2)Il] - (4.8)

Furthermore, for any v sufficiently large there are constants s and vg such that for all
|z — @.|| sufficiently small

tslle = 2al? < 0u(2) = Bu(a2) < 76 [[12(2)7 9@ + [le=)]] (4.9)
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Proof: First we consider the Fletcher merit function, which by Assumptions 4.1 is at
least twice continuously differentiable near .. We have

Vo, (2) = g(z) + A(e)[A(2) + ve(2)] + M(z)Te(z)
V20, (2.) = V2, L(s, M) + AN (22) + M(22)T AT + 04,47,

By Lemma 4.1, and since V&,(z,) = 0, we have that for any € > 0 there is a constant
vg such that
1
(@)= @u(w) < 2 (IV2B, ()] + €) [l - 2P

% [122)7 g(@)|I* + lle()[]

IN

for all z sufficiently near z,.
To establish the left inequality we define

G = VI, L(zs, M) + AN (@) + M(a,)T AT,

so that G + vA AT = V2<I>,,(:L'*). Note that Z,TGZ* is positive definite. We now show
that G + vALAT is positive definite for v sufficiently large.

Let K be an n X ¢t matrix with full column rank such that ZTGK = 0. The span of
K could be considered as a subspace that is & conjugate to the span of Z,. Note that
the ¢ x t matrix ATK is nonsingular, since if ATKv = 0 for some v € R then Kv = Zw
for some w € R™*. But then ZIGZ.w = Z,GKv = 0, which implies that w = 0, and
so v = 0.

Now consider the n X n matrix

. (e
T ] G+ vA.AT| 2. K] = { zIGz, 0

0 KTGK + vKTAATK |°
The matrix on the right hand side is positive definite if v is greater than the smallest
eigenvalue of (KTA) ' KTGK(ATK)~!. In this case, since the product of the three
matrices on the left side is nonsingular, the matrix [Z, K ] must be nonsingular, and thus
G+vA AT = V28, () is positive definite for such v.

Since V23, (z) is continuous, there is a constant 5 > 0 such that for all z in some

neighborhood of z., all eigenvalues of V20, (z) are greater than 2vs. Therefore, since
Vo, (z,.) =0,

(4.10)

®u(2) = Dy(2a) 2 ysle — 2|
We now treat the £, merit function with some fixed value of u > [[As]|co- Consider a
neighborhood N of . over which (4.9) holds for some v, and such that u — 1A(2)]o >
2= [[Adlso), and |e(2)]| < s[4t — || A]loo] for all 2 € N. Then we have that for z € N

Bu(z) = o) = M@)Te(2) = Zulle(@)]? + (@)

(@) + |1 = (@)oo - %VIIC(Q?)H lle()llx

v

> @2+ 70~ [Allo] (@)l
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Since ¢ (z4) = ®,(2.) the left inequality of (4.8) follows from (4.9) with 75 = v3. Now

Pul?) < L@, M) + (1 + [ Alloo)le(@)]]1
< L2 A) +IVEL 2 Al = 2l® + (1 + [ Alloo)le(@)]]1-

Since L(z«, Ax) = ¢,(.), the right inequality follows from (4.4), and from the bounded-
ness of ||¢(z)|| near z,.

O
A consequence of this lemma is that, for a sufficiently large value of the weight, either
merit function will have a strong local minimizer at z,. We would like to use the descent

property of Algorithm 2.1 to show that z, is a point of attraction of the algorithm. To
do this we make the following assumption on the line search.

Assumption 4.2 The line search has the property that, for 2, sufficiently close to .,
o((1 = O)ay, + 0z141) < @(ay) for all 8 € [0,1].

This assumption is rather similar to, but weaker than, the Curry-Altman condition, and
similarly, there is no practical line search algorithm which can guarantee it absolutely.
However, it seems unlikely that it is violated close to z,. We should note that an as-
sumption of this type is needed also in the context of unconstrained optimization; see for
example §7 of Byrd, Nocedal and Yuan (1987).

Now we consider Algorithm 2.1 using the ¢; merit function and show that if an iterate

Tr gets close enough to a,, with k large enough, the sequence will stay close to z, and
converge to z, R-linearly.

Theorem 4.3 Let {x}} be generated by Algorithm 2.1 using the £y merit function (2.19),
with py chosen by (2.27). Suppose that z, satisfies Assumptions 4.1, that Assumption
4.2 holds, and that {[]/i(mk)ll} is bounded. Then the weight has a fized value p for all
sufficiently large k, and there is a neighborhood of . such that if any iterate T, falls in
that neighborhood, with py, = p, then {x} — z.. Furthermore

Fu(@rtr) = Bulas) < ¥[8, (21) = gu(z)], k> ko (4.11)
Jor some constant r < 1, and

i lzk — z.]| < o0. (4.12)
k=1

Proof: By Assumptions 4.1 there exists §; > 0 such that, for all & in the neighborhood
N1 ={z:|lz — z.]| < 61}, Assumptions 3.1-1 and 3.1-2 are satisfied, and

1A@)lso + £ > [[Asloo- (4.13)

Also, by choosing 6; small enough we can guarantee (as in Lemma 2.1) that, if z; and
Tr41 are in Ny and Mg satisfies (2.12), then Assumption 3.1-3 is satisfied.
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Now, since {||A(z1)||co} is bounded, the procedure (2.27) implies that for all k greater
than some value k, p is fixed at some value u. By (4.13) and (2.27), if an iterate zy,
with & > k, occurs in Ny then it must be that i > ||A.]|es. For such g it follows from
Lemma 4.2 that the function ¢, has a strict local minimizer at .. Therefore, there
exists 6 € (0,61] such that if ||z — 2.|| < 6, the connected component of the level set
{21 du(2) < #u(2)} containing x, is a subset of Ny over which equation (4.8) holds.

Now Assumption 4.2 implies that if for some ko > &, ||z, — .|| < 62, then zj, € N;
for all k > ko, since ¢, is decreased at each step.

Thus we have that Assumptions 3.1 hold on Ny for k > ko, and we may identify Ny
with the set D of those assumptions, so that all of the results in Subsection 3.1 for the 0y
merit function hold for k£ > kg. Therefore, if By, is positive definite By remains positive
definite for all subsequent iterates, and by Theorem 3.1 there is a set of good iterates J.
From Lemma 3.3 and Lemma 4.2 we have, for all j € J, 7 > ko,

Bu(23) = Bu(wian) > %m(wj) ~ $u(m)], (4.14)

and so

Su(@ig1) = Pul@a) < 78 [Bu(25) — Bu(2)],

where 7§ = 1 — :/% < 1. From Lemma 3.3 we see that ¢, (zx41) < ¢u(ay) for all k, and
since J N [ko, k] has at least [5(k — kq)/6] elements, we have for all k > ko

¢n(xk+1) = Pu(zs) < pk=ho [¢u(xko) - d’u(x*)]

From this relation and (4.8) we obtain

00 ko o
Solloe—aall € 30 ek = aull+ (102 S (i) — ()2
k=1 k=1

k=kgo
ko 1 1/2 o
< 3 Nl =l + [ —g(ulene) — ue)] | 3 0
k=1 73 k=ko
< oo

O

It is possible to strengthen this result and show that there is a neighborhood of z, such
that if any iterate lands in the neighborhood, the sequence converges to z, R-linearly.
However the analysis of this result is much more complex.

Note that the local result of Theorem 4.3 fits together well with the global analysis
of Section 3.1. If Assumptions 3.1 hold for a set D which is in addition compact then by
Theorem 3.4 the sequence {z;} will have a cluster point that is a stationary point. If this
stationary point satisfies Assumptions 4.1 then Theorem 4.3 implies that the sequence
will converge to it R-linearly.

For Fletcher’s merit function one cannot show such a strong result since, as was
discussed in Section 3.2, there appear to be no assumptions on the problem that will
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guarantee {v;} is bounded. However, if we make the optimistic assumption that the

sequence {74} defined by (3.28) is uniformly bounded, we may prove an R-linear conver-
gence result.

Theorem 4.4 Let {1} be generated by Algorithm 2.1 using the Fletcher merit function
(2.20), with vy, chosen by (3.35). Suppose that z, satisfies Assumptions 4.1, that As-
sumption 4.2 holds, that the sequence {T}} defined by (8.28) is bounded, and that vy is
eventually large enough to satisfy the conditions of Lemma 4.2. Then the weight has a
fized value v for all sufficiently large k, and there is a neighborhood of x. such that if any
iterate xy, falls in that neighborhood, with Vky =V, then {z} — z.. Furthermore

Dy(zpt1) — B (@) < PFRO[D, (24,) — d,(z.)], k> ko (4.15)
for some constant r < 1, and

o0 .
D7 ok = 2] < oo (4.16)
k=1

Proof: By the assumed boundedness of {71}, the procedure (3.35) guarantees that the
weight v is equal to some fixed value v for all k& sufficiently large. Since we also assume
that eventually v, becomes large enough that (4.9) holds for some constants vs and ¥,
then Assumption 4.2 implies the sequence eventually stays in a neighborhood in which
Assumptions 3.1 hold. At this point Lemma 3.5 and Lemma 4.2 imply that

O, (k) = By (141) > %;';[wk) &, (2], (4.17)

This expression has the same form as equation (4.14) in the proof of Theorem 4.3, and
the result follows by the same argument, using equation (4.9) in place of (4.8).
O

It is interesting to note that, once R-linear convergence has been established, it follows
that | Bx|| and || B;!|| are uniformly bounded (we prove this later in Theorem 5.1). Then,
by Lemma 3.6 we have that 7, is bounded. However, we know of no way to establish
the boundedness of Uy a priori, and thus give a proof of R-linear convergence of the
algorithm using the Fletcher function without making such optimistic assumptions.

5. Superlinear Convergence

We have shown in §4 that Algorithm 2.1 is R-linearly convergent. We now investi-
gate whether superlinear convergence occurs, under the assumptions of §4. In §5.1 we
discuss the relevant properties of the null space basis and give an attainable condition
which, as we show in §5.2, implies a consistency property of By, yielding two-step super-
linear convergence, if steplengths of one are eventually taken at every iteration. For the
Fletcher function this implies superlinear convergence of Algorithm 2.1, as we show in
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§5.3. However with the ¢; function steplengths of one may be impossible even very close
to the solution. In §5.4-5 we consider two modified versions of Algorithm 2.1 and show
that they both overcome this difficulty and yield two-step superlinear convergence.

5.1 Choice of null space basis.

The results of §4 only require of the matrix Z; that its columns form an orthonormal
basis for the null space of A], i.e. that ATZ; = 0, and ZTZ), = I. However, this does
not completely specify Zj, and if the choice of null space basis changes too much from
one iterate to the next, superlinear convergence can be impeded. Byrd and Schnabel
(1986) point out that any algorithm that chooses Zy, as a function of A(zy) alone will
have discontinuities at some points. Coleman and Sorensen (1984) and Gill, Murray,
Saunders, Stewart and Wright (1985) consider this issue and suggest several procedures
for computing Zj, based in part on information at previous iterates, which guarantee
that Z varies smoothly.

The approach of Coleman and Sorensen is to obtain Zj, by computing a QR factoriza-
tion of A, in which the inherent arbitrary sign choices in the factorization algorithm are
made, if Ay is sufficiently close to A,_y, the same way as they were done in computing
Zkg—1 from Ap_q. If {2z} — =, then for k sufficiently large all the matrices A will be
close enough together that the same sign choices will be made at each step. Therefore, for
the rest of the sequence we have Zj, = 2(Ay) where z is a smooth function of 7 x (n—1)
matrices in a neighborhood of A(z,). This implies that there a constant ay such that
12 — (2]l < aullok — 2]l

Gill, Murray, Saunders, Stewart and Wright (1985) propose applying the orthogonal
factor of the QR factorization of Ax_; to Ak, and then computing the QR factorization
of QT | Ay to get Q and thus Zi. They show that with this method

1Zk41 = Zi|l < @llergs — 2],
for some constant @. If we consider the null space bases at two iterates z; and z j» with

Jj < k, we have

k-1
12k = Zill < D11 Zia - 24|

=7
k-1
< @y |wipr -z
=7

If the sequence {2} converges R-linearly, then the sum Y21 [|%ig1 — @] is finite. There-
fore, we must have that ||Z; — Z;|| — 0 as j and & go to infinity. This means that {Z;}
is a Cauchy sequence, and must thus converge to some matrix Z., which by continuity
satisfies A(z.)TZ, = 0. Therefore for the Gill, Murray, Saunders, Stewart and Wright
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procedure, as well as for the Coleman and Sorensen procedure, there is a constant a,
such that for all &

12k — 2. < axlzi - o], (5.1)

where Z, is a particular null space basis for A(z,). As we shall show the condition (5.1) is

all that is required of the null space basis to give superlinear convergence of the reduced
Hessian algorithm.

5.2 Consistency of the Matrix Approximation

Since Algorithm 2.1 approximates only the reduced Hessian Gk, one cannot expect
it to be 1-step Q-superlinearly convergent. (See the examples of Byrd (1985) and Yuan
(1985)). However, results of Powell (1978) show that if {zr} — 2., if o = 1 at each
step, and if the matrices By satisfy

_ CBk — Gu)si|

Wi = — 0 5.2
il e 2

then Algorithm 2.1 is 2-step superlinearly convergent, i.e.

212 — 2.

— 0. 5.3
ok — o] (5:3)

In fact, Coleman and Conn (1984) prove that Algorithm 2.1, using the DFP update,
satisfies (5.2). Their arguments are based on the theory of Dennis and Moré (1977) and,
with some changes, apply to the BFGS method also. However, it is also possible to obtain
(5.2) using the techniques of Byrd and Nocedal (1987), as we now show.

Theorem 5.1 Suppose that Assumptions 4.1 hold at Tx, and that the iterates {z}} gen-
erated by Algorithm 2.1, using any merit Junction, are contained in a neighborhood of x,

in which (4.1) - (4.3) hold. Furthermore assume that {z1} converges to x, R-linearly,
and that the matrices Zy, satisfy (5.1). Then

lim w =0
k k ’

—+ 00

and {|| Bg||} and {||B;!||} are bounded.

Proof: If s, = 0 then wy = 0. If s, # 0, then we have from (4.3) and (2.18) that ylsk > 0.
Since by < [[2r41 — 2|, and since oy, < 1, we have for any 7 € [0,1] that

@@k + Tarhi) — 2l < llexll + llerts — o4l] < 2llex]] + llexsa]l,

where e, = 2% — 2. Using this, (2.18), (4.2) and (5.1) we have

lye = Gesill  _ [I(Gh — Gu)si
llskll llskl
< amax ([lextall, llexl)),
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for some constant @. Due to the R-linear convergence, Yoiz1 lex]] < o0. We can therefore
apply Theorem 3.2 of Byrd and Nocedal (1987) to obtain (5.2), since ||zp1 — x| > ||k,
and to conclude that {||Bx||} and {||B; ||} are bounded.
0
This theorem implies that, if a, = 1 at each step, then the sequence {2} converges
2-step superlinearly to z,. However, it turns out that with the ¢; merit function (2.19)
even very close to z., a steplength of 1 may not satisfy the steplength condition (2.2) in
Algorithm 2.1. As pointed out in Chamberlain et. al. (1982) this “Maratos effect” can
slow the convergence rate. To ensure that eventually ay = 1 is used at each step some
slight modifications of Algorithm 2.1 must be made, when using the ¢; merit function
. We discuss two of them, the correction step, and the watchdog technique in §5.4 and
§5.5. Before doing so we will show that these difficulties do not arise with Fletcher’s
merit function.

5.3 Fletcher’s Merit Function

Since this merit function is differentiable with a strong local minimizer at z,, one can
show that for all sufficiently large & the algorithm accepts steplengths of 1, provided the
weight v is large enough. To show this and to establish the results of the next sections it
is useful to first prove the following technical lemma about the decrease in the Lagrangian
function produced by a single step of the algorithm.

Lemma 5.2 Suppose that Assumptions 4.1 hold at , and that the matrices Zy, satisfy
(5.1). If xy is sufficiently close to ., and if wy defined by (5.2) is sufficiently small, then

m
S ekl = Mokl < 12 gil| < 2M ||k ]| + o, (5.4)
and therefore
lldell = O(llex]])- (5.5)

Moreover, for any n < % there exist constants 4 and 5 such that for e, and wy, sufficiently
small,

L(wy + diy M) < Lzi, M) + ngFhe — FNZEgell? + Aex] . (5.6)
Proof: Since s, = o:kaThk and Bys, = —anggk, we have from the definition of wy,

[1Fe |

T Or(lhell + Nloell) < 128 gell < NG IRkll + wr(le]] + Joxl])-

If wy is small enough, and using (4.3), we obtain (5.4). The left inequality in (5.4)
together with (2.9) and (4.1) give (5.5).
By Taylor’s theorem

R R . 1 .
L(zg + di, Ap) = L(wg, \e) + Vo L(zg, \e) Tdy + Ed%meL(z, Ar)dr,
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where 2 = z+7dj forsome 7 € (0,1). From (2.9) and (2.21) we have that VeL(zg, Ap)Top =

0. Therefore, since the second derivatives of f and ¢ are bounded near T., we have by
(2.7) and (2.8)

IA

~ N 1 ~
L(xy + dg, \p) Lk, \k) + gt hi + §hkTV§xL(Za A + aq[log]| (2] ]| + ||vkl])

L(zk, A) + gl hi
_(1 - n)[hgzk(Bk - G*)Zghk + thkG*Zghk]

1 -
+ 50k VoL (2 Aoy + arl|vrl (2] hiel] + [[ox]),

IN

for some constant a;. From the definition of wy,
1hE Z1(Br = G) ZE bl < (el (]| + (e,

and therefore

Lz + di, \p) < L(zg, M) + ngLhy, + (1 = Ml [kl + |vslwr
+(1 = AL ZW[ZEV2  L(2, 5\) 2 — G.)ZE

1 .
=(5 = MLV Lz, M)l + an[lor| 1l + [[ol]). (5.7
Using (4.3), (5.5) and (5.1) we have

D(wk+dis ) < Llew, M) + nglhe + (1= m)llel|(lsl] + e e
1
taall]?lexl| - (5 = Wllhxl*m
tafloell Ikl + [lok]]),

for some constant ay. Thus if ||ex|| and wy, are sufficiently small

. . 1,1
Lo+ des Ae) < Lo, M) + 97 e = 55 = )ikl *m + e [Jow | (31| + [[exll). (5.8)

By the geometric/arithmetic mean inequality,

L
(Y —n)m 6ay 2
hillllvg|l = Z hi||? i
el el )
(%—n)m 9 3aq
< Ty ey 34 e
oo, Il (%_n)mll kll

Substituting this into (5.8) we obtain
; Q T 1 m 9 9a? 9
Llwk + dis Ak) < D@k, k) + 198 i = (5 = )|l + { ar + ) [log]|2.
2 4 (3 —mm
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From (5.4) we have that [Ihl2 > mirs(1ZZ gull— 012 > se(4l1 27 gull? —[[0x]). Using
this (2.9) and (4.3) we have

L(zy, + diy Ae) < L(we, Ak) + ngThi, — | ZE gkl + 4l exl]?,

for some constants ¥ and 4.
0

It is interesting to note from this result that the Lagrangian is decreased, unless the
term ||cg||? is large. This term occurs because the point z. is not in general a local
minimizer of L(z,\.) but may be a saddle point; thus the vy component of the step
which decreases ||¢(z)|| may actually increase the Lagrangian. This fact prevents the
Lagrangian from serving as a good merit function. It appears that a good merit function
must have a term which gives sufficient weight to decreases in the value of c(z), and it
can be seen that both merit functions considered here are equal to the Lagrangian plus
a term dependent on ||¢||.

Looking at the Fletcher merit function in this way and using Lemma 5.2 we can prove
superlinear convergence.

Theorem 5.3 Suppose that Assumptions 4.1 hold at Ty, and that Algorithm 2.1, using
Fletcher’s merit function, generates a sequence {z1} which converges R-linearly to z..
Assume also that the matrices Z;, satisfy (5.1). Then, if for all sufficiently large k the
weight has a fired value v, which is large enough, the rate of convergence is two-step
Q-superlinear. '

Proof: We only need to show that for all sufficiently large k£ the point Tht1 = T + dg,

satisfies the line search condition (2.2), for Theorem 5.1 and the results of Powell (1978)
then imply (5.3).
By (5.5) we have that

lleksall < llex + AL dell + O(|di]|?) < aallex|?, (5.9)

for some constant ag. Using this, (2.20), (5.6), (5.5) and (2.29) we obtain

y(ehpr) = L(zpgr, Ap) + [L(wk+1,;\k+1) - L($k+175\k)] + gvlerpa?
< Llak, M) + ngihi = 3 ZE gell? + Alleal® +
Aker = Mallllersall + Svllepsa®
< ulon) = Pl + o he + a3 Tex — ljal?] - nafiy e, +
nllexll® = YN ZE gell* + Alekl* + aallex]].
< ulzr) + DB (ars dy) — {[(5 = v - Alex? + 2L grll2} +

asml|exllexl] + aalle]]®, (5.10)
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for some constants a4, as. Using Lemma 4.1 and the geometric/arithmetic mean inequal-
ity (as in the proof of Lemma 5.2), we see that there is a constant ag such that

asnllexllllexl] < agllell® + 57127 g%,

from which one can show that, if v is sufficiently large, asn||ex||||ck|| is less than half the
term inside the curly brackets. Also, if ||eg|| is sufficiently small, we have from Lemma 4.1
that the last term in (5.10) is less than half the term inside the curly brackets. Therefore

P, (2p41) < By (2k) + nD®,(2k; dy),

and the unit steplength is accepted by the algorithm.

5.4 The Second Order Correction Technique

Since the difficulty with the £; merit function is caused by the nondifferentiability of
the term [le(2)]|1, a very simple measure is to add to the step a correction of the form

Wy = ~Ak(AgAk)‘lc(xk + dk).

This is very similar to strategies proposed by Coleman and Conn (1982), Fletcher (1982),
Gabay(1982) and Mayne and Polak (1982) to deal with this problem. The effect of this
correction step, which is normal to the constraints, is to decrease the quantity ||e(z)|| so
that it is of the order of ||e||®. This means that the merit function will then be decreased
at the point z; + dy + wy, as we will show.

We therefore consider the following variation of Algorithm 2.1.

Algorithm 5.1
The constants 7 € (0,%) and 7,7 with 0 < 7 < 7/ < 1 are given.

(1) Set k = 1 and choose a starting point 2; and a symmetric and positive definite
starting matrix By.

(2) Compute dj as the solution of the quadratic program (2.1)
(3) Set ap = 1.

(4) It
¢u(1’k + akdk) < qﬁu(@k) + nakD¢;t($k§ dk)> (5‘11)
set Zr41 = 2k + agdy and go to (8).

(5) If (5.11) does not hold and if ay < 1 go to 7.
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(6) Compute
Wy = ——Ak(AgAk)ulc(a:k + dk). (5.12)
If
bu(ek + di + wi) < ¢u(zy) + nDP(wr; dy) (5.13)
holds, set 2141 = @k + di, + wy, and go to (8); otherwise go to (7).
(7) Choose a new oy in [ray, 'ay] and go to (4).
(8) Update By, using the BFGS formula (2.6).
(9) Set k:=k+ 1, and go to (2).

We will show that after a finite number of iterations backtracking is never needed,
i.e. the step taken by this algorithm is either Tgy1 = Tg + di OF Ty = Tk + di + wy,
which will imply superlinear convergence.

First we need to verify that Algorithm 5.1 is locally R-linearly convergent. This is
easy to do, because Algorithm 5.1 differs from Algorithm 2.1 only if the step is accepted
by (5.13), and this test enforces a sufficient reduction in the merit function. To show
that Theorem 4.3 applies we only need to consider an iteration such that 7 € J and
Tjt1 = 2+ dj+ w;. From (5.13) and (3.16) we see that (3.17) holds, and the proof of
Theorem 4.3 applies without change. Therefore Algorithm 5.1 is R-linearly convergent.

Now we argue that Theorem 5.1 also holds for Algorithm 5.1. We consider an iteration
for which the second order correction is used: Tpt1 = 2 + dp + wy. Then

l[wkll < llexsall + ex]], (5.14)

due to the orthogonality of w; and di. Proceeding as in the proof of Theorem 5.1 (except
that ay = 1) we have @y, + hy = 2441 — vz — wg, and therefore using (5.14) and (4.1)

ek + i = @l < lextall + Follexl] + llexsall + el

The rest of the proof is identical to that of theorem 5.1. Therefore we know that for

Algorithm 5.1 condition (5.2) holds and that the matrices Bj, and their inverses are
bounded.

We now show that after a finite number of iterations backtracking is never needed.

Theorem 5.4 Let Assumptions 4.1 hold at x.. If zy is sufficiently close to z, and wy,
defined by (5.2), is sufficiently small

bu(@k + di + wi) < du(ar) + nDg(ar; dy)
Proof: From (5.12), (4.1) and (5.9) we have

l[wrll = O(llex]?). (5.16)
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Since Vg L(zg, ;\k)ka = 0, and using (5.5), we have

L(wk + dy, + W, ik) — L(:Ek + dg, S\k) = VQJL(LU;C +dy + TWk, ;k)ka
= VoL(zg, A\p)Twp +
O(lldx + Twgl|[lwal]),
= O(llexl®), (5.17)

for some 7 € (0,1). Similarly
1
c(zy + dy, + wi) = c(zk + di) + A,":wk + A [A(z) + di + Twg) — A widr.
Since the first two terms on the right hand side cancel, we have from (5.16) and (5.5)

lle(ek + di + we)ll = O([lex]]*). (5.18)

Now

bu(r + di + wy)

flee+ di + wi) + Me(zp + di + wi) + pl|e(ar + dy + w1
——:\gc(a:k + dy + wi)

L(@k + di + wi, Ae) + (1 + [ Aklloo)lle(r) + dy, + wi) |y

L{zk + dy + wr, A\p) + O(|lex|?) (5.19)

Using (5.17), (5.6) and (2.26)

INIA

Pul@r + dg + wy,) L(zk + di, Ax) + O(|lex]|?)

Lz, Ak) + ngi b = W ZE gill? + Allexll? + O(lex]|)

fet pllewll + Afex — plleklls + ngf iy — 7| ZF gi |2

Hllerl* + O(llex]|?)

Gul@r) + 1 [gf b+ Mex = llesll] + (1 - n)3fex

—( = mullerlls = FNZE gl + Alexll? + O(flexlf?)

= Pul@r) + nDu(ar;di) — (1= n)pllexlls — 7|1 2L gx ) +
Hlexll® + O(llexll®).

Assuming that ||cx|| < (1 —7)p/(27), we have

A A

il

Puler + dy + wr) < pu(er) + nDu(wr; di) — {31 — n)pllerlls + 7| ZF gxl|2} + O(llexl®).

By (4.4), if ||ex|| is sufficiently small, the last term is smaller in magnitude than the term
inside the curly brackets.
]
Now we need to show that Powell’s condition (5.2) implies 2-step Q-superlinear con-
vergence also for Algorithm 5.1, if for all large k backtracking is not used.
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Theorem 5.5 Suppose that Assumptions 4.1 hold at z., and that Algorithm 5.1, gen-
erates a sequence {x} which converges R-linearly to z.. Assume also that the matrices
Zy satisfy (5.1). Then the rate of convergence is two-step Q-superlinear.

Proof: Since we have shown that the matrices By and their inverses are bounded, Theo-
rem 4.1 of Nocedal and Overton (1985) gives

lek—1 + di—1 — .|| < Ciller—1]| (5.20)
for some constant Cy. Note also that by (5.9) |

le(i1 + dit)]| < asllens]. (5.21)

Now, if the second order correction is used at step k — 1, by (5.16) it satisfies |lwe—1]] =

O(|lex~1]|*). Therefore regardless of whether the correction step was used we have from
(5.20) and (5.21) that

llexll < O(llex—1l]) (5.22)
and
llerll < O(llex—111?)- (5.23)

Now Lemma 6 of Powell (1978) implies that for any step on a quadratic program of the
form (2.1) at @, under Assumptions 4.1, we have

ller + dp =2l < O(flexll + O(lldxlf*) +
O(ll2x[Gr — Br1Z{ di)
< O(llexlD) + Ollexll®) + O(wrlldell)
< O(llex—1l1*) + O(wllex—1])),
by (5.5), (5.22) and (5.23). If the second order correction is used at z; then by (5.16)
lwell = O(llex]*) = O(llex-1]|?), so that whether a correction step is taken or not,
llexsll < O(llex-1ll*) + O(wrlles—1]))- (5.24)

Since we have shown that wy, — 0, we conclude from (5.24) that

llex+all/llex—all — 0.

O
It is interesting to note that, if the correction step is tried at every iteration, the result
of Byrd (1984) applies, giving a better convergence rate for the sequence {x + di}.

Theorem 5.6 Consider a modification to Algorithm 5.1 such that, at every iteration,
wy, is computed and if (5.13) holds then xpyy = zj + di, + wy,. For this iteration, un-
der the conditions of Theorem 5.5, the sequence {zx + di} converges to z, one-step
Q-superlinearly, that is

[Zrs1 + dipyr — 2.
Hmk + dk - JL'*”

— 0. (5.25)
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Proof: By Theorem 5.4, for k sufficiently large a full corrected step is taken so that
Te41 = Tk + d + wy. The iteration is then equivalent to Algorithm 3 discussed by
Byrd (1984) with the full Hessian approximation of that algorithm given by Z; B, Z[.
By Theorem 3.5 of that paper, since R-linear convergence implies boundedness of the
Hessian approximations, (5.25) holds .

5.5 The Watchdog Technique

To avoid the inefficiencies caused by the Maratos effect, Chamberlain et al (1982)
propose to sometimes accept the unit steplength even if this results in an increase in the
£y merit function. They call this a “relaxed step”. However if after { steps a suflicient
reduction has not been obtained, they go back to the iterate where the relaxed step was
performed. We now describe a special case of this watchdog algorithm in which f = 1. For
simplicity we will assume that the matrix is updated at each iterate along the direction
moved to reach that iterate, even though in practice it may be preferable not to do so
at certain iterates that will be rejected. We note that an update at z z+1 1s always done
using information from the immediately preceeding step #341 — . The algorithm uses
the {; merit function with the weight sy, adjusted by (2.27); however in the description
that follows we omit the subscripts of u, for simplicity.

Watchdog Algorithm
The constant 7 € (0,1) is given.

(0) Choose a starting point 2; and a symmetric and positive definite starting matrix
By. Set k:=1 and let S = {1}.

(1) Compute 241 = 2 + dy,, where dj, is the solution of (2.1). Update By by means
of (2.6) to obtain Bj,;.

(2) Test the condition
Gu(Trt1) < Bu(zr) + nDdu(@r; dy). (5.26)
If (5.26) holds, set k:= k + 1, § = SU {k}, and go to (1).

(3) Compute 4o = Tppq + Qt1dp1, Where dpiq solves (2.1) and agyq is such that
Gu(Trs2) < Gu(@ht1) + nrp1 Dou(Trs1; digr ). (5.27)
Update By to get Byyo.

(4) It
P(er41) < Pag) (5.28)
or
bu(Trt2) < Bulzr) + nDdu(w; dy). (5.29)
set k:=k+2,5=SuU{k}, and go to 1.
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(5) If ¢u(wry2) > du(zr) compute zxy3 = ) + apdy, where ay is such that
¢u($k+3) < ¢u($k) + naquﬁ“(.’I?k; dk) (5-30)

If ¢.(@rt2) < du(ek), compute diiq by solving (2.1), let Zpt13 = Tpt2 + prodits,
where ay42 is such that

bu(zrt3) < Gu(Trte) + NarraDu(Trs2; diga). (5.31)
Update Byio to get Brys, set k:=k+3,5 = SU{k}, and go to 1.

The set S is not required by the algorithm and is introduced only to facilitate the
analysis. It identifies the iterates for which a sufficient merit function reduction was
obtained. Note that at least one third of the iterates have their indices in S.

For this algorithm it is possible to establish the R-linear convergence of the iterates
in 5, that is the set of iterates that satisfy a sufficient decrease condition. However the
Watchdog Algorithm updates By, at every iteration, and in order to conclude that wr — 0
we must have that

o0
D ke = @] < o0,
k=0

where the sum is taken over all the iterates. It appears to be possible that when By is
updated in step (1) at a point &4y that fails the test (5.26), 2344 may be much farther
from the solution than y, so that updating along dj, will move B4 away from the true
Hessian. To avoid this difficulty and ensure R-linear convergence of all the iterates we
now change the algorithm so that a point x4y that fails to satisfy (5.26) is accepted only
if it satisfies

12F s ghall + ewrall < 20128 gl + e, (5.32)

where the factor 2 is an arbitrary parameter. Otherwise, we do a line search and revoke
the update of step (2). In the Watchdog Algorithm this amounts to adding the following

after step (2).
(2a) If (5.26) does not hold, and (5.32) is not satisfied then compute a such that
Qby(xk + adk) < ¢u($k) + 77Q'D¢/.L(xk§ dk)v (533)

update By to get Byi1, set 2pq1 = 2+ ady, k:=k+1,5=SU {k}, and go to 1.

For this modified algorithm we are able to prove R-linear convergence of the entire
sequence.

Lemma 5.7 Let {1} be generated by the Watchdog Algorithm using the additional step

(2a). Suppose that x, satisfies Assumptions 4.1, and that for all k greater than some
index ko, the weight puy, has constant value p and the iterates x), are contained in a
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neighborhood of . for which Lemma 4.2, and (4.1)-(4.3) hold. Then {z}} — =z., and
there exists v < 1 and ag such that for any k > kg

Pu(r) — Pu(es) < agrFo (5.34)
Therefore
D Mok = 2] < oo (5.35)
and wi — 0.

Proof: Let 5 = {ly,l3,..}. From (5.26), (5.29), (5.30) and (5.31) we see that for any
l; > 0 there is an integer j; such that 1 < j; < l; = [;_; < 3, and such that

Gulzy) < Pul@i—5) + naD¢/l($li“ji;dli—ji)7 (5.36)
where a is a steplength computed by the algorithm. We also see that the inequality
bu(xri—j;) < dulr,_y) (5.37)

holds for j;.

Now suppose I;—j; € J so that (3.16) holds. Eithera = 1 ora backtracking linesearch
was done along dj,—;, to determine «, and in either case the arguments in the proof of
Lemma 3.3 together with (5.36) imply that

bu(@1) < bu(r—s) = VN ZE_ 5. 90-5 01 + New—jillu]- (5.38)

for some constant ’. Now (5.38) together with (4.8) and then (5.37) imply

Pulzr) = du(z) < rf[ulen—j) - Pu(z4)]
< rglbuln_y) = dul)] (5.39)
where 7§ =1 — 3—4’— < 1. Theorem 3.1 implies that J N[1,k] contains at least 2k iterates,

that is [1, k] contains at most £ elements not in J. Therefore [SnJN[L, k]| > [Sﬂ[l k)| -£.
The structure of the Watchdog procedure implies that & < |S N [1, %] so that

ISNIN[LE2 515 A L.

Therefore (5.39) holds for at least half of the elements in §, and since {du(z)} is a
decreasing sequence, we have that

Su(wr) = Gu() < 1§ Bu(21) — Pu(2)] (5.40)
holds for all k € S.

35



Now we will show that step (2a) ensures that (5.34) holds for all the iterates. To
show this we divide the iterates into three groups: (i) S; (ii) Sy = {k ¢ S:k—1¢€ 8}
(iii) Sz, the set of indices of the remaining iterates; (note that if k € S, then k—1 € S).
Now if k € S, we have from (5.40) that (5.34) holds. If k € S is large enough, we have
from (4.8), (5.32), (4.4), again (4.8) and (5.40)

Pu(k) = Pul@y) ValllZE gill? + llexlh]

27411 281 g1l + |l ex-1]l1]
27472l €k—1]|

27472 L
e (Pu(zr-1) = Bu(2.))

29472

V73

so that (5.34) is satisfied for » > /75 and ag > 2%7‘51@#(@“1) — du(z))2. k€S,
then ¢,(2r) < ¢u(zk-1) and z4_; € Sy, which gives (5.34) for some r less than 1.

We obtain 3732, [|Zk4+1 — 2«|| < o0 as in the proof of Theorem 4.3. The condition
wr — 0 is proved as in Theorem 5.1.

IN A A

IN

ra? (Bu(21) — b))} (5.41)

IA

O

Theorem 5.8 Let Assumptions 4.1 hold at z, and assume that the sequence {z} gen-
erated the Watchdog Algorithm converges R-linearly to ... Then for all sufficiently large
k the steplength is ay = 1, and the rate of convergence is 2-step Q-superlinear.

Proof: Consider an iterate z; at step (1) of the Watchdog Algorithm. The algorithm
then sets zpy; = xp + di, and if Ty41 satisfies the sufficient decrease condition in step
(2), then it is accepted and the algorithm goes back to step (1). Thus in this case the
algorithm loops using ay = 1.

Let us now assume that the sufficient decrease condition is not satisfied at ZTgpt1. We
will show that, if e; and wy are sufficiently small, then Tr41 will satisfy the test (5.32).
We then show that the line search, which will be made in step (3), will set a = 1, and

then in step (4) either (5.28) or (5.29) will be satisfied. Thus Tp41 and xp49 will both be
accepted with steplengths of 1.

To do this we first note that, since {A;} is bounded, there is a constant ¥ such that
B+ [Aelleo < F. Also, since dy, is generated by (2.1), we apply Lemma 5.2 to obtain

Gu(@et1) = L(@hgr, M) + pllerslls — ALcpan

< L(xes M) + g b = AN ZE gl + Alerl)® + Fllersall

= fi+ Mew+n [gf e+ Mo~ pllexlls] = TN ZEgull? + Alex]?
+nullerlls = nA ek + Allexs [l
bu(xk) + nDou(@r; di) — YN ZE gl + #ller]|

IA
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+(1 = 1) [Mer = pllexll] + Hlersall

< bulze) + nDdu(r; di) — 7 ZE grl|? + [4
+F/lergrl]1-

ekl = p(1 = )] lexllx

Thus for k& large enough we have
Pulertr) < Bu(an) + nDGu(wrs di) = YN ZE grll® — (1 = m)llerlls + Flerall.  (5.42)
Since we assume that the sufficient decrease condition failed from zj to z E+1s

Su(Tr1) > du(zr) + 1D u(mr; di),

which together with (5.42) implies

= NZ8 gll = 5ot = llexlls + Aersalls > 0. (5.43)

Using (5.9) this implies there exists a constant 75 such that

llexl] < vsllex]|? (5.44)

whenever 2541 does not satisfy (5.26). Now Lemma 6 of Powell (1978) implies that for
any step on a quadratic program of the form (2.1), under Assumptions 4.1, we have

lle + di = .|| < Ollexll) + Oldill*) + O(wrl|dil]), (5.45)

which together with (5.5) and (5.44) implies that

ller+1ll < Ollexl|*) + O(wrllexD), (5.46)

when (5.26) is not satisfied. Since, by Lemma 4.1 ||e,|| and N ZT gkl| + ||ck|| are of the

same order, this relation implies that (5.32) will be satisfied for sufficiently large k, since
wg — 0.

Now we must show that the step length in the direction dr4+1 will be one, which
happens if

Su(@ht1 + diy1) < Gp(@rgr) + ND(@pr1; dpyr). (5.47)
To do this apply (5.42) to the step from @j41 to 2x4q + dppq:

Pu(@htr + dit1) < Gul@hi1) + 0D Gu(@hpt; dirr) — F)| Zi 1 grya ||
=321 = m)lleralls + Alle(@par + )]s (5.48)

Now note that by (5.9) and (5.46)

lle(zrsr + dig1)ll < O([lert]

) < Ollerl®lexll +wx)?). (5.49)
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Note also that by (5.43) and Lemma 4.1

1.
leksall > = (1128 0ul + 3oL = m)leal] 2 asllew?, (5.50)

for some constant ag. Together, (5.49) and (5.50) imply that the sum of the last three
terms in (5.48) is negative, and (5.47) follows.

Now we consider step (4) of the algorithm. If ¢(zr11) < ¢(2x) then jy is accepted
and we are finished. Otherwise, we need to show that

Pu(@ht1 + dip1) < Gu(r) + nDu(xy; di). (5.51)
Using Lemma 5.2

Sul@itr + der1) = f(@rpr + disr) + A e(@rsn + digr) + plle(@rpn + di)|s
—Ale(@rsr + digr)
< Lk + digr, Ap) + Alle(@rar + drgr)|n
= L(xk’ S\k) + [L(wkal—l’ Xk’) - L(l’k, 3‘k:)}
+ [L(wk+1 +dig1, M) — L(zga, ;\k)}
+Alle(@ g1 + diga)]n
Lk, \e) + ngf b — AN ZE gl + Allex])?
+ [L($k+1 + dit1, Aeg1) = L(@kgas 5\k+1)]
+ [L(ark+1 + dip1, Ap) = L(2ppr + dipya, 5\k+1)]

- {L(«rk-l—l, Ar) — L(@gta, :\k+1)} + Ye(zrs1 + dr1)])1

IN

Applying Lemma 5.2 once more

Gu(Trtr + dep1) < Bu(@r) + Mer — pllerll + 7 [g;;rhk + Mep — ull%lh]
~NZEgrll® + Allerll® = n(3F e — wllexllr)
+{ngliahiar = 3289012} + e |?

k41 = Melloo(lle(@rr + dis)ll + llerrall) + Fe(@rss + dig)l
< Bu(@r) + nDu(wr; di) — (1= n)(ullexlls — A e)

~TNZE grll® + el + Al ersa ||

M1 = Aello(le(@rer + i)l + llewsall) + e(@rsr + desi)|h,

since both terms inside the curly brackets are non-positive. By (5.9) ller+1]l = O(lex]])?,
and by (5.49) (|le(2r+1 + dit1)]l1) = o(||ex]|?). Therefore

Pu(@esr +dip1) < Gu(er) + nDGu(rs di) = p(1 = n)llerlls — TN ZE gil| + Al ex]|?
+o([lexl|*) (5.52)

38



For k sufficiently large, —p(1 — n)|leklls + llex]|? < —1p(1 — n)||ex|l1. Therefore the sum
of the last three terms in (5.52) is negative, since by Lemma 4.1, —7|| Zf gx||2 + —Ip(1-
mllekll1 is of magnitude |lex||?. This establishes (5.51).

O

6. Summary and Conclusions.

We have studied the convergence properties of reduced Hessian successive quadratic
programming, using the updating procedure of Coleman and Conn, and a backtracking
line search. We have considered the effect of two merit functions: the £y and the Fletcher
functions. Our work differs from previous studies of these methods in that we have made
no assumptions about the quasi-Newton matrices other than that the initial matrix is
positive definite.

We now summarize, in general terms, the main results of this paper, considering the
£y merit function first. In section 3 it is shown that if the iterates are contained in a
convex set in which the problem satisfies some smoothness and regularity conditions, and
in which s and yy, satisfy (2.16) and (2.17) then liminfj— oo (||ZZ gx|| + ||c&]]) = 0.

The local results proved in section 4 are somewhat stronger. If a local minimizer
is a regular point satisfying the second order sufficiency conditions and if {IM )|} is
bounded, then there is a neighborhood of the minimizer such that if an iterate z; lands
in that neighborhood with k sufficiently large, the sequence converges to that minimizer
R-linearly. The assumption that {||A(z4)]|} is bounded is stronger than we would like,
but follows from a regularity assumption on the constraints and thus meshes well with
the global theory.

To obtain a superlinear rate of convergence we first impose some conditions on the
choice of the null space basis Zj, which are fairly easy to enforce in practice. Then,
due to the difficulties associated with the Maratos effect, we are forced to make some
modifications to the algorithm in section 5. Use of either modification ensures that
steplengths of one are taken near the solution, but requires some extra cost in terms of
function evaluations. One is to add a second order correction step to the iteration and
the other is a variant of the watchdog technique. We show that both modifications retain
the original local and global convergence properties and guarantee two-step Q-superlinear
convergence. In addition we show that if the second order correction is in effect at every
step, the sequence z + dj converges one-step Q-superlinearly.

Forreduced Hessian methods using the Fletcher merit function similar global and local
properties are proved in Sections 3 and 4, but only by making additional assumptions on
the boundedness of B,;‘l. These a priori assumptions on the behavior of the algorithm
are needed to guarantee the boundedness of the merit function weights, and the need
for them makes the convergence theory in sections 3 and 4 significantly weaker for this
merit function than for the ¢; function. However, in section 5 we show that when the
Fletcher function is used, no modifications are necessary to ensure steplengths of one. It
is then easy to show, under the same conditions on the null space basis, that the rate of
convergence is two-step superlinear.
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We believe that this paper, at least in the local and superlinear sections, provides a
realistic and informative analysis of the behavior of reduced Hessian successive quadratic
programming in a practical implementation. We think that similar analysis should be
possible when the update studied by Nocedal and Overton is used, and we hope that it
will prove possible to analyze full Hessian SQP in a similar fashion.
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