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 A scenario which has plagued chilled water distribution systems for decades occurs when 

the temperature difference between chilled water supply and return is diminished well below 

design levels.  This is termed Low Delta T Syndrome and has negative effects on the energy 

consumption of the chilled water system.  Numerous causes of Low Delta T exist, many of them 

laying at the cooling coils.  As higher loads are put on the cooling coil, more chilled water is sent 

through it.  A point of saturation is reached when significant increases in chilled water flow will 

result in negligible increases in provided cooling power.   

Recognition of when such saturation is occurring, as well as the ability to implement 

advanced control logics to bring down the water flow in such situations, is needed to effectively 

combat Low Delta T.  An intelligent, pressure independent control valve capable of measuring 

water flow rate and temperatures attempts this.  It currently has three established methods of 

predicting when saturation is occurring; comparison of flow to a pre-established high flow limit, 

comparison of Delta T to a pre-established low limit, and comparison of the flow over Delta T ratio 

to a pre-established high limit. 

 A methodology was developed to produce realistic cooling coil performance data through 

energy simulation.  This data was analyzed to further optimize the potential for the valve to combat 

Low Delta T and subsequently save energy.  A new approach for predicting saturation was 

developed, through use of non-linear regression on the coil data.  The resulting curve fit was first 

used to effectively predict whether a coil was operating in a Constant Air Volume (CAV) or Variable 

Air Volume (VAV) system.  132 test coils over four climates and a variety of system characteristics 

showed a 79.7% correct identification rate.   

 Simulations were performed to test the various control logics against a newly derived logic 

derived from this non-linear regression.  On the performance metrics of Pumping Power to Cooling 

Power Ratio as well as Pumping Power to Thermal Discomfort Ratio, the new advanced control 

logic showed promise as being the optimal control strategy, particularly in CAV coils.  
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1. Introduction 
 

 Energy conservation has become a popular point of discussion in recent years.  Rising 

energy prices coupled with the onset of climate change, has resulted in the implementation of 

stricter energy codes and added pressure on engineers to rethink the way society utilizes its 

energy.  Buildings account for 41% of the United States’ energy use (Mitchell and Braun, 2012).  

16% of that is utilized by the systems in which we use to cool those buildings (Mitchell and Braun, 

2012).  Those systems include the chillers, pumps, cooling coils and associated control valves as 

well as the fans used to push the cool air onto occupants and process loads. 

 Chiller, pump and fan efficiencies have all improved over the years.  One area of untapped 

potential for reducing energy consumption in chilled water (CHW) systems is the mitigation of 

what is known as Low Delta T Syndrome.  This is the presence of a lower than design temperature 

difference between the chilled water supply (CHWS) and the chilled water return (CHWR).  

Numerous inefficiencies in a cooling system result when Low Delta T persists.  Chiller efficiency is 

degraded due to lower evaporator temperatures.  Depending on the system configuration and 

controls strategy, additional chillers may be prematurely brought online or the CHWR mixed with 

the CHWS.  In the case of mixing CHWR with CHWS, higher than designed chilled water supply 

temperatures (CHWST) result which diminishes the potential cooling power of a cooling coil.  This 

compromises the thermal comfort of building occupants.  Perhaps the largest impact of Low Delta T 

Syndrome is the increase in pumping power.  To illustrate this, Equation 1 below is presented as it 

describes the heat transfer occurring at a cooling coil.   

  𝑄 = 𝑚𝑊𝑐𝑝𝑤(𝐷𝑒𝑙𝑡𝑎 𝑇)     Eqn. 1 

where Q is the cooling power, mW is the mass flow rate of chilled water, cpw is the specific heat of 

water and Delta T is the water-side temperature difference. 
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 The components of a cooling system are designed for a constant Delta T, typically between 6 

and 8 K.  Assuming the Delta T stays at its design value and changes in cpw are negligible, a linear 

relationship between cooling power (Q) and water flow (mW) exists.  However, as discussed above, 

the Delta T does not stay constant.  Due to a variety of causes as will be discussed in detail in the 

Literature Review, the Delta T often falls well below its design value.  Thus, for a system to achieve 

the same amount of cooling power out of 5 K Delta T system that it would get out of a 7 K Delta T 

system, the water flow rate would need to increase by 40%.  As Delta T decreases, there is 

substantial rise in water flow rate which means an even more substantial rise in pumping power.  

The theoretical relationship between pumping power (PP) and flow rate (mW) comes from the 

pump affinity laws. 

𝑃𝑃 ∝ 𝑚𝑊3       Eqn. 2 

 As can be seen in Equation 2, if the flow rate is increase by 40%, the pumping power is 

increased 174.4%.  PP is not only the power consumed, it is the power the building owner pays for.  

The actual exponent in Equation 2 is more on the order of 2.2 when accounting for typical pump 

efficiency curves, but the potential for energy and utility bill savings remains substantial.  In 

scenarios where a building user purchases chilled water from a local utility, the owner will still be 

penalized as utilities often charge higher rates per ton-hour when the building’s return water 

temperature is too low (Moe 2005).  The same holds true for many district heating plants, where a 

maximum return water temperature is required. 

 The resultant Delta T across a cooling coil is dependent on numerous factors, namely the 

inlet water temperature (Twi) and flow rate (mW), the inlet air temperature (Tai), air flow rate (mA) 

and humidity ratio (Wai), as well as the geometric parameters of the coil itself.  The actual 

relationship between cooling power and water flow rate is not linear at all, but closer to the 
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exponential relationship shown in Equation 3 (Reider, 2012; Thuillard et al., 2014; Bellucci, 2012; 

Buchanan, 2012). 

 𝑄 = 𝑘1(1 − 𝑒−𝑘2𝑚𝑊)     Eqn. 3 

where k1 is the maximum cooling capacity attainable and k2 is the exponential curvature.  Such a 

relationship is most clearly shown when mA, Tai, Wai and Twi are held constant as is graphically 

depicted in Figure 1. 

 

Figure 1: Exponential Behavior of Cooling Coils. 

 

 As the slope of the line becomes more and more horizontal, the water-side Delta T across 

the coil is diminishing.  There comes a point where the amount of additional cooling power the 

system provides with an increase in mW is negligible compared to the amount of additional 

pumping power required.  When this occurs, it is said that the coil has been pushed into the 

saturation region.  Identification of when such saturation is occurring is made difficult when 

fluctuations are occurring in the inlet water temperature, inlet air temperature, inlet air humidity 

ratio and in the case of VAV systems, the mass flow rate of air.  Figure 2 shows actual coil data taken 
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from a coil located on the campus of Massachusetts Institute of Technology (MIT) where 

fluctuations to such inlet parameters are present.    

 

Figure 2: Actual cooling coil data (Bellucci, 2012). 

 

Large strides toward creating more energy efficient cooling systems will come from 

identifying when such saturation is occurring and performing mitigation measures to reduce the 

water flow rate during those instances.  Conventional chilled water control valves do not have the 

capabilities to identify saturation nor do they follow a control sequence which allows for such 

restriction.   

 The Energy Valve™ by Belimo does maintain those capabilities however.  The Energy 

Valve™ is an intelligent, pressure independent, two-way, equal percentage control valve.  It consists 

of a controller and actuator, feedback wiring to allow for an analog control signal to track on a 

discharge air temperature (DAT) setpoint, inlet and outlet water temperature sensors, and a 

magnetic flow meter.  Additionally, it contains several microprocessors for use in the analysis of 

data for saturation detection, maintenance investigation and implementation of advanced control 

strategies.  It also has a built in web server which allows for remote upload of new control 
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strategies for already installed valves.  The Energy Valve™ is currently on the market and its success 

has been documented as will be discussed in the Literature Review.  This body of research is 

dedicated to further improving future generations of the valve’s performance and potential for 

energy savings.  With the valve relatively new to the marketplace, coupled with the difficulty in 

attaining logged data from building operators who maintain such valves, there is a lack of sufficient 

data available to aid in the development of more refined control strategies that identify and 

mitigate saturation.  Hence, the first goal of this body of research is to develop a methodology to 

produce realistic, surrogate coil data for a variety of climates through energy simulations alone. 

 Currently, three advanced control strategies exist for the Energy Valve™: Flow Limiting, 

Delta T Limiting and Flow/Delta T Limiting.  As will be described in more detail in the Literature 

Review, the performance of the coil to both save on pumping energy and not prematurely restrict 

cooling capacity to system depends heavily on what input parameter fluctuations (Twi, Tai, Wai , or 

mA) are dominating the coil’s performance (Thuillard et al., 2014).  It can be expected that the 

optimal selection of these three advanced control strategies will depend on whether the coil serves 

a CAV system, or a VAV system.  Thus, the second goal of this research is investigating if the Energy 

Valve™ can determine by itself which type of system it serves.  This determination would need to 

come from evaluation of water-side data alone, as that is the only data logged by and available to 

the Energy Valve™.  Such an ability to determine the type of system will avoid installation input 

error which could result in an inappropriate selection of the optimal advanced control strategy. 

Additional insight from Thuillard et al. (2014) is that various combinations of input 

parameter fluctuations will occur from climate to climate.  The third goal of this research is then to 

investigate if an optimal control strategy for each combination of climate, application (CAV or VAV) 

and facility priority (thermal comfort, energy savings etc.) can be identified.  Such testing will be 

performed with existing advanced control strategies identified above, as well as a new strategy 

developed during this research. 
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2. Literature Review 
 

 This Literature Review is split into three parts.  First, a review of Low Delta T Syndrome is 

conducted to investigate its causes, effects and mitigation procedures.  Next, focus will be put on 

how some of the causes that inherently stem from the cooling coils can be addressed with the 

advent of the intelligent control valve, named the Energy Valve™.  Lastly, a brief description of the 

coil model used for generation of surrogate data in this research is given.   

2.1. Low Delta T Syndrome 
 

The scenario of Low Delta T Syndrome is well documented (Taylor, 2002; Fiorino, 1996 and 

1999).  Possibly the most thorough explanation of the impacts, causes and mitigation techniques for 

Low Delta T Syndrome is described in Taylor (2002).  The paper identifies the two most common 

chiller staging strategies for primary/secondary systems and how each strategy is susceptible to 

increased net energy usage when the chilled water system is experiencing Low Delta T.   

2.1.1. Chiller Staging Logics 
 

A flow based approach for a chiller staging logic operates in a manner to keep the primary 

flow always larger than secondary flow, thus the flow direction in the common pipe (labeled 

“crossover decoupler") in Figure 3 below should always be downward.  When flow is sensed to be 

in the opposite direction, this indicates to the chiller that increased secondary loop flow is due to 

increased cooling requirements on the secondary loop’s loads.  A second chiller and associated 

primary pump will be staged on.  When Low Delta T is present in the system, it is apparent from 

Equation 1 that higher flows will be present in the secondary loop, which in turn will set in motion 

the staging of additional chillers and primary pumps when the initial operating chiller has not 

reached its maximum capacity.  The resulting use of multiple chillers at part load not only increases 
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primary pumping energy consumption, but the operating efficiencies of the chillers will be much 

lower than if the chillers were fully loaded.   

 

Figure 3: Typical primary/seconding piping configuration for a chilled water system (Kirsner, 
1996). 

 

A load based staging logic senses the chilled water return temperature (CHWRT) coming 

back to the chiller from the secondary loop.  When the CHWRT exceeds a prescribed limit, a second 

chiller with corresponding primary pump will stage on to ensure adequate CHWST is available for 

the secondary loop.  When secondary loop loads are increased, the secondary pumps will push 

more flow to meet those loads.  If a Low Delta T scenario is occurring, supplemental chillers will not 

stage on as the CHWRT will not exceed its prescribed threshold (i.e. CHWST setpoint plus design 

water-side Delta T).  This would then allow for flow in the direction from the CHWR to the 

secondary pumps through the common pipe leg.  The mixing of the two streams would increase the 

secondary loops CHWST.  A warmer CHWST decreases the coil’s performance which results in even 

lower water-side Delta T across the heat exchanger.  Decreased Delta T means increased flow, and 

subsequently the entire chain of events spirals out of control.  The net impacts of Low Delta T 

Syndrome on this staging configuration is not only increased secondary pumping power, but the 

inability of the system to recognize a high load scenario and subsequently those loads will not be 

met and occupant thermal comfort will be compromised.  
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2.1.2. Causes of Low Delta T 
 

Taylor (2002) further classifies the various causes of Low Delta T Syndrome as those which 

can be avoided, those which can be reduced but at the sacrifice of energy consumption and those 

which cannot be avoided, but may be mitigated.  The causes which can be avoided are mostly 

attributed to ignorance on the part of the engineer, contractor and facility managers.  One cause is 

that often unattainable supply air temperature setpoints are programmed into the control sequence 

as a quick fix to thermal discomfort complaints from building occupants.  However, the decreased 

cooling performance is most likely attributed to air side limitations such as undersized ductwork 

and fans.  When the water-side Delta T reaches a point in which coil capacity is so reduced that 

supply air temperature setpoints are unable to be met, the fan speed in a VAV system will ramp up, 

further increasing the building's energy costs (Moe 2005). 

Excessive use of three way valves in variable flow hydronic loops allows for short cycling of 

chilled water, which will in turn decrease the CHWRT (Taylor, 2002).  These valves are often 

installed without the required balancing valve on the bypass line, thus a lower pressure drop in this 

bypass line will further increase the amount of CHWS being directly transported to the CHWR pipe.  

This increased flow would drive up pumping requirements as well.   

Cooling coils themselves have been found to be installed backwards exhibiting a parallel 

flow arrangement in place of the more effective counter flow arrangement (Taylor, 2002).  This 

decreases the coil's performance and the attainable water-side Delta T.  

Improper coil and accompanying control valve selection often contributes to Low Delta T as 

well (Taylor, 2002).  The specification of a lower design water-side Delta T across the coil when 

compared to the primary plant's design Delta T is often due to a lack of communication between 

various entities working on the chilled water distribution system.  The installation of oversized 
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chilled water control valves takes away from the system’s ability to control to a prescribed supply 

air temperature setpoint.   

Simple oversights in the sequence of controls can have devastating effects on water-side 

Delta T as well.  The absence of a "proof of life" signal from the air side supply fan to the chilled 

water control valve will entice the valve to operate fully open to meet a supply air temperature 

setpoint when the fan is not in use (Taylor, 2002).  That setpoint will not be attained without any 

air flow however, and essentially a short circuit occurs across the coil with a negligible Delta T 

resulting.  This type of short cycling has higher pressure losses than those accompanied with short 

cycling through a three way valve, further adding to the net energy consumption.  Improper control 

strategies on a tertiary pumping sequence and the lack of control valves on process loads also can 

lower a CHW system's Delta T, but will not be discussed in detail in this Literature Review.  

Though not a major contributor to Low Delta T, implementation of water-side laminar flow 

in coils in an effort in minimize water-side pressure drops can drastically reduce the coil’s 

effectiveness due to increased convective resistance on the inside of the coil's tubes (Taylor, 2002).   

The implementation of a CHWST reset schedule to maximize the efficiency of the chiller 

plant's performance at times will promote an increase in net energy consumption.  This is due to 

the decreased effectiveness of cooling coils at higher inlet water temperatures and the resulting 

increase in pumping power requirements to make up for the subsequently lower water-side Delta 

T.  Taylor states an increase of 6°F (3.33 K) in CHWST will increase flow by 76% and decrease Delta 

T by 56%.  Zhang (2012) also proved through extensive simulation that such a reset schedule with 

higher Twi during low load periods drastically decreases water-side Delta T, at times by 3 K.  Both 

lowering the design water flow rate or implementing a CHWST reset schedule may in some 

instances provide energy savings, but results are system specific and would need to be analyzed 

through energy simulation on a case by case basis. 
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The last two identified causes of Low Delta T according to Taylor (2002) are ones that 

cannot be avoided, but mitigated.  Coil fouling on the either water or air side in addition to 

decreased air flow due to the dirtying of the air filter reduces the performance of a cooling coil.  

Proactive maintenance programs can mitigate such effects.  Additionally, the use of Dedicated 

Outdoor Air Systems (DOAS) and air side economizers create a challenge for a coil to maintain a 

high water-side Delta T.  Both provide opportunity for ample energy savings during times of 

favorable outdoor air conditions, but the thermal potential for the coil to raise the water 

temperature to the design limit is diminished with such lower inlet air temperatures.  For example, 

if small amounts of cooling is needed to bring entering air at 58°F down slightly to the supply air 

setpoint and the design CHWRT is 60°F, the second law of thermal dynamics will prevent this water 

from achieving such a temperature.  Zhang (2012) demonstrates through coil simulation that the 

use of an economizer will result in lower water-side Delta T on the order of 1 K during low load 

scenarios.  

2.1.3. Addressing Low Delta-T  
 

Taylor (2002) argues that even with attention being paid to all the previously outlined 

causes of Low Delta T, it will still exist.  His proposals for accommodating such a system to mitigate 

its net impacts include the use of variable speed chillers, primary only pumping systems, the 

addition of a check valve in the common leg of the primary/secondary piping loops, unequally sized 

chillers to allow for higher chiller efficiencies in a host of operating scenarios and lastly, having a 

lower design Delta T on the primary equipment compared to the secondary equipment which 

would allow for proper chiller staging even in the occurrence of Low Delta T.  Further investigation 

into variable speed chillers and primary only pumping is conducted below.  

The traditional primary/secondary configurations with constant speed primary pumps that 

exacerbates Low Delta T Syndrome at part load conditions comes from central heating plants 
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requiring higher return temperatures to avoid condensation (Henze & Floss, 2011) and to maintain 

primary equipment minimum flow requirements (Kirsner, 1996).  With the advent of condensing 

boilers for heating applications and variable speed chillers for cooling applications, the necessity of 

this system configuration is now questioned as it degrades the performance and increases overall 

energy consumption.  

Kirsner (1996) discusses in further detail the limitations of classical primary/secondary 

pumping configurations seen in the industry to deal with Low Delta T.  Traditionally, constant flow 

in the primary loop was required for the chillers.  This is primarily due to the inherent slow 

response time of chillers' pneumatic controls to load fluctuations.  If the load seen by the constant 

volume chiller is instantaneously decreased by 50%, flow in the common leg from the CHWS to the 

CHWR would occur to make up for the reduction of secondary flow returning to the chiller.  This 

excess flow through the common leg in the piping configuration would drop the CHWRT (halving 

the Delta T initially seen) through the blending of the CHWR and the short-circuited CHWS.  With 

pneumatic controls, it would take some time before the chiller to dial back its outputted capacity 

and the CHWST leaving the chiller would drop a bit.  Decreased efficiencies of the chiller with the 

now colder evaporator temperature would prevent the CHWST from dropping an equal amount to 

the drop in CHWRT, however.  The same chiller in a variable primary flow configuration would see 

the reduction in load through the reduction in flow to the chiller.  In this scenario, the CHWRT 

would remain the same and degrading efficiencies of the chiller due to a lower evaporator 

temperature would not be realized.  If the chiller is operating at full capacity, in the moments after 

an instantaneous load reduction, the CHWST leaving the chiller would drop significantly (twice the 

original Delta T across the chiller could theoretically be realized).  The resultant CHWST coming 

from a load reduction in a variable flow scenario would be lower than in a constant flow scenario.  

As the CHWST approaches freezing, the chiller may be tripped off to prevent the freezing in the 
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evaporator.  This tripping off may be performed prematurely with older pneumatic controls, thus 

the scenario was traditionally avoided by the use of constant flow chillers.   

The advent of direct digital controls (DDC) has provided more responsive capacity controls 

for chillers.  Kirsner (1996) details the additional advancements that DDC provide in the control 

logic for the low evaporator temperature shutoff.  For example, Trane Inc. uses a microprocessor 

which determines the risk of freezing through an algorithm that looks at how long and to what 

extent the discharge water temperature leaving the chiller falls below freezing.  With these new 

control capabilities, Kirsner advocates for the introduction of a variable frequency drive (VFD) to 

the primary pumping loop.  In many scenarios this could lead to the elimination of secondary 

pumps.  Such a configuration would prevent excess short cycling of CHWS to the CHWR and with 

only one set of pumps, the efficiency of the pumps could be higher and the amount of overall chilled 

water flow reduced.  An additional benefit is the pumps could be oversized to allow for more flow 

to be pushed through a single chiller when Low Delta T is encountered, as opposed to the 

premature staging of an additional chiller and corresponding primary pump which occurs in the 

classical constant volume primary loop configuration.  This would eliminate added energy 

consumption that comes with the staging on of additional chillers and primary pumps when the 

current chiller is not entirely loaded. 

The use of variable speed chillers can also aid in energy saving during periods of Low Delta 

T.  Variable speed chillers typically do not have their chiller efficiencies drop off until below 20-

25% of full capacity, compared to efficiency degradation in fixed speed chillers starting around 40-

50% of full capacity (Taylor Engineering, 2009).  Correct staging of chillers to achieve energy 

performance is not as high of a concern in such variable speed chiller plants, as three chillers loaded 

at 30% capacity often use less energy than one chiller at 90% capacity (Taylor Engineering, 2009).  

Moreover, premature staging of additional chillers is not of concern in this scenario as it is often 

more efficient to stage the chiller earlier than to play catchup (Taylor Engineering, 2009). 
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2.1.4. Focus on the Cooling Coil’s Contribution to Low Delta T  
 

As previously described, there are numerous causes of Low Delta T Syndrome throughout 

hydronic systems.  Focusing solely on some of the causes for Low Delta T that occur at the terminal 

units themselves, Henze and Floss (2011) attempted to quantify and rank the effects of four such 

causes: hydraulic network imbalances, control valve oversizing, incorrect inherent valve 

characteristics and control loop parameters.  Their established metric for such rankings was in the 

form of an average, mass flow rate weighted, water return temperature (Twr) as seen in Equation 4 

below.   

 𝑇𝑤𝑟 = ∫ 𝑇𝑤𝑜(𝑡)𝑚𝑊(𝑡)𝑑𝑡
𝑡

0
 / ∫ 𝑚𝑊(𝑡)𝑑𝑡

𝑡

0
     Eqn. 4 

where Two is the exiting water temperature and mW the water flow rate at given time. 

Their investigation was done by the formulation of a two-circuit hydronic system model 

which included six fan coil units in a heating application.  The model coupled pressure-flow 

relationships with provided thermal loads.  The fan coil units were controlled with proportional 

integral (PI) controllers.  Hysteresis effects and control valve slew rate limitations were also 

incorporated.  The system was simulated for a heating application, but the results shed insight into 

cooling applications.  As noted by the authors, "the causes for high return water temperatures in 

central heating systems are the same as low return water temperatures in chilled water systems" 

(Henze & Floss, 2011).  Simulations found all investigated situations resulted in degrading water-

side Delta T.  The order of severity being: the inherent characteristic and size of the control valve, 

the quality of hydraulic network balancing, and control loop parameters.  The collective results of 

these four shortcomings of a hydronic system was a Delta T reduction of 6°C, which has been found 

to increase primary pumping energy consumption by 4-12% (Wirths, 2008). 
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 Fiorino (1999) details 25 best practices for achieving higher Delta T in hydronic cooling 

systems.  He identifies Low Delta T as any water-side temperature difference below 5.6°C.  The 

paper focuses on the terminal loads (cooling coils) as the major culprits for Low Delta T Syndrome.  

Using a case study from the NASA Johnson Space Center, the paper states that doubling the chilled 

water flow rate from that of design would only produce an additional 15% in cooling power, while 

decreasing the water-side Delta T by 40%.  The scenario of excessive water flow being available to a 

coil during times when the supply air temperature setpoint is not being achieved is all too common 

and is a major contributor to Low Delta T Syndrome.  His recommendations to achieving higher 

water-side Delta T across cooling coils range from coil selection (i.e. choosing a higher design Delta 

T than the primary plant), to controls selection (i.e. actuator shutoff ratings should include a 50% 

safety factor to prevent leak-by), to piping configurations (e.g. allowing process loads requiring 

lower CHWS temperatures to be located after comfort cooling coils).  One deviation in the 

recommendations here from Taylor (2002), is that Fiorino (1999) advocates for a CHWST reset 

schedule as it will allow for higher CHWRT and preclude laminar flow regions from developing in 

the cooling coils during low load periods.  The latter of which would decreases the coil’s heat 

transfer coefficients.  Taylor (2002) would argue this would increase pumping power due to the 

higher flow rates during times of higher CHWST.  It is obvious a tradeoff between the benefits and 

drawbacks of such a strategy would be system specific as well as depend on the parameters of the 

reset schedule itself.  The net energy consumption would need to be modeled on a case by case 

basis to correctly identify the most optimal balance. 

Wang et al. (2013) utilized a cooling coil model that had been calibrated to a real world coil 

for use in Low Delta T fault detection.  Their method compared simulated water-side Delta T’s to 

actual measured data based on of binned outdoor air conditions (dry bulb and wet bulb 

temperatures).  Such comparisons could identify when the real world coil was operating worse 

than predicted.   
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The Wang study also investigated the effect of laminar flow on coil degradation.  Though 

increased water-side film resistances are seen by the system when a laminar flow scenario is 

realized, the added time period for the water to stay within the coil increases the heat taken in by 

the water, effectively offsetting any major downfalls of an increased film resistance. 

The Wang study performed parametric runs of the model with varying DAT setpoints and 

compared such results to the measured data.  Lower DAT temperatures resulted in lower Delta T, 

which confirms Taylor's explanation that too low of discharge air temperature setpoints can 

degrade a coil's performance and Low Delta T can prevail. 

Further analysis of the effect of economizers on cooling coil performance was conducted 

(Wang et al., 2013).  Lower mixed air temperatures reduce the driving potential of the cooling coil 

and can subsequently reduce water-side Delta T.  However, it is in this author's opinion that for the 

majority of the time, overall energy savings will occur due to the decreased cooling load on the 

system, despite the fact the coil may not be operating ideally. 

2.2. Pressure Independent Control Valves 
 

2.2.1. Introducing the Energy Valve™ 
 

The focus of this research is on mitigating the causes of Low Delta T Syndrome that occur at 

the terminal units, in our case the cooling coils.  The Energy Valve™ is an intelligent, pressure 

independent, two-way, equal percentage control valve specifically designed to combat Low Delta T. 

2.2.2. Balancing Discussion   
 

Another potential benefit of the Energy Valve™ is the drastic reduction in time for the 

balancing of the complex hydronic systems it is installed on.  Typical manual balancing operations 

for complex hydronic systems are highly labor intensive, and often require several iterations of 
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adjustments to each coil's throttling valve before design specifications are met.  Improper balancing 

can lead to unwanted fluctuations in water flow rates when disturbances elsewhere in the system 

create pressure fluctuations in the CHWS piping.  Such an example would be that the shutting off of 

other coils due to reduction in loads would initially drive up the supply side water pressure and 

increase flow to the coils remaining open.  These fluctuations reduce the controllability and 

performance of the system and are only detected in deviations from the DAT setpoint, and also 

contribute to Low Delta T Syndrome as is shown in the Floss and Henze (2011) study. 

Taylor & Stein (2002) evaluated seven of the most common design techniques used for 

balancing large commercial buildings.  Though six of the seven techniques analyzed in the article 

resulted in the elimination of the post-construction balancing process, only one of those six options 

was shown to truly eliminate flow variability due to pressure fluctuations in dynamic hydronic 

systems, such as a CHW distribution system.  That option included the use of automatic flow 

limiting valves (AFLV) in lieu of the typical, manually adjusted throttling valves.  This option not 

only eliminated the need for a post-construction balancing effort, it also allowed for coils to be 

added or subtracted from the system without negatively affecting the performance of exiting coils.  

This option of using AFLVs was not recommended however, due to the increased costs.  These 

valves would be installed in addition to the control valve, two isolation valves and a required 

strainer. 

The Energy Valve™ maintains the capabilities of the AFLV without the need for an additional 

control valve.  Pressure independent control valves allow the water flow rate to be the manipulated 

variable when attempting to track the DAT setpoint (control variable).  This would curb any 

unintended increase in flow due to pressure fluctuations which would result in a decrease in water-

side Delta-T.   
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2.2.3. Non-intelligent Pressure Independent Control Valve Case Studies  
 

The advent of high performance, pressure independent control valves allows for the 

possibility of buildings attached to a district cooling system to forego the use of a building pump 

(Moe 2005).  Additionally, removing the decoupling bridge that would accompany such a building 

secondary pump, would prevent blending of CHWR with CHWS, which decreases coil performances 

as well as water-side Delta T.  Higher inlet water temperatures, better flow control, reduced 

pumping and fan power can all be benefits when this strategy is employed.  Moe (2005) evaluated 

the benefits of removing such building pumps and retrofitting with pressure independent (non- 

Energy Valve™) control valves on a building designed for a 2,460 kW cooling load, 37,760 L/s air 

flow rate, 1.5 kPa air side pressure drop and 71 L/s design water flow rate.  The savings were 

climate dependent, but were estimated between $40,000 and $160,000 annually (Moe 2005).   

Installation of 62 such pressure independent control valves (non-Energy Valves) at Building 

42 at Eglin Air Force Base, FL in conjunction with VFDs being installed on the secondary pumping 

arrangement accounted for an estimated 30% reduction in building energy consumption (HPAC, 

2007).  That is substantial savings with valves designed to curb the effects of hydronic system 

pressure fluctuations.  The added capabilities of the Energy Valve™ have potential for even better 

benefits when used in building retrofits, as detailed below.  

2.2.4. Energy Valve™ Case Studies  
 

Several cases studies highlighting the performance of the Energy Valve™ in mitigating Low 

Delta T Syndrome exist.  Henze et al. (2013) retrofitted five Air Handling Units (AHU) at 

Massachusetts Institute of Technology's (MIT) Hayden Library.  The building-wide average water-

side Delta T for a prescribed period in 2011 was found to be 3.42 K.  The same time frame in 2012, 

after installation of the Energy Valves, recorded an average water-side Delta T of 6.74 K.  The 
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curtailment strategy used by all five Energy Valves was Delta-T Limiting, which restricted water 

flow when water-side Delta T fell below 6.67 K. 

The MIT Energy Valve™ retrofit further demonstrated that coils can be found to operate 

better than design with proper control of its chilled water flow.  Several of the coils were designed 

for water-side Delta-T’s much smaller than realized after the retrofit (Henze et al., 2013; Belimo, 

2011).  If such retrofits were performed campus wide, the Manager of Sustainable Engineering and 

Utility Planning at MIT, Peter Cooper, estimates an annual savings of $1.5M (Belimo, 2011).  He 

further notes the potential for savings is even higher due to the new found ability to squeeze more 

cooling capacity from the existing chilled water plant.  Future expansion of the district cooling 

system may now not need additional chillers. 

The University of Miami’s Leonard M. Miller School of Medicine is served by a 47,000 ft2, 

12,000 ton central chilled water plant that was experiencing far less than design water-side Delta T.  

The 300,000 ft2 Clinical Research Building served by this plant was only eight years old, but 

experiencing an average water-side Delta T of just 7°F.  Installation of the Energy Valve™ on its 175 

ton chilled water coil brought the water-side Delta T from 3.5°F to 6.5°F within its first hour of 

operation, and brought the eventual running average water-side Delta T to over 10°F (Belimo).  

Such initial success prompted the university to install eleven more Energy Valves in its 450,000 ft2 

Rosenstiel Medical Science Building.  Average building water-side Delta T was found to rise from 7-

8°F to 10.5-11°F.  Estimated utility cost savings for that building of $60,000 annually have the 

potential for a four year simple payback.   

2.2.5. Energy Valve™ Research at University of Colorado Boulder  
 

Substantial research on the Energy Valve™ has been performed at the University of 

Colorado Boulder in conjunction with Belimo Inc.  Buchanan (2012) attempted to quantify the cost 

savings in pumping power due to the added benefits of pressure independence and the Delta T 
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Limiting curtailment strategy of the Energy Valve™ through energy simulation alone.  EnergyPlus 

was utilized for a 14 hour simulation with weather inputs approaching that of cooling design day 

conditions.  Various combinations of chiller performance and ambient conditions were found to 

have between 2.6% and 3.6% in secondary pump cost savings when implementing the Energy 

Valve™.  Buchanan notes that real world results are expected to be higher as the hydronic network 

modeled in EnergyPlus was inherently more balanced than that typically seen in the field.  

Additionally, the coil used in the simulation was quite oversized and the coil was not thoroughly 

pushed into its saturation region as can be seen in the capacity (Q) versus water flow (mW) plot of 

the simulated day in question.   

 

Figure 4: Model coil performance in EnergyPlus (Buchanan, 2012). 

 

The coil was obviously quite oversized for the system it was serving as its performance 

curve remained quite linear.  This is due to numerous, default oversizing factors EnergyPlus has in 

its cooling coil model methodology.  Part of this particular body of research reexamines this 

behavior and attempts to more appropriately induce saturation in modeled cooling coils.  The 

methodology of producing surrogate data through energy simulation software for further analysis 
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and development of the Energy Valve's control logics laid out by Buchanan set the foundation for 

which this research was built upon.   

Bellucci (2012) took measured Energy Valve™ data and derived a calibrated model from 

that data.  He was then able to perform parametric investigations to identify the effects that 

changing input parameters have on a coil’s performance.  The cooling coil model was developed in 

Matlab-Simulink and calibrated to the measured data from Energy Valves located at both MIT and 

the University of Colorado at Boulder.  Those models were then used to perform isolated 

parametric runs to investigate the effects on inlet water temperature (Twi), inlet air temperature 

(Tai), inlet air humidity (Wai) and air mass flow rate (mA) on the coil characteristics.  Saturation 

curtailment strategies of Delta T Limiting and Flow Limiting were also investigated.  A tool for 

facility managers was developed in Excel to aid in the characterizing of coil data attained by the 

Energy Valve™ and provide curtailment setpoints.  One setpoint was provided that would optimize 

energy performance and an additional, more conservative setpoint was provided that would make 

occupant thermal comfort the priority.  A procedure was further detailed on how to perform real 

time coil characterization based off Energy Valve™ recorded data.  An estimated coil capacity would 

then be derived and the implementation of a curtailment strategy performed.   

              There lays a potential for the Energy Valve™ to restrict flow prematurely and thus hold back 

considerable cooling capacity from the system.  The Energy Valve's ability  to perform curtailment 

strategies only when periods of saturation occur will depend on the accuracy of a prediction as to 

when true saturation is occurring.  As found in the available field data and detailed in the Bellucci 

(2012) report, fluctuations in input parameters effect the shape of the coil curve and thus the k1 and 

k2 coefficients in Equation 3 that define it.  In an effort to accurately predict the coil's performance, 

and whether or not it is operating in saturation and curtailment should be implemented, Reider 

(2012) developed a methodology to predict the k2 coefficient of the curve in which the coil was 

operating in without the need for storing large amounts of time series data.  A basis spline approach 
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was used to develop a knot vector with assigned knot values for the observed data, which in turn 

was used to perform least squares regression through logarithmic transformation to produce the 

predicted k coefficients.  This method requires minimal computational power and will serve well in 

limiting the amount of hardware the Energy Valve™ would need to perform such analysis.   

This approach allowed for k coefficients prediction to occur to within 2.5% of values 

derived from several months of data.  Errors in maximum predicted capacity (k1) were found to be 

within 12 and 16% for real world data and surrogate data from energy simulations, respectively.   

Thuillard et al. (2014) extrapolated on the work of Bellucci (2012) by investigating the 

performance of three advanced control strategies.  The application of Flow, Delta T and Flow/Delta 

T Limiting strategies were investigated through use of a coil in Matlab capable of computing coil 

capacities for completely wet, completely dry and partially wet/partially dry coil scenarios 

(Brandemuehl et al., 1993).  Isolated parametric runs were performed to see how each of these 

strategies compared in a host of varying input parameters, namely Tai, Twi, mA, and Wai.  The optimal 

strategy was defined as the one which "most closely maintains the normalized capacity limit while 

exceeding the minimum acceptable coil performance" (Thuillard et al., 2014).  It was discovered 

that for fluctuating inlet water and air temperatures, the Flow Limiting strategy prevailed as the 

superior case.  For fluctuating mA and Wai, Delta T Limiting was superior.  In all scenarios, the 

Flow/Delta T limiting strategy came in second on the superiority scale and would be the suggested 

strategy for applications which experience deviations in all of the investigated input parameters. 

2.3. Coil Models  
 

Coil modeling for use in investigating coil performance as well as quantifying the causes and 

effects of Low Delta T Syndrome has been performed extensively, some of which research is 

described previously in this section (Henze & Floss, 2011; Bellucci, 2012; Moe, 2005, Wang et al., 

2012; Zhang et al., 2012).  The bulk of the research conducted in this report included the 
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production of cooling coil data through energy model simulations as well, and then the subsequent 

analysis of that data.   A brief explanation of the cooling coil model used for the production of 

climate specific surrogate data in this report is described here for reference.   

The potential for both sensible and latent heat transfer in cooling coils and the complex 

geometries these coils maintain can make estimation of cooling power difficult.  Elmahdy and 

Mitalas (1977) developed a steady state model for dehumidification coils that has been a 

foundation for numerous succeeding models.  Their model incorporated their proposed 

methodology of classifying a cooling coil as completely wet, completely dry or as partially 

wet/partially dry based of known inlet water and air states, as well as coil geometry.  Once the 

classification was made, in the case of a partially wet/partially dry coil, an iterative process was 

performed to determine the fraction of wet versus dry coil surface areas.  Their resultant model 

was tested against experimental results from four and eight-row cooling coils.  Model estimation of 

total cooling capacity fell within 4% of experimental results.  A slightly modified version of their 

model that allows for convergence in a larger set of geometric inputs has been incorporated into 

EnergyPlus as the model Coil:Cooling:Water:DetailedGeometry (Dept. of Energy, 2012).  This was 

the model used for the data generation and resultant data analysis in this report. 
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3. Methodology  
 

3.1. Program Selection  
 

3.1.1. EnergyPlus  
 

The US Department of Energy’s EnergyPlus (EP) software is free for download and is a 

widely used energy simulation engine by professionals for building performance (EnergyPlus).  It is 

highly robust and trusted with a wide selection of options to accurately simulate building energy 

use.  This simulation engine was used to produce the realistic, surrogate coil data to allow for 

analysis and refinement of the Energy Valve’s advanced control strategies.  The program has the 

ability to perform simultaneous energy simulations on all aspects of the building at user selected 

timesteps and provide realistic mixed air conditions that would be expected to be entering a cooling 

coil.  EnergyPlus can model a cooling coil’s performance at a localized level, thus maintaining the 

ability to output not only inlet and outlet air conditions, but also inlet and outlet water conditions, 

instantaneous cooling power provided as well as identify when the coil fails to meet the prescribed 

DAT setpoint.  This ability provided an abundance of synced data which allowed for analysis of coil 

performance in a variety of climates, building configurations and coil geometries.    

The Department of Energy provides a host of template building models available for 

download for training purposes (Commercial Prototype Building Models).  These buildings are 

highly detailed and provide a good starting point to generating the sought after surrogate data.  The 

hospital template building model was initially selected for use in developing the coil data as it had 

four separate, multi-zoned heating ventilation and air conditioning (HVAC) systems, two of which 

are served by CAV supply fans, and two of which are served by VAV supply fans.  The building 

models can be automatically downloaded to meet building envelope specifications appropriate for 
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the selected climate they will be simulated in.  This allowed for quick generation of buildings typical 

to the climates this research will focus on.  

3.1.2. Matlab   
 

Matlab was used in conjunction with the EnergyPlus software to develop the surrogate coil 

datasets.  In many ways it was used as a Graphical User Interface (GUI) to adjust simulation 

parameters and compile the EnergyPlus outputs in more organized formats.  Two capabilities in 

particular that were of use.  The first was Matlab’s ability to produce gscatter plots.  Gscatter plots 

allow for the plotting of two variables where a third variable can be identified by the color of the 

datapoint markers.  This allows for the production of Q vs mW plots, where different bins of a third 

parameter (such as Twi, Tai, etc.) could be represented by different colors for the plot’s datapoint 

markers.  This allowed for easy to read graphical representations of how the cooling coils 

performed over a host of fluctuating input parameters.  The second was its ability to convert the 

limited psychrometric outputs from EnergyPlus into all appropriate measurements of water/air 

mixtures.  

Towards the end of the research, Matlab was again used to perform testing of the various 

control strategies.  Mixed air inputs and inlet water temperatures pulled from earlier EnergyPlus 

simulations were run through a coil modeled in Matlab.  Simulink, a block diagram environment 

within Matlab, was used to model various control logics and run such simulations (MATLAB). 

3.1.3. RStudio  
 

Analysis of the EnergyPlus produced data was conducted through use of RStudio, a GUI for 

the R language.  This statistical analysis tool allowed for ease in code generation/manipulation, 

quick sorting and evaluation of the large datasets as well as high quality plots to aid in the 

understanding of the various coils’ performance. 
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3.2. Climate Specific Data Generation 
 

3.2.1. Cooling Coil Theory 
 

A review of the applicable theory in regards to cooling coil performance is appropriate as it 

will shed insight into what trends one would expect from energy simulations, as well as clarify the 

difficulties that persist when trying to predict coil performance with water-side data alone, as the 

Energy Valve™ attempts to do.   

A common approach used to demonstrate the effects of the various input parameters have 

on a heat exchanger comes from the effectiveness-NTU model (Braun and Mitchell, 2012).  The 

model is used to estimate coil performance in regards to sensible heat transfer based off the 

thermodynamic limits for the heat exchanger in question.  To understand these relationships, 

several parameters need to be defined.  The thermal capacitance rate is the product of the specific 

heat and mass flow rate of a given fluid.  In a cooling coil, there are two such fluids, the air and the 

chilled water.  Cmin is defined as the minimum of these two capacitance rates, while Cmax is defined as 

the maximum of the two. 

𝐶𝑚𝑖𝑛 = min [𝑚𝐴𝑐𝑝𝑎 , 𝑚𝑊𝑐𝑝𝑤]     Eqn. 5 

𝐶𝑚𝑎𝑥 = max [𝑚𝐴𝑐𝑝𝑎 , 𝑚𝑊𝑐𝑝𝑤]    Eqn. 6 

The ratio of these two parameters will be of interest later in the explanation of this methodology, 

and is defined as the capacitance rate ratio C*. 

𝐶∗ = 𝐶𝑚𝑖𝑛/𝐶𝑚𝑎𝑥     Eqn. 7 

The maximum possible sensible heat transfer (Qmax,s) that could occur across a heat 

exchanger for a given set in inlet parameters would occur if the fluid corresponding to Cmin was 
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brought from its inlet temperature to that of the inlet temperature of the other fluid.  Such a 

relationship is shown in Equation 8. 

𝑄𝑚𝑎𝑥,𝑠 = 𝐶𝑚𝑖𝑛(𝑇ℎ,𝑖 − 𝑇𝑐,𝑖)       Eqn. 8 

Such levels of heat transfer never fully realized in heat exchangers.  A measure of effectiveness (ε) 

would then indicate how closely the heat exchanger is to obtaining Qmax,s.   

ε = 𝑄𝑠/𝑄𝑚𝑎𝑥,𝑠       Eqn. 9 

It is then apparent that the actual heat transfer can be predicted if the inlet temperatures 

and mass flow rates of the two fluids, as well as a predicted effectiveness, are known.  Substantial 

research in this area has found that effectiveness is a function of the capacitance ratio (C*), the 

number of transfer units (NTU) and the flow arrangement.  NTU is defined as 

𝑁𝑇𝑈 = 𝑈𝐴/𝐶𝑚𝑖𝑛      Eqn. 10 

where UA is the overall heat transfer conductance that is a function of the coil’s geometry.  

Typically, cooling coils that are four or more rows deep are classified as counter-flow heat 

exchangers.  The effectiveness for such a configuration has been found to be as follows  

𝐼𝑓 𝐶∗ ≠ 1          ε =
1−𝑒−𝑁𝑇𝑈(1−𝐶∗)

1−𝐶∗𝑒−𝑁𝑇𝑈(1−𝐶∗)   Eqn. 11 

𝐼𝑓 𝐶∗ = 1          ε =
𝑁𝑇𝑈

1−𝑁𝑇𝑈
                                              Eqn. 12 

As C* is not often exactly unity, combining Equations 8, 9 and 11 yields the following 

𝑄𝑠 =  
1−𝑒−𝑁𝑇𝑈(1−𝐶∗)

1−𝐶∗𝑒−𝑁𝑇𝑈(1−𝐶∗) 𝐶𝑚𝑖𝑛(𝑇𝑎𝑖 − 𝑇𝑤𝑖)     Eqn. 13 

Equation 13 shows that the actual sensible heat transfer is a function mW, mA, Twi, Tai, and UA.  

However, cooling coils often provide more than just sensible cooling power.  The heat extracted 

during the dehumidification that can occur when the surface temperature of the cooling coil is 
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below that of the inlet air’s dew point is defined as latent cooling.  This is the measure of heat 

extracted from air through the condensing of water vapor in the air stream onto the coil.  A 

modification of the effectiveness-NTU model detailed above is used to account for the additional 

heat transfer.   The total cooling power (Q) is defined similarly to Equation 9, where there is a 

measure of an effectiveness multiplied by the maximum obtainable amount of cooling. 

𝑄 =  𝜀𝑚𝐴(ℎ𝑎𝑖 − ℎ𝑤,𝑠𝑎𝑡,𝑖)      Eqn. 14 

where hai is the inlet air enthalpy and hw,sat,i is the enthalpy which corresponds to completely 

saturated air at the inlet water temperature.  This should make sense since the lowest temperature 

obtainable for the air would be the inlet water temperature.  In a latent cooling scenario, Twi would 

be below that of the dew point for the inlet air, thus the exiting air would in fact be saturated.  The 

measure of effectiveness in the wet coil model in a counter-flow configuration is defined by 

Equations 11 and 12 above, but with the replacement of C* and NTU with m* and NTU*, 

respectively.  m* is defined as 

 𝑚∗ = 𝑚𝐴𝑐𝑠/(𝑚𝑊𝑐𝑝𝑤)     Eqn. 15 

where cs, termed the effective specific heat, is the change in enthalpy with respect to temperature 

along the saturation line.  It is defined as follows 

𝑐𝑠 =
ℎ𝑑𝑒𝑤𝑝𝑡−ℎ𝑤,𝑠𝑎𝑡,𝑖

𝑇𝑑𝑒𝑤𝑝𝑡− 𝑇𝑤𝑖
     Eqn. 16 

where hdewpt is the enthalpy of saturated air at the inlet air’s dew point (Tdewpt).  The NTU* term 

involves a slight modifications to Equation 10. 

𝑁𝑇𝑈∗ = 𝑈𝐴𝑤𝑒𝑡/𝑚𝐴      Eqn. 17 

where UAwet is the overall mass transfer conductance-area product and is analogous to the UA found 

in the sensible heat transfer methodology (Braun and Mitchell, 2012).  Combining of Equations 11 
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and 14, it can be seen the total cooling power in a coil experiencing dehumidification is a function of 

mW, mA, hw,sat,i and hai.  As hai is a function of Tai and Wai, and hw,sat,I is a function of Twi, it can be seen 

then that all the variables previously discussed in the Introduction do play a role in coil 

performance.   

𝑄 =
1−𝑒−𝑁𝑇𝑈∗(1−𝑚∗)

1−𝑚∗𝑒−𝑁𝑇𝑈∗(1−𝑚∗)  𝑚𝐴(ℎ𝑎𝑖 − ℎ𝑤,𝑠𝑎𝑡,𝑖)     Eqn. 18 

To demonstrate the effects that the variables mA, Twi, Wai and Tai have on Q, parametric runs 

were performed for each through use of an effectiveness-NTU cooling coil model in MATLAB’s 

Simulink.  Q vs mW plots for each parametric run were produced.  While one variable was adjusted 

through a reasonable range of values, all others were held constant.  Figure 5 below shows the 

effects of variable mA on coil performance.  It should be noted in the following figures, the bump in 

the Q vs mW curves for values of mW around 4.5 kg/s is due to the transition of the chilled water 

out of the laminar flow region.  

 

Figure 5: Q’s dependency on mA. 
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It is apparent that increases in mA results in higher Q for a given value of mW.  Additionally, the 

exponential curvature of the coil is seen to change as well.  Figure 6 shows the effects of the variable 

Twi on Q.   

 

Figure 6: Q’s dependency on Twi. 

 

Decreases in Twi results in increased Q for a given mW.  Changes to the exponential curvature seem 

negligible, however it should be noted that all such simulations depicted here are performing 

sensible only cooling.  A dehumidifying coil may not necessarily exhibit such behavior.  Figure 7 

below shows the effects of Tai on Q. 
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Figure 7: Q’s dependency on Tai. 

 

It can be seen that increases in Tai results in increasing Q for a given mW.  Again, changes to the 

exponential curvature seem negligible.  Figure 8 below shows the effect of Wai on Q. 

 

Figure 8: Q’s dependency on Wai. 
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It can be seen that increases in Wai increases Q for a given mW.  Negligible variation in exponential 

curvature realized.  From all the plots above, it is apparent that in additional to the water-side 

variables mW and Twi, airside variables also affect coil performance.  This speaks to the inherent 

difficulty the Energy Valve™ has in attempting to predict coil behavior with water-side 

measurements alone. 

3.2.2. Coil Model Selection and Manipulation 
 

 The EnergyPlus template “hospital” was downloaded from the Department of Energy 

(Commercial Prototype Building Models).  The buildings can be automatically generated to meet a 

typical building envelope for the locations chosen.  Initially, four climates were looked at: Los 

Angeles, CA (ASHRAE climate zone 3B), Boulder, CO (ASHRAE climate zone 5B), Atlanta, GA 

(ASHRAE climate zone 3A) and Miami, FL (ASHRAE climate zone 1A).  Corresponding weather 

inputs for those select locations in the form of an EnergyPlus Weather file (.epw) were downloaded 

from the same location (Commercial Prototype Building Models). 

 The hospital template model is five stories high with a basement.  It is 22,422 m2 with an 

aspect ratio of 1.31.  The construction consists of a mass wall, a built-up flat roof with insulation 

above the deck and a 14.6% collective window-to-wall ratio.  Its envelope’s thermal properties 

meet the ASHRAE 90.1-2004 minimums for its respective climate.  The building consisted of two 

CAV and two VAV, multi-zoned HVAC systems.  The cooling coils which serve these systems can be 

modeled in one of three ways:  The Coil:Cooling:Water model with DetailedAnalysis is an 

unspecified geometry model which initially autosizes a coil’s UA value based on of inputted design 

inlet and outlet air states, air flow rate, inlet water temperature, and water flow rate.  This steady 

state coil model then performs simulations at every timestep through partially wet/partially dry 

analysis as first described by Elmahdy and Mitalas (1977).  The second method of modeling the coil 

performance is to take the same Coil:Cooling:Water model and produce an autosized UA parameter, 



32 
 

but each timestep simulation will be performed by computing the completely dry coil capacity as 

well as the completely wet coil capacity (Dept. of Energy, 2012).  The higher of the two calculated 

capacities at each timestep is then taken as it has be found that such a simplification will provide 

accurate capacity estimates to within 5% of those found by the more robust Elmahdy and Mitalas 

method (Mitchell & Braun, 2013).  This SimpleAnalysis requires substantially less computation 

power and computing time.  The third option for coil modeling is in the form a specified geometry 

coil which only has the option of DetailedAnalysis in the capacity calculation.  The resultant UA 

used in the DetailedAnalysis is calculated by use of the inputted geometric parameters.  This model 

is referenced as Coil:Cooling:Water:DetailedGeometry in EnergyPlus (Dept. of Energy, 2012). 

Simulation of the template models without any further manipulation would produce 

unrealistic cooling coil behavior regardless of the coil modeling method implemented.  After 

preliminary simulation, cooling power (Q) versus water mass flow rate (mW) plots of the four 

default building coils were nearly perfectly linear, perfectly vertical with all Q measurements taken 

at the same mW, or a combination of these two phenomena.  The linearity came from drastic 

amounts of oversizing factors used throughout the building’s Input Data File (IDF).  The vertical 

behavior in the plots were a result of premature restriction on the maximum chilled water flow 

rate, as specified in the Controller:WaterCoil.   

Manipulation of the unspecified geometry model Coil:Cooling:Water would not 

simultaneously allow for under sizing of the coil and for higher than design water flow rates.  This 

was due to the coil’s UA value being a direct function of the inputted design water mass flow rate 

and the inability to specify a maximum water mass flow rate in the Controller:WaterCoil to any 

value above that design value. 

Appropriate manipulation of the specified geometry model Coil:Cooling:Water:Detailed-

Geometry was performed to allow for a geometrically smaller cooling coil, while also allowing for 
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higher than design water mass flow rates.  To get appropriately sized coils to begin with, all 

parameters within the model capable of being autosized were selected to be as such.  All the 

parameters that were required to be specified were left at the defaulted values with two exceptions.  

First, the EnergyPlus default fin thickness of 0.0015 m is an order of magnitude larger than values 

typically found in industry.  Comparing that value to fin spacing, it can be seen that the air is 

restricted to a flow area of 10% of the coil’s cross-sectional area.  This value seems to be an obvious 

typo and was replaced with 0.00015 m.  The second parameter adjusted was the number of coil 

rows.  It was changed from six to eight for reasons that will be described below. 

Defaulted oversizing factors within the building model needed to be addressed prior to 

autosizing the coil through simulation.  First, in the Controller:WaterCoil model, the control variable 

for all chilled water coils was changed from “Temperature and Humidity Ratio” to just 

“Temperature”.  Second, in the Sizing:Parameters simulation parameter, the Cooling Sizing Factor 

was brought down from 1.2 to 1.0.  Third, in the System:Sizing simulation parameter, the Precool 

Design Temperature and Central Cooling Design Supply Air Temperature for all systems were 

changed from the defaulted 7.2°C to 11.1°C.  The Central Cooling Design Supply Air Humidity Ratio 

was increased from 0.007 to 0.008 and the Sizing Option for all systems was changed to 

“Coincident”.  This last adjustment accounts for diversity amongst the zones on the same system 

and subsequently sizes the coil for the maximum instantaneous cooling load on the system as a 

whole, not a sum of each zone’s maximum cooling load.   

For simplicity in future parametric investigations, adjustment to the how the chilled water 

control valve tracked its control variable’s setpoint needed to be performed.  By default, the chilled 

water control valve for each system was tracking a supply air temperature of 11.1°C.  Each air 

handling unit (AHU) was of a pull-through configuration however, thus the discharge air 

temperature was the temperature leaving the coil and entering the fan, where it was slightly heated 

by the fan (on the order of 0.5-2 K) to the final supply air temperature of 11.1°C.  This is not an 
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unrealistic configuration and control strategy, however to maintain the ability to do future 

parametric simulations on the effect of changing the DAT setpoint (as discussed in Taylor (2002) in 

Literature Review), some adjustments were made.  In the SetpointManager:MixedAir simulation 

parameter, the Fan Inlet Node Name, Fan Outlet Node Name and Setpoint Node or Nodelist Name 

were changed to the same node.  For instance, in the CAV 1 system the node needed to be used here 

was CAV_1_CoolC-CAV_1_HeatCNode.  This essentially forces the Controller:WaterCoil into tracking 

the DAT actually coming off the coil, not the supply air temperature leaving the fan. 

As pointed out in Bellucci (2012), real world chilled water coils are subjected to varying 

inlet water temperatures throughout the day, at times on the order of 4 K fluctuations.  The default 

schedule for chilled water supply temperature for the downloaded building model had a constant 

6.7°C supply water temperature.  To subject the cooling coil to more realistic input parameters, this 

schedule was manipulated.  Fluctuations in inlet water temperature can follow one of two scenarios 

(interview w/ Dr. Michael Brandemuehl, 2 Jun 2014).  The temperature can drop during the hottest 

part of the day if the chilled water plant was utilizing a reset schedule on the CHWST setpoint.  The 

other option would be the CHWST actually being the highest during the hottest part of the day.  This 

would be representative of the chilled water plant being either too small to meet the building load, 

or the chilled water plant is operating on a “load based” chiller staging sequence.  Such a staging 

sequence is described by Taylor (2002) and is discussed in the Literature Review.  It is a strategy in 

which the chiller plant is unaware of its failure to meet the load due to a lower CHWRT present in a 

system suffering from Low Delta T.  This second scenario is the one selected to initially be modeled.  

Such a degrading chilled water supply temperature schedule was implemented in the 

Schedule:Compact simulation parameter.  The temperature fluctuated from a low of 5°C during 

nighttime hours to 9°C to the hottest times of the day. 

Step by step instructions of all described manipulations to the initial template building 

model can be found in Appendix A.1. 
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3.2.3. Generation of Coil Geometries  
 

Once all manipulations were complete, an energy simulation was performed to allow for 

EnergyPlus to output all “autosized” parameters for the geometry of the cooling coil model, 

Coil:Cooling:Water:DetailedGeometry.  The autosized parameters for each coil were recorded and 

input back into the IDF file.  Typical outcomes of these autosized cases were that the coils were still 

slightly oversized for the system they were serving.  Thus, four copies of the IDF files were 

produced for each building location.  The original IDF had coils with eight-row configurations.  The 

first copy maintained the coils’ same cross-sectional geometry, but reduced the configuration to 

seven-rows and proportionally reduced all other applicable parameters as well (i.e. fin surface area, 

total tube inside surface are, total tube outside surface area, etc.).  The same reduction methodology 

was performed for each copy until the coil was four rows deep.  As a result, for each of the four 

HVAC systems, there will be five coils of differing sizes that can be simulated.  The coil parameters 

used for Atlanta CAV 1 simulations can be seen in Table 1 below.  The decision for the range of four 

to eight-rows for the coils came from configurations which are typically seen in industry (interview 

with Dr. Michael Brandemuehl, 2 Jun 2014).  Detailed, step by step instructions for generating these 

geometric parameters can be seen in Appendix B.  The results of such geometric parameter 

development can be seen in Appendix C. 
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Table 1: Developed coil geometries for Atlanta Hospital, CAV 1 system. 

  8 Row 7 Row 6 Row 5 Row 4 Row  

ATLANTA - CAV 1           

Load [W] 374157         

Max Water Flow Rate [m3/s] 1.34E-02 1.34E-02 1.34E-02 1.34E-02 1.34E-02 

# of Tubes per Row 184 184 184 184 184 

Fin Diameter [m] 5.93761 5.9376 5.9376 5.9376 5.9376 

Minimum Airflow Area [m2] 7.79865 7.7987 7.7987 7.7987 7.7987 

Fin Surface Area [m2] 1391.351 1217.432 1043.513 869.5943 695.6755 
Total Tube Inside Surface Area 
[m2] 93.58976 81.89104 70.19232 58.4936 46.79488 

Tube Outside Surface Area [m2] 95.95968 83.96472 71.96976 59.9748 47.97984 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 
 

Simulations were performed for all coils in each location.  This provided an initial 80 coil 

datasets to begin analysis with.  Simulations were performed from April 1st to September 31st on 

five minute timesteps.  Matlab was used to call such simulations and organize the generated output 

data.  The applicable Matlab scripts and directions for their use in the data generation process can 

be seen in Appendix D.   Matlab not only organized the data for future extraction into RStudio, it 

also was used to produce bin plots for a variety of input parameters.  Those parameters include 

inlet water temperature, inlet air temperature, inlet air humidity ratio, inlet air relative humidity, 

air mass flow rate, time of day, inlet air enthalpy and water-side Delta T. 

3.3. VAV vs CAV Investigation  
 

3.3.1. Exponential Curve Variation  
 

 Based on the paper by Thuillard et al. (2014) it is obvious the optimal advanced control 

logic to be used by the Energy Valve™ will be dependent on inlet water and air conditions.  Their 

research found that specific combinations of inlet parameters produce distinct saturation behavior 

on the Q vs mW plots, following the exponential form of Equation 3.  When adjusting only inlet 
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water temperature (Twi) or inlet air temperature (Tai) individually, changes in maximum capacity k1 

were found, while the exponential curvature k2 remained constant.  Additionally, changes in air 

mass flow rate (mA) change both the maximum capacity output k1 as well as the exponential 

curvature k2.  Thus, it is entirely feasible that differing control logics may be required to optimize 

the Energy Valve’s cooling coil performance depending on whether the coil is being used in a 

constant air volume (CAV) or a variable air volume (VAV) application.  See Figures 9 and 10 below 

as they are excerpts from this paper.  The figures show the normalized curves of various 

simulations.  The normalized curve is produced when dividing the capacity values by k1.  This 

allows for easy comparison of the exponential curvature (k2) of the different simulations.   

 

Figure 9: (a) Q vs mW plots for varying Twi inputs. (b) Normalized Q vs mW show negligible change 
in exponential curvature (k2) (Thuillard et al., 2014). 
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Figure 10: (a) Q vs mW plot for varying mA inputs. (b) Normalized Q vs mW plot shows appreciable 
change in exponential curvature (k2) (Thuillard et al., 2014). 

 

A goal of Belimo with the Energy Valve™ is to provide a product that not only provides 

excellent performance, but one that minimizes the potential for error in installation that may 

preclude the device from reaching it maximum potential.  With the large datasets that will be 

developed for four distinctly different climates, analysis will be performed to see if from the 

measured water-side data alone (Twi, Two and mW), can the valve explicitly determine whether the 

coil is operating in a CAV or VAV application?  If such a distinction can be made, and it is 

determined that the different applications require differing control logics, it would be beneficial for 

the Energy Valve™ to perform that analysis internally.  This would avoid any potential for 

erroneous inputs during the installation phase in regards to whether to coil operates in CAV or VAV.  

It should be noted that though such a distinction would aid in the reduction of input errors, the true 

benefits may lie in the journey of this investigation.  The ample knowledge gained of what airside 
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information can be gleaned from water-side data alone may pay dividends in the development of 

more robust control strategies.  

The investigation into whether such a distinction can be made will begin with a focus on the 

exponential behavior of the Q vs mW plots.  Non-linear regression will be performed in RStudio on 

the datasets.  A script has been developed that allows for the data to be binned into equal water 

mass flow rate intervals.  Various quantiles (i.e. the 5%, 25%, 50%, 75% and 95%) of Q for each mW 

bin can be determined.  Plotting of the quantiles of interest against the center of each water mass 

flow rate bin will allow for non-linear curve fits to the data following an exponential of the form 

seen in Equation 3.  

 As stated earlier, it has been found that fluctuations in the Twi and Tai input parameters had 

no change in the exponential curvature (k2) of the Q vs mW plot (Thuillard et al., 2014).  

Fluctuations in the input parameters mA did change the values of k2 however.  Working off the 

results of Thuillard et al., the only remaining input parameter that may affect the exponential 

curvature would be the inlet air humidity ratio (Wai).  The article did not explicitly identify the 

effects of such fluctuations, only noting  

“The scaling of normalized curves with respect to humidity depends largely on whether the 
exchanger heat transfer is sensible only (the air passing through the heat exchanger never 
cools to the dew point temperature), or if there is latent energy transfer in the form of 
dehumidification. When mass transfer occurs (dehumidification), as is typically observed in 
cooling application, the results are fairly similar to changing air mass flow rate.” (Thuillard 
et al., 2014) 

From this alone it is not easy to distinguish the magnitude of any such variation in k2 as a 

result of changes in Wai.  Additionally, the net effects of simultaneous changes in all four inlet 

parameters (mA, Wai, Tai, and Twi) and the relative amounts of influence each of those parameters 

have on the net result are not known.  

Working off the initial assumption that changes in Wai have negligible effect on k2, it can be 

hypothesized that CAV coils would maintain nearly constant k2 values across the various quantiles 
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in the data distribution.  VAV coils are subjected to changes in air mass flow rates (mA) which 

would change the exponential curvature between different quantiles of the data distribution.  An R 

script has been written to apply curve fits to the 5% and 95% quantiles.  That script can be seen in 

Appendix E.2.  For each dataset, the coefficients k1 and k2 for both quantiles will be documented to 

allow for the testing of this initial hypothesis.  

3.3.2. Four-Parameter Curve Fit 
 

 A supplementary approach to estimating the k1 and k2 values for the lower and upper 

regions of the Q versus mW plots may need to be developed if the quantile bin approach as 

described above is not as robust and reliable to fully test the hypothesis.  Figure 11 below shows a 

typical Twi bin plot from one of the coils simulated in EnergyPlus. 

 

Figure 11: Q vs mW plot with binned corresponding Twi inputs. 

 

 It is can be observed that the coefficient k1 in the exponential form seen in Equation 3 seems 

to be highly dependent on inlet water temperature (Twi).  As Twi increases, the maximum capacity k1 

decreases.  Deviation in k2 across the Twi bins is hard to distinguish at this point.  A suggestion from 



41 
 

Stephan Siam, a statistician at National Center for Atmospheric Research (NCAR), was a simple 

adjustment to Equation 3 making both k1 and k2 linear functions of Twi.  Hence, 

𝑘1 = 𝑏𝑜 + 𝑏1𝑇𝑤𝑖     Eqn. 19 

𝑘2 = 𝑏2 + 𝑏3𝑇𝑤𝑖     Eqn. 20 

𝑄 = (𝑏𝑜 + 𝑏1𝑇𝑤𝑖)(1 − 𝑒−(𝑏2+𝑏3𝑇𝑤𝑖)𝑚𝑊)    Eqn. 21 

Equation 21 is from here on called the Four-Parameter Curve Fit.  RStudio can apply non-

linear regression following this relationship with the datasets available.  The application of this 

Four-Parameter Curve Fit may lead to a more effective control logic, as the Energy Valve™ may now 

have a much better estimate as to how far the coil is from or into the saturation region for a given 

inlet water temperature.  Utilization of the Four-Parameter Curve Fit as an advanced control logic 

will be discussed later in this text. 

3.3.3. Evaluation of Theory for Linear Dependence of k2 and k1 on Twi 

 

Reexamination of the theory to validate the suggestion of a linear dependence of k2 and k1 on Twi is 

performed in this section.  For a given set of inlet parameters, cooling capacity for both a completely 

dry and a completely wet coil follow Equations 13 and 18 as shown again below.  

𝑄𝑠 =  
1−𝑒−𝑁𝑇𝑈(1−𝐶∗)

1−𝐶∗𝑒−𝑁𝑇𝑈(1−𝐶∗) 𝐶𝑚𝑖𝑛(𝑇𝑎𝑖 − 𝑇𝑤𝑖)                     Eqn. 13 

𝑄 =
1−𝑒−𝑁𝑇𝑈∗(1−𝑚∗)

1−𝑚∗𝑒−𝑁𝑇𝑈∗(1−𝑚∗)  𝑚𝐴(ℎ𝑎𝑖 − ℎ𝑤,𝑠𝑎𝑡,𝑖)                           Eqn. 18 

For a given set of parameters Twi, Tai, Wai and mA, the value of k1 can be found by taking the limits of 

either Equations 13 or 18 as mW goes to infinity, depending on whether the coil is dehumidifying or 

not.  As k1 occurs when the mW is quite large, for the case of the sensible only coil, Cmin is equal to 

mAcpa and the limit is shown as  
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𝑘1 =  lim
𝑚𝑊→∞

[ 
1−𝑒

−𝑈𝐴/𝑚𝐴𝑐𝑝𝑎(1−𝑚𝐴𝑐𝑝𝑎/(𝑚𝑊𝑐𝑝𝑤))

1−(𝑚𝐴𝑐𝑝𝑎/(𝑚𝑊𝑐𝑝𝑤))𝑒
−𝑈𝐴/𝑚𝐴𝑐𝑝𝑎(1−𝑚𝐴𝑐𝑝𝑎/(𝑚𝑊𝑐𝑝𝑤))

𝑚𝐴𝑐𝑝𝑎(𝑇𝑎𝑖 − 𝑇𝑤𝑖)]        Eqn. 22 

Thus, through evaluation of the effectiveness-NTU model, k1 indeed shows a linear dependence on 

Twi.   

𝑘1 = (1 − 𝑒−𝑈𝐴/𝑚𝐴𝑐𝑝𝑎)𝑚𝐴𝑐𝑝𝑎(𝑇𝑎𝑖 − 𝑇𝑤𝑖)   Eqn. 23 

The coefficients bo and b1 from Equation 19 would defined as follows 

𝑏𝑜 = (1 − 𝑒
−

𝑈𝐴

𝑚𝐴𝑐𝑝𝑎)𝑚𝐴𝑐𝑝𝑎𝑇𝑎𝑖    Eqn. 24 

𝑏1 =  −(1 − 𝑒
−

𝑈𝐴

𝑚𝐴𝑐𝑝𝑎)𝑚𝐴𝑐𝑝𝑎    Eqn. 25 

The same approach when applied to the wet coil model follows 

𝑘1 =  lim
𝑚𝑊→∞

[ 
1−𝑒

−(
𝑈𝐴𝑤𝑒𝑡

𝑚𝐴
)(1−

𝑚𝐴𝑐𝑠
𝑚𝑊𝑐𝑝𝑤

)

1−
𝑚𝐴𝑐𝑠

𝑚𝑊𝑐𝑝𝑤
𝑒

−(
𝑈𝐴𝑤𝑒𝑡

𝑚𝐴
)(1−

𝑚𝐴𝑐𝑠
𝑚𝑊𝑐𝑝𝑤

)
 𝑚𝐴(ℎ𝑎𝑖 − ℎ𝑤,𝑠𝑎𝑡,𝑖)]         Eqn. 26 

𝑘1 = (1 − 𝑒−
𝑈𝐴𝑤𝑒𝑡

𝑚𝐴 )𝑚𝐴(ℎ𝑎𝑖 − ℎ𝑤,𝑠𝑎𝑡,𝑖)    Eqn. 27 

The value of hw,sat,i is actually a higher order polynomial function of Twi, but for the relatively small 

range of Twi that cooling coils experience, evaluation of a psychrometric chart will show a near 

linear dependence of hw,sat,i on Twi.  For brevity, hw,sat,i  is written as 

 ℎ𝑤,𝑠𝑎𝑡,𝑖 = 𝑟𝑜 + 𝑟1𝑇𝑤𝑖      Eqn. 28 

where ro and r1 are merely coefficients.  Substituting Equation 28 into Equation 27 would show a 

linear dependence of k1 on Twi for wet coils as well with k1’s coefficients from Equation 19 being 

defined as follows 

𝑏𝑜 = (1 − 𝑒−𝑈𝐴𝑤𝑒𝑡/𝑚𝐴)𝑚𝐴(ℎ𝑎𝑖 − 𝑟𝑜)    Eqn. 29 
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𝑏1 = −(1 − 𝑒−𝑈𝐴𝑤𝑒𝑡/𝑚𝐴)𝑚𝐴𝑟1     Eqn. 30 

It has therefore been derived from the establish theory of cooling coil performance that a 

completely dry and a completely wet coil both would maintain a linear dependence of k1 on Twi.  It 

should be noted that often times coils experience a scenario where only the later portion of the coil 

is wet.  In such cases, an iterative process for determining the fraction of the coil which is dry is 

performed (Elmahdy and Mitalas, 1977).  The total cooling power would be achieved by adding the 

sensible cooling power from the dry portion of the coil to the total cooling power from the wet 

portion.  Thus, such a linear dependence of k1 on Twi would be expected to persist even in a partially 

dry/partially wet scenario.   

Proving such a dependency on Twi for the parameter k2 from the established theory is 

slightly more complicated.  First, the derivative of Equation 3 with respect to mW needs to be taken. 

 𝑄 = 𝑘1(1 − 𝑒−𝑘2𝑚𝑊)     Eqn. 3 

𝑑 (
𝑄

𝑑𝑚𝑊
) = 𝑘1𝑘2𝑒−𝑘2𝑚𝑊                Eqn. 31 

Thus, if the limit of that derivative is taken as mW goes to zero, the following relationship is 

produced 

lim
𝑚𝑊→0

𝑑 (
𝑄

𝑑𝑚𝑊
) = 𝑘1𝑘2      Eqn. 32 

This would indicate a constant slope, or linear behavior, is expected on the Q vs mW plot for low 

values of mW.  That is indeed seen in both the simulated data (Figures 5 - 8) as well as actual coil 

data (Figure 2).  Functions for k1 have already been developed in Equations 23 and 27.  The 

effectiveness-NTU and modified effectiveness-NTU models also provide an avenue for obtaining the 

left hand portion of Equation 32 to see if the suggested linear dependence of k2 on Twi is indeed 

validated by the theory.  Since the region of minimal mW is to be investigated, the Cmin for the dry 
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coil would then be mWcpw which is different from the previous investigation into k1.  Thus, Equation 

13 would be expanded to: 

𝑄𝑠 =  
1−𝑒

−𝑈𝐴/(𝑚𝑊𝑐𝑝𝑤)(1−𝑚𝑊𝑐𝑝𝑤/(𝑚𝐴𝑐𝑝𝑎))

1−(𝑚𝑊𝑐𝑝𝑤/(𝑚𝐴𝑐𝑝𝑎))𝑒
−𝑈𝐴/(𝑚𝑊𝑐𝑝𝑤)(1−𝑚𝑊𝑐𝑝𝑤/(𝑚𝐴𝑐𝑝𝑎))

𝑚𝑊𝑐𝑝𝑤(𝑇𝑎𝑖 − 𝑇𝑤𝑖)    Eqn. 33 

The derivative of the above equation with respect to mW is substantially long and complicated, 

however taking the limit of that derivative as mW approaches zero simplifies quite nicely to 

lim
𝑚𝑊→0

𝑑 (
𝑄𝑠

𝑑𝑚𝑊
) = 𝑐𝑝𝑤(𝑇𝑎𝑖 − 𝑇𝑤𝑖)    Eqn. 34 

Putting Equations 34 and 23 back in Equation 32 allows for the solving of k2 provides the following 

𝑘2 =
𝑐𝑝𝑤

[(1−𝑒
−

𝑈𝐴
𝑚𝐴𝑐𝑝𝑎)𝑚𝐴𝑐𝑝𝑎]

     Eqn. 35 

The term (Tai – Twi) appeared both in numerator and denominator and thus canceled out.  This 

leaves k2 independent of Twi for completely dry coils.  The same approach for determining k2 can be 

applied to the wet coil model.  Equation 18 can be expanded to 

𝑄 =
1−𝑒−(𝑈𝐴𝑤𝑒𝑡/𝑚𝐴) (1−𝑚𝐴𝑐𝑠/(𝑚𝑊𝑐𝑝𝑤) )

1−𝑚𝐴𝑐𝑠/(𝑚𝑊𝑐𝑝𝑤) 𝑒−(𝑈𝐴𝑤𝑒𝑡/𝑚𝐴 )(1−𝑚𝐴𝑐𝑠/(𝑚𝑊𝑐𝑝𝑤) )
 𝑚𝐴(ℎ𝑎𝑖 − ℎ𝑤,𝑠𝑎𝑡,𝑖)  Eqn. 36 

The derivative of Equation 36 is also substantially long and complicated, however taking the limit of 

that derivative as mW approaches zero simplifies to 

lim
𝑚𝑊→0

𝑑 (
𝑄

𝑑𝑚𝑊
) = 𝑐𝑝𝑤(ℎ𝑎𝑖 − ℎ𝑤,𝑠𝑎𝑡,𝑖)/𝑐𝑠   Eqn. 37 

Putting Equations 37 and 27 back in Equation 32 allows for the solving of k2. 

𝑘2 =
𝑐𝑝𝑤

[(1−𝑒
−

𝑈𝐴𝑤𝑒𝑡
𝑚𝐴 )𝑚𝐴𝑐𝑠]

      Eqn. 38 
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A proof of the derivations for k1 and k2 from the effectiveness-NTU model’s equations was 

performed using the open source algebra system Maxima.  That proof can be found in Appendix O.  

The (hai – hw,sat,i) term canceled out which would seem to show k2 is independent of Twi for a wet 

coil as well.  Though cs does have dependency on Twi as seen in Equation 16, that value can be 

assumed a constant.  Utilizing the same Simulink model used to produce Figures 5-8 in the 

subsection Cooling Coil Theory of this report, the value of cs was investigated and found to fluctuate 

no more than 6.5% across a range of Twi from 5 to 9°C while maintaining a constant Wai. 

Comparison of Equations 35 and 38 shows that for a completely dry or completely wet coil, 

there is effectively no dependence of k2 on Twi.  However, those values of k2 for the two cases would 

not be the same for a given set of inlet parameters.  Coils often experience partially wet/partially 

dry scenarios.  Thus, it would be assumed the resultant k2 would lay somewhere between the two 

calculated values from Equation 35 and 38.  The fraction of wet and dry sections of a coil does 

depend on the inlet water temperature, thus a dependence of k2 on Twi does exist.  The same could 

be said for a k2 dependence on Wai.  Various regression fits in RStudio on data sets produced in 

EnergyPlus indicated a linear dependency of k2 on Twi showed a stronger correlation than that of 

higher order or inverse dependencies on Twi.   

It is apparent from the above derivations of k1 and k2 from the effectiveness-NTU models 

that coil performance depends on more than inlet water temperatures.  The degree to which the 

other variables fluctuate will be dependent on the climate in which the coil operates.  Thus, the 

application of the Four-Parameter Curve Fit, which only accounts for Twi in its estimations of k1 and 

k2, will be expected to have differing levels of performance across the various climates. 

3.3.4. Spread of Inlet Water Temperature Bins  
 

An additional investigation into the use of the Four-Parameter Curve Fit as tool for 

predicting whether a coil operates in a CAV or VAV application was performed.  Of the original 80 
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coils produced in EnergyPlus, no single coil geometry was applied to both a CAV and a VAV 

application.  In an effort to see if any differences in the resultant datasets could be distinguished, 

the system originally identified as CAV 1 in the Miami hospital model was retrofitted with a VAV 

system.  The original CAV 1, six-row coil was again used in this system, now operating with 

fluctuating air flow rates.  As the Energy Valve™ only measures and logs water-side data, it is 

appropriate to investigate the Twi bin plots of this coil operating in different applications.  This 

particular bin plot was found to be the most valuable.  Figures 12 (a) and (b) show such plots.   

 

(a)                                                                                                          (b) 
 

Figure 12: (a) Coil data under CAV application. (b) Same coil used in VAV application. 

 

It can be seen the Twi bins are much more distant in the CAV application when compared to 

a VAV application.  The left most region in Figure 12 (b) exhibits characteristics similar to the CAV 

application in Figure 12 (a).  Bin plots of air flow rates indicate that this is the region in which the 

minimum allowable air flow are being maintained.  For this particular system, the minimum air 

flow rate was set to 25% of the design air flow rate.  Application of the Four-Parameter Curve Fit 

via RStudio to the two datasets would be expected to have better results for the CAV case, as the 

spread of the Twi bins are much more defined.  An appropriate measurement of the quality of such a 

non-linear regression fit would be the Coefficient of Variation (CV).  It is defined as the average 
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percent deviation of a data point to its predicted value when compared to the mean of the 

capacities in the dataset. 

𝐶𝑉 = (
100

µ
) √𝑆𝑆𝐸/(𝑁 − 𝐷𝑂𝐹)     Eqn. 39 

with 

𝑆𝑆𝐸 = ∑ [(𝑥 − 𝑦)2]𝑁
𝑖=1       Eqn. 40 

where x is an observed capacity data point, y is the corresponding predicted capacity from the Four-

Parameter Curve Fit, SSE is the sum squared error, N is the number of data points in which the non-

linear regression is being performed on, µ is the mean observed capacity in the dataset, and DOF is 

the number of degrees of freedom which in this case is always four as there are only four 

coefficients (bo, b1, b2 and b3) the curve fit can adjust to best fit the data.  

There are more variables at play in this measurement to correctly distinguish a CAV from a 

VAV application for a given dataset.  Figures 13 (a) through 13 (c) below shows the Twi bin plots for 

the Miami CAV 2 coil in its eight-row, six-row and four-row configurations.  It is obvious that the Twi 

bins become less defined as the coil becomes smaller relative to the size of the system it is serving.  

This in turn should lead to a less accurate curve fit and a resulting higher CV. 

 

    (a)                                                              (b)                                                                      (c) 

Figure 13: Twi bin plots for Miami Hospital CAV 2 coil in (a) 8-row, (b) 6-row, and (c) 4-row 
configurations. 
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A second measurement must then be made before a measure of CV from the Four-

Parameter Curve Fit could distinguish whether the coil serves a CAV or VAV system.  That 

measurement is defined as the Fraction of Predicted Maximum Capacity (FPMC), which is 

essentially the ratio of the cooling requirements of the system compared to the potential output of 

the coil serving that system.  In laymen’s terms, it is a measure of how “undersized” or “oversized” 

the coil is for the system it serves.  

𝐹𝑃𝑀𝐶 = (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑄 𝑎𝑡 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑇𝑤𝑖)/(𝑏𝑜 + 𝑏1𝑇𝑤𝑖)  Eqn. 41 

where Twi is the chosen Twi to be the “indicator temperature” and bo and b1 are coefficients provided 

by RStudio after application of the Four-Parameter Curve Fit.  The maximum observed Q at the 

indicator temperature is found by taking the maximum recorded Q in an inlet water temperature 

bin of the indicator Twi +/- 0.2 K.  Ideally, one would look only at data points matching the indicator 

temperature, but few or no such points may exist due to the fluctuating Twi schedule implemented 

on the system.  Thus, a small bin both above and below the indicator temperature needs to be 

analyzed to ensure a dependable value of measured Q is used in determining the FPMC.   The 

denominator of Equation 41 is essentially the value of k1 for that particular Twi.  This is also the 

theoretical maximum capacity the coil can output at that Twi.  Consistency of the value of Twi used in 

the numerator and denominator of Equation 41 is required.  Additionally, it can be seen that using 

different indicator Twi values would lead to a different FPMC.  Investigation into which Twi proves to 

be the best indicator temperature will be discussed in Results section of this report.  

The following is provided to further explain the variable FPMC.  Increasing values of FPMC 

at a particular Twi would indicate the coil is reaching saturation at its chosen indicator temperature, 

thus the coil is becoming more “undersized” for the system it serves.  Lower values of FPMC would 
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indicate the coil is not coming close to realizing its full potential of cooling capacity, and the coil 

could be considered “oversized” for the system it is serving.  

It is therefore hypothesized that for any particular coil (CAV or VAV), a decreasing FPMC 

leads to a lower CV in the Four-Parameter Curve Fit.  However, for a particular FPMC, a CAV coil will 

always have lower values of CV than that of the VAV coil.  VAV coils are expected to perform worse 

due to the added fluctuations in mA.  If this hypothesis holds, relationships between CV and FPMC 

could be established for both CAV and VAV coils in each location.  Those relationships could 

subsequently be used in predicting if unknown coils are operating in a CAV or VAV application 

based on their computed values of FPMC and CV.  

3.4. Limitation Strategy Testing  
 

 Determination of a coil’s application, whether it be CAV or VAV, would not provide any 

benefit for the Energy Valve™ unless such a distinction would change how the valve operates.  As 

pointed out in Thuillard et al. (2014), three advanced control strategies for the Energy Valve™ have 

been looked at: Flow Limiting, Delta T Limiting, and Flow/Delta T Limiting.  Current commercially 

available Energy Valves use Delta T Limiting and Flow Limiting strategies.  The Thuillard paper 

found the superior limiting strategy to be dependent on which input parameter was fluctuating.  

Combined fluctuations of all inlet parameters simultaneously was not addressed. 

 With realistic inlet water and air state parameters produced by the EnergyPlus simulations, 

this research further investigates the implementation of these strategies.  It is hypothesized that the 

system application (CAV or VAV), climate, and facility priorities (i.e. energy savings, thermal 

comfort, etc.) all will have an effect on which advanced control logic is superior. 
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3.4.1. Establishing the Coil 
 

 To test these strategies against each other, a Simulink model was produced.  The model 

takes input data of Tai, Twi, Wai, and mA at five minute timesteps and sends it through the steady 

state cooling coil model developed by Bellucci (2012).  The water flow rate mW is the manipulated 

variable in all instances and is allowed to be controlled by a proportional, integral, derivative (PID) 

controller.  Such PID controllers track on either a DAT setpoint, a Flow Limiting setpoint, a Delta T 

Limiting setpoint, a Flow/Delta T Limiting setpoint or a saturation setpoint in the case of a new 

control logic that was devised through the advent of the Four-Parameter Curve Fit.  All such 

strategies will be discussed in detail below.   

 The coil model incorporates inputs from the EnergyPlus generated data (Wai, Tai, Twi, and 

mA), the mW controlled by the selected control strategy, the coil’s geometric parameters as well as 

governing properties of air that are elevation dependent.  The coil model outputs total cooling 

power (Q), sensible cooling power (Qs), outlet water temperature (Two), discharge air temperature 

(Tao), and the sensible heat ratio (SHR).  The Simulink coil model differs slightly from the 

EnergyPlus model in its computational algorithms and adjustments are needed to be made to 

account for such discrepancies.  Bellucci’s Simulink coil is an NTU-effectiveness coil which operates 

as completely wet or completely dry.  It is simplified by not accounting for partially wet/partially 

dry scenarios.  If inlet air dew point is above Twi, coil performance is calculated as completely wet.  

This will slightly underestimate the total cooling capacity (Mitchell and Braun, 2013).  If inlet air 

dew point is below Twi, the coil is calculated as completely dry.  The EnergyPlus coil model was a 

Log Mean Temperature Difference/Log Mean Enthalpy Difference (LMTD/LMHD) coil (Dept of 

Energy, 2012).  It utilizes logic from Elmahdy and Mitalas (1977) that performs an iterative process 

for each timestep in which the coil is determined to be in a partially wet/partially dry scenario.  

This theoretically makes the EnergyPlus coil simulations slightly more accurate.  These differences 
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in solving algorithms coupled with slight differences in the outputted geometric parameters from 

EnergyPlus from the required inputs for the Simulink coil produced slightly different Q vs mW 

profiles.     

 

(a)                                                                                                       (b) 

Figure 14: (a) EnergyPlus coil outputs. (b) Corresponding Simulink outputs. 

 

The left image in Figure 14 above is the Twi bin plot from the EnergyPlus coil (LMTD/LMHD 

modeling) simulations for the Atlanta Hospital VAV 1 coil.  The right image is the Twi bin plot from 

the Simulink model (NTU-Effectiveness modeling) simulation which utilized the generated inlet air 

and water states that resulted from the EnergyPlus simulation.  The three lower Twi bins match up 

nearly identically.  The >8°C bin (purple) varies slightly.  This is due to a mismatch in simulation 

periods between the two plots shown.  The right hand image (Figure 14 (b)) is just August data, and 

thus none of the sensible-only cooling instances occurred (that is the portion of the purple bin in 

the left hand plot that saturates out just below 200,000 W).   It should be noted EnergyPlus’s Chilled 

Water Valve controller is perfectly tuned, if flow is not restricted, the DAT setpoint error would be 

zero.  The Simulink model had hysteresis, let-by and slew rate limitations incorporated into it.  

Regardless, perfect calibration is not needed to effectively test the varying strategies.  Every effort 

was made to match the coils as best as possible though, since inlet air conditions would be effected 
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by instances when the DAT setpoint is not met, as this would mean the room air temperature (RAT) 

setpoint would not be met.  To effectively test the strategies, realistic coil behavior from the 

Simulink model is needed, which to within reasonable accuracy was achieved here. 

The Matlab scripts for establishing the geometric and thermodynamic properties for the 

cooling coil model, along with the scripts that establish tuning parameters for each of the control 

strategies can be seen in Appendix L. 

 The Classical PID controller which tracks a DAT setpoint is initially used to establish mW 

and Q data for the coil.  Though this data was already generated through the EnergyPlus model, it 

needs to again be generated through the Simulink cooling coil model due to the slight variations 

between the coil models.   

The Classical PID control logic model can be seen in Figures 15 (a) through 15 (c).  The 

valve utilized in the control logic is an equal percentage valve with a valve authority of 0.5 and it 

accounts for 1% hysteresis, 1% valve let-by as well as actuator positioning rates of +/- 60 seconds.  

The PID controller is the Simulink default with reverse action implemented by the use of negative 

control parameters Kp, Ki and Kd. 
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(a) 

 

(b) 

 

(c) 

Figure 15: Simulink models of (a) Controller-valve assembly. (b) Valve model. (c) PID controller 
model. 

 

 Constant values of the mean input parameters of Twi, Tai, Wai and mA were used to effectively 

tune the K parameters of the PID controller through use of Ziegler Nichols closed loop tuning rules.  

A step change in DAT setpoint from 12 to 11°C was implemented.  With integral action coefficient 
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(Ki) and derivative action coefficient (Kd) initially set to zero, the proportional action coefficient (Kp) 

was increased in magnitude until periodic oscillations occurred in the Tao around the DAT setpoint.  

The Kp which induced such behavior was labeled the critical Kp (Kpcrit) and the associated oscillation 

period (Tp) was recorded.  Those values were then used to output Z-N suggested tuning parameters 

from Table 2 below.  

Table 2: Ziegler and Nichols Closed Loop Tuning Parameters (Siemens Building Technologies). 

 

 It should be noted that inputs in the Simulink’s PID controller call for values of Kp, Ki and Kd, 

not the proportional band (Xp), integral action time (Tn) and derivative action time (Tv).  Thus the 

following equations were used in developing those parameters. 

𝐾𝑝 = 1/𝑋𝑝      Eqn. 42 

𝐾𝑖 = 𝐾𝑝/𝑇𝑛      Eqn. 43 

𝐾𝑑 = 𝐾𝑝𝑇𝑣      Eqn. 44 

 In all the PID controllers used in this research, values of Kd remained zero.  Introduction of 

Kd aided little in increased performance and at times drastically increased simulation times.  Thus, 

the K parameters derived from the Table 2’s tuning parameters for a PI controller were used as 

starting points.  Further iterations with slight adjustments to Kp and Ki often produced slightly 

better performance.  Optimal performance was realized when a sub-critically damped, single 

overshoot transient response was witnessed in the Tao response to a change in DAT setpoint 

(Siemens Building Technologies).   
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With the PI controller now optimally tuned, simulations were then performed with 

EnergyPlus data from the month of August.  Twi, mW and Q values were exported from the 

simulation into RStudio for the application of the Four-Parameter Curve Fit.  An R script has been 

written to apply this non-linear regression as well as compute Flow and Flow/Delta T limits, all of 

which will be used during testing of the various control strategies.  That script in available in 

Appendix L.4.   

3.4.2. Advanced Control Logics  
 

 All required parameters are now established and subsequent simulations of the Simulink 

model with the advanced control strategies can now be performed.  All control strategies will 

default to Classical PID control tracking on a DAT setpoint of 11°C when not operating in a 

saturation state.  The step by step instructions for the effective testing of each coil can be found in 

Appendix L.  Also found there is the Matlab scripts required to be run before and after each 

simulation.   

 The first advanced control logic modeled and investigated is Delta T Limiting.  The essence 

of this strategy is that the Energy Valve™ will operate under Classical PID control when measured 

water-side Delta T is above the prescribed low limit.  Error in the DAT when compared to its 

setpoint will induce either an increase or decrease in water flow through the Energy Valve™.  At 

times when the measured water-side Delta T is below the limit, which is initially set to 5.55 K, the 

controller modulates water flow so the Delta T low limit is maintained.  Control signals to the 

Energy Valve™ from the Classical PID logic and the Delta T Limiting logic will be compared to 

recognize when the control signal and subsequent water flow rate that comes from the Classical 

PID controller is below that of the Delta T limiting logic.  At this point, Classical PID control will 

again take over as the system would not be experiencing Low Delta T Syndrome anymore.  The 
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collective controller which implements this logic is coined the Delta T Manager ™ by Belimo and can 

be seen modeled below. 

 

Figure 16: Delta T Limiting control logic modeled in Simulink. 

 

 Tuning of the PI controller that would track on a Delta T setpoint was accomplished via the 

same Ziegler Nichols closed loop tuning process as was done for the DAT tracking Classical PID 

controller.  Maximum Wai, Tai, Twi and mA values from the input parameters were used to calibrate 

the controller along with a step change in Delta T setpoint from 6 K to 5 K.  The transition from 

Classical PID control to Delta T control includes a slight overshoot of the Delta T low limit before 

effective Delta T tracking can occur.  This can be seen in Figure 17 where the Delta T limit is set to 

5.55 K. 

 

Figure 17: Delta T versus time plot at moment when Delta T Limiter is engaged. 
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 The second advanced control strategy considered was Flow Limiting.  The most simplistic of 

the advanced control logics, it merely sets a maximum flow rate which the valve will restrict flow to.  

The pressure independence and flow monitoring capabilities of the Energy Valve™ makes this 

possible as the valve is now no longer susceptible to hydronic pressure fluctuations in the system.  

Often times, control valves are too large and when coupled with Classical PID control, will increase 

flow to levels far beyond design rates in an effort to meet an unobtainable DAT setpoint.  This is a 

primary cause of Low Delta T Syndrome which was discussed in the Literature Review.  

 Determination of the mW high limit was performed in the R script available in Appendix L.4.  

An iterative process was performed to determine when a Delta T of 5.55 K would be expected to be 

realized at design inlet water temperature.  Such an estimate would be possible from the b 

coefficients obtained from the Four-Parameter Curve Fit.  The mW at which this would occur was 

chosen to be the mW high limit, or mWlimit.  This is merely calculated by setting Equations 1 and 3 

equal and solving for mWlimit.  Equation 45 below shows the relationship and Figure 18 graphically 

identifies where such a limit would occur.  The Delta T Limit was again taken to be 5.55 K and the 

design Twi was 6.7°C, as was used by EnergyPlus in sizing the geometric parameters of the coil.  cpw 

was taken to be 4,181 J/kg*K. 

𝑚𝑊𝑙𝑖𝑚𝑖𝑡𝐶𝑝𝑤𝐷𝑒𝑙𝑡𝑎𝑇𝑙𝑖𝑚𝑖𝑡 = (𝑏𝑜 + 𝑏1𝑇𝑤𝑖)(1 − 𝑒−(𝑏2+𝑏3𝑇𝑤𝑖)𝑚𝑊𝑙𝑖𝑚𝑖𝑡)  Eqn. 45 
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Figure 18: Determination of mW Limit. 

 

 The third advanced control logic investigated was that of Flow/Delta T Limiting.  The 

quotient of measured water flow and Delta T was compared to a high limit.  The high limit for such 

a controller was taken to be the quotient of the mWlimit divided by the DeltaT Limit of 5.5 K.  The 

controller will operate in Classical PID DAT tracking control until its Flow/Delta T output exceeds 

the high limit.  At that point, a second PI controller would modulate the valve to maintain the 

Flow/Delta T high limit.  As before seen in the Delta T limiting strategy, constant comparison 

between the control signals from the Classical PID controller which is attempting to track the DAT 

setpoint and the secondary PI controller attempting to track mW/Delta T high limit will take place.  

The lower of the two control signals will be sent to the valve.   
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Figure 19: Flow/Delta T Limit control logic modeled in Simulink. 

 

Tuning of the PI controller that would track on a Flow/Delta T setpoint was accomplished 

via the same Ziegler Nichols closed loop tuning process as was done for the DAT tracking Classical 

PID controller.  Maximum Wai, Tai, Twi and mA values from the input parameters were used to 

calibrate the controller along with a step change in mW/Delta T setpoint from 0.1 kg/s-K above 

high limit, down to the high limit.  The transfer from Classical PID control to Flow/Delta T control 

includes a slight overshoot of the Flow/Delta T high limit before effective Flow/Delta T tracking can 

occur.  This can be seen in Figure 20 where the Flow/Delta T high limit was set to 3 kg/s-K. 

 

Figure 20: mW/Delta T vs time plot at moment when Flow/Delta T Limiter is engaged. 
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 The last advanced control logic investigated is one not previously considered by Belimo’s 

Research and Development (R&D) department and the University of Colorado Boulder.  It is derived 

by the accurate saturation predictions that the Four-Parameter Curve Fit now provides us.  Under 

normal operating conditions, the Energy Valve™ will again be controlled by Classical PID control 

which tracks DAT setpoint.  Consistent monitoring of Twi and the calculated Q will allow for 

comparison of observed cooling power (Q) to that of predicted maximum capacity k1.  k1 is adjusted 

depending on Twi as per Equation 19.  At times when this ratio exceeds a prescribed saturation limit 

(e.g. 85%), it is deemed that the coil is operating in the saturation region.  At that point, a secondary 

PI controller will track on that saturation limit.  The lower of the two control signals will be sent to 

the valve. 

 

Figure 21: Four-Parameter control logic modeled in Simulink. 

 

Tuning of the PI controller that would track on a saturation limit was accomplished via the 

same Ziegler Nichols closed loop tuning process as was done for the DAT tracking Classical PID 

controller.  Maximum Wai, Tai, Twi and mA values from the input parameters were used to calibrate 

the controller along with a step change in saturation setpoint from 0.9 to 0.85.  The transfer from 

Classical PID control to Four-Parameter control includes a slight overshoot of the saturation limit 
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before effective saturation tracking can occur.  This can be seen in Figure 22 where the saturation 

limit is set to 75%. 

 

Figure 22: Percent saturation vs time plot at moment Four-Parameter control is engaged. 

 

3.4.3. Strategy Testing and Comparison  
 

After the all the control limits were established and appropriate tuning for each controller 

was performed, simulations with each control strategy were completed to investigate the 

hypothesis that the optimal control strategy will depend on application (CAV vs VAV), climate, and 

facility priorities. 

A simplified model depicting how the controller, valve, coil and input air and water states 

are combined in Simulink in shown in Figure 23.  This shows Classical PID control with DAT 

tracking.  Models of other control strategies differ in their controller/valve assembly, as well as the 

established setpoints. 
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Figure 23: Complete Simulink model used in testing Classical PID control logic. 

 

Though not completely shown in Figure 23 for brevity, outputs from each model include the 

mW, Q, Twi, Integral Squared Error (ISE) over the course of the simulation, maximum DAT setpoint 

error, the total cooling power supplied, total pumping power used, control signal selection as well 

as Delta T.  ISE is a measure of how well comfort is being met and is defined as: 

𝐼𝑆𝐸 =  ∫ (𝑤(𝑡) − 𝑦(𝑡))2  𝑡𝑓𝑖𝑛𝑎𝑙

𝑡𝑜
𝑑𝑡    Eqn. 46 

where w(t) and y(t) are the DAT setpoint and the measured DAT, respectively.  Start time to was 

chosen to be one hour into the simulation to allow for the system to settle from disturbances due to 

initial conditions.  The end time tfinal was taken to be the end of the simulation. 

Total cooling power supplied was taken to be the integral of Q over the course of the 

simulation.  The pumping power (PP) was computed by use of an exponent equaling 2.2 in the 

following equation. 

𝑃𝑃 ∝ 𝑚𝑊2.2      Eqn. 47 



63 
 

Pump affinity laws estimate pumping power to be proportional to the cube of mW.  

However, that is when ideal scenario.  In all reality, pump efficiency decreases with decreasing flow 

rate, and thus an exponent of 2.2 is more appropriate (Fact Sheet: Variable Frequency Drives).  The 

above PP is not actually pumping power as we are leaving out the coefficient inherent to each 

individual pump.  However, that coefficient would be assumed to remain constant between testing 

of the various control strategies and thus comparing PP for each simulation would provide insight 

in to the relative amounts of pumping power consumption each strategy required.   

 Testing of the various strategies were performed on 16 different coils.  Those coils included 

the following from each of the four primary climates of Atlanta, L.A., Miami and Boulder: 

- CAV 1 system from the Hospital model with a degrading Twi schedule 

- VAV 1 system from the Hospital model with a degrading Twi schedule 

- CAV 1 system from the Office model with a reset Twi schedule 

- VAV 1 system from the Office model with a reset Twi schedule 

The first round of testing included using all the established setpoints/limits derived from 

the methods already described.  The complete step by step process with all appropriate Matlab and 

R scripts for this initial round of testing can be seen in Appendix L.  From the data collected in each 

simulation, the following outputs for each simulation were put in a table for analysis of the results: 

- Row configuration 

- Twi schedule 

- FPMC 

- CV 

- Various controller limits 

- ISE percentage increase from base case (DAT tracking control) 

- Cooling power percentage decrease from base case 
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- Pumping power percentage decrease from base case 

- Pumping power percentage decrease to ISE percentage increase ratio 

- Pumping power percentage decrease to cooling power percentage decrease ratio 

- Average Delta T 

It is expected that some strategies will be more aggressive than others.  An initial attempt to 

normalize the simulations was done through the metrics “Pumping power percentage decrease to 

ISE percentage increase ratio” and “Pumping power percentage decrease to cooling power 

percentage decrease ratio”.  This may be too simplistic as such ratios may change for a specific 

control strategy when varying its controller setpoint.  A second round of testing was completed for 

the same coil set.  It included taking the advanced strategy with the lowest ISE (least aggressive) as 

a baseline, and attempting to match the other advanced strategies’ ISE by manipulation of their 

controller limits.  This included numerous iterations for each advanced strategy on each coil.  All 

ISE values for the four advanced control strategies were brought within 5% of each other and 

results published.  This put all control strategies on an even playing field as they would induce an 

equal amount of discomfort on the occupants which the coil serves.  Comparison of other values 

such as pumping power reduction from base case and average water-side Delta T could be more 

appropriately made.  
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4. Results  
 

4.1. Cooling Coils Data   
 

After substantial modifications to the template EnergyPlus models, saturation was achieved 

for all coil models, in all systems, at all locations of interest.  Matlab was used to perform bin 

analysis in the Q vs mW plots for a variety of input parameters.  Plots from select CAV 1 and VAV 2 

coils in Atlanta’s hospital model can be seen in Figures 24 through 35 below.  Appendix F has more 

such plots for all locations investigated.  It should be noted the vertical line of data points seen in 

each plot below are instances when the DAT setpoint could not be met and the maximum mW was 

being sent to the coil.  Real world coils that are undersized at times exhibit similar behavior of the 

valve being fully opened, but pressure fluctuations in the CHWS would prevent such a distinct 

vertical line from developing in the Q vs mW profile.  Such data was cropped out of the datasets 

prior to any analysis in R being performed.  

 

         Figure 24: Wai bin plot for Atlanta CAV 1.            Figure 25: Twi bin plot for Atlanta CAV 1.  
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       Figure 26: Tai bin plot for Atlanta CAV 1.          Figure 27: Delta T bin plot for Atlanta CAV 1.  

 

 

       Figure 28: hai bin plot for Atlanta CAV 1.            Figure 29: mA bin plot for Atlanta CAV 1.  
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       Figure 30: Wai bin plot for Atlanta VAV 1.  Figure 31: Twi bin plot for Atlanta VAV 1.  

 

 

 

       Figure 32: Tai bin plot for Atlanta VAV 1.  Figure 33: Delta T bin plot for Atlanta VAV 1.  
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       Figure 34: hai bin plot for Atlanta CAV 1.  Figure 35: mA bin plot for Atlanta CAV 1.  

 

Bin plots were produced for two reasons.  First, they provided assurance as to the validity of 

the simulated data.  Certain trends in the data were expected and were realized.  For instance, 

cooling capacity generally increased with increasing Wai, Tai and mA for the same mW.  Additionally, 

lower capacities and lower water-side Delta T’s were observed for higher Twi bins, as was expected 

(Taylor, 2002).  Secondly, these plots provided an avenue to help identify differences between CAV 

and VAV coils for the same climate, as was discussed in detail in Spread of Inlet Water Temperature 

Bins subsection of Methodology.  

4.1.1. Validation of Results  
 

Five coils of varying UA values were produced and simulated for each system, thus a total of 

80 different coils were initially generated to perform preliminary analysis on.  To further validate 

the surrogate data, the geometric parameters of the coils were cross referenced with performance 

data of similar sized coils available in industry. 

Prior to running any simulations, the fin thickness, fin spacing, tube diameters, tube spacing 

and row spacing were all verified to be representative of what is seen in industry.  Various row 

configurations of the Atlanta’s CAV 1 coils were compared to equivalent coils available in industry.  
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Specifically, the generated coils’ cooling power densities (Q/m2) were compared to manufacturer 

performance data of similarly sized coils.  

EnergyPlus defaults to a 1.4 m tube length on when autosizing cooling coils’ geometric 

parameters as can be seen the examining the autosizing process in EnergyPlus’ Engineering 

Reference (Dept. of Energy, 2012).  Coil dimensions and performance data were obtained for a 

KeepRite Series 80 chilled water coil.  Technical specifications and performance data can be seen in 

Appendix G.  Assuming 67°F (19.4°C) inlet air wet bulb temperature and a 45°F (7.2°C) inlet water 

temperature, the Atlanta CAV 1 coils were compared to the 60" (1.524 m) nominal tube 

length KeepRite coil.  On the EP coils, when taking the design air flow rate divided by the coil area, a 

velocity just under 400 fpm (2.023 m/s) is found.  The manufacturer’s documented cooling power 

density (tons/ft2) was given the appropriate conversions and area adjustments to bring it on par 

with Atlanta's CAV 1 coil.  Estimated coil capacities from the KeepRite coil of 409,503 W, 351,691 

W, and 279,426 W were found for the eight-row, seven-row and six-row configurations, 

respectively.  The design capacity output from EP was 374,157 W.  Therefore, the EP coils were 

right on par with what is commercially available.  The eight-row coil met the required capacity, the 

seven-row configuration did as well but with a lot more water flow, and the six-row coil was simply 

undersized for design conditions.  See Figure 36 (a) through (c) for those three configurations. 
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(a)                                                                                                            (b) 

 

(c) 

Figure 36: Q vs mW plots for (a) 8-row, (b) 7-row and (c) 6-row configurations. 

 

It is concluded that the EP coils are realistic in their geometries and performance.  The 

massive capacity requirements of this particular facility just call for them to be quite tall (on the 

order of 5 m).  

4.1.2. Effects of Changing Twi Schedule  
 

All of the initial 80 coil simulations included a degrading Twi schedule representative of the 

central chilled water plant unable to meet the higher loads seen in the hotter part of the days.  To 

visually see the effects of implementing a Twi reset schedule, which would have colder Twi’s during 
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the hottest part of the day, Twi bin plots were produced in Matlab for the same coil experiencing the 

two different Twi schedules.   

  

(a)                                                                                                     (b) 

Figure 37: (a) Degrading Twi schedule. (b) Twi reset scheduled used for the same system. 

 

 The coil shown in both Figure 37 (a) and 37 (b) was of a six-row configuration.  Figure 38 

below shows the results of the seven-row configuration for the same system simulated with a 

degrading Twi scheduled.  Figure 38 compares quite closely to the Twi reset schedule imposed on the 

six-row configuration shown in Figure 37 (b).  The other bin plots also compare nicely.  It is 

apparent that implementation of a Twi reset schedule could reduce the size of the required coil, 

saving on installation costs.  Decreased chiller efficiencies and increased flow during low load 

periods as pointed out by Taylor (2002) may prove this approach to not be beneficial when looking 

at whole building energy consumption and life cycle cost analysis.  Such decisions should be made 

on a case by case basis after performing appropriate energy modeling of the system in question. 
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Figure 38: 7 row configuration coil with a degrading Twi schedule. 

 

4.2. Distinction between CAV and VAV AHU Applications  
 

4.2.1. k2 Deviation  
 

 The deviation in the exponential curvature (k2) between the 5% and 95% quantiles of a 

dataset was expected to be substantially larger for VAV coils than for CAV in a specific climate 

based on the work of Thuillard et al. (2014).  Regression on these quantiles was performed for all of 

the initial 80 coil datasets in RStudio.  The R script which performed this analysis as well as 

instructions on how to properly apply the curve fits via this script can be seen in Appendix E.  It was 

found that even with the large amount of data (six months’ worth of five minute intervals), fitting of 

the exponential function through non-linear regression of the quantiles was difficult.  Adjustments 

to the total number of mW bins and the portion of those bins used in the regression at times 

produced quite large deviations in the outputted coefficients k1 and k2.   Figure 39 shows a scenario 

where subjectivity on the part of the analyst would largely affect the outputted coefficients.  

Selecting the first seven bins for the 95% quantile curve fit (yellow dots) would provide a much 

different set of k coefficients than if one chose the first 15 mW bins.  
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Figure 39: Regression on the 95% and 5% quantiles. 

 

 In an effort to fully document the repeatability of this fit, all 80 datasets were analyzed 

twice.  The difference in the 5% quantile k2 values between the analysis runs for the same dataset 

was on average 18%.  The variability in the 95% quantile k2 values was on average 11%.  The 

repeatability of this method to obtain k1 and k2 coefficients for regression on the 5% and 95% 

quantiles was proven quite poor. 

 From the outputs of each analysis run, the hypothesis that CAV coils would maintain 

distinguishably lower variations in the k2 coefficient between the 5% and 95% quantiles when 
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compared to VAV coils was tested.  Table 3 (a) and (b) show the maximum and average deviations 

between those two quantiles for analysis runs #1 and #2.  

Table 3: (a) Analysis run #1 results. (b) Analysis run #2 results. 

(a)                                                                                          (b) 

   

        In analysis run #1, only in the Atlanta climate did CAV coils have lower maximum and average 

deviations between the 5% and 95% quantiles’ k2 parameters.  Even then, the slightly lower values 

are well within the amount of error these values have to begin with.  In analysis run #2, the VAV 

coils in all climates maintained lower deviations in k2 between the 5% and 95% quantiles, but again 

the differences are within the expected amount of error in the coefficients themselves due to the 

nature of this approach. 

Attempting a different approach to distinguish between CAV and VAV datasets, barbell plots 

were performed with analysis run #2’s data.  Values of k2 and k1 for both the 5% and 95% quantiles 

ATLANTA SUMMARY

Max k2 Deviation in CAVs (%) 33.31

Avg k2 Deviation in CAVs (%) 17.98

Max k2 Deviation in VAVs (%) 37.77

Avg k2 Deviation in CAVs (%) 18.36

BOULDER SUMMARY

Max k2 Deviation in CAVs (%) 92.69

Avg k2 Deviation in CAVs (%) 32.86

Max k2 Deviation in VAVs (%) 62.66

Avg k2 Deviation in CAVs (%) 24.30

LOS ANGELES SUMMARY

Max k2 Deviation in CAVs (%) 72.82

Avg k2 Deviation in CAVs (%) 38.05

Max k2 Deviation in VAVs (%) 39.38

Avg k2 Deviation in CAVs (%) 21.34

MIAMI SUMMARY

Max k2 Deviation in CAVs (%) 166.06

Avg k2 Deviation in CAVs (%) 59.69

Max k2 Deviation in VAVs (%) 13.32

Avg k2 Deviation in CAVs (%) 8.07

ATLANTA SUMMARY

Max k2 Deviation in CAVs (%) 113.97

Avg k2 Deviation in CAVs (%) 30.64

Max k2 Deviation in VAVs (%) 66.67

Avg k2 Deviation in CAVs (%) 26.90

BOULDER SUMMARY

Max k2 Deviation in CAVs (%) 83.26

Avg k2 Deviation in CAVs (%) 28.70

Max k2 Deviation in VAVs (%) 62.66

Avg k2 Deviation in CAVs (%) 24.68

LOS ANGELES SUMMARY

Max k2 Deviation in CAVs (%) 72.82

Avg k2 Deviation in CAVs (%) 40.22

Max k2 Deviation in VAVs (%) 54.00

Avg k2 Deviation in CAVs (%) 27.92

MIAMI SUMMARY

Max k2 Deviation in CAVs (%) 59.70

Avg k2 Deviation in CAVs (%) 33.34

Max k2 Deviation in VAVs (%) 18.57

Avg k2 Deviation in CAVs (%) 9.33
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were plotted and connected together.  Plots were performed showing all the coils of equal row 

configurations against each other.  Figure 40 shows the plot of all eight-row coils and the remaining 

plots can be seen in Appendix E.3.  The barbell handle for all VAV coils is red and for CAV coils, 

green. 

 

Figure 40: k2 - k1 barbell plot for all 8 row configuration coils. 

 

Again, no distinguishable differences between the two applications can be seen.  The fact 

that the k1’s for the VAVs are typically higher and the VAV k2’s are typically lower is solely attributed 

to the fact that the system loads for the VAV applications are larger in the template building models 

used from the Department of Energy. 

               If one was to trust these results, the hypothesis that comparison of the deviations in the k2 

coefficient between the 5% and 95% quantiles would distinguish whether a coil was CAV or VAV is 

rejected.  Due to the inherent subjectivity of this approach and its lack of repeatability, no reliable 

conclusions could be drawn from the results of this approach.  Prior to making any such conclusion, 

the Four-Parameter Curve Fit was used to investigate deviations in k2 from the lower and upper 

portions of the Q vs mW plots.  
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               Figure 41 shows the Twi bin plot from Matlab on the left, and the R plot with constant Twi 

lines on the right.  It can be seen this is quite a good approximation.  Figures 42 (a) and (b) show the 

same dataset with curve fits from the quantile bin analysis and with the Four-Parameter Curve Fit, 

respectively.  The Four-Parameter Curve Fit approach took much of the subjectivity out of the 

equation.  It also was much more repeatable.   

 

(a)                                                                                                   (b) 

Figure 41: (a) Twi bin plot. (b) Cooresponding Four-Parameter Curve Fit predictions. 

 

 

(a)                                                                                                (b) 

Figure 42: (a) Regression on the mW bins’ quantiles. (b) Constant Twi lines from Four-Parameter 
Curve Fit. 

 

            When taking the constant Twi lines at 5°C and 9°C as the upper and lower bounding curves, all 

coil datasets were again looked at.  Results now show that CAV coils have higher k2 deviation from 
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the low to high bounding curves of the data in all climates, completely negating the initial 

hypothesis.  It is thus concluded that fluctuating inlet air humidity levels (Wai) do play a dominate 

role in the exponential curvature of the Q vs mW plots.   

4.2.2. Validation of k2’s Dependence on Twi   
 

 In the Four-Parameter Curve Fit, the exponential curvature k2 was made a function of inlet 

water temperature Twi as seen in Equation 20.  This contradicts findings in Thuillard et al. (2014).  

They found negligible dependence of k2 on Twi and Tai, while finding appreciable dependence on Wai 

and mA.  The coefficient k2 was derived from the effectiveness-NTU model in the Methodology, and 

it was suggested that though k2 is effectively independent of Twi for completely dry and completely 

wet coils, an indirect dependence on Twi will occur for coils operating in a partially dry/partially 

wet scenario.  To investigate the importance of including a dependence on Twi in the k2 estimate, 

parametric runs were performed with 32 coils sets (16 hospital and 16 office) over a variety of coil 

configurations and operating characteristics in which the Four-Parameter Curve Fit was compared 

to effectively a Three-Parameter Curve Fit.  The Three-Parameter Curve Fit maintained a constant 

k2 which replaced the (b2 + b3Twi) term.  The Three-Parameter Curve Fit can be seen in Equation 48: 

𝑄 = (𝑏𝑜 + 𝑏1𝑇𝑤𝑖)(1 − 𝑒−𝑘2𝑚𝑊)     Eqn. 48 

For each coil set, the average Wai for each Twi bin was computed as well as the CV and 

Normalized Mean Biased Error (NMBE) for both the Three and Four-Parameter Curve Fits.  NMBE 

can be defined as follows 

𝑁𝑀𝐵𝐸 =  ∑ (𝑦 − 𝑥)/[𝑚𝑒𝑎𝑛(𝑥)(𝑁 − 𝐷𝑂𝐹)𝑁
𝑖=1 ]   Eqn. 49 

where x is an observed capacity point, y is the corresponding predicted capacity from the respective 

curve fit, N is the number of data points in which the non-linear regression is being performed on, 

and DOF is the number of degrees of freedom which is four for the Four-Parameter Curve Fit and 
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three for the Three-Parameter Curve Fit.  Complete findings from such tests can be seen in 

Appendix J.  As expected, the CV for each coils was slightly higher for the Three-Parameter Curve Fit 

than the Four-Parameter Curve Fit as it has one less degree of freedom to work with.  The 

percentage increase in the CV values between the two curve fits averaged 3.85% for the office coils 

and 2.99% of the hospital coils.  The NMBE were not consistently higher for the Three-Parameter 

Curve Fit due to the nature of the metric in which positive error cancels out negative error.  

Average inlet air humidity (Wai) for the various Twi bins did not vary as much as expected.   Lower 

minimum outdoor air fractions coupled with large reductions in internally generated latent loads 

during the nighttime was expected to result in a lower average Wai for Twi bins that occur during 

such hours.  Following this logic, the average Wai was expected to be the highest for Twi bins 

occurring during the occupied hours.  For example, in a reset Twi schedule scenario, the low 

temperature Twi bins that occurs during the mid-afternoon hours would be expected to have a 

higher average Wai than the warmest Twi bin which occurs at night.  However, this was not the case.  

The average Wai across the Twi bins remained relatively constant, both in simulations with Twi reset 

schedules and degrading Twi schedules.  This may be attributed to the fact that dry bulb 

economizers were used in every simulation tested.  Nighttime use of the economizers is expected to 

be more prevalent than daytime use, which may result in higher Wai during the nighttime than 

expected.  Dry bulb economizers compare return air temperature to outside air temperature.  The 

outside air humidity ratio is not factored into a dry-bulb economizer’s logic for when it should be 

utilized or not.   

Variation in the predicted exponential curvature k2 between the 5°C and 8°C for the Four-

Parameter Curve Fit was also looked at.  Average deviation between these two temperatures were 

32.4% and 13.5% for the office and hospital coils, respectively.  Again, all the detailed results of the 

32 simulations can be seen in Appendix J.  To graphically illustrate the significance of this variation, 
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normalized capacity curves for the CAV and VAV coils that most closely exhibited the average k2 

deviation can be seen below.  

 

(a)                                                                                                          (b) 

Figure 43: Normalized capacity vs mW plots for (a) CAV and (b) VAV coils that have k2 deviations 
between 5°C and 8°C Twi lines most near the average deviations seen throughout the simulations. 

 

 The CAV and VAV coils that exhibit the maximum k2 variation between the 5°C and 8°C Twi 

lines can be seen below. 

 

(a)                                                                                                 (b) 

Figure 44: Normalized capacity vs mW plots for (a) CAV and (b) VAV coils that have the most 
drastic k2 deviations between 5°C and 8°C Twi lines. 
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To some extent, every coil exhibited a dependence of k2 on Twi as can be seen in Appendix J.  

The original hypothesis that this may largely be due to increasing average Wai for Twi bins that are 

experienced during occupied hours was rejected.  To further investigate, parametric runs on the 

Bellucci Simulink cooling coil model was accomplished to see if the findings of Thuillard et al. 

(2014) could be reproduced.  Negligible k2 dependence on Tai was found, consistent with the 

paper’s findings.  Appreciable k2 deviations when varying mA was found, also consistent with the 

paper’s findings.  This investigation found only a k2 dependence on Wai when the coils transitioned 

from sensible-only cooling to cooling with dehumidification.  This is consistent with findings in the 

Methodology’s investigation into k2, particularly the comparison of Equations 35 and 38.  Negligible 

dependence on Wai occurred when all the Wai values looked at were experiencing dehumidification 

or when all the Wai values looked at were experiencing sensible-only cooling.   Similarly, parametric 

runs with Twi as the variable found a k2 dependence on Twi only when the dew point of inlet air falls 

within the range of Twi’s being experienced by the coil.  Lower Twi’s have dehumidification occurring 

while a higher Twi’s would have sensible-only cooling.  Thus, the indirect k2 dependence on Twi 

previously stated was validated.  Below is a normalized capacity versus water flow rate plot where 

three different Twi’s were tested through a range of water flow rates.  The constant dew point 

temperature in each run was 5.5°C.  Both the 6°C and 7°C Twi runs produced identical normalized 

curves as they had the same k2 since the dew point is not reached and both scenarios maintain 

sensible-only cooling.  The 5°C Twi run produces a different exponential curvature due to the 

dehumidification occurring as the Twi of 5°C falls below the dew point of 5.5°C. 
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Figure 45: Normalized Q vs mW plot for range of Twi’s that cross the inlet air’s dew point. 

 

Do to the limitation of the Bellucci Simulink model not being able to compute partially 

wet/partially dry cooling scenarios, one might expect the k2 variation when crossing the latent 

cooling threshold to not be as severe.  This may very well be the case, but the EnergyPlus coil does 

solve for partially wet/partially dry cooling scenarios and that coil still found a k2 dependence on 

Twi when the Four-Parameter Curve Fit was applied to its simulation data. 
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(a)                                                                                                        (b) 

 

(c) 

Figure 46: Inlet air humidity ratio distribution for (a) 5-6°C Twi bin, (b) 6-7°C Twi bin and (c) 7-     8°C 
Twi bin. 

 

Figure 46 above shows the various Twi bins have roughly the same distribution of Wai.  Thus, 

colder Twi bins would have a higher percentage of latent cooling instances than warmer Twi bins.  A 

regression on the lower Twi data points would result in a normalized curve closer to that of a pure 

latent cooling scenario.  A regression for the higher Twi data points would result in a normalized 

curve closer to that of a sensible-only cooling scenario.  This was further realized when the Three-

Parameter Curve Fit was applied to various Twi bins on two CAV coils from Boulder as seen in Table 

4.  As the Twi is increased, the value of k2 increases as the curvature is becoming more akin to the 

curvature of sensible-only cooling scenarios as seen by the red curve in Figure 45.  As a dependence 

of k2 on mA was found, VAV coils will not necessarily produce similar results due to an uneven 

distribution of air flow rates across the Twi bins. 
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Table 4: Increases in k2 realized with increases in Twi. 

Regression on Individual Temperature Bins with Three-Parameter Curve 
Fit 

          

Climate Coil k2 (5-6 C) k2 (6-7 C) k2 (7-8 C) 

Boulder CAV 1 (6 Row) 0.063 0.091 0.095 

Boulder CAV 1 (7 Row) 0.040 0.044 0.073 

 

 

4.2.3. Coefficient of Variation to Fraction of Predicted Maximum Capacity Relationships 
 

               It was hypothesized that defined relationships between CV and FPMC would exist for each 

climate and those relationships could then be used to predict coils of unknown applications (CAV or 

VAV).  An R script for obtaining values of CV and FPMC for each coil can be seen in Appendix H.  Twi 

indicator temperatures of 6°C , 6.5°C , 7°C , 7.5°C , and 8°C were all evaluated to see if one provided 

a more defined relationship between CV and FPMC.  The Four-Parameter Curve Fit and subsequent 

CV and FPMC calculations were performed on each of the initial 80 coil datasets.  Miami’s results are 

shown below.  
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Figure 47: Miami’s CV to FPMC relationships for a variety of indicator Twi’s. 

 

              A definite distinction can be made between CAV and VAV coils.  Similar results were found 

for the other three climates.  Across the climates, the 6.5°C and 7°C Twi indicator temperatures 

showed the strongest relationships.  This may or may not be attributed to the fact the coils were 

sized in EnergyPlus based of a 6.7°C design inlet water temperature.  Several outliers both seen and 
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foreseen needed further investigation for more thorough refinement of these relationships and are 

outlined in the following sub-sections of this report.  

4.2.3.1. Data Indexing   

 

               When evaluating all the datasets throughout the climates, it was noticed that several coils 

had noticeably lower CV values than expected.  This was attributed to the way the R script cropped 

the data prior to applying the Four-Parameter Curve Fit.  The R script cuts out data points that are 

at the maximum allowable water mass flow rate as such behavior would not be experienced in a 

real world coils and may throw off the curve fit.  For heavily undersized coils, large percentages of 

data points with higher Twi values (those above 8°C) were located at the maximum allowable water 

mass flow rate.  That is where the control valve was always wide open since the cooling 

requirements were not being met.  That data was cropped out automatically in the initial R script, 

and subsequently the non-linear regression had an easier time fitting that data due to the smaller 

Twi range the data now maintained.  Consequently, some of the coils that were quite undersized had 

lower CV than expected.                     

                To avoid this dilemma, the R script was modified to crop out all data points with Twi above 

8°C.  The Four-Parameter Curve Fit was then applied to all remaining data.  Figure 48 shows a slight 

improvement in the strength of the CV to FPMC relationships when implementing this methodology 

compared to the initial results for Atlanta.  Similar results were seen for the other three climates.   

 

(a)                                                                                                      (b) 

Figure 48: CV to FPMC relationship improvements between the (a) initial run and (b) second run. 
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4.2.3.2. Times of No Cooling Load  

 

               Boulder’s CV values were much higher than seen in other climates.  This is partially 

attributed to Boulder being the only climate looked at that had heating loads during the period 

simulated in EnergyPlus.  Initially, data points when mW was zero (Q was zero as well) were 

included in the dataset that the Four-Parameter Curve Fit was applied to.  Including such points 

would increase the number of data points while keeping the Sum Squared Error (SSE) the same, as 

the points with zero cooling capacity would be perfectly predicted by the Four-Parameter Curve Fit.  

It may be expected that this would lead to a lower CV, but higher CV values persist because all these 

data points with Q at zero drastically bring down the mean capacity µ.  This subsequently increases 

the CV.  Thus, all data points with mW equal to zero needed to be cropped out of the dataset as well.  

This is a vital point that needs to be included in any future real world implementation of this 

strategy.  Climates such as Boulder, where cooling is not required year-round would be most 

affected by such an oversight. 

4.2.3.3. VAV Systems Performing Like CAV Systems 

 

              Evaluation on the initial CV to FPMC relationships shows several VAV data points that fall 

quite close to the CAV data points.  All such data points came from coils serving the VAV 2 system of 

the hospital.  Certain zones in the VAV 2 system were assigned minimum air flow fractions of one, 

while other zones were at 0.3.  Thus, the VAV 2 fan had a minimum recorded air flow of between 

75-80% of its maximum air flow rate, depending on climate and coil row configuration.   

                The VAV 2 system was in many ways performing more like a CAV than a VAV system.  

Therefore, an inaccurate CAV/VAV prediction in this instance may actually be beneficial in selecting 

the optimal control strategy.  To further illustrate the effect of minimum air flow to maximum air 

flow fractions on the CV calculations, all zones in the Atlanta hospital’s VAV 2 system were adjusted 

to minimum air flow fractions of 0.3.  Due to the high internal load schedule, the minimum 
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experienced air flows for the system were between 39 and 48%.  Still, such a reduction pushed 

their CV calculations even further from the CAV coils’ data points, further strengthening the CV to 

FPMC relationship.   

 

Figure 49: VAV coils with larger air flow fluctuations shown to have higher CVs for a given FPMC. 

 

4.2.3.4. Outdoor Air Fraction Dependence  

 

 It was foreseen that the percentage of OA air entering a mixing box would adjust the CV to 

FPMC relationships.  Further investigation into the dependence on CV to FPMC relationships on the 

fraction of outdoor air that exists in the entering air state needed to be performed.  The default 

settings in the EP models did not utilize economizers for "free cooling" during times of appropriate 

outdoor air conditions.  Zonal ventilation requirements were performed via a variety of methods 

which accounted both for occupancy and floor area.  System ventilation rates were chosen to be 

computed by merely taking the sum of all the zonal requirements for the set of zones each system 

serves.  Minimum outdoor air fractions of 25% and 30% were chosen for the VAV and CAV systems, 

respectively. 

Outdoor air economizers utilize a controller which commands the return, exhaust and 

outdoor air intake dampers.  During periods of favorable outdoor air conditions, cooling of the 

building can be performed by bringing higher fractions of outdoor air into the mixing box.  This can 
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reduce the load on cooling coil, often times to zero.  Economizers are low hanging fruit when it 

comes to increasing the energy efficiency of a building with minimal installation and maintenance 

costs.  In fact, they are required for most locations in the United States (ASHRAE, 2010).  The 

control logics implemented by such devices differ by climate and vary in complexity and 

performance.  This is inherently due to variability in humidity ratios for both return and outside air.  

Bringing in more outdoor air when its dry bulb temperature is below that of return air may work 

well in coils providing only sensible cooling (dry coils), but this strategy alone can actually increase 

the cooling load on the system when the outdoor air humidity ratio is high.  An economizer control 

schematic can be seen in Figure 50.   

 

Figure 50: Outdoor air economizer controls (Taylor & Cheng, 2010). 

 

It was predicted that implementation of an economizer cycle would affect the CV to FPMC 

relationships.  It was expected that the Boulder location would be implementing such an 

economizer a larger percentage of the time and deviation from the initial CV to FPMC relationship 

would be highest there.  Below are the results of simulating two CAV and two VAV systems with a 

fixed dry bulb economizer with a high limit of 23°C in the Boulder hospital.  Slight increases in CV 

for both CAV and VAV coils can be seen in Figure 51.   
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Figure 51: Boulder CV to FPMC relationships change when fixed dry-bulb economizers are 
implemented. 

 

Seven of the most common control strategies for economizers which identify when an 

economizer should be utilized were recently evaluated (Taylor & Cheng, 2010).  The procedure 

included modeling a typical office building for each of the ASHRAE climate zones.  Expected annual 

energy savings when implementing an economizer with each of the control strategies was 

performed by comparing results to a base case without an economizer.  The performance of each 

strategy varied widely depending on the climate, as was expected.  When considering its low 

installation and maintenance costs, as well as inherent energy savings and minimal sensor error, 

the publication recommends a fixed dry-bulb control strategy for all climates, with differing high 

limit setpoints across the climate zones.  Such recommendations can be seen in Table 5. 

Table 5: Recommended fixed dry-bulb economizer settings (Taylor & Cheng, 2010). 
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Utilizing the recommended fixed dry bulb control strategy and the proposed high limit 

setpoints found in Table 5, all of the initial 80 coils were again simulated in EnergyPlus, now with 

use of an economizer.  It is assumed that buildings that would be implementing an Energy Valve™ 

would also be adhering to energy codes which call for the use of an economizer.  Thus, the finalized 

relationships for the CV to FPMC that will be extrapolated into a CAV/VAV climate dependent 

prediction tool will come from the outcomes of such simulations.  Steps for manipulation of the 

EnergyPlus IDF files to incorporate such economizers can be seen in Appendix A.2. 

4.2.4. CAV/VAV Prediction Tool  
 

4.2.4.1. CV to FPMC Relationship Refinement  

 

 Refinement the CV to FPMC relationship was achieved by implementing appropriate 

economizer cycles on each of the buildings.  All zones in the EnergyPlus building model that were 

served by VAV systems had their minimum air flow rate set to 30%.  The revised R script, which 

applies the Four-Parameter Curve Fit and performs the CV and FPMC calculations from coil 

datasets, now crops out all times when no cooling load is imposed on the system.  The revised R 

script also crops out data for inlet water temperatures above 8°C.  The revised script is available 

with annotations in Appendix H.1.   

For robustness of future implementation of this prediction method to real world 

applications, additional Twi bins would need to be looked at and relationships established for the 

case in which a cooling coil operates with inlet temperatures far from those modeled in this body of 

research.  For the purposes of this research, only a Twi range of 5 – 8°C will be used in development 

of the CV to FPMC relationships.   

The refined CV to FPMC relationships for the four climates can be seen in Figures 52 (a) 

through (d) below.  These are the final relationships used in the development of a prediction tool 
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for coils whose application is unknown.  For reasons discussed above, an inlet water temperature of 

6.5°C was decided upon for use as the indicator temperature for the FPMC calculation.  

 

(a)                                                                                                     (b) 

 

 

                                                         (c)                                                                                                      (d) 

Figure 52: Finalized CV to FPMC relationships for (a) Miami, (b) Atlanta, (c) Boulder and (d) L.A. 

 

4.2.4.2. Liner Regression Relationship Plots  

 

 Linear regression was applied to the CAV and VAV coil data points on the CV-FPMC plots.  

This may not turn out to be the best approach.  As can be seen in Figure 52 (a) above, the left most 

VAV data points actually exhibit a downward trend with increasing FPMCs.  All these data points 

came from the same system, VAV 2.  Further investigation into that particular system was 

performed and found the slope actually bottoms out and an upward trend can be seen as the coil 
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becomes more undersized.  This parabolic behavior is evident in the left most region of the Boulder 

relationship, Figure 52 (c).   

A parabolic curve fit to the VAV relationship may result in a better estimate of a particular 

climate’s coil behavior, but the required time for such an investigation was not available.  This and 

other recommendations for follow-on research is discussed in the Conclusion and Future Work 

section.  

4.2.4.3. Climate Specific Prediction Tools 

 

Two linear CV to FPMC relationships now exist for each climate, one for CAV and one for 

VAV.  An additional R script was developed for each location with these linear relationships 

programmed in.  A new coil of unknown application would be predicted to be CAV or VAV based on 

which of these two linear relationships it falls closer to.  Issues with non-convergence of these 

Prediction Tools were primarily attributed to poor initial guess values of the four coefficients in the 

Four-Parameter Curve Fit.  Numerous iterations and investigations into the best guess values that 

could be universally applied showed that making the bo and b1 coefficients’ guess values as a 

fraction of the maximum observed capacity significantly reduced the non-convergence rate.  

An additional adjustment of note is that there were instances where the Twi bins in some 

VAV coils were so undefined, that RStudio converged on unexpected bo and b1 coefficients.  As a 

result, calculated CV values were found to be much lower than expected.  Shown again below is 

Equation 19 which defines k1, or the maximum capacity expected to be reached for a given inlet 

water temperature. 

𝑘1 = 𝑏𝑜 + 𝑏1𝑇𝑤𝑖     Eqn. 19 

It would be expected that b1 would always come out negative, but with heavily undersized 

VAV coils, that was not always the case.  Thus, the R script Prediction Tools included an overriding 
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distinction: if the predicted cooling power at the maximum observed mW was higher for an inlet 

water temperature of 8°C than that of 5°C, a prediction of VAV would be given.  An example of a 

VAV coil exhibiting such behavior is seen in Figure 53.   

 

Figure 53: Instance when an unexpected b1 coefficient leads to an incorrect prediction, thus the 
override prediction is used. 

 

Purely setting b1 constraints to not allow for negative values drastically increased the non-

convergence rate of the Prediction Tool.  Having an overriding distinction if b1 was negative 

increased the inaccurate prediction rate as some CAV coils did converge on a negative b1 coefficient, 

but the crossover of constant Twi lines occurred far outside the mW range observed.  Finalized 

Prediction Tools for each climate written in R can be seen in Appendix I. 

4.2.4.4. Test Results 

 

  A variety of new, previously unseen, coils were produced to test the effectiveness of the 

CAV/VAV Prediction Tools in R.  Economizers were used in every new coil, following the 

assumption that building owners investing in an Energy Valve™ are already meeting energy 
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standards and are reaping the benefits of economizers.  For each of the four locations, the following 

adjustments were made to the hospital template models and resultant coils were simulated and 

tested: 

- Minimum air flow fraction for all zones originally assigned to a CAV system were set to 

30% on six-row configuration IDF models.  This provided two new VAV coils for each 

location. 

- Minimum air flow fraction for all zones originally assigned to a VAV system were set to 

100% on six-row configuration IDF models.  This provided two new CAV coils for each 

location. 

- A Twi resent schedule was implemented on six-row coil configuration IDF models.  This 

provided two new CAV and two new VAV coils for each location. 

- A different inputted .epw file for a location roughly 100 km away was used for the six-

row coil configuration IDF models.  Athens, GA weather was used for Atlanta.  West 

Palm Beach, FL weather was used for Miami.  San Diego-Miramar, CA weather was used 

for Los Angeles.  Colorado Springs, CO weather was used for Boulder.  This produced 

two new CAV and two new VAV coils for each location. 

- Discharge air temperature setpoint was dropped from 11.1°C to 10.0°C on six-row 

configuration IDF models.  This produced two new CAV coils and two new VAV coils for 

each location. 

Up until this point, all CV to FPMC relationships were built on the same model building, the 

Department of Energy hospital template model.  All test coils described above also were generated 

from that same source IDF model as well.  To further investigate the robustness of the Prediction 

Tools, a completely separate building was modeled that utilized quite different construction and 

internal load schedules.  The Department of Energy template for a large office building was used for 

this purpose.  Acquisition of this template followed the same procedure as the hospital template.  
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The building consists of a twelve story, 46,320 m2, rectangular shaped building with a basement 

and aspect ratio of 1.5.  It has mass walls, a built-up flat roof with insulation above the decking, and 

a 38% window to wall ratio with even window distribution across the four exterior facades.  Its 

envelope’s thermal properties meet the ASHRAE 90.1-2004 minimums for its respective climate 

(ASHRAE, 2010).    

The building maintains an HVAC operations schedule which shuts the HVAC system down at 

night.  The original IDF model included four VAV systems.  Adjustments were made to make two of 

those systems CAV.  Other adjustments similar to those made for the hospital template to properly 

induce coil saturation and present realistic operating characteristics to the coils were also made.  A 

step by step approach for all required IDF adjustments can be seen in Appendix A.4.  Coil sizing for 

the large office building also mirrored the process used for the hospital.  That step by step method 

is provided in Appendix B. 

Test coil row configurations varied between five and seven-rows.  Selected row 

configurations are highlighted in blue in Appendix C.2.  Test coils generated from the large office 

building template model included the following scenarios: 

- DAT setpoint of 12.8°C with a degrading Twi schedule was initially simulated.  This 

produced two new CAV and two new VAV test coils for each location. 

- The DAT setpoint was dropped from 12.8°C to 11.1°C for all four systems.  This 

produced two new CAV and two new VAV coils for each location. 

- A Twi reset schedule with a DAT setpoint of 12.8°C was simulated.  This produced two 

new CAV and two new VAV coils for each location. 

- The same alternate .epw weather files as described before were applied to the model 

operating under its initial DAT setpoint of 12.8°C and degrading Twi schedule.  This 

produced two new CAV and two new VAV coils for each location. 
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Collectively, a total of 128 new coils were tested, half of which came from the large office 

building model.  The results can be seen in Tables 6-10.  

Table 6: Miami CAV/VAV Prediction Tool Test Results. 

MIAMI          

  CAV 1 CAV 2 VAV 1  VAV 2 

Hospital      

DAT Setpoint Change to 10 C PASS PASS PASS PASS 
Twi Reset Schedule 
Implemented PASS PASS PASS PASS 

VAV systems converted to CAV N/A N/A PASS PASS 

CAV systems converted to VAV PASS PASS N/A N/A 

Alternative weather input PASS PASS PASS PASS 

       

Large Office      

Normal settings PASS ERRORS PASS PASS 
Twi Reset Schedule 
Implemented PASS ERRORS PASS PASS 

DAT Setpoint Changed to 11.1 C FAIL ERRORS PASS PASS 

Alternative weather input FAIL ERRORS PASS PASS 

 

Table 7: Boulder CAV/VAV Prediction Tool Test Results. 

BOULDER          

  CAV 1 CAV 2 VAV 1  VAV 2 

Hospital      

DAT Setpoint Change to 10 C PASS PASS PASS PASS 
Twi Reset Schedule 
Implemented PASS PASS FAIL FAIL 

VAV systems converted to CAV N/A N/A PASS PASS 

CAV systems converted to VAV FAIL FAIL N/A N/A 

Alternative weather input PASS PASS PASS PASS 

       

Large Office      

Normal settings PASS PASS PASS PASS 
Twi Reset Schedule 
Implemented PASS PASS FAIL FAIL 

DAT Setpoint Changed to 11.1 C PASS PASS PASS PASS 

Alternative weather input PASS PASS PASS PASS 
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Table 8: L.A. CAV/VAV Prediction Tool Test Results. 

LOS ANGELES          

  CAV 1 CAV 2 VAV 1  VAV 2 

Hospital      

DAT Setpoint Change to 10 C PASS PASS PASS PASS 
Twi Reset Schedule 
Implemented PASS PASS PASS PASS 

VAV systems converted to CAV N/A N/A PASS PASS 

CAV systems converted to VAV ERRORS PASS N/A N/A 

Alternative weather input PASS PASS PASS PASS 

       

Large Office      

Normal settings FAIL FAIL PASS PASS 
Twi Reset Schedule 
Implemented PASS PASS FAIL FAIL 

DAT Setpoint Changed to 11.1 C PASS PASS PASS PASS 

Alternative weather input FAIL FAIL PASS PASS  

 

Table 9: Atlanta CAV/VAV Prediction Tool Test Results. 

ATLANTA          

  CAV 1 CAV 2 VAV 1  VAV 2 

Hospital      

DAT Setpoint Change to 10 C PASS PASS PASS PASS 
Twi Reset Schedule 
Implemented PASS PASS FAIL PASS 

VAV systems converted to CAV N/A N/A PASS PASS 

CAV systems converted to VAV PASS PASS N/A N/A 

Alternative weather input PASS PASS PASS PASS 

       

Large Office      

Normal settings PASS PASS PASS FAIL 
Twi Reset Schedule 
Implemented PASS PASS FAIL FAIL 

DAT Setpoint Changed to 11.1 C FAIL PASS PASS FAIL 

Alternative weather input PASS PASS PASS FAIL 
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Table 10: Collective CAV/VAV Prediction Tool Test Results. 

  
Correct 
Prediction  

Convergence 
Errors 

Incorrect 
Prediction 

Miami 26 4 2 

Boulder 26 0 6 

Atlanta 25 0 7 

LA 25 1 6 

Total 102 5 21 

Percentage 
Rate 79.69 3.91 16.41 

 

 A correct prediction rate of nearly 80% was realized.  Convergence errors with the R scripts 

occurred 3.91% of the time and incorrect predictions happed 16.4% of the time.  Analyzing Tables 6 

through 9 provides no clear distinction as to when accurate predictions or convergence errors are 

expected to persist.  Many factors affect the performance of cooling coils and each of the coils tested 

saw a different set of factors to include, inlet water temperature schedules, DAT setpoints, internal 

loads, weather inputs, nighttime setbacks in rooms’ thermostat settings, internal load schedules as 

well as host of others.  The VAV 2 coil in Atlanta’s large office building and the CAV 2 coil in Miami’s 

large office building consistently produced errors in either inaccurate predictions or convergence.  

Such consistency is not unexpected however, it may just indicate the dominant factors which affect 

the coil’s performance were those which were not changed between simulations, e.g. internal load 

schedules. 

4.2.4.5. Predicting Coils in Unestablished Locations  

 

 The use of established CV to FPMC relationships has been shown, albeit through model data 

alone, to be effective in predicting whether a coil is operating in a CAV or VAV application.  The 

question then persists, how could one utilize this knowledge to make such predictions in locations 

where CV to FPMC relationships have not been established?  Utilizing the same approach for 

establishing said relationships for all conceivable locations in which the Energy Valve™ could be 
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used would require endless amounts of simulations.  That approach is clearly unobtainable and ill-

advised.  Two other possible approaches exist.  

The first option would be the use spatial inference on the coefficients of the linear CV to 

FPMC relationships for the locations that are established.  These coefficients would be the slopes 

and intercepts for the linear regression lines describing the VAV and CAV data points on the CV to 

FPMC plots.  Spatial inference utilizes geographic proximity of established locations to the new 

location in question, proportionally weights the coefficients of the established locations based off 

their relative proximities, and provides estimates of the coefficients for the location in question.  

With the four established locations being so largely separated geographically, this approach would 

also include a substantial amount of additional simulations before this method could be effectively 

tested.  Due to time constraints, this body of research focused on a second option described next. 

 The second option consists of using the known CV to FPMC relationships of a particular 

location, and assuming those relationships to be constant throughout the ASHRAE climate zone that 

the location is sitting in.  For example, the Prediction Tool established for Atlanta could be used for 

all locations in ASHRAE climate zone 3A.    

Application of this second option was used in tests for three of the four established ASHRAE 

climate zones.  Selection of unestablished locations for testing needed to meet two criteria.  First, 

they needed to be in the same ASHRAE climate zone as one of the establish locations.  Secondly, 

locations with large geographical separation from the established locations were chosen as to more 

thoroughly test the robustness of the CAV/VAV Prediction Tools.  Miami falls within ASHRAE 

climate zone 1A, which is quite small geographically and thus Miami is the only location with 

available .epw weather files.  Therefore, this particular climate zone was not tested.  Atlanta’s 

Prediction Tool was used to predict coils operating in Little Rock, AR.  L.A.’s Prediction Tool was 

used to predict coils operating in Las Vegas, NV.  Boulder’s Prediction Tool was used to predict coils 
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operating in Reno, NV.  The ASHRAE climate zone map with all such locations labeled on it can be 

seen in Figure 54.  

 

Figure 54: ASHRAE map of climate zones (Energy Modeling Maps). 

 

Results of such tests were mixed.  Atlanta’s Prediction Tool performed very well for use in 

Little Rock.  Eight tests were performed for each new location.  All coils came from the hospital 

template.  The only adjustment made was the initial simulation used a degrading Twi schedule, while 

the second simulation used a Twi Reset Schedule.  Little Rock predictions came out to be 87.5% 

accurate. 

Table 11: Application of Atlanta’s Prediction Tool in Little Rock, AR test results. 

Climate Zone 3A CAV 1 CAV 2 VAV 1  VAV 2 

Degrading Twi Schedule PASS PASS PASS PASS 

Twi Reset Schedule Implemented PASS PASS FAIL PASS 
 

The use of Boulder’s Prediction Tool for coils operating in Reno had a 50% accurate 

prediction rate.  A consistent downward offset of about 10% in computed CV values when 
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compared to predicted CV values was observed for all test coils.  Thus, it makes sense that all coils 

would be predicted as CAV. 

Table 12: Application of Boulder’s Prediction Tool in Reno, NV test results. 

Climate Zone 5B CAV 1 CAV 2 VAV 1  VAV 2 

Degrading Twi Schedule PASS PASS FAIL FAIL 

Twi Reset Schedule Implemented PASS PASS FAIL FAIL 

 

The use of the L.A. Prediction Tool for coils operating in Las Vegas had an accurate 

prediction rate of 62.5%, but the results were more sporadic than those seen in the previous case.  

No such consistent offset in computed CV values to predicted ones was observed.  Some computed 

CV values were right on par with the predicted CV values, while other were quite a bit higher and 

some quite lower. 

Table 13: Application of L.A.’s Prediction Tool in Las Vegas, NV test results. 

Climate Zone 3B CAV 1 CAV 2 VAV 1  VAV 2 

Degrading Twi Schedule PASS FAIL PASS PASS 

Twi Reset Schedule Implemented FAIL FAIL PASS PASS 

 

The variability in the effectiveness of applying this method to differing ASHRAE climate 

zones was further investigated.  Various data was looked at to distinguish why such variability 

exists, but focus was put on the use of economizers as well as the prevalence of sensible-only 

cooling.  The use of economizers brings in higher percentages of outdoor air, which has more 

variability in its humidity and temperature than return air would.   
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(a)                                                                                                                   (b) 

Figure 55: (a) Twi bin plot and (b) Wai bin plot for an Atlanta hospital VAV 1 coil. 

 

               Focusing on the purple (>8°C) Twi bin on the left hand plot of Figure 55, its spread is quite 

large.  This is attributed to differing inlet humidity ratios as can be seen on the right hand plot’s red, 

yellow and green points for those same data points.  The amount of cooling for a given water flow 

rate goes up with higher inlet air humidity ratio, but that increase only becomes noticeable for Wai 

values where dehumidification takes take place (i.e. Wai≥~0.007) as can be seen in the right hand 

plot.  Additionally, the increase in Q for a given increase in Wai is highest when the coil first moves 

into cooling with dehumidification, and becomes less drastic as Wai increases beyond that.  This 

leads to a hierarchy in climates in regards to the performance of the Four-Parameter Curve Fit.  If a 

coil experienced sensible only cooling 100% of the time, it is expected that the Four-Parameter 

Curve Fit would have the easiest time fitting the data for such a dry climate.  Applying the Four-

Parameter Curve Fit to a coil that experiences high amounts of latent cooling 100% of the time 

would not perform quite as well.  The hardest climate to apply the Four-Parameter Curve Fit to 

would be one where roughly half the time the coil experienced sensible only cooling, and the other 

half experienced some dehumidification. 
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Simulations were again run for all four original locations, as well as the three new ones of 

Reno, Little Rock and Las Vegas.  Numerous parameters were compared, but only the ones which 

showed the most insight are discussed.  The average fraction of outdoor air by measuring both 

mass flow rate of outdoor air and mass flow rate of air across the coil was taken over the entire 

simulation period.  The fraction of time that a coil experienced sensible-only cooling was also 

reported, as was the average sensible heat ratio (SHR) over the course of the entire simulation 

period.  Updated versions of the Matlab scripts that generate these parameters can be seen in 

Appendix K.   

Table 14: Outdoor air fraction and sensible-only prevalence investigation. Note: All four systems for 
each building were tested and had similar results. Only CAV 1 results are shown below. 

CAV 1 
Avg OA 

Fraction 
Sensible Only 

Prevalence Avg SHR 
Design Dry 

Bulb (C) 
Design Wet 

Bulb (C) 

Atlanta 0.52 0.11 0.69 34.00 24.00 

Little Rock 0.51 0.13 0.65 36.00 25.00 

L.A. 0.97 0.06 0.63 27.20 17.80 

Las Vegas 0.50 0.80 0.98 41.10 18.90 

Boulder 0.76 0.65 0.91 32.20 15.00 

Reno 0.76 0.91 0.99 33.30 15.50 

Miami 0.34 0.00 0.63 32.20 25.00 

 

The “Sensible Only Prevalence” seems to be the strongest indicator of how one location’s 

prediction tool could be used elsewhere.  Reno had a lot lower CV values for a given FPMC than was 

expected using Boulder’s prediction tool.  This is due to Boulder having roughly half its data points 

taken during sensible-only cooling, making density of data points high at the bounding regions of 

the Twi bin.  Since Reno is almost always experiencing sensible-only cooling, the vast majority of its 

data points fall together on the lower boundary of the Twi bin.  Thus, the Four-Parameter Curve Fit 

performs better and the CV values would be lower in Reno.    
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Parameters for Atlanta and Little Rock compare nicely.  Despite the large geographical 

separation, their climates are closer in comparison than seen in the other two pairs of locations.  

Hence, 87.5% correct prediction rate was observed. 

In the case of L.A. and Las Vegas, these cooling applications are at the two ends of the 

spectrum.  L.A. has a latent component 94% of the time, while Las Vegas experiences purely 

sensible cooling 80% of the time.  As mentioned before, having the overwhelming majority of data 

points at the either ends of the spectrum would result in lower CV calculations than if the Sensible 

Only Prevalence was measured in the middle at around 0.50.  Therefore, using L.A.’s relationships 

to predict Las Vegas did not produce horrible results, but definitely more sporadic results as was 

discussed earlier.  It would not be advised to use the L.A. Prediction Tool to predict Las Vegas.  

Follow-on research could further sub-divide established ASHRAE climate zones based on of 

expected inlet air conditions for buildings’ cooling coils.  Then, this approach of applying one 

location’s established CV to FPMC relationship to other locations within the same sub-division of 

the same ASHRAE climate zone has serious promise.  This potential continuation of research is 

discussed in the Conclusions and Future Work.   

               Looking at the four original climates in Table 14 sheds further insight as to why Boulder’s 

CV to FPMC relationships were the least defined with relatively high CV values for both CAV and 

VAV coils.  It seems this is attributed to the combination of its high outdoor air fractions and 

resultant large range of inlet humidity ratios. 

4.2.4.6. Testing on Real World Datasets  

 

 Applying the CV to FPMC relationships derived from models to determining the application 

of a real world coil may present problems.  If inlet and outlet water temperature sensors are 

calibrated incorrectly or drift over time, the CAV/VAV Prediction Tools may prove ineffective.  

Systems which experience outdoor air fractions far from the systems used in the relationship 
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derivation may be predicted incorrectly as well.  Such systems would be a dedicated outdoor air 

system (DOAS) or a system serving only process loads with no outdoor air being brought in.  As 

described earlier, the cooling coil model used in EnergyPlus is a steady state model.  Real world 

transient behavior due to fluctuations in input parameters may provide higher CVs for the Four-

Parameter Curve Fit for both CAV and VAV cases.  If this is the case, established relationships may 

need to be derived from real world data alone, unless a consistent model bias could be clearly 

distinguished and factored in appropriately.  This would be difficult however.  As pointed out 

earlier, real world data has been difficult to obtain due the Energy Valve’s recent introduction into 

industry, and the difficulty of getting logged data from building operators who maintain such 

valves. 

 Only two real world datasets were available for testing.  They were from coils located on 

University of Colorado Boulder’s campus.  These were the coils used in the Bellucci (2012) 

research.  A modified version of Boulder’s Prediction Method was applied to these two coils, the 

script can be seen in Appendix N.  It was unclear if the system served by the first coil (AHU-01) was 

a VAV system, as air flow rate measurements were not taken directly.  Indirectly solving for mA 

through use of measure inlet and outlet air humidity ratios as well as water-side data showed a bell 

curve in air flow rates.  Over 90% of the calculated air flow rates measured between 5 and 6 kg/s.  

The period of data looked at was from July 12th, 2013 through July 24th, 2013.  The Boulder 

Prediction Tool predicted a CAV coil.  This was expected as the system is operating very much like a 

CAV system, similar incorrect predictions were found for modeled VAV coils with minimal 

reductions in airflow as was discussed previously.  Also discussed previously, such an incorrect 

prediction in this instance may be actually beneficial in the optimal control strategy selection since 

the system is behaving more like a CAV system.  The system may in fact be a CAV, and the computed 

mA values had variability due to inconsistencies in measured data.  If that is the case, the coil was 

predicted correctly.   
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 The type of system served by the second coil tested (SF-6) was also unknown.  Indirect 

calculation of mA proved a definite VAV application, with minimum airflow hovering around 50% of 

maximum airflow.  The period looked at was from July 12th, 2013 to July 18th, 2013 as well as the 1st 

through the 30th of August, 2013.  The gap was a result of obvious sensor errors being present.  The 

Boulder Prediction Tool again predicted the coil’s application as CAV.  The two coils are plotted 

against the defined CV to FPMC relationships for Boulder to illustrate how they compare. 

 

Figure 56: Real world coil results plotted against established CV to FPMC relationships for Boulder. 

 

 Error in the SF-6 prediction could very well be attributed to the region it fell in.  The range 

of FPMCs from 0.2 – 0.6 is clearly defined very poorly.  The abnormally low CV value for AHU-1 can 

be partially attributed to minimal fluctuations in airflow, if the coil is in fact serving a VAV system.  

An additional factor is the short time period for which the data was analyzed.  Only a portion of the 

exponential curve could be seen with the limited data.  Applying the Four-Parameter Curve Fit to a 

larger dataset which experiences larger variability in its loads would most likely increase the CV.  

Considering these explanations for the lower than expected CV values along with the fact that 

Boulder had the least defined CV to FPMC relationship of the four climates analyzed, applying the 

Four-Parameter Curve Fit in an effort to predict coil’s application shows promise.  Additionally, the 
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low CV values found in real world coils also further validates that the Four-Parameter Control 

strategy discussed in the next section of this report has potential for real world implementation. 

4.3. Limitation Strategy Simulations  
 

 Five control strategies for the Energy Valve™ were tested through use of an NTU-

effectiveness cooling coil model in Matlab-Simulink.  Those strategies included Classical PID control 

with DAT tracking, Flow Limiting, Delta T Limiting, Flow/Delta T Limiting and the newly conceived 

Four-Parameter Control made available with the advent of the Four-Parameter Curve Fit’s accurate 

predictions of when saturation is occurring.  Before displaying the results, it is important to 

understand when the various advanced control logics would be implemented.  Classical PID control 

with DAT tracking was used to produce the capacity vs water flow rate plots below for the Atlanta 

hospital’s VAV 1 coil with a seven-row configuration.  Red data points identify when a particular 

advanced strategy will be implemented.  

 

 

        Figure 57: Flow Limiting times of restriction.       Figure 58: Delta T Limiting times of restriction. 
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          Figure 59: Flow/Delta T Limiting restriction.             Figure 60: Four-Parameter Control restriction 

  

The initial round of simulations was performed on 16 coils across the four characteristic 

climates of Boulder, Atlanta, Miami and L.A.   The simulations included limits for the advanced 

controllers that were developed through the process outlined in the Methodology section of this 

report.  These limit developments follow what would be reasonably expected to be used by the 

manufacturer Belimo.  With no testing of the performance of the Four-Parameter Control strategy 

having been previously performed, that strategy was tested with four different limits to aid in the 

investigation of its effectiveness.  Each of the 16 coils were tested with the five control strategies.  

Appendix M.1 has all the detailed results for each simulation run.  An example of the results for one 

coil can be seen in Table 15 below.  

Table 15: Initial test results for Boulder hospital CAV 1 system. 

 

  

 

Climate Building System Twi Schedule Configuration FPMC CV

Boulder Hospital CAV 1 Degrading 7 Row 1.33 22.6

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 5.2

mW Limiting 7.78 1586 6.25 85 0.053 13.5 6.0

mW/DeltaT Limiting 1.4 2192 5.83 84 0.038 14.4 5.9

DeltaT Limiting 5.55 9323 12.20 85 0.009 7.0 6.0

4 Parameter Control 0.85 427 1.89 47 0.109 24.7 5.4

4 Parameter Control 0.8 860 3.03 66 0.077 21.9 5.6

4 Parameter Control 0.75 1584 4.76 78 0.050 16.5 5.9

4 Parameter Control 0.7 2662 7.05 83 0.031 11.7 6.1
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Highlighted cells indicate which control logic performed best for the particular performance 

metric.  The results above are quite representative of what was seen across the test coils.  The ISE 

Increase metric is a percentage increased in ISE from the Classical PID control with DAT Tracking.  

The Cooling Power Decrease metric is a percentage decrease in cooling power when compared to 

the Classical PID control with DAT tracking.  The Average Delta T is the average water-side 

temperature difference realized throughout the one month simulation.  This metric might be of 

highest interest to district cooling applications where a low Delta T not only increases pumping 

power consumption, but it limits the system for further expansion (i.e. bringing more buildings 

onto the chilled water grid).  It is apparent that the Four-Parameter Control at an 85% limit was far 

less aggressive compared to the other three advanced control logics when looking at the Pumping 

Power Decrease and Average Delta T metrics.  An initial attempt to “normalize” the four advanced 

logics to more appropriately compare their performance was done with the Pumping/ISE and 

Pumping/Cooling metrics.  The Pumping/ISE metric is a measure of percentage Pumping Power 

Reduction over the ISE percentage increase from the baseline case of Classical PID control.  This 

metric would be of interest to someone looking for energy savings due to pumping reduction with 

thermal comfort remaining a concern.  The Pumping/Cooling metric takes the percentage Pumping 

Power Reduction and divides it by the percentage Cooling Power Reduction.  This metric would be 

of interest to someone looking for total energy savings.  Such energy savings would be primarily 

due to pumping reduction but also savings may be realized by keeping the chillers more heavily 

loaded where their efficiencies are highest.    

 The collective results for all the simulations performed can be seen in Tables 16 through 19.  

The advanced control strategy that performed optimally for a given metric is identified.  Where two 

or more strategies are identified, they had performed equally well.  
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Table 16: Initial simulation results for Largest Pumping Power Reduction metric. 

 

 

Table 17: Initial simulation results for the Largest Average Delta T metric. 

 

 

Table 18: Initial simulation results for the PP Reduction to Cooling Reduction Ratio. 

 

 

Table 19: Initial simulation results for PP Reduction to ISE Increase ratio. 

 

  

Largest Pumping Power Reduction

CAV COILS VAV COILS

Degrading Twi Reset Twi Degrading Twi Reset Twi

Boulder Flow & Delta T Delta T Limiting Flow Limiting Flow Limiting

Atlanta Delta T Limiting Delta T Limiting Flow Limiting Flow Limiting

Miami Flow Limiting Flow Limiting Delta T Limiting Delta T Limiting

L.A. Flow Limiting Flow Limiting Delta T Limiting Delta T Limiting

Largest Average Delta T

CAV COILS VAV COILS

Degrading Twi Reset Twi Degrading Twi Reset Twi

Boulder Flow & Delta T Flow/Delta T & Delta T Flow Limiting Delta T Limiting

Atlanta Delta T Limiting Delta T Limiting Flow Limiting Flow Limiting

Miami Flow Limiting Delta T Limiting Flow Limiting Flow Limiting

L.A. Flow Limiting Flow Limiting Flow & Delta T Flow & Delta T 

Largest Pumping Reduction to Cooling Reduction Ratio

CAV COILS VAV COILS

Degrading Twi Reset Twi Degrading Twi Reset Twi

Boulder 4 Parameter Control 4 Parameter Control Flow/Delta T LimitingFlow/Delta T Limiting

Atlanta 4 Parameter Control Flow/Delta T Limiting 4 Parameter Control 4 Parameter Control

Miami 4 Parameter Control Flow/Delta T Limiting Flow & Flow/Delta T 4 Parameter Control

L.A. 4 Parameter Control Delta T Limiting 4 Parameter Control Flow/Delta T Limiting

Largest Pumping Reduction to ISE Increase Ratio

CAV COILS VAV COILS

Degrading Twi Reset Twi Degrading Twi Reset Twi

Boulder 4 Parameter Control 4 Parameter Control Flow/Delta T LimitingFlow/Delta T Limiting

Atlanta Flow Limiting Flow Limiting 4 Parameter Control 4 Parameter Control

Miami 4 Parameter Control Flow Limiting Flow Limiting 4 Parameter Control

L.A. 4 Parameter Control 4 Parameter Control Flow Limiting Flow/Delta T Limiting
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The Pumping Power Reduction and Average Delta T metrics show nearly identical results 

for the optimal strategies for the various coils.  This is expected since a strategy that is substantially 

more restrictive will have less flow and a higher average Delta T.  The “normalized” metrics of 

Pumping/ISE and Pumping/Cooling show the Four-Parameter Control was comparable to the other 

advanced strategies, in fact it had the highest prevalence of being labeled “optimal” for both 

metrics.  Its prevalence as the optimal strategy was a little higher for CAV coils than VAV coils, 

which is expected since the 4 Parameter Curve Fit has been shown to have a more difficult time 

predicting the VAV datasets. 

 It was hypothesized that the optimal control strategy for each combination of climate, 

application (CAV/VAV) and facility priorities could be distinguished from performing such tests.  In 

certain combinations of said variables, the results do show some promise.  For example, if Pumping 

Power Reduction was the priority of the facility, Table 16 above quite clearly shows that for a given 

climate and application, the optimal strategy is consistent between the two coils that fall under that 

criteria.  The same can be said if Average Delta T was the facility priority.  Such distinction is not 

available when the Pumping/ISE or Pumping/Cooling would be facility priorities.  In all cases 

however, it is obvious that the optimal strategy for a given coil could change with changes in its 

various strategies’ limits.  For example, a more aggressive Delta T limit for the Miami CAV coils 

could cause the Delta T Limiting strategy to beat out Flow Limiting strategy in the metrics of 

Pumping Power Reduction and Average Delta T.  Additionally, the “normalized” metrics may not be 

constant for a particular coil when adjusting a strategy’s setpoint.  To put the strategies on a more 

even playing field for more appropriate comparison of their results, a second round of testing was 

conducted. 

 Table 15 above shows that the ISE increase from the baseline Classical PID control with DAT 

tracking was drastically different amongst the strategies.  This metric can be thought of as the 

amount of the thermal discomfort for the occupants of the building.  To more effectively 
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“normalize” the results, iterations were performed on the advanced strategies until the total ISE’s 

for each were within 5% of each other.  This allowed for more appropriate comparisons on the 

other four metrics of interest.  The same 16 coils were tested in this manner.  Table 20 shows an 

example of the test results for one such coil.  Results for all the coils can be seen in Appendix M.2. 

Table 20: Secondary test results for Atlanta office VAV 3 system. 

 

 The collective results for all the simulations performed can be seen in Tables 21 through 24.  

The advanced control strategy that performed optimally for a given metric is identified.  Where two 

or more strategies are identified, they had performed equally well. 

Table 21: Secondary simulation results for Largest Pumping Power Reduction metric. 

 

 

Table 22: Secondary simulation results for the Largest Average Delta T metric. 

 

 

 

Climate BuildingSystem Twi Schedule Configuration FPMC CV

Atlanta Office VAV 3 Reset 5 Row 0.66 11.49

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%)Pumping Pwr Decrease (%) Pumping/ISE Pumping/CoolingAvg Delta T

DAT Tracking N/A  -  -  - 5.5

mW Limiting 6.5 2010 4.06 47 0.023 11.5 5.9

mW/DeltaT Limiting 1.05 2015 3.76 45 0.023 12.1 5.8

DeltaT Limiting 5.35 1991 2.37 31 0.015 12.9 5.7

4 Parameter Control 0.64 1935 2.45 26 0.014 10.8 5.7

Largest Pumping Power Reduction

CAV COILS VAV COILS

Degrading Twi Reset Twi Degrading Twi Reset Twi

Boulder Flow Limiting Flow Limiting Flow Limiting Flow/Delta T Limiting

Atlanta Flow Limiting Flow Limiting Flow Limiting Flow Limiting

Miami Flow Limiting Flow Limiting Flow Limiting Flow Limiting

L.A. Flow Limiting Flow Limiting Flow Limiting Flow Limiting

Largest Average Delta T

CAV COILS VAV COILS

Degrading Twi Reset Twi Degrading Twi Reset Twi

Boulder Flow Limiting Flow Limiting Flow Limiting Flow & Flow/Delta T

Atlanta Flow Limiting Flow Limiting ALL Flow Limiting

Miami Flow Limiting Flow Limiting Flow Limiting ALL

L.A. Flow Limiting Flow Limiting Flow Limiting Flow & Flow/Delta T
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Table 23: Initial simulation results for the PP Reduction to Cooling Reduction Ratio. 

 

 

Table 24: Initial simulation results for PP Reduction to ISE Increase ratio. 

 

 In this second round of testing, Flow Limiting dominates in the Pumping Power Reduction, 

Pumping/ISE and Average Delta metrics, especially in CAV coils.  The Four-Parameter Control 

continues to show promise the in Pumping/Cooling metric, more so in the CAV coils as its 

saturation prediction is inherently better for such coils.  Based on this minimal set of coil 

simulations, it seems that Flow Limiting is the optimal choice for all climates for both CAV and VAV 

applications when Average Delta T, Pumping Power Reduction, or Pumping/ISE is the facility 

priority.  In a scenario where Pumping/Cooling metric is of interest to the facility owner in an effort 

to reduce pumping power and more adequately load the chiller plant, the fault lines are slightly less 

defined.  Delta T Limiting seems to perform well for both CAV and VAV coils in Boulder.  Atlanta 

also seems to have a clearly defined optimal strategy for this scenario as well, but L.A. and Miami do 

not exhibit such distinction. 

 One final result from the 16 tested coils is the CAV/VAV accurate prediction rate.  All 

datasets produced in the initial Classical PID control with DAT tracking simulation in Simulink were 

Largest Pumping Reduction to Cooling Reduction Ratio

CAV COILS VAV COILS

Degrading Twi Reset Twi Degrading Twi Reset Twi

Boulder Delta T Limiting Delta T Limiting Delta T Limiting Delta T Limiting

Atlanta 4 Parameter Control 4 Parameter Control Delta T Limiting Delta T Limiting

Miami 4 Parameter Control Flow/Delta T Limiting 4 Parameter Control Flow/Delta T Limiting

L.A. Flow, Delta T & Flow/Delta T 4 Parameter Control Flow/Delta T LimitingDelta T Limiting

Largest Pumping Reduction to ISE Increase Ratio

CAV COILS VAV COILS

Degrading Twi Reset Twi Degrading Twi Reset Twi

Boulder Flow & Flow/Delta T Flow/Delta T LimitingFlow & Flow/Delta T Flow Limiting

Atlanta Flow Limiting Flow Limiting Flow Limiting Flow & Flow/Delta T

Miami Flow Limiting Flow Limiting 4 Parameter Control Flow Limiting

L.A. Flow, Delta T & Flow/Delta T Flow Limiting Flow Limiting Flow & Flow/Delta T
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exported into RStudio for development of the limits for the advanced strategies.  While in that 

framework, those datasets were run though their respective climate’s CAV/VAV Prediction Tool.  

An accurate prediction rate of 68.8% was found.  This is below the 79.7% rate found in the previous 

128 tests.  This reduction in accuracy was not unexpected.  The prediction tools were developed 

from CV to FPMC relationships found from coil simulations performed in EnergyPlus.  The initial 

128 tests were also from coils developed in EnergyPlus, although they had a variety of different 

operating characteristics.  These last 16 coil datasets that were tested came from simulations with 

the less accurate Simulink model.  It is less accurate in the fact that it cannot account for the 

partially wet/partially dry coil scenario, where the EnergyPlus coil can.   
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5. Conclusion and Future Work  
 

5.1. Generation of Cooling Coil Data through Energy Modeling 
 

 The Energy Valve™ is the first of its kind and is relatively new to the marketplace.  

Consequently, the amount of data logged by Energy Valves and available for analysis is limited.  As 

shown through numerous case studies, previous literature that has come out of the University of 

Colorado Boulder as well as in this research, there is substantial information to be gained through 

the Energy Valve’s measurements of Twi, Two and mW.  Thorough analysis of datasets needs to be 

conducted to fully exploit the potential of the Energy Valve™.  Development of such datasets 

through energy modeling is a quick way to attain data for this required analysis.  There has been 

previous attempts to produce realistic coil data through use of the powerful software engine 

EnergyPlus, however saturation of the coils was not achieved (Buchanan, 2012).  This research 

developed a methodology to produce coil data which indeed exhibited the saturation behavior 

observed in field tests.   

This simulated data came from energy model simulations which account for realistic 

thermostat and occupancy schedules, the use of a dry-bulb economizer as well as fluctuating inlet 

water temperatures.  The coil model selected for use in EnergyPlus was a LMTD/LMHD, steady 

state model capable of accurate capacity predictions for partially wet/partially dry coil scenarios.  

For future work in this area, several improvements can be made to further enhance the accuracy of 

the simulated data.   

First, inlet water temperature profiles, whether they are degrading in nature or a reset 

schedule, should be modeled to correspond to the outdoor air temperature.  This would more 

accurately resemble what would be seen in an actual chilled water system.  This research 

implemented a daily schedule which remained consistent for every day of the simulation.   
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Secondly, transient coil models do exist however they are not currently available in 

EnergyPlus (Zhou & Braun, 2004).  Manipulation of EnergyPlus, or finding an energy simulation 

tool as powerful as EnergyPlus that already incorporates such a transient model, could further 

enhance the validity of coil data produced through simulation.   

Lastly, pressure fluctuations in the hydronic systems of the EnergyPlus model are not 

accounted for.  Again, manipulation of EnergyPlus’s basic framework or the use of some other 

software capable of modeling such pressure dependence will add to the validity of the simulated 

data. 

5.2. Data Analysis – CAV/VAV Prediction   
 

 Analysis of the generated data was almost exclusively devoted to answering the question, 

“can it be determined if the coil is operating in a CAV system or VAV system through analysis of 

recorded Energy Valve™ data alone?”  Previous research on coil saturation behavior suggests that 

the optimal control strategy that the Energy Valve™ should implement may be dependent on 

whether the coil operates in a CAV or VAV system (Thuillard et al., 2014).  Thus, if such a distinction 

can be made by the coil itself, Belimo could eliminate the potential for an input error from the 

installer of such a valve.  Additionally, detection of when the operating state of the mechanical 

system changes could be achieved and the selected control strategy could be adjusted accordingly. 

 Several methods for making such a CAV or VAV prediction were investigated.  The 

application of a Four-Parameter Curve Fit was found to show substantially more promise.  The 

Four-Parameter Curve Fit is a non-linear regression on a coil’s dataset.   Both the maximum 

capacity at which the coil saturates at, as well as the exponential curvature the coil data follows 

proved to have dependencies on the inlet water temperature.  This dependence on inlet water 

temperature is further complicated for VAV coils which have an added variable of changing air flow 

rates.  Thus, the ability for the Four-Parameter Curve Fit to accurately predict the data is 
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substantially reduced for coils in a VAV application.  The accuracy of the Four-Parameter Curve Fit 

in fitting the dataset was quantified through the Coefficient of Variation (CV).  The relative size of 

the coil’s rated capacity to the system it serves also plays a role in how well the Four-Parameter 

Curve Fit will perform.  This relative size was quantified through the introduction of the term 

Fraction of Predicted Maximum Capacity (FPMC).  

Numerous coils for four distinct climates had the Four-Parameter Curve Fit applied and the 

corresponding CV and FPMC recorded.  For a given FPMC, CAV coils produced markedly lower CV 

values.  Coils of unknown application were then predicted by applying the Four-Parameter Curve 

Fit to its dataset and comparing its CV and FPMC values to the already established CV to FPMC 

relationships for the same climate in which the coil was located.  128 coils that were subjected to a 

host of different operating characteristics were simulated and tested through this methodology.  An 

accurate CAV/VAV prediction rate of 79.7% was achieved.   

There will be times that the developed prediction tools will not work.  With the strong push 

for low energy HVAC systems, dedicated outdoor air systems (DOAS) are becoming more common.  

Those same energy-minded building owners are more likely to incorporate intelligent pressure 

independent control valves in their systems.  The CAV/VAV Prediction Tools were developed for 

systems which utilize a dry-bulb economizer.  For climates such as Miami where the economizer is 

not utilized often, there would be expected differences in coil performance between an economizer 

coil and a coil serving a DOAS.  Locations such as L.A. where the economizers are in use often may 

maintain a reasonable accurate prediction rate even for coils serving a DOAS.  Similarly, coils 

serving purely process loads would be expected to predict incorrectly at a higher rate than that 

found in this research. 

This research is the first to introduce the Four-Parameter Curve Fit and the methodology 

for a CAV/VAV Prediction Tool that is derived from it.  There is plenty of more investigation to be 
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performed to improve the accuracy and robustness of such a tool.  Suggested additional research in 

this area is as follows: 

Further testing of real world datasets in the locations where established CV to FPMC 

relationships have been developed through modeling should be completed as such data becomes 

available.  Results of such testing can lead to a better understanding of how to improve this 

prediction methodology. 

Application of a Three-Parameter Curve Fit, which takes out the predicted exponential 

curvature’s dependence on inlet water temperature, for development of CV to FPMC relationships 

may provide a higher CAV/VAV accurate prediction rate.  The percentage increase in CV when 

reducing the Four-Parameter Curve Fit to a Three-Parameter Curve Fit may prove to be higher in 

VAV coils than CAV coils.  This is attributed to the added variable of air flow rate in VAV 

applications which k2 has been shown to have a strong dependence on (Thuillard et al., 2014).  This 

higher increase in VAV coils’ CV would result in a larger gap between the linear CV to FPMC 

relationships developed for both CAV and VAV coils.   

Ten CAV and ten VAV coils for each climate were used in developing the CV to FPMC 

relationships that were incorporated into the CAV/VAV Prediction Tools.  Linear regression was 

performed on both the CAV and VAV data points on the CV vs FPMC plots.  However, as seen in the 

case of Boulder, a linear fit may not be the best choice.  Further investigation into other fits, such as 

a parabolic fit for the VAV data points should be conducted as it may increase the accuracy of the 

CAV/VAV Prediction Tools. 

Preliminary analysis into the use of Prediction Tools for locations outside of where their CV 

to FPMC relationships were developed at, was performed.  It was determined that even for two 

locations inside the same ASHRAE prescribed climate zone, the fraction of time sensible-only 

cooling prevailed changed drastically.  It was shown than this fraction was a key indicator into 
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whether or not the utilization of Prediction Tool from a different location could be used in a new 

location.  Future research could involve performing building simulations through the same 

methodology described in this report at a number of locations for each ASHRAE climate zone.  The 

recorded fraction of time that sensible-only cooling prevailed could be used to further sub-divide 

the ASHRAE climate zones.  Then, a Prediction Tool developed for one location could only be used 

for CAV/VAV predictions of coils in locations within the same climate zone sub-division.  

 The CAV/VAV Prediction Tools developed in this research are based on an indicator inlet 

water temperature of 6.5°C, as such a temperature was found to show the clearest distinction 

between CAV and VAV datasets.  For coils that don’t see such inlet water temperatures, the tools 

will not work.  Thus, future work can be done to make more robust R scripts that can adapt for this 

scenario and have the CV to FPMC relationships developed from other indicator temperatures to 

still produce an accurate prediction.  

Different coil models will produce differing results in terms cooling capacity for a given set 

of inlet parameters.  Zhang (2012) highlights quite drastic differences in performance between coil 

models that differ only in their water-side convective coefficient predictions.  For relationships to 

be built off models alone, the most accurate model needs to be used.  Identifying which available 

cooling coil model that is would entail extensive comparison of simulated data to actual Energy 

Valve™ data, the latter of which has been proven to be scarce.  

5.3. Optimal Strategy Testing  
 

 The capabilities of the Energy Valve™ to measure and record water temperatures and flow 

rate allow for this valve to implement control strategies far superior to the Classical PID control 

which tracks a DAT setpoint.  Instances of saturation occurring in the coil can be predicted through 

a host of indicators.  First, flow rates that exceed a certain flow limit (e.g. 1.5 times the design flow) 

can be assumed to pushing the coil into saturation.  A resulting advanced control logic stemming 



120 
 

from this approach is called Flow Limiting.  Saturation can also be predicted when the water-side 

Delta T falls below a certain threshold (e.g. 5.5 K).  A second advanced control logic stemming from 

this saturation prediction is called Delta T Limiting.  A hybrid of those two advanced strategies 

would be for saturation to be predicted when the ratio of flow to Delta T exceeds a prescribed high 

limit.  The corresponding advanced control logic in this case is called Flow/Delta T Limiting.   

 All of these three advanced logics were analyzed in Thuillard et al. (2014).  A fourth strategy 

is developed in this research, stemming from the new Four-Parameter Curve Fit.  Since the Energy 

Valve™ indirectly measures cooling power, saturation can be predicted to be occurring when the 

measured cooling power is found to be over a certain percentage (e.g. 85%) of the predicted k1 limit 

in the Four-Parameter Curve Fit for the Twi the coil is experiencing at a given moment in time. 

 These four advanced control logics, as well as the Classical PID control logic were tested in 

Simulink.  A simplified cooling coil model was utilized in a closed loop with a water valve and 

controller.  Inlet air states, the air flow rate and the inlet water temperature were provided by the 

previous EnergyPlus simulations, and the water flow rate came from the water valve/controller 

assembly.  All controllers were finely tuned through the Ziegler-Nichols closed loop tuning rules 

and simulations were performed for each of the five control logics. 

 It was predicted that an optimal control strategy could be identified for any combination of 

the following: climate, application (CAV/VAV) and facility priorities (energy consumption, thermal 

comfort, etc.).  The determination of which strategy was “optimal” came from how the advanced 

control strategies performed on a given metric.  Four metrics of interest which focused on the 

chilled water loop’s energy consumption were investigated: pumping power reduction, average 

water-side Delta T, pumping reduction to cooling reduction ratio, and pumping reduction to ISE 

increase ratio.  Due to the extensive and time consuming tuning process, coupled with simulation 

times exceeding 90 seconds on average, only 16 coils were tested.  Though the EnergyPlus 
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generated data had six months of data on five minute timesteps, only the month of August was 

tested in this process. 

 A methodology for computing the limits for the various advanced control logics was 

developed and implemented.  The newly developed Four-Parameter Control logic proved to 

perform comparably to the established strategies in the metrics of Pumping/ISE and 

Pumping/Cooling, especially in the CAV cases.  This was expected due to the better predictions 

provided by the Four-Parameter Curve Fit for CAV coils when compared to VAV coils.  In some 

instances, it seemed a single optimal strategy was evident for a given combination of climate, 

application and facility priority.  However, only two coils for each such combination were tested 

and such a hypothesis was neither confirmed nor negated. 

 Continued research in this area is of high interest as it will push the Energy Valve™ closer to 

reaching its potential.  Suggestions for future work in this area are as follows: 

 As discussed above, there may be benefits in the CAV/VAV prediction rate if the CV to FPMC 

relationships were derived from a Three-Parameter Curve Fit.  Regardless if this is proven accurate, 

a Four-Parameter Curve Fit should be performed if such a non-linear regression is to be used in an 

advance control logic, as was done here in the Four-Parameter Control logic.  This is due to the 

added accuracy of the curve fit that comes with the added degree of freedom, which in this case 

would be the linear dependence of k2 on Twi. 

 The Four-Parameter Control logic could further be improved by use of varying saturation 

limits.  This research looked at fixed saturation limits (e.g. 75%).  Thus, anytime the coil is 

providing more than 75% of its predicted maximum capacity for the Twi it is operating at, saturation 

would be predicted and restriction on mW would ensue.  However, depending on the exponential 

curvature of the coil data for a given Twi, a saturation limit of 75% may restrict flow prematurely or 

restrict it too late.  Compare the 5°C and 7°C Twi lines in Figure 61 below.  It may be sufficient to 
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implement a 75% saturation limit on the coil is if is operating at a Twi of 5°C as the slope of the 

constant 5°C Twi line is becoming more gradual at that point.  However, implementing a 75% 

saturation limit on coil operating at a 7°C Twi may be prematurely restricting the coil, as the slope at 

that location is still quite steep which means cooling power and flow rate are still tracking nicely 

and saturation is not occurring.  The improvement to the Four-Parameter Curve Fit would then be 

to have saturation predicted based off the expected slope of the Twi line as opposed to a set 

percentage of predicted k1.   

 

Figure 61: Variability in the slope of the constant Twi lines exist at a chosen saturation limit of 75% 
of the Normalized Capacity. 

  

A more extensive model could be developed to perform such optimal strategy testing.  The 

determination of which strategy was “optimal” was made solely off of metrics that were indicators 

of energy performance of the chilled water system.  However, in the case of VAV systems, the rise in 

discharge air temperature that results from restriction to chilled water flow may eventually result 

in increases in air flow rates.  This would increase fan energy consumption.  CAV systems, when 

operating under flow restriction from the Energy Valve™, may require less reheat for its zones 
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experiencing lower cooling loads.  Thus, additional energy savings may be realized when the 

various advanced control logics are implemented.  Therefore, future work in this area needs to 

investigate whole building energy consumption when developing metrics to test which strategy is 

“optimal”.   

In the model used in this research, deviation from DAT was used to represent thermal 

discomfort.  A more extensive model, where zone loads with occupancy schedules are modeled and 

air flow rates for VAV systems are dependent on whether the room air temperature (RAT) setpoint 

is being met, would provide a more realistic simulation environment.   

To most effectively account for the suggestions of the last two paragraphs, future optimal 

control strategy testing would best be performed outside of Simulink.  Instead, incorporation of the 

various advanced control logics into EnergyPlus, or a similar energy simulation tool, would provide 

means for better capturing the effects of an advanced control strategy on whole building energy 

consumption.  
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Appendices 

Appendix A: Manipulations to EnergyPlus Template IDF Files 
 

A.1: Initial Coil Manipulations for Hospital Template Model 
1. Open Text Editor in the file of interest 

2. Ensure all Cooling Coils contain the following format for their description, only system references 

(e.g. CAV_1) need to be changed between coils: 

Coil:Cooling:Water:DetailedGeometry, 

    CAV_1_CoolC,             !- Name 

    ALWAYS_ON,               !- Availability Schedule Name 

    AUTOSIZE,                !- Maximum Water Flow Rate {m3/s} 

    AUTOSIZE,                !- Tube Outside Surface Area {m2} 

    AUTOSIZE,                !- Total Tube Inside Area {m2} 

    AUTOSIZE,                !- Fin Surface Area {m2} 

    AUTOSIZE,                !- Minimum Airflow Area {m2} 

    AUTOSIZE,                !- Coil Depth {m} 

    AUTOSIZE,                !- Fin Diameter {m} 

    0.0015,                  !- Fin Thickness {m} 

    0.01445,                 !- Tube Inside Diameter {m} 

    0.0159,                  !- Tube Outside Diameter {m} 

    386.0,                   !- Tube Thermal Conductivity {W/m-K} 

    204.0,                   !- Fin Thermal Conductivity {W/m-K} 

    0.0018,                  !- Fin Spacing {m} 

    0.026,                   !- Tube Depth Spacing {m} 

    6,                       !- Number of Tube Rows 

    AUTOSIZE,                !- Number of Tubes per Row 

    CAV_1_CoolCDemand Inlet Node,  !- Water Inlet Node Name 

    CAV_1_CoolCDemand Outlet Node,  !- Water Outlet Node Name 

    CAV_1 Humidifier-CAV_1_CoolCNode,  !- Air Inlet Node Name 

    CAV_1_CoolC-CAV_1_HeatCNode;  !- Air Outlet Node Name 

3. Conduct a search in the Text Editor and ensure all references to Coil:Cooling:Water are changed 

to Coil:Cooling:Water:DetailedGeometry 

4. Save and Close the Text Editor.  Open the IDF Editor for the same IDF file. 

5. Make the following changes in the Coil:Cooling:Water:DetailedGeometry model: 

Input "autosize" all coil parameters it allows you to 

Change fin thickness to 0.00015 [m] 

Change the number of tube rows to eight 

6. Make the following changes in the Controller:WaterCoil model: 

 Change the control variable to “temperature” for all controllers 
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7. Make the following changes in the Sizing:Parameters simulation parameter: 

 Change the Cooling Sizing Factor to 1.0 

8. Make the following changes in the Sizing:Sizing simulation parameter: 

 Change Precool Design Temperature to 11.1 

 Change Central Cooling Design Supply Air Temperature to 11.1 

 Change Sizing Option to “Coincident” 

 Change Central Cooling Design Supply Air Humidity Ratio to 0.008 

9. Make the following changes in the SetpointManager:MixedAir simulation parameter: 

  Set Fan Inlet Node Name, Fan Outlet Node Name and Setpoint Node or NodeList Name to  

“CAV_1_CoolC-CAV_1_HeatCNode” 

Note: Name of node will need to be adjusted between different systesms 

9. Make the following changes in the Schedule:Compact simulation parameter: 

 Change various Occupancy Schedules as desired 

 Change thermostat setbacks to 26 C 

 Change CW-Loop-Temp-Schedule to reflect a Degrading Twi Schedule.  It should look as 

follows: 

  For: AllDays,             

       Until: 05:00,             

         5,   

   Until: 11:00,                    

        7,                        

       Until: 14:00,             

        7.5,                      

       Until: 18:00,             

         9,                       

              Until: 24:00,             

        7;             

 

A.2: Introducing Economizers 
1. Open IDF Editor for model of interest. 

2. Make the following changes in the Controller:OutdoorAir simulation parameter: 
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 Change Economizer Type to “FixedDryBulb” 

 Adjust Economizer Maximum Limit Dry Bulb Temperature to appropriate value from Table 

5 

 

A.3: Changing CAV Systems to VAV Systems 
1. Open IDF Editor for model of interest. 

2. Make the following changes in the AirTerminal:SingleDuct:VAV:Reheat simulation parameter: 

 Change all Constant Min Air Flow Fractions from 1.0 to 0.3 

3. Other similar adjustments can be made to select systems.  To view which zones are assigned to 

the various systems, to into AirLoopHVAC:ZoneSplitter simulation parameter. 

 

A.4: Comprehensive Coil Manipulations for Office Template Model 
1. Open Text Editor in the file of interest 

2. Ensure all Cooling Coils contain the following format for their description, only system references 

(e.g. CAV_1) need to be changed between coils: 

Coil:Cooling:Water:DetailedGeometry, 

    CAV_1_CoolC,             !- Name 

    ALWAYS_ON,               !- Availability Schedule Name 

    AUTOSIZE,                !- Maximum Water Flow Rate {m3/s} 

    AUTOSIZE,                !- Tube Outside Surface Area {m2} 

    AUTOSIZE,                !- Total Tube Inside Area {m2} 

    AUTOSIZE,                !- Fin Surface Area {m2} 

    AUTOSIZE,                !- Minimum Airflow Area {m2} 

    AUTOSIZE,                !- Coil Depth {m} 

    AUTOSIZE,                !- Fin Diameter {m} 

    0.0015,                  !- Fin Thickness {m} 

    0.01445,                 !- Tube Inside Diameter {m} 

    0.0159,                  !- Tube Outside Diameter {m} 
    386.0,                   !- Tube Thermal Conductivity {W/m-K} 

    204.0,                   !- Fin Thermal Conductivity {W/m-K} 

    0.0018,                  !- Fin Spacing {m} 

    0.026,                   !- Tube Depth Spacing {m} 

    6,                       !- Number of Tube Rows 

    AUTOSIZE,                !- Number of Tubes per Row 

    CAV_1_CoolCDemand Inlet Node,  !- Water Inlet Node Name 

    CAV_1_CoolCDemand Outlet Node,  !- Water Outlet Node Name 

    CAV_1 Humidifier-CAV_1_CoolCNode,  !- Air Inlet Node Name 

    CAV_1_CoolC-CAV_1_HeatCNode;  !- Air Outlet Node Name 

3. Conduct a search in the Text Editor and ensure all references to Coil:Cooling:Water are changed 

to Coil:Cooling:Water:DetailedGeometry 
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4. Save and Close the Text Editor.  Open the IDF Editor for the same IDF file. 

5. Make the following changes in the Coil:Cooling:Water:DetailedGeometry model: 

Input "autosize" all coil parameters it allows you to 

Change fin thickness to 0.00015 [m] 

Change # of tube rows to 8 

6. Make the following changes in the Controller:WaterCoil model: 

 Change the control variable to “temperature” for all controllers 

7. Make the following changes in the Sizing:Parameters simulation parameter: 

 Change the Cooling Sizing Factor to 1.0 

8. Make the following changes in the Sizing:Sizing simulation parameter: 

 Change Precool Design Temperature to 11.1 

 Change Central Cooling Design Supply Air Temperature to 11.1 

 Change Sizing Option to “Coincident” 

 Change Central Cooling Design Supply Air Humidity Ratio to 0.008 

9. Make the following changes in the SetpointManager:MixedAir simulation parameter: 

  Set Fan Inlet Node Name, Fan Outlet Node Name and Setpoint Node or NodeList Name to  

“CAV_1_CoolC-CAV_1_HeatCNode” 

Note: Name of node will need to be adjusted between different systesms 

10. Make the following changes in the Schedule:Compact simulation parameter: 

 Change various Occupancy Schedules as desired 

 Change thermostat setbacks to 26 C 

 Change CW-Loop-Temp-Schedule to reflect a Degrading Twi Schedule.  It should look as 

follows: 

  For: AllDays,             

       Until: 05:00,             

         5,   

   Until: 11:00,                    

        7,                        

       Until: 14:00,             

        7.5,                      
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       Until: 18:00,             

         9,                       

          Until: 24:00,             

        7;             

10. Make the following changes in the Controller:OutdoorAir simulation parameter: 

 Change Economizer Type to “FixedDryBulb” 

 Adjust Economizer Maximum Limit Dry Bulb Temperature to appropriate value from Table 

5 

 Ensure Minimum Limit Type is set to “FixedMinimum” 

 Ensure Minimum Outdoor Air Schedule Name is set to MinOA_MotorizedDamper_Sched 

 Ensure Minimum Fraction Outdoor Air Schedule Name is blank 

11. Make the following changes in the AirTerminal:SingleDuct:VAV:Reheat simulation parameter: 

 Change all Constant Min Air Flow Fractions from 3.0 to 1.0 for the following zones: 

      Core_bottom VAV Box 

Perimeter_bot_ZN_3 VAV Box 

    Perimeter_bot_ZN_2 VAV Box  

     Perimeter_bot_ZN_1 VAV Box 

      Perimeter_bot_ZN_4 VAV Box  

      Core_mid VAV Box 

      Perimeter_mid_ZN_3 VAV Box 

      Perimeter_mid_ZN_2 VAV Box 

     Perimeter_mid_ZN_1 VAV Box  

   Perimeter_mid_ZN_4 VAV Box  

 Now, systems labeled VAV 1 and VAV 2 are actually behave as CAV systems.  VAV 3 and VAV 

5 remain VAV systems. 

 

A.5: Adjusting Locations for Template Models 
1. Open IDF Editor for a duplicate model of a location that falls within the same ASHRAE climate 

zone as the new location you are attempting to simulate. 

2. Adjust all objects in Site:Location simulation parameter accordingly. 

3. Adjust all objects in SizingPeriod:DesignDay simulation parameter accordingly. 
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Appendix B: Steps in Sizing Geometric Parameters of Coils 
 

1. Run initial simulation through steps outlined in Appendix B.1 with the IDF that has all coil 

geometric parameters set to “autosize”. 

2. Open the generated EIO file with any text editor tool.  

3. Search for Coil:Cooling:Water. All autosized geometric parameters for all coils are shown. 

4. Copy those over to an Excel file. 

5. Incrementally reduce values for Fin Surface Area, Total Tube inside Surface Area, Total Tube 

Outside Surface Area, Number of Rows and Coil Depth by factor of 1/8th is adjacent columns.  

Repeat this until values for a 4 row configuration are attained.  End results should look similar to 

those Tables found in Appendix C. 

6. Produce copies of the IDF files for each climate by inputting the developed geometric parameters 

in the Coil:Cooling:Water:DetailedGeometry simulation parameter.  Specify a Maximum Water Flow 

Rate to 10 times the value autosized, as can be seen in the EIO file earlier.  This will allow for the 

coil to enter into the saturation region for the smaller row configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



132 
 

Appendix C: Produced Coil Geometries 
 

C.1: Hospital Coils 

  8 Row 7 Row 6 Row 5 Row 4 Row  

ATLANTA - CAV 1           

Load [W] 374157         

Max Water Flow Rate [m3/s] 1.34E-02 1.34E-02 1.34E-02 1.34E-02 1.34E-02 

# of Tubes per Row 184 184 184 184 184 

Fin Diameter [m] 5.93761 5.9376 5.9376 5.9376 5.9376 

Minimum Airflow Area [m2] 7.79865 7.7987 7.7987 7.7987 7.7987 

Fin Surface Area [m2] 1391.351 1217.432 1043.513 869.5943 695.6755 
Total Tube Inside Surface Area 
[m2] 93.58976 81.89104 70.19232 58.4936 46.79488 

Tube Outside Surface Area [m2] 95.95968 83.96472 71.96976 59.9748 47.97984 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

 

 

 

 

 

 

 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

ATLANTA - CAV 2           

Load [W] 236233.4         

Max Water Flow Rate [m3/s] 8.44E-03 8.43E-03 8.43E-03 8.43E-03 8.43E-03 

# of Tubes per Row 117 117 117 117 117 

Fin Diameter [m] 4.66517 4.665 4.665 4.665 4.665 

Minimum Airflow Area [m2] 6.12738 6.13 6.13 6.13 6.13 

Fin Surface Area [m2] 1093.181 956.5332 819.8856 683.238 546.5904 
Total Tube Inside Surface Area 
[m2] 59.51088 52.07202 44.63316 37.1943 29.75544 

Tube Outside Surface Area [m2] 61.01784 53.39061 45.76338 38.13615 30.50892 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 
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  8 Row 7 Row 6 Row 5 Row 4 Row  

ATLANTA - VAV 1           

Load [W] 480326         

Max Water Flow Rate [m3/s] 1.72E-02 1.72E-02 1.72E-02 1.72E-02 1.72E-02 

# of Tubes per Row 236 236 236 236 236 

Fin Diameter [m] 8.54136 8.54 8.54 8.54 8.54 

Minimum Airflow Area [m2] 11.2185 11.22 11.22 11.22 11.22 

Fin Surface Area [m2] 2001.48 1751.3 1501.11 1250.93 1000.74 
Total Tube Inside Surface Area 
[m2] 120.039 105.034 90.0293 75.0244 60.0195 

Tube Outside Surface Area [m2] 123.079 107.694 92.309 76.9242 61.5394 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

ATLANTA - VAV 2           

Load [W] 875131         

Max Water Flow Rate [m3/s] 3.13E-02 3.13E-02 3.13E-02 3.13E-02 3.13E-02 

# of Tubes per Row 430 430 430 430 430 

Fin Diameter [m] 15.02194 15.02194 15.02194 15.02194 15.02194 

Minimum Airflow Area [m2] 19.7303 19.7303 19.7303 19.7303 19.7303 

Fin Surface Area [m2] 3520.065 3080.057 2640.049 2200.041 1760.033 
Total Tube Inside Surface Area 
[m2] 218.7152 191.3758 164.0364 136.697 109.3576 

Tube Outside Surface Area [m2] 224.2536 196.2219 168.1902 140.1585 112.1268 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

BOULDER - CAV 1           

Load [W] 2.78E+05         

Max Water Flow Rate [m3/s] 9.91E-03 9.91E-03 9.91E-03 9.91E-03 9.91E-03 

# of Tubes per Row 137 137 137 137 137 

Fin Diameter [m] 5.12E+00 5.12E+00 5.12E+00 5.12E+00 5.12E+00 

Minimum Airflow Area [m2] 6.71938 6.71938 6.71938 6.71938 6.71938 

Fin Surface Area [m2] 1198.798 1048.948 899.0985 749.2488 599.399 
Total Tube Inside Surface Area 
[m2] 69.68368 60.97322 52.26276 43.5523 34.84184 

Tube Outside Surface Area [m2] 71.44824 62.51721 53.58618 44.65515 35.72412 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 
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  8 Row 7 Row 6 Row 5 Row 4 Row  

BOULDER - CAV 2           

Load [W] 144275.5         

Max Water Flow Rate [m3/s] 5.15E-03 5.15E-03 5.15E-03 5.15E-03 5.15E-03 

# of Tubes per Row 71 71 71 71 71 

Fin Diameter [m] 3.97E+00 3.97E+00 3.97E+00 3.97E+00 3.97E+00 

Minimum Airflow Area [m2] 5.2092 5.2092 5.2092 5.2092 5.2092 

Fin Surface Area [m2] 929.3692 813.1981 697.0269 580.8558 464.6846 

Total Tube Inside Surface Area [m2] 36.11344 31.59926 27.08508 22.5709 18.05672 

Tube Outside Surface Area [m2] 37.02792 32.39943 27.77094 23.14245 18.51396 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

BOULDER - VAV 1           

Load [W] 317166         

Max Water Flow Rate [m3/s] 1.13E-02 1.13E-02 1.13E-02 1.13E-02 1.13E-02 

# of Tubes per Row 156 156 156 156 156 

Fin Diameter [m] 7.62807 7.62807 7.62807 7.62807 7.62807 

Minimum Airflow Area [m2] 10.019 10.019 10.019 10.019 10.019 

Fin Surface Area [m2] 1787.47 1564.04 1340.61 1117.17 893.737 
Total Tube Inside Surface Area 
[m2] 79.3478 69.4294 59.5109 49.5924 39.6739 

Tube Outside Surface Area [m2] 81.3571 71.1875 61.0178 50.8482 40.6786 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

BOULDER  - VAV 2           

Load [W] 574141.8         

Max Water Flow Rate [m3/s] 2.05E-02 2.05E-02 2.05E-02 2.05E-02 2.05E-02 

# of Tubes per Row 282 282 282 282 282 

Fin Diameter [m] 13.25456 13.25456 13.25456 13.25456 13.25456 

Minimum Airflow Area [m2] 17.40898 17.40898 17.40898 17.40898 17.40898 

Fin Surface Area [m2] 3105.92 2717.68 2329.44 1941.2 1552.96 

Total Tube Inside Surface Area [m2] 143.4365 125.5069 107.5774 89.6478 71.71824 

Tube Outside Surface Area [m2] 147.0686 128.6851 110.3015 91.9179 73.53432 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 
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  8 Row 7 Row 6 Row 5 Row 4 Row  

MIAMI - CAV 1           

Load [W] 495004.5         

Max Water Flow Rate [m3/s] 1.77E-02 1.77E-02 1.77E-02 1.77E-02 1.77E-02 

# of Tubes per Row 244 244 244 244 244 

Fin Diameter [m] 6.19005 6.19005 6.19005 6.19005 6.19005 

Minimum Airflow Area [m2] 8.13022 8.13022 8.13022 8.13022 8.13022 

Fin Surface Area [m2] 1450.505 1269.192 1087.879 906.5657 725.2526 

Total Tube Inside Surface Area [m2] 124.1082 108.5946 93.08112 77.5676 62.05408 

Tube Outside Surface Area [m2] 127.2509 111.3445 95.43816 79.5318 63.62544 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

MIAMI - CAV 2           

Load [W] 268684.5         

Max Water Flow Rate [m3/s] 9.60E-03 9.60E-03 9.60E-03 9.60E-03 9.60E-03 

# of Tubes per Row 132 132 132 132 132 

Fin Diameter [m] 4.8427 4.8427 4.8427 4.8427 4.8427 

Minimum Airflow Area [m2] 6.36056 6.36056 6.36056 6.36056 6.36056 

Fin Surface Area [m2] 1134.782 992.934 851.0863 709.2386 567.3909 

Total Tube Inside Surface Area [m2] 67.14048 58.74792 50.35536 41.9628 33.57024 

Tube Outside Surface Area [m2] 68.84064 60.23556 51.63048 43.0254 34.42032 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

MIAMI - VAV 1           

Load [W] 549840         

Max Water Flow Rate [m3/s] 1.96E-02 1.96E-02 1.96E-02 1.96E-02 1.96E-02 

# of Tubes per Row 271 271 271 271 271 

Fin Diameter [m] 9.55128 9.55128 9.55128 9.55128 9.55128 

Minimum Airflow Area [m2] 12.545 12.545 12.545 12.545 12.545 

Fin Surface Area [m2] 2238.14 1958.37 1678.6 1398.83 1119.07 

Total Tube Inside Surface Area [m2] 137.841 120.611 103.381 86.1509 68.9207 

Tube Outside Surface Area [m2] 141.332 123.665 105.999 88.3325 70.666 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 
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  8 Row 7 Row 6 Row 5 Row 4 Row  

MIAMI  - VAV 2           

Load [W] 966270.7         

Max Water Flow Rate [m3/s] 3.45E-02 3.45E-02 3.45E-02 3.45E-02 3.45E-02 

# of Tubes per Row 475 475 475 475 475 

Fin Diameter [m] 15.82254 15.82254 15.82254 15.82254 15.82254 

Minimum Airflow Area [m2] 20.78185 20.78185 20.78185 20.78185 20.78185 

Fin Surface Area [m2] 3.71E+03 3.24E+03 2.78E+03 2.32E+03 1.85E+03 

Total Tube Inside Surface Area [m2] 241.604 211.4035 181.203 151.0025 120.802 

Tube Outside Surface Area [m2] 247.722 216.7568 185.7915 154.8263 123.861 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

LOS ANGELAS - CAV 1           

Load [W] 3.83E+05         

Max Water Flow Rate [m3/s] 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.37E-02 

# of Tubes per Row 188 188 188 188 188 

Fin Diameter [m] 6.14E+00 6.14E+00 6.14E+00 6.14E+00 6.14E+00 

Minimum Airflow Area [m2] 8.061 8.061 8.061 8.061 8.061 

Fin Surface Area [m2] 1438.155 1258.386 1078.617 898.8472 719.0777 

Total Tube Inside Surface Area [m2] 95.62432 83.67128 71.71824 59.7652 47.81216 

Tube Outside Surface Area [m2] 98.04576 85.79004 73.53432 61.2786 49.02288 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

LOS ANGELAS - CAV 2           

Load [W] 199147.4         

Max Water Flow Rate [m3/s] 7.11E-03 7.11E-03 7.11E-03 7.11E-03 7.11E-03 

# of Tubes per Row 98 98 98 98 98 

Fin Diameter [m] 4.82E+00 4.82E+00 4.82E+00 4.82E+00 4.82E+00 

Minimum Airflow Area [m2] 6.33351 6.33351 6.33351 6.33351 6.33351 

Fin Surface Area [m2] 1129.955 988.7106 847.4662 706.2219 564.9775 

Total Tube Inside Surface Area [m2] 49.84672 43.61588 37.38504 31.1542 24.92336 

Tube Outside Surface Area [m2] 51.10896 44.72034 38.33172 31.9431 25.55448 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 
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  8 Row 7 Row 6 Row 5 Row 4 Row  

LOS ANGELAS - VAV 1           

Load [W] 378772         

Max Water Flow Rate [m3/s] 1.35E-02 1.35E-02 1.35E-02 1.35E-02 1.35E-02 

# of Tubes per Row 187 187 187 187 187 

Fin Diameter [m] 8.73111 8.73111 8.73111 8.73111 8.73111 

Minimum Airflow Area [m2] 11.4677 11.4677 11.4677 11.4677 11.4677 

Fin Surface Area [m2] 2045.95 1790.2 1534.46 1278.72 1022.97 

Total Tube Inside Surface Area [m2] 95.1157 83.2262 71.3368 59.4473 47.5578 

Tube Outside Surface Area [m2] 97.5242 85.3337 73.1432 60.9527 48.7621 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

 

C.2: Office Coils 
Note:  Row configurations highlighted is blue were used in testing of CAV/VAV Prediction Tools 

  8 Row 7 Row 6 Row 5 Row 4 Row  

ATLANTA - VAV 1 (CAV)           

Load [W] 270820.2         

Max Water Flow Rate [m3/s] 9.67E-02 9.67E-02 9.67E-02 9.67E-02 9.67E-02 

# of Tubes per Row 1.34E+02 1.34E+02 1.34E+02 1.34E+02 1.34E+02 

Fin Diameter [m] 3.75E+00 3.75E+00 3.75E+00 3.75E+00 3.75E+00 

Minimum Airflow Area [m2] 4.92241 4.92241 4.92241 4.92241 4.92241 

Fin Surface Area [m2] 8.78E+02 768.4272 658.6519 5.49E+02 439.1013 

Total Tube Inside Surface Area [m2] 68.15776 59.63804 51.11832 42.5986 34.07888 

Tube Outside Surface Area [m2] 69.88368 61.14822 52.41276 43.6773 34.94184 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

  8 Row 7 Row 6 Row 5 Row 4 Row  

LOS ANGELAS  - VAV 2           

Load [W] 677388.2         

Max Water Flow Rate [m3/s] 2.42E-02 2.42E-02 2.42E-02 2.42E-02 2.42E-02 

# of Tubes per Row 333 333 333 333 333 

Fin Diameter [m] 15.09343 15.09343 15.09343 15.09343 15.09343 

Minimum Airflow Area [m2] 19.82421 19.82421 19.82421 19.82421 19.82421 

Fin Surface Area [m2] 3536.82 3094.717 2652.615 2210.512 1768.41 

Total Tube Inside Surface Area [m2] 169.3771 148.205 127.0328 105.8607 84.68856 

Tube Outside Surface Area [m2] 173.6662 151.9579 130.2496 108.5414 86.83308 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 
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  8 Row 7 Row 6 Row 5 Row 4 Row  

ATLANTA - VAV 2 (CAV)           

Load [W] 2710071.72         

Max Water Flow Rate [m3/s] 9.68E-01 9.68E-01 9.68E-01 9.68E-01 9.68E-01 

# of Tubes per Row 1331 1331 1331 1331 1331 

Fin Diameter [m] 39.47529 39.47529 39.47529 39.47529 39.47529 

Minimum Airflow Area [m2] 5.18E+01 5.18E+01 5.18E+01 5.18E+01 5.18E+01 

Fin Surface Area [m2] 9250.18014 8093.908 6937.635 5781.363 4625.09 

Total Tube Inside Surface Area [m2] 676.99984 592.3749 507.7499 423.1249 338.4999 

Tube Outside Surface Area [m2] 694.14312 607.3752 520.6073 433.8395 347.0716 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

ATLANTA - VAV 3            

Load [W] 265513.3         

Max Water Flow Rate [m3/s] 9.48E-02 9.48E-02 9.48E-02 9.48E-02 9.48E-02 

# of Tubes per Row 131 131 131 131 131 

Fin Diameter [m] 3.93289 3.93289 3.93289 3.93289 3.93289 

Minimum Airflow Area [m2] 5.16559 5.16559 5.16559 5.16559 5.16559 

Fin Surface Area [m2] 921.5882 806.39 691.191 575.993 460.794 

Total Tube Inside Surface Area [m2] 66.63184 58.3029 49.9739 41.6449 33.3159 

Tube Outside Surface Area [m2] 68.31912 59.7792 51.2393 42.6995 34.1596 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

ATLANTA - VAV 5            

Load [W] 143079.8         

Max Water Flow Rate [m3/s] 5.11E-02 5.11E-02 5.11E-02 5.11E-02 5.11E-02 

# of Tubes per Row 71 71 71 71 71 

Fin Diameter [m] 2.11E+00 2.11E+00 2.11E+00 2.11E+00 2.11E+00 

Minimum Airflow Area [m2] 2.77585 2.77585 2.77585 2.77585 2.77585 

Fin Surface Area [m2] 495.2372 433.3326 371.4279 309.5233 247.6186 

Total Tube Inside Surface Area [m2] 36.11344 31.59926 27.08508 22.5709 18.05672 

Tube Outside Surface Area [m2] 37.02792 32.39943 27.77094 23.14245 18.51396 

Coil Depth [m] 2.08E-01 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 
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  8 Row 7 Row 6 Row 5 Row 4 Row  

BOULDER - VAV 1 (CAV)           

Load [W] 165215         

Max Water Flow Rate [m3/s] 5.90E-02 5.90E-02 5.90E-02 5.90E-02 5.90E-02 

# of Tubes per Row 82 82 82 82 82 

Fin Diameter [m] 3.61E+00 3.61E+00 3.61E+00 3.61E+00 3.61E+00 

Minimum Airflow Area [m2] 4.74E+00 4.74E+00 4.74E+00 4.74E+00 4.74E+00 

Fin Surface Area [m2] 8.46E+02 740.5805 634.7833 528.9861 423.1889 

Total Tube Inside Surface Area [m2] 4.17E+01 36.49492 31.28136 26.0678 20.85424 

Tube Outside Surface Area [m2] 4.28E+01 37.41906 32.07348 26.7279 21.38232 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

BOULDER - VAV 2 (CAV)           

Load [W] 1728725.59         

Max Water Flow Rate [m3/s] 6.17E-01 6.17E-01 6.17E-01 6.17E-01 6.17E-01 

# of Tubes per Row 849 849 849 849 849 

Fin Diameter [m] 38.06983 38.06983 38.06983 38.06983 38.06983 

Minimum Airflow Area [m2] 50.00216 50.00216 50.00216 50.00216 50.00216 

Fin Surface Area [m2] 8920.83989 7805.735 6690.63 5575.525 4460.42 

Total Tube Inside Surface Area [m2] 431.83536 377.8559 323.8765 269.8971 215.9177 

Tube Outside Surface Area [m2] 442.77048 387.4242 332.0779 276.7316 221.3852 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

BOULDER - VAV 3           

Load [W] 161118.9         

Max Water Flow Rate [m3/s] 5.75E-02 5.75E-02 5.75E-02 5.75E-02 5.75E-02 

# of Tubes per Row 80 80 80 80 80 

Fin Diameter [m] 3.60322 3.60322 3.60322 3.60322 3.60322 

Minimum Airflow Area [m2] 4.73259 4.73259 4.73259 4.73259 4.73259 

Fin Surface Area [m2] 844.3367 738.795 633.252 527.71 422.168 

Total Tube Inside Surface Area [m2] 4.07E+01 35.6048 30.5184 25.432 20.3456 

Tube Outside Surface Area [m2] 4.17E+01 36.5064 31.2912 26.076 20.8608 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 
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  8 Row 7 Row 6 Row 5 Row 4 Row  

BOULDER  - VAV 5           

Load [W] 85925.46         

Max Water Flow Rate [m3/s] 3.07E-02 3.07E-02 3.07E-02 3.07E-02 3.07E-02 

# of Tubes per Row 43 43 43 43 43 

Fin Diameter [m] 1.83587 1.83587 1.83587 1.83587 1.83587 

Minimum Airflow Area [m2] 2.41129 2.41129 2.41129 2.41129 2.41129 

Fin Surface Area [m2] 430.1956 376.4211 322.6467 268.8722 215.0978 

Total Tube Inside Surface Area [m2] 21.87152 19.13758 16.40364 13.6697 10.93576 

Tube Outside Surface Area [m2] 22.42536 19.62219 16.81902 14.01585 11.21268 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

MIAMI - VAV 1 (CAV)           

Load [W] 2.83E+05         

Max Water Flow Rate [m3/s] 1.01E-01 1.01E-01 1.01E-01 1.01E-01 1.01E-01 

# of Tubes per Row 140 140 140 140 140 

Fin Diameter [m] 3.86813 3.86813 3.86813 3.86813 3.86813 

Minimum Airflow Area [m2] 5.08053 5.08053 5.08053 5.08053 5.08053 

Fin Surface Area [m2] 906.4121 793.1106 679.8091 566.5075 453.206 

Total Tube Inside Surface Area [m2] 71.2096 62.3084 53.4072 44.506 35.6048 

Tube Outside Surface Area [m2] 73.0128 63.8862 54.7596 45.633 36.5064 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

MIAMI - VAV 2 (CAV)           

Load [W] 2869185.68         

Max Water Flow Rate [m3/s] 1.0248 1.0248 1.0248 1.0248 1.0248 

# of Tubes per Row 1.41E+03 1.41E+03 1.41E+03 1.41E+03 1.41E+03 

Fin Diameter [m] 39.47105 39.47105 39.47105 39.47105 39.47105 

Minimum Airflow Area [m2] 51.84258 51.84258 51.84258 51.84258 51.84258 

Fin Surface Area [m2] 9249.18686 8093.039 6936.89 5780.742 4624.593 

Total Tube Inside Surface Area [m2] 717.1824 627.5346 537.8868 448.239 358.5912 

Tube Outside Surface Area [m2] 735.3432 643.4253 551.5074 459.5895 367.6716 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 
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  8 Row 7 Row 6 Row 5 Row 4 Row  

MIAMI - VAV 3           

Load [W] 291960.7         

Max Water Flow Rate [m3/s] 1.04E-01 1.04E-01 1.04E-01 1.04E-01 1.04E-01 

# of Tubes per Row 144 144 144 144 144 

Fin Diameter [m] 3.99075 3.99075 3.99075 3.99075 3.99075 

Minimum Airflow Area [m2] 5.24158 5.24158 5.24158 5.24158 5.24158 

Fin Surface Area [m2] 935.146 818.253 701.36 584.466 467.573 

Total Tube Inside Surface Area [m2] 73.24416 64.0886 54.9331 45.7776 36.6221 

Tube Outside Surface Area [m2] 75.09888 65.7115 56.3242 46.9368 37.5494 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

MIAMI  - VAV 5           

Load [W] 149993         

Max Water Flow Rate [m3/s] 5.36E-02 5.36E-02 5.36E-02 5.36E-02 5.36E-02 

# of Tubes per Row 74 74 74 74 74 

Fin Diameter [m] 2.14357 2.14357 2.14357 2.14357 2.14357 

Minimum Airflow Area [m2] 2.81543 2.81543 2.81543 2.81543 2.81543 

Fin Surface Area [m2] 502.2984 4.40E+02 3.77E+02 3.14E+02 2.51E+02 

Total Tube Inside Surface Area [m2] 37.63936 32.93444 28.22952 23.5246 18.81968 

Tube Outside Surface Area [m2] 38.59248 33.76842 28.94436 24.1203 19.29624 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

LOS ANGELAS - VAV 1 (CAV)           

Load [W] 1.82E+05         

Max Water Flow Rate [m3/s] 6.51E-02 6.51E-02 6.51E-02 6.51E-02 6.51E-02 

# of Tubes per Row 9.00E+01 9.00E+01 9.00E+01 9.00E+01 9.00E+01 

Fin Diameter [m] 3.66919 3.66919 3.66919 3.66919 3.66919 

Minimum Airflow Area [m2] 4.81923 4.81923 4.81923 4.81923 4.81923 

Fin Surface Area [m2] 859.7945 752.3202 644.8459 537.3716 429.8973 

Total Tube Inside Surface Area [m2] 45.7776 40.0554 34.3332 28.611 22.8888 

Tube Outside Surface Area [m2] 46.9368 41.0697 35.2026 29.3355 23.4684 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 
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  8 Row 7 Row 6 Row 5 Row 4 Row  

LOS ANGELAS - VAV 2 (CAV)           

Load [W] 1711803.21         

Max Water Flow Rate [m3/s] 6.11E-01 6.11E-01 6.11E-01 6.11E-01 6.11E-01 

# of Tubes per Row 841 841 841 841 841 

Fin Diameter [m] 38.42314 38.42314 38.42314 38.42314 38.42314 

Minimum Airflow Area [m2] 50.46622 50.46622 50.46622 50.46622 50.46622 

Fin Surface Area [m2] 9003.63218 7878.178 6752.724 5627.27 4501.816 

Total Tube Inside Surface Area [m2] 427.76624 374.2955 320.8247 267.3539 213.8831 

Tube Outside Surface Area [m2] 438.59832 383.7735 328.9487 274.124 219.2992 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

LOS ANGELAS - VAV 3           

Load [W] 1.72E+05         

Max Water Flow Rate [m3/s] 6.16E-02 6.16E-02 6.16E-02 6.16E-02 6.16E-02 

# of Tubes per Row 85 85 85 85 85 

Fin Diameter [m] 3.55425 3.55425 3.55425 3.55425 3.55425 

Minimum Airflow Area [m2] 4.66827 4.66827 4.66827 4.66827 4.66827 

Fin Surface Area [m2] 832.8619 728.754 624.646 520.539 416.431 

Total Tube Inside Surface Area [m2] 43.2344 37.8301 32.4258 27.0215 21.6172 

Tube Outside Surface Area [m2] 44.3292 38.7881 33.2469 27.7058 22.1646 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

LOS ANGELAS  - VAV 5           

Load [W] 91875.18         

Max Water Flow Rate [m3/s] 3.28E-02 3.28E-02 3.28E-02 3.28E-02 3.28E-02 

# of Tubes per Row 46 46 46 46 46 

Fin Diameter [m] 2.10542 2.10542 2.10542 2.10542 2.10542 

Minimum Airflow Area [m2] 2.76533 2.76533 2.76533 2.76533 2.76533 

Fin Surface Area [m2] 493.3607 431.6906 370.0205 308.3504 246.6804 

Total Tube Inside Surface Area [m2] 23.39744 20.47276 17.54808 14.6234 11.69872 

Tube Outside Surface Area [m2] 23.98992 20.99118 17.99244 14.9937 11.99496 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 
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C.3: Alternative Location Coils 
Note: Only 6 Row configurations of the following were tested.  The CAV 1, 6 Row configuration coil 

was that which was reported in Table 13 of the report for the investigation into the feasibility of 

testing alternative locations.  Results from CAV 1 were representative of the results from only 

systems in the building for the particular outputs being investigated. 

  8 Row 7 Row 6 Row 5 Row 4 Row  

RENO - CAV 1           

Load [W] 263891         

Max Water Flow Rate [m3/s] 9.43E-02 9.43E-02 9.43E-02 9.43E-02 9.43E-02 

# of Tubes per Row 130 130 130 130 130 

Fin Diameter [m] 5.29716 5.29716 5.29716 5.29716 5.29716 

Minimum Airflow Area [m2] 6.95746 6.95746 6.95746 6.95746 6.95746 

Fin Surface Area [m2] 1241.27 1086.12 930.956 775.797 620.637 

Total Tube Inside Surface Area [m2] 66.1232 57.8578 49.5924 41.327 33.0616 

Tube Outside Surface Area [m2] 67.7976 59.3229 50.8482 42.3735 33.8988 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

RENO - CAV 2           

Load [W] 139526         

Max Water Flow Rate [m3/s] 4.98E-02 4.98E-02 4.98E-02 4.98E-02 4.98E-02 

# of Tubes per Row 69 69 69 69 69 

Fin Diameter [m] 4.11731 4.11731 4.11731 4.11731 4.11731 

Minimum Airflow Area [m2] 5.40781 5.40781 5.40781 5.40781 5.40781 

Fin Surface Area [m2] 964.803 844.203 723.602 603.002 482.402 

Total Tube Inside Surface Area [m2] 35.0962 30.7091 26.3221 21.9351 17.5481 

Tube Outside Surface Area [m2] 35.9849 31.4868 26.9887 22.4906 17.9924 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 
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  8 Row 7 Row 6 Row 5 Row 4 Row  

RENO - VAV 1           

Load [W] 304428         

Max Water Flow Rate [m3/s] 1.09E-01 1.09E-01 1.09E-01 1.09E-01 1.09E-01 

# of Tubes per Row 150 150 150 150 150 

Fin Diameter [m] 7.69569 7.69569 7.69569 7.69569 7.69569 

Minimum Airflow Area [m2] 10.1078 10.1078 10.1078 10.1078 10.1078 

Fin Surface Area [m2] 1803.32 1577.9 1352.49 1127.07 901.659 

Total Tube Inside Surface Area [m2] 76.296 66.759 57.222 47.685 38.148 

Tube Outside Surface Area [m2] 78.228 68.4495 58.671 48.8925 39.114 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

RENO - VAV 2           

Load [W] 556310         

Max Water Flow Rate [m3/s] 1.99E-01 1.99E-01 1.99E-01 1.99E-01 1.99E-01 

# of Tubes per Row 274 274 274 274 274 

Fin Diameter [m] 13.5594 13.5594 13.5594 13.5594 13.5594 

Minimum Airflow Area [m2] 17.8093 17.8093 17.8093 17.8093 17.8093 

Fin Surface Area [m2] 3177.35 2780.18 2383.01 1985.84 1588.67 

Total Tube Inside Surface Area [m2] 139.367 121.946 104.526 87.1046 69.6837 

Tube Outside Surface Area [m2] 142.896 125.034 107.172 89.3103 71.4482 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

LAS VEGAS - CAV 1           

Load [W] 288567         

Max Water Flow Rate [m3/s] 1.03E-01 1.03E-01 1.03E-01 1.03E-01 1.03E-01 

# of Tubes per Row 142 142 142 142 142 

Fin Diameter [m] 4.85676 4.85676 4.85676 4.85676 4.85676 

Minimum Airflow Area [m2] 6.37903 6.37903 6.37903 6.37903 6.37903 

Fin Surface Area [m2] 1138.08 995.818 853.558 711.298 569.039 

Total Tube Inside Surface Area [m2] 72.2269 63.1985 54.1702 45.1418 36.1134 

Tube Outside Surface Area [m2] 74.0558 64.7989 55.5419 46.2849 37.0279 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 
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  8 Row 7 Row 6 Row 5 Row 4 Row  

LAS VEGAS - CAV 2           

Load [W] 175412         

Max Water Flow Rate [m3/s] 6.27E-02 6.27E-02 6.27E-02 6.27E-02 6.27E-02 

# of Tubes per Row 87 87 87 87 87 

Fin Diameter [m] 3.77618 3.77618 3.77618 3.77618 3.77618 

Minimum Airflow Area [m2] 4.95976 4.95976 4.95976 4.95976 4.95976 

Fin Surface Area [m2] 884.866 774.257 663.649 553.041 442.433 

Total Tube Inside Surface Area [m2] 44.2517 38.7202 33.1888 27.6573 22.1258 

Tube Outside Surface Area [m2] 45.3722 39.7007 34.0292 28.3577 22.6861 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

LAS VEGAS - VAV 1           

Load [W] 381622         

Max Water Flow Rate [m3/s] 1.36E-01 1.36E-01 1.36E-01 1.36E-01 1.36E-01 

# of Tubes per Row 188 188 188 188 188 

Fin Diameter [m] 7.2713 7.2713 7.2713 7.2713 7.2713 

Minimum Airflow Area [m2] 9.55036 9.55036 9.55036 9.55036 9.55036 

Fin Surface Area [m2] 1703.87 1490.89 1277.9 1064.92 851.936 

Total Tube Inside Surface Area [m2] 95.6243 83.6713 71.7182 59.7652 47.8122 

Tube Outside Surface Area [m2] 98.0458 85.79 73.5343 61.2786 49.0229 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

LAS VEGAS - VAV 2           

Load [W] 712256         

Max Water Flow Rate [m3/s] 2.54E-01 2.54E-01 2.54E-01 2.54E-01 2.54E-01 

# of Tubes per Row 350 350 350 350 350 

Fin Diameter [m] 13.2245 13.2245 13.2245 13.2245 13.2245 

Minimum Airflow Area [m2] 17.3695 17.3695 17.3695 17.3695 17.3695 

Fin Surface Area [m2] 3098.87 2711.51 2324.15 1936.79 1549.43 

Total Tube Inside Surface Area [m2] 178.024 155.771 133.518 111.265 89.012 

Tube Outside Surface Area [m2] 182.532 159.716 136.899 114.083 91.266 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 
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  8 Row 7 Row 6 Row 5 Row 4 Row  

LITTLE ROCK - CAV 1           

Load [W] 465194         

Max Water Flow Rate [m3/s] 1.66E-01 1.66E-01 1.66E-01 1.66E-01 1.66E-01 

# of Tubes per Row 229 229 229 229 229 

Fin Diameter [m] 6.17529 6.17529 6.17529 6.17529 6.17529 

Minimum Airflow Area [m2] 8.11083 8.11083 8.11083 8.11083 8.11083 

Fin Surface Area [m2] 1447.05 1266.16 1085.28 904.403 723.523 

Total Tube Inside Surface Area [m2] 116.479 101.919 87.3589 72.7991 58.2393 

Tube Outside Surface Area [m2] 119.428 104.5 89.5711 74.6426 59.714 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

LITTLE ROCK - CAV 2           

Load [W] 242983         

Max Water Flow Rate [m3/s] 8.68E-02 8.68E-02 8.68E-02 8.68E-02 8.68E-02 

# of Tubes per Row 120 120 120 120 120 

Fin Diameter [m] 4.79445 4.79445 4.79445 4.79445 4.79445 

Minimum Airflow Area [m2] 6.29719 6.29719 6.29719 6.29719 6.29719 

Fin Surface Area [m2] 1123.48 983.041 842.607 702.172 561.738 

Total Tube Inside Surface Area [m2] 61.0368 53.4072 45.7776 38.148 30.5184 

Tube Outside Surface Area [m2] 62.5824 54.7596 46.9368 39.114 31.2912 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 

 

  8 Row 7 Row 6 Row 5 Row 4 Row  

LITTLE ROCK - VAV 1           

Load [W] 496853         

Max Water Flow Rate [m3/s] 1.77E-01 1.77E-01 1.77E-01 1.77E-01 1.77E-01 

# of Tubes per Row 245 245 245 245 245 

Fin Diameter [m] 9.21102 9.21102 9.21102 9.21102 9.21102 

Minimum Airflow Area [m2] 12.0981 12.0981 12.0981 12.0981 12.0981 

Fin Surface Area [m2] 2158.4 1888.6 1618.8 1349 1079.2 

Total Tube Inside Surface Area [m2] 124.617 109.04 93.4626 77.8855 62.3084 

Tube Outside Surface Area [m2] 127.772 111.801 95.8293 79.8578 63.8862 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 
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  8 Row 7 Row 6 Row 5 Row 4 Row  

LITTLE ROCK- VAV 2           

Load [W] 892021         

Max Water Flow Rate [m3/s] 3.19E-01 3.19E-01 3.19E-01 3.19E-01 3.19E-01 

# of Tubes per Row 439 439 439 439 439 

Fin Diameter [m] 15.9487 15.9487 15.9487 15.9487 15.9487 

Minimum Airflow Area [m2] 20.9475 20.9475 20.9475 20.9475 20.9475 

Fin Surface Area [m2] 3737.23 3270.08 2802.92 2335.77 1868.61 

Total Tube Inside Surface Area [m2] 223.293 195.381 167.47 139.558 111.646 

Tube Outside Surface Area [m2] 228.947 200.329 171.71 143.092 114.474 

Coil Depth [m] 0.208 0.182 0.156 0.13 0.104 

# of Rows 8 7 6 5 4 
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Appendix D: Steps in Performing EnergyPlus Simulations and Bin Plot Generation 
 

D.1: Steps for Data Generation 
1. Open Matlab and open "example_script_original.m".  Make the following adjustments to ensure a 

6 month simulation on 5 minute timesteps: 

 Timestep = 12 

 begin_month = 4; 

 begin_day = 1; 

 end_month = 9; 

 end_day = 31; 

2. Run “example_script_original” 

3. Select "CAV_1" from pop- up window. 

4. Save pdfs and RData.csv to its own folder. 

5. Move the generated LOCATION#.csv file to working directory. 

6. Make note of elevation in Matlab’s Workspace. 

7. Open "testoriginal.m".  Make the following changes to it: 

Change reference file in line 4. 

Input correct elevation in line 63. 

8. Run "testoriginal.m". 

9. Select "CAV_2" in pop-up window. 

10. Save pdfs and RData.csv to its own folder. 

11. Repeat steps 8 through 10 for VAV_1 and VAV_2. 

12. Repeat steps 1 through 11 for all IDF files of interest 

 

D.2: Matlab Script “example_script_original.m” 
% Example Script 
addpath(genpath(pwd)) 
clear;close all;clc 
%% Energy Plus 
% Define EP files to use 
% current path 
path_current = pwd; 
% location of idf (either "hospital" or "large office" work with this 
% script) 
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[FileName,FilePath] = uigetfile(fullfile(path_current,'EnergyPlus','buildings','*.idf'),'Select building 
file'); 
file_idf = fullfile(FilePath,FileName); 
% location of weather file 
[FileName,FilePath] = uigetfile(fullfile(path_current,'EnergyPlus','weather','*.epw'),'Select weather 
File'); 
file_epw = fullfile(FilePath,FileName); 
% location of output 
path_output = fullfile(path_current,'EnergyPlus','results'); 
% location of energy plus program 
path_EP = uigetdir('c:','Locate EnergyPlus program directory'); 
  
% Simulation Parameters 
  
% number of timesteps per hour in accordance with EP timestep requirements 
timestep = 12; 
func_EP_timestep(timestep,file_idf); 
  
% simulation period 
begin_month = 4; 
begin_day = 1; 
end_month = 9; 
end_day = 30; 
func_EP_run_period(begin_month,begin_day,end_month,end_day,file_idf) 
  
% run EnergyPlus 
func_EnergyPlus(file_idf,file_epw,path_output,path_EP) 
  
%% Import results from EnergyPlus 
% EP variable output file 
[~,EP] = fileparts(file_idf); 
file_EP = fullfile(path_output,[EP '.csv']); 
% import results 
[data,header] = xlsread(file_EP); 
% head time from header (you can use datenum and datestr commands to 
% further manipulate the time vector) 
time = header(2:end,1); 
% remove time from header 
header = header(1,2:end)'; 
% separate out the Hour of the day 
[Year Month Day Hour Min Sec]=datevec(time); 
% create list of unique air handling units 
list = cell(size(header)); 
for n = 1:numel(header); 
    list{n} = header{n}(1:5); 
end 
list = unique(list); 
% user select coil to use 
selection = listdlg('ListString',list); 
coil = list{selection}; 
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% effectively remove unselected coils from header but preserve indexing 
for n = 1:numel(header) 
    check = strfind(header{n},coil); 
    if isempty(check) 
        header{n} = ''; 
    end 
end 
%function to find string in header and return index 
f_ind = @(str,header)(find(~cellfun('isempty',(strfind(header,str))))); 
% import relevent data series 
% water mass flow rate 
str = 'COOLCDEMAND INLET NODE:System Node Mass Flow Rate [kg/s](TimeStep)'; 
mW = data(:,f_ind(str,header)); 
% water inlet temperature 
str = 'COOLCDEMAND INLET NODE:System Node Temperature [C](TimeStep)'; 
Twi = data(:,f_ind(str,header)); 
% water outlet temperature 
str = 'COOLCDEMAND OUTLET NODE:System Node Temperature [C](TimeStep)'; 
Two = data(:,f_ind(str,header)); 
% air mass flow rate 
str = 'COOLCNODE:System Node Mass Flow Rate [kg/s](TimeStep)'; 
mA = data(:,f_ind(str,header)); 
% air intlet temperature 
str = 'COOLCNODE:System Node Temperature [C](TimeStep)'; 
Tai = data(:,f_ind(str,header)); 
% air outtlet temperature 
str = 'HEATCNODE:System Node Temperature [C](TimeStep)'; 
Tao = data(:,f_ind(str,header)); 
% air inlet humidity 
str = 'COOLCNODE:System Node Relative Humidity [%](TimeStep)'; 
RHai = data(:,f_ind(str,header)); 
% air outlet humidity 
str = 'HEATCNODE:System Node Relative Humidity [%](TimeStep)'; 
RHao = data(:,f_ind(str,header)); 
% Total coil cooling rate 
str = 'COOLC:Cooling Coil Total Cooling Rate [W](TimeStep)'; 
Q = data(:,f_ind(str,header)); 
  
% import elevation from EPW file.  Usefull calling the included 
% Psychrometric functions. 
Elevation = func_EP_elevation(file_epw); 
  
%Produce enthalpy output 
h = func_h_tdb_rh(Tai,RHai,Elevation); 
  
%Produce absolute humidity output 
Wai = func_w_tdb_rh(Tai,RHai,Elevation); 
  
%% Plots 
figure 
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plot(mW,Q,'.b') 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('coil cooling rate') 
  
figure 
plot(Twi,'b','displayname','in') 
hold on 
plot(Two,'r','displayname','out') 
xlabel('timestep') 
ylabel('temperature [°C]') 
title('coil water temperature') 
legend('show') 
legend('Location','Southeast') 
  
figure 
plot(Tai,'r','displayname','in') 
hold on 
plot(Tao,'b','displayname','out') 
xlabel('timestep') 
ylabel('temperature [°C]') 
title('coil air temperature') 
legend('show') 
legend('Location','Southeast') 
  
figure 
plot(RHai,'r','displayname','in') 
hold on 
plot(RHao,'b','displayname','out') 
xlabel('timestep') 
ylabel('relative humidity [%]') 
title('coil relative humidity') 
legend('show') 
legend('Location','Southeast') 
  
figure 
plot(mW,'b','displayname','water') 
hold on 
plot(mA,'r','displayname','air') 
xlabel('timestep') 
ylabel('mass flow rate [kg/s]') 
title('coil flow rates') 
legend('show') 
legend('Location','Southeast') 
  
%Inlet Air Temp Grouping 
Taigroup=ordinal(Tai,{'Under 15 C','15-20 C','20-25 C','25-30 C','Over 30 C'},[],[0,15,20,25,30,100]); 
figure 
gscatter(mW,Q,Taigroup); 
xlabel('water flow rate [kg/s]') 
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ylabel('coil cooling [w]') 
title('Inlet Air Temp Binned') 
legend('Location','Southeast') 
  
%Inlet RH Grouping 
RHaigroup=ordinal(RHai,{'Under 30%','30-45%','45-60%','60-75%','Over 
70%'},[],[0,30,45,60,75,100]); 
figure 
gscatter(mW,Q,RHaigroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Inlet Relative Humidity Binned') 
legend('Location','Southeast') 
  
%Inlet Enthalpy Grouping 
hgroup=ordinal(h,{'Under 25 kJ/kg','25-30 kJ/kg','30-35 kJ/kg','35-40 kJ/kg','40-45 kJ/kg','45-50 
kJ/kg','50-55 kJ/kg','55-60 kJ/kg','60-70 kJ/kg','Over 70 
kJ/kg%'},[],[0,25,30,35,40,45,50,55,60,70,120]); 
figure 
gscatter(mW,Q,hgroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Inlet Air Enthalpy Binned') 
legend('Location','Southeast') 
  
%Inlet Air Humidity Ratio Grouping 
Waigroup=ordinal(Wai,{'Under 0.007','0.007-0.01','0.01-0.012','0.012-0.014','0.014-0.016','Over 
0.016'},[],[0,0.007,0.01,0.012,0.014,0.016,0.2]); 
figure 
gscatter(mW,Q,Waigroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Inlet Air Humidity Ratio Binned') 
legend('Location','Southeast') 
%Delta T Grouping 
DeltaT = Two-Twi; 
DeltaTgroup=ordinal(DeltaT,{'Under 1 K','1-2 K','2-3 K','3-4 K','4-5 K','5-6 K','6-7 K','7-8 K','Over 
8'},[],[0,1,2,3,4,5,6,7,8,100]); 
figure 
gscatter(mW,Q,DeltaTgroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Delta T Binned') 
legend('Location','Southeast') 
  
%Air Flow Rate Grouping 
mAgroup=ordinal(mA,{'Under 5 kg/s','5-10 kg/s','10-15 kg/s','15-20 kg/s','20-25 kg/s','25-50 
kg/s','50-75 kg/s','75-100 kg/s','Over 100 kg/s'},[],[0,5,10,15,20,25,50,75,100,200]); 
figure 
gscatter(mW,Q,mAgroup); 
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xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Air Flow Rate Binned') 
legend('Location','Southeast') 
  
  
%Time of Day Grouping 
Hourgroup=ordinal(Hour,{'Before 6','6-8am','8am-noon','noon-5pm','5pm-
midnight'},[],[0,6,8,12,17,24]); 
figure 
gscatter(mW,Q,Hourgroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Time of Day Binned') 
legend('Location','Southeast') 
  
%Twi Grouping 
Twigroup=ordinal(Twi,{'<6 C','6-7 C','7-8 C','>8 C'},[],[0,6,7,8,10]); 
figure 
gscatter(mW,Q,Twigroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Twi Binned') 
legend('Location','Southeast') 
  
save2pdf('Twibin',13) 
save2pdf('TODbin',12); 
save2pdf('DeltaTbin',11); 
save2pdf('mAbin',10); 
save2pdf('Waibin',9); 
save2pdf('haibin',8); 
save2pdf('RHaibin',7); 
save2pdf('Taibin',6); 
save2pdf('QvsmW.pdf',1); 
  
% cleanup 
rmpath(genpath(pwd)) 
% save data for R analysis 
 RData = [mW Q mA Tai Tao h RHai RHao Wai Twi Two DeltaT Month Day Hour Min]; 
 csvwrite('RData.csv',RData); 
  
 % cleanup 
 rmpath(genpath(pwd)) 
 

D.3: Matlab Script “testoriginal.m” 
clear;close all;clc 
%% Import results from EnergyPlus 
% EP variable output file 
file_EP = fullfile('BOULDERofficeReset.csv'); 
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% import results 
[data,header] = xlsread(file_EP); 
% head time from header (you can use datenum and datestr commands to 
% further manipulate the time vector) 
time = header(2:end,1); 
% remove time from header 
header = header(1,2:end)'; 
% separate out the Hour of the day 
[Year Month Day Hour Min Sec]=datevec(time); 
% create list of unique air handling units 
list = cell(size(header)); 
for n = 1:numel(header); 
    list{n} = header{n}(1:5); 
end 
list = unique(list); 
% user select coil to use 
selection = listdlg('ListString',list); 
coil = list{selection}; 
% effectively remove unselected coils from header but preserve indexing 
for n = 1:numel(header) 
    check = strfind(header{n},coil); 
    if isempty(check) 
        header{n} = ''; 
    end 
end 
%function to find string in header and return index 
f_ind = @(str,header)(find(~cellfun('isempty',(strfind(header,str))))); 
% import relevent data series 
% water mass flow rate 
str = 'COOLCDEMAND INLET NODE:System Node Mass Flow Rate [kg/s](TimeStep)'; 
mW = data(:,f_ind(str,header)); 
% water inlet temperature 
str = 'COOLCDEMAND INLET NODE:System Node Temperature [C](TimeStep)'; 
Twi = data(:,f_ind(str,header)); 
% water outlet temperature 
str = 'COOLCDEMAND OUTLET NODE:System Node Temperature [C](TimeStep)'; 
Two = data(:,f_ind(str,header)); 
% air mass flow rate 
str = 'COOLCNODE:System Node Mass Flow Rate [kg/s](TimeStep)'; 
mA = data(:,f_ind(str,header)); 
% air intlet temperature 
str = 'COOLCNODE:System Node Temperature [C](TimeStep)'; 
Tai = data(:,f_ind(str,header)); 
% air outtlet temperature 
str = 'HEATCNODE:System Node Temperature [C](TimeStep)'; 
Tao = data(:,f_ind(str,header)); 
% air inlet humidity 
str = 'COOLCNODE:System Node Relative Humidity [%](TimeStep)'; 
RHai = data(:,f_ind(str,header)); 
% air outlet humidity 
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str = 'HEATCNODE:System Node Relative Humidity [%](TimeStep)'; 
RHao = data(:,f_ind(str,header)); 
% Total coil cooling rate 
str = 'COOLC:Cooling Coil Total Cooling Rate [W](TimeStep)'; 
Q = data(:,f_ind(str,header)); 
  
% import elevation from EPW file.  Usefull calling the included 
% Psychrometric functions. 
Elevation = 30; 
  
%Produce enthalpy output 
h = func_h_tdb_rh(Tai,RHai,Elevation); 
  
%Produce absolute humidity output 
Wai = func_w_tdb_rh(Tai,RHai,Elevation); 
  
%% Plot 
figure 
plot(mW,Q,'.b') 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('coil cooling rate') 
  
figure 
plot(Twi,'b','displayname','in') 
hold on 
plot(Two,'r','displayname','out') 
xlabel('timestep') 
ylabel('temperature [°C]') 
title('coil water temperature') 
legend('show') 
legend('Location','Southeast') 
  
figure 
plot(Tai,'r','displayname','in') 
hold on 
plot(Tao,'b','displayname','out') 
xlabel('timestep') 
ylabel('temperature [°C]') 
title('coil air temperature') 
legend('show') 
legend('Location','Southeast') 
  
figure 
plot(RHai,'r','displayname','in') 
hold on 
plot(RHao,'b','displayname','out') 
xlabel('timestep') 
ylabel('relative humidity [%]') 
title('coil relative humidity') 
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legend('show') 
legend('Location','Southeast') 
  
figure 
plot(mW,'b','displayname','water') 
hold on 
plot(mA,'r','displayname','air') 
xlabel('timestep') 
ylabel('mass flow rate [kg/s]') 
title('coil flow rates') 
legend('show') 
legend('Location','Southeast') 
  
%Inlet Air Temp Grouping 
Taigroup=ordinal(Tai,{'Under 15 C','15-20 C','20-25 C','25-30 C','Over 30 C'},[],[0,15,20,25,30,100]); 
figure 
gscatter(mW,Q,Taigroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Inlet Air Temp Binned') 
legend('Location','Southeast') 
  
%Inlet RH Grouping 
RHaigroup=ordinal(RHai,{'Under 30%','30-45%','45-60%','60-75%','Over 
70%'},[],[0,30,45,60,75,100]); 
figure 
gscatter(mW,Q,RHaigroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Inlet Relative Humidity Binned') 
legend('Location','Southeast') 
  
%Inlet Enthalpy Grouping 
hgroup=ordinal(h,{'Under 25 kJ/kg','25-30 kJ/kg','30-35 kJ/kg','35-40 kJ/kg','40-45 kJ/kg','45-50 
kJ/kg','50-55 kJ/kg','55-60 kJ/kg','60-70 kJ/kg','Over 70 
kJ/kg%'},[],[0,25,30,35,40,45,50,55,60,70,120]); 
figure 
gscatter(mW,Q,hgroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Inlet Air Enthalpy Binned') 
legend('Location','Southeast') 
  
%Inlet Air Humidity Ratio Grouping 
Waigroup=ordinal(Wai,{'Under 0.007','0.007-0.01','0.01-0.012','0.012-0.014','0.014-0.016','Over 
0.016'},[],[0,0.007,0.01,0.012,0.014,0.016,0.2]); 
figure 
gscatter(mW,Q,Waigroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
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title('Inlet Air Humidity Ratio Binned') 
legend('Location','Southeast') 
%Delta T Grouping 
DeltaT = Two-Twi; 
DeltaTgroup=ordinal(DeltaT,{'Under 1 K','1-2 K','2-3 K','3-4 K','4-5 K','5-6 K','6-7 K','7-8 K','Over 
8'},[],[0,1,2,3,4,5,6,7,8,100]); 
figure 
gscatter(mW,Q,DeltaTgroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Delta T Binned') 
legend('Location','Southeast') 
  
%Air Flow Rate Grouping 
mAgroup=ordinal(mA,{'Under 5 kg/s','5-10 kg/s','10-15 kg/s','15-20 kg/s','20-25 kg/s','25-50 
kg/s','50-75 kg/s','75-100 kg/s','Over 100 kg/s'},[],[0,5,10,15,20,25,50,75,100,200]); 
figure 
gscatter(mW,Q,mAgroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Air Flow Rate Binned') 
legend('Location','Southeast') 
  
  
%Time of Day Grouping 
Hourgroup=ordinal(Hour,{'Before 6','6-8am','8am-noon','noon-5pm','5pm-
midnight'},[],[0,6,8,12,17,24]); 
figure 
gscatter(mW,Q,Hourgroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Time of Day Binned') 
legend('Location','Southeast') 
  
%Twi Grouping 
Twigroup=ordinal(Twi,{'<6 C','6-6.5 C','6.5-7','7-7.5','7.5-8 C','>8 C'},[],[0,6,6.5,7,7.5,8,10]); 
figure 
gscatter(mW,Q,Twigroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Twi Binned') 
legend('Location','Southeast') 
  
save2pdf('Twibin',13) 
save2pdf('TODbin',12); 
save2pdf('DeltaTbin',11); 
save2pdf('mAbin',10); 
save2pdf('Waibin',9); 
save2pdf('haibin',8); 
save2pdf('RHaibin',7); 
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save2pdf('Taibin',6); 
save2pdf('QvsmW.pdf',1); 
  
% cleanup 
rmpath(genpath(pwd)) 
% save data for R analysis 
 RData = [mW Q mA Tai Tao h RHai RHao Wai Twi Two DeltaT Month Day Hour Min]; 
 csvwrite('RData.csv',RData); 
  
 % cleanup 
 rmpath(genpath(pwd)) 
 
 

D.4: Additional Matlab Scripts Required in Working Directory 

D.4.1: func_EP_timestep.m 

function func_EP_timestep(TimeStep,file) 
%% setup and input 
if exist(file,'file') == 2 
    data = fileread(file); 
    %     datain = fopen(filename); 
else 
    disp('Input path or file not found.'); 
    return 
end 
  
% string to find 
str = 'Timestep,'; 
data = f_string(TimeStep,str,data); 
  
fout = fopen(file,'w'); 
fprintf(fout,'%s',data); 
fclose(fout); 
  
    function [data] = f_string(num,str,data) 
        % index of string 
        ind = strfind(data,str); 
         
        % find end of line 
        flag = 0; 
        iter = 0; 
        while flag == 0 
            iter = iter+1; 
            flag = strcmp(data(ind+iter),char(13)); 
        end 
        ind_out = ind+iter-1; 
         
        % find start of line 
        flag = 0; 
        iter = 0; 



159 
 

        while flag == 0 
            iter = iter+1; 
            flag = strcmp(data(ind-iter),char(10)); 
        end 
        ind_in = ind-iter+1; 
         
         
        % line string 
        str_out = data(ind_in:ind_out); 
        str_in(1:4) = char(32); 
        str_in = [str_in str num2str(num) ';   !- Number of Timesteps per Hour']; 
         
        % replace string 
        data = strrep(data,str_out,str_in); 
    end 
end 
 

D.4.2: func_EP_run_period.m 

function func_EP_run_period(begin_month,begin_day,end_month,end_day,file) 
%% setup and input 
if exist(file,'file') == 2 
    data = fileread(file); 
    %     datain = fopen(filename); 
else 
    disp('Input path or file not found.'); 
    return 
end 
  
% string to find 
str = '!- Begin Month'; 
data = f_string(begin_month,str,data); 
  
% string to find 
str = '!- End Month'; 
data = f_string(end_month,str,data); 
  
% string to find 
str = '!- Begin Day of Month'; 
data = f_string(begin_day,str,data); 
  
% string to find 
str = '!- End Day of Month'; 
data = f_string(end_day,str,data); 
  
  
fout = fopen(file,'w'); 
fprintf(fout,'%s',data); 
fclose(fout); 
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    function [data] = f_string(num,str,data) 
        % index of string 
        ind = strfind(data,str); 
         
        % find end of line 
        flag = 0; 
        iter = 0; 
        while flag == 0 
            iter = iter+1; 
            flag = strcmp(data(ind+iter),char(13)); 
        end 
        ind_out = ind+iter-1; 
         
        % find start of line 
        flag = 0; 
        iter = 0; 
        while flag == 0 
            iter = iter+1; 
            flag = strcmp(data(ind-iter),char(10)); 
        end 
        ind_in = ind-iter+1; 
         
         
        % line string 
        str_out = data(ind_in:ind_out); 
        ind = strfind(str_out,'!'); 
        str_in(1:4) = char(32); 
        str_in = [str_in num2str(num) ',']; 
        str_in(end+1:ind-1) = char(32); 
        str_in = [str_in str]; 
         
        % replace string 
        data = strrep(data,str_out,str_in); 
    end 
end 
 

D.4.3: func_EnergyPlus.m 

% function to exectute EnergyPlus given a valid filepath and filename for 
% IDF an EPW files.  The output file and path is the same as the input. 
% The path names must be followed by a backslash, \ 
% by Forest Reider 4/3/14 
function func_EnergyPlus(file_idf,file_epw,path_output,path_EP) 
%% make sure files and paths exist 
check = exist(file_idf,'file'); 
if check==0 
    error('IDF file does not exist') 
end 
check = exist(file_epw,'file'); 
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if check==0 
    error('EPW file does not exist') 
end 
check = exist(path_output,'dir'); 
if check==0 
    error('output path does not exist') 
end 
check = exist(path_EP,'dir'); 
if check==0 
    error('Energy Plus path does not exist') 
end 
  
%% Move to Output folder 
% remember envoking folder 
path = pwd; 
% move to output folder 
cd(path_output); 
  
%% create file to manipulate 
% name of building file 
[path_idf,idf] = fileparts(file_idf); 
% name of weather file 
[path_epw,epw] = fileparts(file_epw); 
% original EP bat file 
EPbase = fullfile(path_EP,'RunEPlus.bat'); 
% process bat file 
EPnew = fullfile(path_output,'RunEPlus.bat'); 
% generate process bat file in output dir 
copyfile(EPbase,EPnew); 
%% modify batch file 
  
% read batch file 
data = fileread(EPnew); 
  
% find key line in batch file 
strin = ':  This batch file will perform the following steps:'; 
k = strfind(data,strin); 
% delete everything up to the key line 
data(1:k-1) = []; 
  
% create new lines before the key line in batch file 
line1 = ['echo ===== %0 (Run EnergyPlus) %1 %2 ===== Start =====' char(13) char(10)]; 
line2 = ['set program_path=' path_EP '\' char(13) char(10)]; 
line3 = ['set program_name=EnergyPlus.exe' char(13) char(10)]; 
line4 = ['set input_path=' path_idf '\' char(13) char(10)]; 
line5 = ['set output_path=' path_output '\' char(13) char(10)]; 
line6 = ['set post_proc=' path_EP '\PostProcess\' char(13) char(10)]; 
line7 = ['set weather_path=' path_epw '\' char(13) char(10)]; 
line8 = ['set pausing=N' char(13) char(10)]; 
line9 = ['set maxcol=250' char(13) char(10)]; 
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line10 = [char(13) char(10)]; 
  
% write new lines 
data = [line1 line2 line3 line4 line5 line6 line7 line8 line9 line10 data]; 
  
% save new batch file 
fout = fopen(EPnew,'w'); 
fprintf(fout,'%s',data); 
fclose(fout); 
  
%% run EP with modified file 
%run EP in MatLab 
system(['RunEPlus.bat' char(32) idf char(32) epw]); 
  
%% Delete Temp Files 
delete(EPnew); 
% Return to envoking folder 
cd(path); 
 

D.4.4: func_EP_elevation.m 

% function to get elevation in meters from EPW file assuming the elevation 
% is the on the first line of the EWP file. 
function elevation = func_EP_elevation(file_epw) 
%% setup and input 
if exist(file_epw,'file') == 2 
    data = fileread(file_epw); 
    %     datain = fopen(filename); 
else 
    disp('Input path or file not found.'); 
    return 
end 
% find end of first line of weather file 
flag = 0; 
iter = 0; 
while flag == 0; 
    % increment counter 
    iter = iter+1; 
    % check if character is a comma and record 
    flag = strcmp(data(iter),','); 
    if flag == 1; 
        comma = iter; 
    end 
    % check if end of line to exit loop 
    flag = strcmp(data(iter:iter+1),[char(13),char(10)]); 
end 
% output elevation 
elevation = str2double(data(comma+1:iter-1)); 
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D.4.5: func_w_tb_rh 

function [HumidityRatio] = func_w_tdb_rh(Tai,RHai,Elevation) 
z = Elevation; % [m] 
t = Tai; % [°C] 
rh = RHai/100; % [-] (input in percent) 
  
%calculate pressure as a function of altitude 
p = 101.325*(1-2.25577e-5*z)^5.2559*1000; % [Pa] 
  
%coefficients from ASHRAE Fundamentals Psychrometrics 
C8 = -5.8002206e03; 
C9 = 1.3914993e00; 
C10 = -4.8640239e-02; 
C11 = 4.1764768e-05; 
C12 = -1.4452093e-08; 
C13 = 6.5459673e00; 
  
%calc saturation pressure 
K = t+273.15; % [K] 
pws = exp(C8./K+C9+C10*K+C11.*K.^2+C12.*K.^3+C13*log(K)); % [Pa] 
  
%calc  partial vapor pressure 
pw = rh.*pws; % [Pa] 
  
%calc humidity ratio 
w = 0.621945.*pw./(p-pw); % [-] 
  
%output  
HumidityRatio = w; % [-] 
 

D.4.6: save2pdf.m 

%SAVE2PDF Saves a figure as a properly cropped pdf 
% 
%   save2pdf(pdfFileName,handle,dpi) 
% 
%   - pdfFileName: Destination to write the pdf to. 
%   - handle:  (optional) Handle of the figure to write to a pdf.  If 
%              omitted, the current figure is used.  Note that handles 
%              are typically the figure number. 
%   - dpi: (optional) Integer value of dots per inch (DPI).  Sets 
%          resolution of output pdf. 
% 
%   Saves figure as a pdf with margins cropped to match the figure size. 
  
%   (c) Gabe Hoffmann, gabe.hoffmann@gmail.com 
%   Written 8/30/2007 
%   Revised 9/22/2007,1, 
%   Revised 1/14/2007 
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function save2pdf(pdfFileName,handle,dpi) 
  
% Verify correct number of arguments 
error(nargchk(0,3,nargin)); 
  
% If no handle is provided, use the current figure as default 
if nargin<1 
    [fileName,pathName] = uiputfile('*.pdf','Save to PDF file:'); 
    if fileName == 0; return; end 
    pdfFileName = [pathName,fileName]; 
    dpi=600; 
end 
if nargin<2 
    handle = gcf; 
    dpi=600; 
end 
if nargin<3 
    dpi = 600; 
end 
  
% Backup previous settings 
prePaperType = get(handle,'PaperType'); 
prePaperUnits = get(handle,'PaperUnits'); 
preUnits = get(handle,'Units'); 
prePaperPosition = get(handle,'PaperPosition'); 
prePaperSize = get(handle,'PaperSize'); 
  
% Make changing paper type possible 
set(handle,'PaperType','<custom>'); 
  
% Set units to all be the same 
set(handle,'PaperUnits','inches'); 
set(handle,'Units','inches'); 
  
% Set the page size and position to match the figure's dimensions 
paperPosition = get(handle,'PaperPosition'); 
position = get(handle,'Position'); 
set(handle,'PaperPosition',[0,0,position(3:4)]); 
set(handle,'PaperSize',position(3:4)); 
  
% Save the pdf (this is the same method used by "saveas") 
print(handle,'-dpdf',pdfFileName,sprintf('-r%d',dpi)) 
  
% Restore the previous settings 
set(handle,'PaperType',prePaperType); 
set(handle,'PaperUnits',prePaperUnits); 
set(handle,'Units',preUnits); 
set(handle,'PaperPosition',prePaperPosition); 
set(handle,'PaperSize',prePaperSize); 
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D.4.7: func_h_tdb_rh.m 

function [Enthalpy] = func_h_tdb_rh(Tai,RHai,Elevation) 
z = Elevation; % [m] 
t = Tai; % [°C] 
rh = RHai/100; % [-] (input in percent) 
  
%calculate pressure as a function of altitude 
p = 101.325*(1-2.25577e-5*z)^5.2559*1000; %pressure, Pa 
  
%coefficients from ASHRAE Fundamentals Psychrometrics 
C8 = -5.8002206e03; 
C9 = 1.3914993e00; 
C10 = -4.8640239e-02; 
C11 = 4.1764768e-05; 
C12 = -1.4452093e-08; 
C13 = 6.5459673e00; 
  
%calc saturation pressure 
K = t+273.15; %convert to kelvin, K 
pws = exp(C8./K+C9+C10.*K+C11.*K.^2+C12.*K.^3+C13.*log(K)); %saturation pressure, Pa 
  
%calc vapor pressure 
pw = rh.*pws; %partial pressure, Pa 
  
%calc humidity ratio 
w = 0.621945.*pw./(p-pw); 
  
%calc enthalpy 
h = (1006.*t+w.*(2501000+1860.*t))/1000; %enthalpy, kJ/kg_da 
  
%output 
Enthalpy = h; %enthalpy, kJ/kg_da 
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Appendix E: Regression of Flow Bin Quantiles 
 

E.1: Steps for Performing Regression of the Flow Bin Quantiles 
1. Map to appropriate directory in RStudio 

- "Set as working directory" 

2. Run "k2 Testing.R" script as seen in Appendix E.2 

3. Adjust line 7 of script so the first 15 bins are covering the worthwhile data 

 - Make this determination after running the initial simulation and evaluating the  

 plot only, not by looking at K2 outputs, as this may induce subjective manipulation! 

 - Can also adjust lines 40-43 as outlining data points may be throwing one of the two  

 curve fits 

4. Rerun script 

5. Record k2lo and k2hi  

 

E.2: R Script for Binning Data and Performing Regression 
remove(list=objects()) 

graphics.off() 

library(plyr) 

library(ggplot2) 

library(reshape2) 

Data <- read.csv("RData.csv", sep=",", header=F) 

factor <- cut(Data[,1], breaks=55) 

DataDF <- data.frame(Data1,factor) 

names(DataDF)<-
c("Flow","Capacity","mA","Tai","Tao","h","RHai","RHao","Wai","Twi","Two","DeltaT","Month","Day",
"Hour","Min","Bin") 

ggplot(DataDF,aes(x=Flow,y=Capacity,group=Bin)) +  

  geom_boxplot() +  

  ylab("Total Coil Cooling Capacity [W]") +  

  xlab("Water Flow Rate [kg/s]") + ggtitle("Coil Cooling Plot Capacity") 

quants=c(0.05,0.25,0.5,0.75,0.95) 

factQuantArray=tapply(Data[,2],factor,FUN=quantile,probs=quants) 
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factQuantDF=adply(factQuantArray,1) 

meltedDat<-melt(factQuantDF,id.vars='X1') 

names(meltedDat)<-c("Flow","Quantile","Capacity") 

ggplot(meltedDat,aes(x=Flow,y=Capacity,group=Quantile)) +  

  geom_line(aes(linetype=Quantile,color=Quantile)) + theme_bw() +  

  ylab("Total Coil Cooling Capacity [W]") +  

  xlab("Water Flow Rate [kg/s]") + ggtitle("Coil Cooling Plot Capacity") + 

  theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) 

labs <- levels(factQuantDF$X1) 

Lower <- as.numeric( sub("\\((.+),.*", "\\1", labs) ) 

Upper <- as.numeric( sub("[^,]*,([^]]*)\\]", "\\1", labs) ) 

Middle <- (Lower+Upper)/2 

factorLocs <- cbind(Lower, Middle, Upper) 

factQuantDF=cbind(factorLocs,factQuantDF) 

names(factQuantDF)[4] <- c('Flow Bin') 

write.table(factQuantDF,file = paste(paste(quants,collapse="_"),'.csv',sep=''), 

            col.names=NA,sep=",", quote=T, row.names=T) 

plot(Data[,2]~Data[,1], 

     xlab="Water Flow Rate [kg/s]", 

     ylab="Total Coil Cooling Capacity [W]") 

points(factQuantDF[1:15,5]~factQuantDF[1:15,2], col='blue', lty=1, lwd=5) 

points(factQuantDF[1:15,9]~factQuantDF[1:15,2], col='orange', lty=1, lwd=5) 

grid() 

mwlo <-  c(0, factQuantDF[1:15,2]) 

Qlo <- c(0, factQuantDF[1:15,5]) 

mwhi <-  c(0, factQuantDF[1:15,2]) 

Qhi <- c(0, factQuantDF[1:15,9]) 

 

flo <- Qlo ~ K1lo*(1-exp(-K2lo*mwlo)) 

fhi <- Qhi ~ K1hi*(1-exp(-K2hi*mwhi)) 

fitlo <- nls(flo, start = list(K1lo=max(Qlo),K2lo=1)) 
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fithi <- nls(fhi, start = list(K1hi=max(Qhi),K2hi=1)) 

coef(fitlo) 

coef(fithi) 

lines(mwlo,predict(fitlo), col='blue', lty=1, lwd=2) 

lines(mwhi,predict(fithi), col='orange', lty=1, lwd=2) 

 

E.3: Bar Bell Plots 
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Appendix F: Bin Plots for Select Systems 

F.1: Atlanta CAV 1 5 Row Configuration 
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F.2: Atlanta VAV 1 6 Row Configuration 
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F.3: Boulder CAV 1 6 Row Configuration 
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F.4: Boulder VAV 1 8 Row Configuration 
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F.5: L.A. CAV 1 4 Row Configuration 
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F.6: L.A. VAV 1 7 Row Configuration 
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F.7: Miami CAV 1 4 Row Configuration 
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F.8: Miami VAV 1 7 Row Configuration 
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Appendix G: Technical Specification for Equivalent Coils on Market 
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Appendix H: Application of the 4 Parameter Curve Fit 
 

H.1: Finalized R Script for CV and FMPC Generation 
#Cleaning up the workspace 

remove(list=objects()) 

graphics.off() 

library(plyr) 

library(ggplot2) 

library(reshape2) 

#Bringing in the raw data 

Data <- read.csv("RData.csv", sep=",", header=F) 

names(Data)<-

c("Flow","Capacity","mA","Tai","Tao","h","RHai","RHao","Wai","Twi","Two","DeltaT","Month","Day",

"Hour","Min") 

#Selection of applicable data to analyze. Line 15 Data$Flow maximum may need adjusting pending 

the dataset 

#in effort to crop out any data with valve wide open.  This limit would not need to be put in place 

for  

#real world application of this method 

Index<-Data$Flow<=0.95*max(Data$Flow) & Data$Flow>0 & Data$Twi<=8 

Data2<-Data[Index,] 

Q<-Data2$Capacity 

mW<-Data2$Flow 

Twi<-Data2$Twi 

#Applying the Curve Fit through non-linear regression 

CurveFit<-nls(Q ~ (bo + b1*Twi)*(1 - exp(-(b2 + b3*Twi)*mW)),start = list(bo=max(Q),b1=-

10000,b2=.1,b3=.001)) 

#Assigning coefficients to outputs so to use in constant Twi curve generation below 

bo<- coef(CurveFit)[1] 

b1<- coef(CurveFit)[2] 

b2<- coef(CurveFit)[3] 

b3<- coef(CurveFit)[4] 
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#Drawing constant Twi prediction lines onto graph as sanity check. One can compare these to 

Matlab generated 

#Twi bin plots 

plot(mW,Q) 

legend(0.8*max(mW),.6*max(Q),c("5C Twi","6C Twi","7C Twi","8C 

Twi"),lty=c(1,1,1,1),lwd=c(2,2,2,2), 

       col=c("yellow","red","blue","purple")) 

points(mW,(bo + b1*8)*(1 - exp(-(b2 + b3*8)*mW)),col='purple', lty=1, lwd=2) 

points(mW,(bo + b1*7)*(1 - exp(-(b2 + b3*7)*mW)),col='blue', lty=1, lwd=2) 

points(mW,(bo + b1*6)*(1 - exp(-(b2 + b3*6)*mW)),col='red', lty=1, lwd=2) 

points(mW,(bo + b1*5)*(1 - exp(-(b2 + b3*5)*mW)),col='yellow', lty=1, lwd=2) 

#Establishing the Range of values to look at for a particular sizing indicator temp maximum 

observed. 

R<-0.2 

#Identifying the number of degress of freedom for the curvefit that will be applied to each Twi bin 

DOF<-4 

#Setting up Twi of 6 as sizing indicator temp for Fraction of Predicted Maximum Capacity (FPMC) 

k1.6<- (bo + b1*6) 

Index.6<-Data2$Twi<=(6 + R) & Data2$Twi>=(6 - R) 

ObservedMax.6<- max(Data2$Capacity[Index.6]) 

FPMC.6<-ObservedMax.6/k1.6 

#Setting up Twi of 6.5 as sizing indicator temp for FPMC 

k1.6.5<- (bo + b1*6.5) 

Index.6.5<-Data2$Twi<=(6.5 + R) & Data2$Twi>=(6.5 - R) 

ObservedMax.6.5<- max(Data2$Capacity[Index.6.5]) 

FPMC.6.5<-ObservedMax.6.5/k1.6.5 

#Setting up Twi of 7 as sizing indicator temp for FPMC 

k1.7<- (bo + b1*7) 

Index.7<-Data2$Twi<=(7 + R) & Data2$Twi>=(7 - R) 

ObservedMax.7<- max(Data2$Capacity[Index.7]) 
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FPMC.7<-ObservedMax.7/k1.7 

#Setting up Twi of 7.5 as sizing indicator temp for FPMC 

k1.7.5<- (bo + b1*7.5) 

Index.7.5<-Data2$Twi<=(7.5 + R) & Data2$Twi>=(7.5 - R) 

ObservedMax.7.5<- max(Data2$Capacity[Index.7.5]) 

FPMC.7.5<-ObservedMax.7.5/k1.7.5 

#Setting up Twi of 8 as sizing indicator temp for FPMC 

k1.8<- (bo + b1*8) 

Index.8<-Data2$Twi<=(8 + R) & Data2$Twi>=(8 - R) 

ObservedMax.8<- max(Data2$Capacity[Index.8]) 

FPMC.8<-ObservedMax.8/k1.8 

#The below measure is intended to be a "goodness of fit". 

#Coefficient of Variation (CV) can be read as average deviation in data from 

#predicted CurveFit as a percentage of maximum the mean capacity 

CV<-sqrt(deviance(CurveFit)/(nrow(Data2)-DOF))*100/(mean(Q)) 

#Percentage of time data analyszed was at min mA 

ind<-Data2$mA<=min(Data2$mA) 

mAvariance<-nrow(Data2[ind,])/nrow(Data2) 

#Outputs to document for each RData set 

Outputs<- 

c(FPMC.6,FPMC.6.5,FPMC.7,FPMC.7.5,FPMC.8,CV,mean(Q),max(mW),min(Data2$mA)/max(Data2$

mA),mAvariance) 

OutputsDF<-matrix( Outputs, ncol=10, nrow=1) 

FPMC.6 

FPMC.6.5 

FPMC.7 

FPMC.7.5 

FPMC.8 

CV 
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Appendix I: Climate Specific CAV/VAV Prediction Tools 
 

I.1: Boulder 
#Cleaning up the workspace 

remove(list=objects()) 

graphics.off() 

library(plyr) 

library(ggplot2) 

library(reshape2) 

#Bringing in the raw data 

Data <- read.csv("RData.csv", sep=",", header=F) 

names(Data)<-

c("Flow","Capacity","mA","Tai","Tao","h","RHai","RHao","Wai","Twi","Two","DeltaT","Month","Day",

"Hour","Min") 

#Selection of applicable data to analyze. Line 15 Data$Flow maximum may need adjusting pending 

the dataset 

#in effort to crop out any data with valve wide open.  This limit would not need to be put in place 

for  

#real world application of this method 

Index<-Data$Flow<=0.75*max(Data$Flow) & Data$Flow>0 & Data$Twi<=8 

Data2<-Data[Index,] 

Q<-Data2$Capacity 

mW<-Data2$Flow 

Twi<-Data2$Twi 

#Applying the Curve Fit through non-linear regression 

CurveFit<-nls(Q ~ (bo + b1*Twi)*(1 - exp(-(b2 + b3*Twi)*mW)),start = list(bo=2*max(Q),b1=-

0.1*max(Q),b2=.1,b3=.001)) 

#Assigning coefficients to outputs so to use in constant Twi curve generation below 

bo<- coef(CurveFit)[1] 

b1<- coef(CurveFit)[2] 

b2<- coef(CurveFit)[3] 

b3<- coef(CurveFit)[4] 
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#Drawing constant Twi prediction lines onto graph as sanity check. One can compare these to 

Matlab generated 

#Twi bin plots 

plot(mW,Q) 

legend(0.8*max(mW),.6*max(Q),c("5C Twi","6C Twi","7C Twi","8C 

Twi"),lty=c(1,1,1,1),lwd=c(2,2,2,2), 

       col=c("yellow","red","blue","purple")) 

points(mW,(bo + b1*8)*(1 - exp(-(b2 + b3*8)*mW)),col='purple', lty=1, lwd=2) 

points(mW,(bo + b1*7)*(1 - exp(-(b2 + b3*7)*mW)),col='blue', lty=1, lwd=2) 

points(mW,(bo + b1*6)*(1 - exp(-(b2 + b3*6)*mW)),col='red', lty=1, lwd=2) 

points(mW,(bo + b1*5)*(1 - exp(-(b2 + b3*5)*mW)),col='yellow', lty=1, lwd=2) 

#Establishing the Range of values to look at for a particular sizing indicator temp maximum 

observed. 

R<-0.2 

#Identifying the number of degress of freedom for the curvefit that will be applied to each Twi bin 

DOF<-4 

#Setting up Twi of 6.5 as sizing indicator temp for FPMC 

k1.6.5<- (bo + b1*6.5) 

Index.6.5<-Data2$Twi<=(6.5 + R) & Data2$Twi>=(6.5 - R) 

ObservedMax.6.5<- max(Data2$Capacity[Index.6.5]) 

FPMC.6.5<-ObservedMax.6.5/k1.6.5 

#The below measure is intended to be a "goodness of fit". 

#Coefficient of Variation (CV) can be read as average deviation in data from 

#predicted CurveFit as a percentage of maximum the mean capacity 

CV<-sqrt(deviance(CurveFit)/(nrow(Data2)-DOF))*100/(mean(Q)) 

#Outputs to document for each RData set 

FPMC.6.5 

CV 

#Determination based of pre-established, climate dependent Cv to FPMC relationship 

CV.CAV <- 14.89*FPMC.6.5 + 0.404 

CV.VAV <- 14.23*FPMC.6.5 + 7.58 
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#VAV predictions will register as TRUE, CAV predictions will register as FALSE 

abs(CV.VAV - CV)<abs(CV.CAV - CV) 

#Accounting for b1 inaccurately being a positive value. It is allowed to be positive as long as  

#crossover of constant Twi does not occur in the mW flow range plotted 

#True mean to trust previous distinction, False means a VAV classification 

((bo + b1*8)*(1 - exp(-(b2 + b3*8)*max(mW))))<=((bo + b1*5)*(1 - exp(-(b2 + b3*5)*max(mW)))) 

 

 

 

I.2: Atlanta 
#Cleaning up the workspace 

remove(list=objects()) 

graphics.off() 

library(plyr) 

library(ggplot2) 

library(reshape2) 

#Bringing in the raw data 

Data <- read.csv("RData.csv", sep=",", header=F) 

names(Data)<-

c("Flow","Capacity","mA","Tai","Tao","h","RHai","RHao","Wai","Twi","Two","DeltaT","Month","Day",

"Hour","Min") 

#Selection of applicable data to analyze. Line 15 Data$Flow maximum may need adjusting pending 

the dataset 

#in effort to crop out any data with valve wide open.  This limit would not need to be put in place 

for  

#real world application of this method 

Index<-Data$Flow<=0.75*max(Data$Flow) & Data$Flow>0 & Data$Twi<=8 

Data2<-Data[Index,] 

Q<-Data2$Capacity 

mW<-Data2$Flow 

Twi<-Data2$Twi 

#Applying the Curve Fit through non-linear regression 
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CurveFit<-nls(Q ~ (bo + (b1)*Twi)*(1 - exp(-(b2 + b3*Twi)*mW)), 

              start = list(bo=2*max(Q),b1=-0.1*max(Q),b2=.1,b3=.001)) 

#Assigning coefficients to outputs so to use in constant Twi curve generation below 

bo<- coef(CurveFit)[1] 

b1<- coef(CurveFit)[2] 

b2<- coef(CurveFit)[3] 

b3<- coef(CurveFit)[4] 

#Drawing constant Twi prediction lines onto graph as sanity check. One can compare these to 

Matlab generated 

#Twi bin plots 

plot(mW,Q) 

legend(0.8*max(mW),.6*max(Q),c("5C Twi","6C Twi","7C Twi","8C 

Twi"),lty=c(1,1,1,1),lwd=c(2,2,2,2), 

       col=c("yellow","red","blue","purple")) 

points(mW,(bo + b1*8)*(1 - exp(-(b2 + b3*8)*mW)),col='purple', lty=1, lwd=2) 

points(mW,(bo + b1*7)*(1 - exp(-(b2 + b3*7)*mW)),col='blue', lty=1, lwd=2) 

points(mW,(bo + b1*6)*(1 - exp(-(b2 + b3*6)*mW)),col='red', lty=1, lwd=2) 

points(mW,(bo + b1*5)*(1 - exp(-(b2 + b3*5)*mW)),col='yellow', lty=1, lwd=2) 

#Establishing the Range of values to look at for a particular sizing indicator temp maximum 

observed. 

R<-0.2 

#Identifying the number of degress of freedom for the curvefit that will be applied to each Twi bin 

DOF<-4 

#Setting up Twi of 6.5 as sizing indicator temp for FPMC 

k1.6.5<- (bo + b1*6.5) 

Index.6.5<-Data2$Twi<=(6.5 + R) & Data2$Twi>=(6.5 - R) 

ObservedMax.6.5<- max(Data2$Capacity[Index.6.5]) 

FPMC.6.5<-ObservedMax.6.5/k1.6.5 

#The below measure is intended to be a "goodness of fit". 

#Coefficient of Variation (CV) can be read as average deviation in data from 

#predicted CurveFit as a percentage of maximum the mean capacity 
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CV<-sqrt(deviance(CurveFit)/(nrow(Data2)-DOF))*100/(mean(Q)) 

#Outputs to document for each RData set 

FPMC.6.5 

CV 

#Determination based of pre-established, climate dependent Cv to FPMC relationship 

CV.CAV <- 9.26*FPMC.6.5 - 0.026 

CV.VAV <- 11.55*FPMC.6.5 + 4.14 

#VAV predictions will register as TRUE, CAV predictions will register as FALSE 

abs(CV.VAV - CV)<abs(CV.CAV - CV) 

#Accounting for b1 inaccurately being a positive value. It is allowed to be positive as long as  

#crossover of constant Twi does not occur in the mW flow range plotted 

#True mean to trust previous distinction, False means a VAV classification 

((bo + b1*8)*(1 - exp(-(b2 + b3*8)*max(mW))))<=((bo + b1*5)*(1 - exp(-(b2 + b3*5)*max(mW)))) 

 

I.3: Miami 
#Cleaning up the workspace 

remove(list=objects()) 

graphics.off() 

library(plyr) 

library(ggplot2) 

library(reshape2) 

#Bringing in the raw data 

Data <- read.csv("RData.csv", sep=",", header=F) 

names(Data)<-

c("Flow","Capacity","mA","Tai","Tao","h","RHai","RHao","Wai","Twi","Two","DeltaT","Month","Day",

"Hour","Min") 

#Selection of applicable data to analyze. Line 15 Data$Flow maximum may need adjusting pending 

the dataset 

#in effort to crop out any data with valve wide open.  This limit would not need to be put in place 

for  

#real world application of this method 
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Index<-Data$Flow<=0.75*max(Data$Flow) & Data$Flow>0 & Data$Twi<=8 

Data2<-Data[Index,] 

Q<-Data2$Capacity 

mW<-Data2$Flow 

Twi<-Data2$Twi 

#Applying the Curve Fit through non-linear regression 

CurveFit<-nls(Q ~ (bo + b1*Twi)*(1 - exp(-(b2 + b3*Twi)*mW)),start = list(bo=2*max(Q),b1=-

.1*max(Q),b2=.1,b3=.001)) 

#Assigning coefficients to outputs so to use in constant Twi curve generation below 

bo<- coef(CurveFit)[1] 

b1<- coef(CurveFit)[2] 

b2<- coef(CurveFit)[3] 

b3<- coef(CurveFit)[4] 

#Drawing constant Twi prediction lines onto graph as sanity check. One can compare these to 

Matlab generated 

#Twi bin plots 

plot(mW,Q) 

legend(0.8*max(mW),.6*max(Q),c("5C Twi","6C Twi","7C Twi","8C 

Twi"),lty=c(1,1,1,1),lwd=c(2,2,2,2), 

       col=c("yellow","red","blue","purple")) 

points(mW,(bo + b1*8)*(1 - exp(-(b2 + b3*8)*mW)),col='purple', lty=1, lwd=2) 

points(mW,(bo + b1*7)*(1 - exp(-(b2 + b3*7)*mW)),col='blue', lty=1, lwd=2) 

points(mW,(bo + b1*6)*(1 - exp(-(b2 + b3*6)*mW)),col='red', lty=1, lwd=2) 

points(mW,(bo + b1*5)*(1 - exp(-(b2 + b3*5)*mW)),col='yellow', lty=1, lwd=2) 

#Establishing the Range of values to look at for a particular sizing indicator temp maximum 

observed. 

R<-0.2 

#Identifying the number of degress of freedom for the curvefit that will be applied to each Twi bin 

DOF<-4 

#Setting up Twi of 6.5 as sizing indicator temp for FPMC 

k1.6.5<- (bo + b1*6.5) 
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Index.6.5<-Data2$Twi<=(6.5 + R) & Data2$Twi>=(6.5 - R) 

ObservedMax.6.5<- max(Data2$Capacity[Index.6.5]) 

FPMC.6.5<-ObservedMax.6.5/k1.6.5 

#The below measure is intended to be a "goodness of fit". 

#Coefficient of Variation (CV) can be read as average deviation in data from 

#predicted CurveFit as a percentage of maximum the mean capacity 

CV<-sqrt(deviance(CurveFit)/(nrow(Data2)-DOF))*100/(mean(Q)) 

#Outputs to document for each RData set 

FPMC.6.5 

CV 

#Determination based of pre-established, climate dependent Cv to FPMC relationship 

CV.CAV <- 3.05*FPMC.6.5 + 0.418 

CV.VAV <- 2.79*FPMC.6.5 + 4.33 

#VAV predictions will register as TRUE, CAV predictions will register as FALSE 

abs(CV.VAV - CV)<abs(CV.CAV - CV) 

#Accounting for b1 inaccurately being a positive value. It is allowed to be positive as long as  

#crossover of constant Twi does not occur in the mW flow range plotted 

#True mean to trust previous distinction, False means a VAV classification 

((bo + b1*8)*(1 - exp(-(b2 + b3*8)*max(mW))))<=((bo + b1*5)*(1 - exp(-(b2 + b3*5)*max(mW)))) 

                                                     

I.4: L.A. 
#Cleaning up the workspace 

remove(list=objects()) 

graphics.off() 

library(plyr) 

library(ggplot2) 

library(reshape2) 

#Bringing in the raw data 

Data <- read.csv("RData.csv", sep=",", header=F) 
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names(Data)<-

c("Flow","Capacity","mA","Tai","Tao","h","RHai","RHao","Wai","Twi","Two","DeltaT","Month","Day",

"Hour","Min") 

#Selection of applicable data to analyze. Line 15 Data$Flow maximum may need adjusting pending 

the dataset 

#in effort to crop out any data with valve wide open.  This limit would not need to be put in place 

for  

#real world application of this method 

Index<-Data$Flow<=0.75*max(Data$Flow) & Data$Flow>0 & Data$Twi<=8 

Data2<-Data[Index,] 

Q<-Data2$Capacity 

mW<-Data2$Flow 

Twi<-Data2$Twi 

#Applying the Curve Fit through non-linear regression 

CurveFit<-nls(Q ~ (bo + b1*Twi)*(1 - exp(-(b2 + b3*Twi)*mW)),start = list(bo=2*max(Q),b1=-

0.1*max(Q),b2=.1,b3=.001)) 

#Assigning coefficients to outputs so to use in constant Twi curve generation below 

bo<- coef(CurveFit)[1] 

b1<- coef(CurveFit)[2] 

b2<- coef(CurveFit)[3] 

b3<- coef(CurveFit)[4] 

#Drawing constant Twi prediction lines onto graph as sanity check. One can compare these to 

Matlab generated 

#Twi bin plots 

plot(mW,Q) 

legend(0.8*max(mW),.6*max(Q),c("5C Twi","6C Twi","7C Twi","8C 

Twi"),lty=c(1,1,1,1),lwd=c(2,2,2,2), 

       col=c("yellow","red","blue","purple")) 

points(mW,(bo + b1*8)*(1 - exp(-(b2 + b3*8)*mW)),col='purple', lty=1, lwd=2) 

points(mW,(bo + b1*7)*(1 - exp(-(b2 + b3*7)*mW)),col='blue', lty=1, lwd=2) 

points(mW,(bo + b1*6)*(1 - exp(-(b2 + b3*6)*mW)),col='red', lty=1, lwd=2) 

points(mW,(bo + b1*5)*(1 - exp(-(b2 + b3*5)*mW)),col='yellow', lty=1, lwd=2) 
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#Establishing the Range of values to look at for a particular sizing indicator temp maximum 

observed. 

R<-0.2 

#Identifying the number of degress of freedom for the curvefit that will be applied to each Twi bin 

DOF<-4 

#Setting up Twi of 6.5 as sizing indicator temp for FPMC 

k1.6.5<- (bo + b1*6.5) 

Index.6.5<-Data2$Twi<=(6.5 + R) & Data2$Twi>=(6.5 - R) 

ObservedMax.6.5<- max(Data2$Capacity[Index.6.5]) 

FPMC.6.5<-ObservedMax.6.5/k1.6.5 

#The below measure is intended to be a "goodness of fit". 

#Coefficient of Variation (CV) can be read as average deviation in data from 

#predicted CurveFit as a percentage of maximum the mean capacity 

CV<-sqrt(deviance(CurveFit)/(nrow(Data2)-DOF))*100/(mean(Q)) 

#Outputs to document for each RData set 

FPMC.6.5 

CV 

#Determination based of pre-established, climate dependent Cv to FPMC relationship 

CV.CAV <- 5.96*FPMC.6.5 + 0.85 

CV.VAV <- 5.89*FPMC.6.5 + 5.25 

#VAV predictions will register as TRUE, CAV predictions will register as FALSE 

abs(CV.VAV - CV)<abs(CV.CAV - CV) 

#Accounting for b1 inaccurately being a positive value. It is allowed to be positive as long as  

#crossover of constant Twi does not occur in the mW flow range plotted 

#True mean to trust previous distinction, False means a VAV classification 

((bo + b1*8)*(1 - exp(-(b2 + b3*8)*max(mW))))<=((bo + b1*5)*(1 - exp(-(b2 + b3*5)*max(mW)))) 
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Appendix J: K2 Dependence on Twi Investigation Results 

J.1: Large Office Coils 
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J.2: Hospital Coils 
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Appendix K: Predicting Coils in Unestablished Location Investigation 
 

The directions for the order of implementing the following Matlab scripts can be seen in Appendix 
D.1.  Scripts in K.1 and K.2 contain adjustments to example_script_original.m and testoriginal.m for 

development of several new parameters.  These scripts were utilized in the investigation of 

applying the climate specific CAV/VAV Prediction Tools to alternate location.  K.3 contains 

additional scripts that need to be in Matlabs Working Directory in additional to all scripts available 

in Appendix D.4. 

 

K.1: Updated Matlab “example_script.m” 
% Example Script 
addpath(genpath(pwd)) 
clear;close all;clc 
%% Energy Plus 
% Define EP files to use 
% current path 
path_current = pwd; 
% location of idf (either "hospital" or "large office" work with this 
% script) 
[FileName,FilePath] = uigetfile(fullfile(path_current,'EnergyPlus','buildings','*.idf'),'Select building 
file'); 
file_idf = fullfile(FilePath,FileName); 
% location of weather file 
[FileName,FilePath] = uigetfile(fullfile(path_current,'EnergyPlus','weather','*.epw'),'Select weather 
File'); 
file_epw = fullfile(FilePath,FileName); 
% location of output 
path_output = fullfile(path_current,'EnergyPlus','results'); 
% location of energy plus program 
path_EP = uigetdir('c:','Locate EnergyPlus program directory'); 
  
% Simulation Parameters 
  
% number of timesteps per hour in accordance with EP timestep requirements 
timestep = 6; 
func_EP_timestep(timestep,file_idf); 
  
% simulation period 
begin_month = 4; 
begin_day = 1; 
end_month = 9; 
end_day = 30; 
func_EP_run_period(begin_month,begin_day,end_month,end_day,file_idf) 
  
% run EnergyPlus 
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func_EnergyPlus(file_idf,file_epw,path_output,path_EP) 
  
%% Import results from EnergyPlus 
% EP variable output file 
[~,EP] = fileparts(file_idf); 
file_EP = fullfile(path_output,[EP '.csv']); 
% import results 
[data,header] = xlsread(file_EP); 
% head time from header (you can use datenum and datestr commands to 
% further manipulate the time vector) 
time = header(2:end,1); 
% remove time from header 
header = header(1,2:end)'; 
% separate out the Hour of the day 
[Year Month Day Hour Min Sec]=datevec(time); 
% create list of unique air handling units 
list = cell(size(header)); 
for n = 1:numel(header); 
    list{n} = header{n}(1:5); 
end 
list = unique(list); 
% user select coil to use 
selection = listdlg('ListString',list); 
coil = list{selection}; 
% effectively remove unselected coils from header but preserve indexing 
for n = 1:numel(header) 
    check = strfind(header{n},coil); 
    if isempty(check) 
        header{n} = ''; 
    end 
end 
%function to find string in header and return index 
f_ind = @(str,header)(find(~cellfun('isempty',(strfind(header,str))))); 
% import relevent data series 
% water mass flow rate 
str = 'COOLCDEMAND INLET NODE:System Node Mass Flow Rate [kg/s](TimeStep)'; 
mW = data(:,f_ind(str,header)); 
% water inlet temperature 
str = 'COOLCDEMAND INLET NODE:System Node Temperature [C](TimeStep)'; 
Twi = data(:,f_ind(str,header)); 
% water outlet temperature 
str = 'COOLCDEMAND OUTLET NODE:System Node Temperature [C](TimeStep)'; 
Two = data(:,f_ind(str,header)); 
% air mass flow rate 
str = 'COOLCNODE:System Node Mass Flow Rate [kg/s](TimeStep)'; 
mA = data(:,f_ind(str,header)); 
% outdoor air mass flow rate 
str = 'OAINLET NODE:System Node Mass Flow Rate [kg/s](TimeStep)'; 
mOA = data(:,f_ind(str,header)); 
% air intlet temperature 
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str = 'COOLCNODE:System Node Temperature [C](TimeStep)'; 
Tai = data(:,f_ind(str,header)); 
% air outtlet temperature 
str = 'HEATCNODE:System Node Temperature [C](TimeStep)'; 
Tao = data(:,f_ind(str,header)); 
% air inlet humidity 
str = 'COOLCNODE:System Node Relative Humidity [%](TimeStep)'; 
RHai = data(:,f_ind(str,header)); 
% air outlet humidity 
str = 'HEATCNODE:System Node Relative Humidity [%](TimeStep)'; 
RHao = data(:,f_ind(str,header)); 
% Total coil cooling rate 
str = 'COOLC:Cooling Coil Total Cooling Rate [W](TimeStep)'; 
Q = data(:,f_ind(str,header)); 
% Sensible coil cooling rate 
str = 'COOLC:Cooling Coil Sensible Cooling Rate [W](TimeStep)'; 
Qs = data(:,f_ind(str,header)); 
  
% import elevation from EPW file.  Usefull calling the included 
% Psychrometric functions. 
Elevation = func_EP_elevation(file_epw); 
  
%Produce enthalpy output 
h = func_h_tdb_rh(Tai,RHai,Elevation); 
  
%Produce enthalpy of saturated air at coil surface 
%Relative humidity at coil surface is 100% 
RHcs = 1.0; 
hcs = func_hcs_tdb_rh(Twi,RHcs,Elevation); 
  
%Producing outputs for use in the investigation into why CV/FPMC 
%relationship change between locations 
    %Average percentage of OA during simulation period 
AvgPercentOA = mean(mOA./mA); 
    %Range of inlet air enthalpy  
Hmax = max(h); 
Hmin = min(h); 
Hrange = Hmax - Hmin; 
Havg = mean(h); 
    %Range of inlet air temperature 
Tmax = max(Tai); 
Tmin = min(Tai); 
Trange = Tmax - Tmin; 
Tavg = mean(Tai); 
    %Enthalpy potential between air and coil surface 
DeltaHmax = max(h - hcs); 
DeltaHmin = min(h - hcs); 
DeltaHrange = DeltaHmax - DeltaHmin; 
DeltaHavg = mean(h - hcs); 
    %Fining Sensible Heat Ratio and fraction of time where only sensible 
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    %cooling is occurings 
SHR = nanmean(Qs./Q); 
idx = Qs>=Q; 
SensibleOnly = size(h(idx),1)/size(h,1); 
    %Producing a matrix for easy export of these variables 
Outputs = 
[AvgPercentOA,SensibleOnly,SHR,Hmax,Hmin,Hrange,Havg,Tmax,Tmin,Trange,Tavg,DeltaHmax,Del
taHmin,DeltaHrange,DeltaHavg]; 
  
%Produce absolute humidity output 
Wai = func_w_tdb_rh(Tai,RHai,Elevation); 
  
%% Plots 
figure 
plot(mW,Q,'.b') 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('coil cooling rate') 
  
figure 
plot(Twi,'b','displayname','in') 
hold on 
plot(Two,'r','displayname','out') 
xlabel('timestep') 
ylabel('temperature [°C]') 
title('coil water temperature') 
legend('show') 
legend('Location','Southeast') 
  
figure 
plot(Tai,'r','displayname','in') 
hold on 
plot(Tao,'b','displayname','out') 
xlabel('timestep') 
ylabel('temperature [°C]') 
title('coil air temperature') 
legend('show') 
legend('Location','Southeast') 
  
figure 
plot(RHai,'r','displayname','in') 
hold on 
plot(RHao,'b','displayname','out') 
xlabel('timestep') 
ylabel('relative humidity [%]') 
title('coil relative humidity') 
legend('show') 
legend('Location','Southeast') 
  
figure 
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plot(mW,'b','displayname','water') 
hold on 
plot(mA,'r','displayname','air') 
xlabel('timestep') 
ylabel('mass flow rate [kg/s]') 
title('coil flow rates') 
legend('show') 
legend('Location','Southeast') 
  
%Inlet Air Temp Grouping 
Taigroup=ordinal(Tai,{'Under 15 C','15-20 C','20-25 C','25-30 C','Over 30 C'},[],[0,15,20,25,30,100]); 
figure 
gscatter(mW,Q,Taigroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Inlet Air Temp Binned') 
legend('Location','Southeast') 
  
%Inlet RH Grouping 
RHaigroup=ordinal(RHai,{'Under 30%','30-45%','45-60%','60-75%','Over 
70%'},[],[0,30,45,60,75,100]); 
figure 
gscatter(mW,Q,RHaigroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Inlet Relative Humidity Binned') 
legend('Location','Southeast') 
  
%Inlet Enthalpy Grouping 
hgroup=ordinal(h,{'Under 25 kJ/kg','25-30 kJ/kg','30-35 kJ/kg','35-40 kJ/kg','40-45 kJ/kg','45-50 
kJ/kg','50-55 kJ/kg','55-60 kJ/kg','60-70 kJ/kg','Over 70 
kJ/kg%'},[],[0,25,30,35,40,45,50,55,60,70,120]); 
figure 
gscatter(mW,Q,hgroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Inlet Air Enthalpy Binned') 
legend('Location','Southeast') 
  
%Inlet Air Humidity Ratio Grouping 
Waigroup=ordinal(Wai,{'Under 0.007','0.007-0.01','0.01-0.012','0.012-0.014','0.014-0.016','Over 
0.016'},[],[0,0.007,0.01,0.012,0.014,0.016,0.2]); 
figure 
gscatter(mW,Q,Waigroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Inlet Air Humidity Ratio Binned') 
legend('Location','Southeast') 
%Delta T Grouping 
DeltaT = Two-Twi; 
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DeltaTgroup=ordinal(DeltaT,{'Under 1 K','1-2 K','2-3 K','3-4 K','4-5 K','5-6 K','6-7 K','7-8 K','Over 
8'},[],[0,1,2,3,4,5,6,7,8,100]); 
figure 
gscatter(mW,Q,DeltaTgroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Delta T Binned') 
legend('Location','Southeast') 
  
%Air Flow Rate Grouping 
mAgroup=ordinal(mA,{'Under 5 kg/s','5-10 kg/s','10-15 kg/s','15-20 kg/s','20-25 kg/s','25-50 
kg/s','50-75 kg/s','75-100 kg/s','Over 100 kg/s'},[],[0,5,10,15,20,25,50,75,100,200]); 
figure 
gscatter(mW,Q,mAgroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Air Flow Rate Binned') 
legend('Location','Southeast') 
  
  
%Time of Day Grouping 
Hourgroup=ordinal(Hour,{'Before 6','6-8am','8am-noon','noon-5pm','5pm-
midnight'},[],[0,6,8,12,17,24]); 
figure 
gscatter(mW,Q,Hourgroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Time of Day Binned') 
legend('Location','Southeast') 
  
%Twi Grouping 
Twigroup=ordinal(Twi,{'<6 C','6-7 C','7-8 C','>8 C'},[],[0,6,7,8,10]); 
figure 
gscatter(mW,Q,Twigroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Twi Binned') 
legend('Location','Southeast') 
  
save2pdf('Twibin',13) 
save2pdf('TODbin',12); 
save2pdf('DeltaTbin',11); 
save2pdf('mAbin',10); 
save2pdf('Waibin',9); 
save2pdf('haibin',8); 
save2pdf('RHaibin',7); 
save2pdf('Taibin',6); 
save2pdf('QvsmW.pdf',1); 
  
% cleanup 
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rmpath(genpath(pwd)) 
% save data for R analysis 
 RData = [mW Q mA Tai Tao h RHai RHao Wai Twi Two DeltaT Month Day Hour Min]; 
 csvwrite('RData.csv',RData); 
  
 % cleanup 
 rmpath(genpath(pwd)) 
 
 

K.2: Matlab “test.m” 
clear;close all;clc 
%% Import results from EnergyPlus 
% EP variable output file 
file_EP = fullfile('MIAMIOfficeReset.csv'); 
% import results 
[data,header] = xlsread(file_EP); 
% head time from header (you can use datenum and datestr commands to 
% further manipulate the time vector) 
time = header(2:end,1); 
% remove time from header 
header = header(1,2:end)'; 
% separate out the Hour of the day 
[Year Month Day Hour Min Sec]=datevec(time); 
% create list of unique air handling units 
list = cell(size(header)); 
for n = 1:numel(header); 
    list{n} = header{n}(1:5); 
end 
list = unique(list); 
% user select coil to use 
selection = listdlg('ListString',list); 
coil = list{selection}; 
% effectively remove unselected coils from header but preserve indexing 
for n = 1:numel(header) 
    check = strfind(header{n},coil); 
    if isempty(check) 
        header{n} = ''; 
    end 
end 
%function to find string in header and return index 
f_ind = @(str,header)(find(~cellfun('isempty',(strfind(header,str))))); 
% import relevent data series 
% water mass flow rate 
str = 'COOLCDEMAND INLET NODE:System Node Mass Flow Rate [kg/s](TimeStep)'; 
mW = data(:,f_ind(str,header)); 
% water inlet temperature 
str = 'COOLCDEMAND INLET NODE:System Node Temperature [C](TimeStep)'; 
Twi = data(:,f_ind(str,header)); 
% water outlet temperature 
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str = 'COOLCDEMAND OUTLET NODE:System Node Temperature [C](TimeStep)'; 
Two = data(:,f_ind(str,header)); 
% air mass flow rate 
str = 'COOLCNODE:System Node Mass Flow Rate [kg/s](TimeStep)'; 
mA = data(:,f_ind(str,header)); 
% outdoor air mass flow rate 
str = 'OAINLET NODE:System Node Mass Flow Rate [kg/s](TimeStep)'; 
mOA = data(:,f_ind(str,header)); 
% air intlet temperature 
str = 'COOLCNODE:System Node Temperature [C](TimeStep)'; 
Tai = data(:,f_ind(str,header)); 
% air outtlet temperature 
str = 'HEATCNODE:System Node Temperature [C](TimeStep)'; 
Tao = data(:,f_ind(str,header)); 
% air inlet humidity 
str = 'COOLCNODE:System Node Relative Humidity [%](TimeStep)'; 
RHai = data(:,f_ind(str,header)); 
% air outlet humidity 
str = 'HEATCNODE:System Node Relative Humidity [%](TimeStep)'; 
RHao = data(:,f_ind(str,header)); 
% Total coil cooling rate 
str = 'COOLC:Cooling Coil Total Cooling Rate [W](TimeStep)'; 
Q = data(:,f_ind(str,header)); 
% Sensible coil cooling rate 
str = 'COOLC:Cooling Coil Sensible Cooling Rate [W](TimeStep)'; 
Qs = data(:,f_ind(str,header)); 
  
% import elevation from EPW file.  Usefull calling the included 
% Psychrometric functions. 
Elevation = 10; 
  
%Produce enthalpy output 
h = func_h_tdb_rh(Tai,RHai,Elevation); 
  
%Produce enthalpy output 
h = func_h_tdb_rh(Tai,RHai,Elevation); 
  
%Produce enthalpy of saturated air at coil surface 
%Relative humidity at coil surface is 100% 
RHcs = 1.0; 
hcs = func_hcs_tdb_rh(Twi,RHcs,Elevation); 
  
%Producing outputs for use in the investigation into why CV/FPMC 
%relationship change between locations 
    %Average percentage of OA during simulation period 
AvgPercentOA = mean(mOA./mA); 
    %Range of inlet air enthalpy  
Hmax = max(h); 
Hmin = min(h); 
Hrange = Hmax - Hmin; 
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Havg = mean(h); 
    %Range of inlet air temperature 
Tmax = max(Tai); 
Tmin = min(Tai); 
Trange = Tmax - Tmin; 
Tavg = mean(Tai); 
    %Enthalpy potential between air and coil surface 
DeltaHmax = max(h - hcs); 
DeltaHmin = min(h - hcs); 
DeltaHrange = DeltaHmax - DeltaHmin; 
DeltaHavg = mean(h - hcs); 
        %Fining Sensible Heat Ratio and fraction of time where only sensible 
    %cooling is occurings 
SHR = nanmean(Qs./Q); 
idx = Qs>=Q; 
SensibleOnly = size(h(idx),1)/size(h,1); 
    %Producing a matrix for easy export of these variables 
Outputs = 
[AvgPercentOA,SensibleOnly,SHR,Hmax,Hmin,Hrange,Havg,Tmax,Tmin,Trange,Tavg,DeltaHmax,Del
taHmin,DeltaHrange,DeltaHavg]; 
  
%Produce absolute humidity output 
Wai = func_w_tdb_rh(Tai,RHai,Elevation); 
  
%% Plot 
figure 
plot(mW,Q,'.b') 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('coil cooling rate') 
  
figure 
plot(Twi,'b','displayname','in') 
hold on 
plot(Two,'r','displayname','out') 
xlabel('timestep') 
ylabel('temperature [°C]') 
title('coil water temperature') 
legend('show') 
legend('Location','Southeast') 
  
figure 
plot(Tai,'r','displayname','in') 
hold on 
plot(Tao,'b','displayname','out') 
xlabel('timestep') 
ylabel('temperature [°C]') 
title('coil air temperature') 
legend('show') 
legend('Location','Southeast') 
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figure 
plot(RHai,'r','displayname','in') 
hold on 
plot(RHao,'b','displayname','out') 
xlabel('timestep') 
ylabel('relative humidity [%]') 
title('coil relative humidity') 
legend('show') 
legend('Location','Southeast') 
  
figure 
plot(mW,'b','displayname','water') 
hold on 
plot(mA,'r','displayname','air') 
xlabel('timestep') 
ylabel('mass flow rate [kg/s]') 
title('coil flow rates') 
legend('show') 
legend('Location','Southeast') 
  
%Inlet Air Temp Grouping 
Taigroup=ordinal(Tai,{'Under 15 C','15-20 C','20-25 C','25-30 C','Over 30 C'},[],[0,15,20,25,30,100]); 
figure 
gscatter(mW,Q,Taigroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Inlet Air Temp Binned') 
legend('Location','Southeast') 
  
%Inlet RH Grouping 
RHaigroup=ordinal(RHai,{'Under 30%','30-45%','45-60%','60-75%','Over 
70%'},[],[0,30,45,60,75,100]); 
figure 
gscatter(mW,Q,RHaigroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Inlet Relative Humidity Binned') 
legend('Location','Southeast') 
  
%Inlet Enthalpy Grouping 
hgroup=ordinal(h,{'Under 25 kJ/kg','25-30 kJ/kg','30-35 kJ/kg','35-40 kJ/kg','40-45 kJ/kg','45-50 
kJ/kg','50-55 kJ/kg','55-60 kJ/kg','60-70 kJ/kg','Over 70 
kJ/kg%'},[],[0,25,30,35,40,45,50,55,60,70,120]); 
figure 
gscatter(mW,Q,hgroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Inlet Air Enthalpy Binned') 
legend('Location','Southeast') 



204 
 

  
%Inlet Air Humidity Ratio Grouping 
Waigroup=ordinal(Wai,{'Under 0.007','0.007-0.01','0.01-0.012','0.012-0.014','0.014-0.016','Over 
0.016'},[],[0,0.007,0.01,0.012,0.014,0.016,0.2]); 
figure 
gscatter(mW,Q,Waigroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Inlet Air Humidity Ratio Binned') 
legend('Location','Southeast') 
%Delta T Grouping 
DeltaT = Two-Twi; 
DeltaTgroup=ordinal(DeltaT,{'Under 1 K','1-2 K','2-3 K','3-4 K','4-5 K','5-6 K','6-7 K','7-8 K','Over 
8'},[],[0,1,2,3,4,5,6,7,8,100]); 
figure 
gscatter(mW,Q,DeltaTgroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Delta T Binned') 
legend('Location','Southeast') 
  
%Air Flow Rate Grouping 
mAgroup=ordinal(mA,{'Under 5 kg/s','5-10 kg/s','10-15 kg/s','15-20 kg/s','20-25 kg/s','25-50 
kg/s','50-75 kg/s','75-100 kg/s','Over 100 kg/s'},[],[0,5,10,15,20,25,50,75,100,200]); 
figure 
gscatter(mW,Q,mAgroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Air Flow Rate Binned') 
legend('Location','Southeast') 
  
  
%Time of Day Grouping 
Hourgroup=ordinal(Hour,{'Before 6','6-8am','8am-noon','noon-5pm','5pm-
midnight'},[],[0,6,8,12,17,24]); 
figure 
gscatter(mW,Q,Hourgroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Time of Day Binned') 
legend('Location','Southeast') 
  
%Twi Grouping 
Twigroup=ordinal(Twi,{'<6 C','6-6.5 C','6.5-7','7-7.5','7.5-8 C','>8 C'},[],[0,6,6.5,7,7.5,8,10]); 
figure 
gscatter(mW,Q,Twigroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Twi Binned') 
legend('Location','Southeast') 
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save2pdf('Twibin',13) 
save2pdf('TODbin',12); 
save2pdf('DeltaTbin',11); 
save2pdf('mAbin',10); 
save2pdf('Waibin',9); 
save2pdf('haibin',8); 
save2pdf('RHaibin',7); 
save2pdf('Taibin',6); 
save2pdf('QvsmW.pdf',1); 
  
% cleanup 
rmpath(genpath(pwd)) 
% save data for R analysis 
 RData = [mW Q mA Tai Tao h RHai RHao Wai Twi Two DeltaT Month Day Hour Min]; 
 csvwrite('RData.csv',RData); 
  
 % cleanup 
 rmpath(genpath(pwd)) 
 
 

K.3: Additional Matlab Scripts Required in Matlab Directory 

 

K.3.1: func_hcs_tdb_rh 

function [Enthalpy] = func_h_tdb_rh(Twi,RHcs,Elevation) 
z = Elevation; % [m] 
t = Twi; % [°C] 
rh = RHcs; % [-]  
  
%calculate pressure as a function of altitude 
p = 101.325*(1-2.25577e-5*z)^5.2559*1000; %pressure, Pa 
  
%coefficients from ASHRAE Fundamentals Psychrometrics 
C8 = -5.8002206e03; 
C9 = 1.3914993e00; 
C10 = -4.8640239e-02; 
C11 = 4.1764768e-05; 
C12 = -1.4452093e-08; 
C13 = 6.5459673e00; 
  
%calc saturation pressure 
K = t+273.15; %convert to kelvin, K 
pws = exp(C8./K+C9+C10.*K+C11.*K.^2+C12.*K.^3+C13.*log(K)); %saturation pressure, Pa 
  
%calc vapor pressure 
pw = rh.*pws; %partial pressure, Pa 
  
%calc humidity ratio 
w = 0.621945.*pw./(p-pw); 
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%calc enthalpy 
h = (1006.*t+w.*(2501000+1860.*t))/1000; %enthalpy, kJ/kg_da 
  
%output 
Enthalpy = h; %enthalpy, kJ/kg_da 
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Appendix L: Optimal Control Strategy Testing Procedure and Scripts 
 

L.1: Steps for Initial Testing Simulations 
ESTABLISHING A NEW COIL MODEL TO BE SUBJECTED TO ENERGYPLUS INPUTS: 

1. Copy in correct RData.csv file from EnergyPlus simulations into Matlab's working directory 

2. Open NewPrerun.m script 

 - Enter in correct elevation on line 5 

 - Enter in proper coil parameters on lines 45 through 50 

3. Run New_Prerun.m 

4. Open and run TuningInputs.m script 

5. Open PIDTuning.slx 

 - Initially run with Inputs and PID control for mW 

- Ensure the following are met so we are working with a coil that can benefit from our 

advanced control logics 

  -- Delta T goes below 5.55 quite a bit of the time 

  -- Set point deviance on order of +3K 

- mWmax is brought down to just above max used in new model. This will help in 

controllability and better tuning of the PID's K paramters 

 - Switch inputs to use mean Twi, Tai, and Wai values to tune PID controller on a step change 

- Use Z-N closed loop tuning rules for initial estimates, then play around to see if you can get 

even better performance  

 - Run on 300 sec timesteps when tuning K parameters 

- Run one simulation on 30 sec timestep to generate coil data to apply the 4 Parameter 

Curve Fit to 

6. Run PostRun.m script 

7. Open RSTudio and run Strategies_CurveFit.R script.  Make note of the following: 

 - CV 

 - FMPC for 6.5 C Twi 

 - Coefficients bo, b1, b2, and b3 

 - mWlimit 

 -mW/DeltaTlimit 
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TUNING ADVANCED LOGICS' PID CONTROLLERS: 

8. Open and run Matlab script TuningInputs4Para.m.  This changes constant Tai, Wai and mA to 

tune the advanced controllers to. 

9. Open DeltaTmgrTuning.slx model in Simulink 

 - Ensure max flow rate in valve is set to what was used in classical PID tuning 

 - Adjust Delta T step change from 6 K to 5 K  

 - Run Z-N closed loop tuning method to tune the PI controller for a starting point 

 - See if you can further improve performance of controller to a Delta T setpoint step change 

 - Transfer over chosen k parameter into DeltaTmgr.slx model for future testing 

 - Tuning can be performed on 300 sec timesteps to aid 

 in minimizing computation time 

10. Open FlowoverDeltaTMgr.slx model in Simulink 

 - Ensure max flow rate in valve is set to what was used in classical PID tuning 

 - Adjust Setpoint mWoverDeltaT to what was determine when running Strategies_Limit.R 

 - Adjust the mWoverDeltaT step change to 0.1 below and 0.1 above that limit 

 - Run Z-N closed loop tuning method to tune the PI controller for a starting point 

 - See if you can further improve performance of controller to the setpoint step change 

 - Transfer over chosen k parameter into FlowoverDeltaTMgr.slx model for future testing 

 - Tuning can be performed on 300 sec timesteps to aid in minimizing computation time 

11. Open FourParaTuning.slx model in Simulink 

 - Ensure max flow rate in valve is set to what was used in classical PID tuning 

 - Enter in b2 and b3 coefficients into controller mask 

 - Adjust the Percent Saturation setpoint step change from 0.9 to 0.85 

 - Run Z-N closed loop tuning method to tune the PI controller for a starting point 

 - See if you can further improve performance of controller to the setpoint step change 

- Transfer over chosen k parameters and b coefficients into FourParmaterTesting.slx model 

for future testing 

 - Tuning can be performed on 300 sec timesteps to aid in minimizing computation time 

TESTING STRATEGIES AGAINST ONE ANOTHER 

12. Open PIDTuning.slx.   
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 - Switch inputs from constant to EP generated data 

 - Run 30 day simulation on 30 sec timestep 

 - Look at some scope to ensure nothing abnormal occurred 

 - Open and run Second_PostRun.m script in Matlab 

 - Record outputs into Excel chart for given coil 

- Repeat these steps for each control strategy. Ensure Classical PID k parameters are 

translated to each advance controller model prior to testing 

13. Repeat steps 1-12 for the Hospital CAV 1 and VAV 1 coils on a degrading Twi schedule  

14. Repeat steps 1-12 for the Office VAV 1 (CAV) and VAV 3 coils with a reset Twi schedule 

 

L.2: Steps for Secondary Testing 
1.  Of the Flow Limiting, Flow/DeltaT Limiting and Delta T Limiting Strategies, take the one with the 

lowest ISE value during initial simulations and use that value as a baseline. 

2. Open other 3 advanced controller models in Simulink (including 4ParaTesting.slx).   

3. Perform iterations on each one by adjusting their respective setpoints until all ISE’s for the four 

advanced controllers fall within 5% of each other.   

4. With each newly calibrated model, perform a final simulation, run Second_PostRun.m and record 

the results.  

 

L.3: Matlab Scripts Required to be in Working Directory 
 

L.3.1: NewPrerun.m 

addpath(genpath(pwd)) 
clear;close all;clc 
%I changed the input for Coil Height (line 32) and R_tube (line 40) to 
%match those of EP and took out the fouling factor 
%Establish elevation of location in which coil is being simulated 
Elevation = 1650; 
  
%Inport RData.csv as .mat file for use in Simulink simulation 
load('RData.csv'); 
%Cropped RData for only August timestamps 
RData2 = RData(35137:43776,:); 
%Creating a timestamp to be used in Simulink input data 
startValue = 0; 
endValue = 24*3600*30; %the amount of seconds in the simulation period 
nElements = 8640; %amount of data intervals when using 5 min timesteps 
time = linspace(startValue,endValue,nElements); 
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timestamp = transpose(time); 
%Creating a matrix with only the requried data for Simulink simulations 
Inputs = [timestamp RData2(:,3) RData2(:,10) RData2(:,4) RData2(:,9)]; 
%Establishing mWmax as will be applied to several PID controllers in 
%Simulink 
mWmax = max(RData2(:,1)); 
  
%% Typical Coil Input Properties 
%Coil Geometric Properties 
N_FinsPerMeter = 1/0.0018; %[] 
TubeInDiam = 0.01445; %[m] 
TubeOutDiam = 0.0159; %[m] 
FinWidth = .00015; %[m] 
  
N_Rows = 6; %[] 
N_TubesPerRow = 80; %[] 
CoilHeight = N_TubesPerRow*0.026; %[m] coil fin diameter is used instead, see EnergyPlus 
reference guide for explanation 
TISA = 30.5; %[m2] total inside surface area, this is an output from EnergyPlus which is used to 
estimate width of coil 
CoilWidth = TISA/(pi()*TubeInDiam*N_TubesPerRow*N_Rows); % [m] coil width 
CoilDepth = 0.156; %[m] 
FinDiameterEP = 3.6; %[m] 
FinHeight = (FinDiameterEP + CoilHeight)/2; %[m] this is more of a correction factor to allow A_Fin 
to be more closely aligned with EP outputs 
  
  
%Coil Material Properties 
K_Tube = 386; %[W/m-C] 
K_Fin = 204; %[W/m-C] 
  
%% Advanced Coil Input Properties 
%Coil Fluid Properties 
CpLiq = 4186; %[J/kg*C] 
DynViscLiq = 0.001519; %[kg/m-s] 
K_Liq = 0.5576; %[W/m-C] 
LatHeatVap = 2501000; %[J/kg] 
CpVap = 1860; %[J/kg-C] 
CpAir = 1006; %[J/kg-C] 
DynViscAir = 0.0000182; %[kg/m-s] 
K_Air = 0.026; %[W/m-C] 
%Other 
FoulingFactor = 0.0000030; %[m^2-C/W] 
TimeConstant = 0; %[s] 
  
%Circuiting 
%number of circuits usually equal to number of tubes per row. If edited it 
%will most likely be set to half of the number of tubes per row.  
%C = 1, full circuit; C = 2, half circuit  
Circuiting = 2; %specify circuiting 
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%NTU-effectiveness relationship 
% 0 = cross-flow and 1 = counter-flow 
NTU_eff_relation = 1; 
  
%% Coil Static Parameter Calculations 
% Row Spacing 
RowSpacing = CoilDepth/N_Rows; %[m] 
  
% Fin Density related Parameters 
%number of fins 
N_Fins = round(N_FinsPerMeter*CoilWidth); %[] 
%number of spaces between fins 
N_Spaces = N_Fins+1; %[] 
%width of space between fins 
FinSpace = (CoilWidth-N_Fins*FinWidth)/(N_Spaces); %[] 
  
% Transform Coil Height to Effective Fin Height 
%area of a single side of fin as viewed from water flow direction 
A_FinProfile = FinHeight*CoilDepth; %[m^2] 
%area of fin profile per intersecting tube 
A_FinPerTubeIntersection = A_FinProfile/(N_TubesPerRow*N_Rows); 
%effective tube diameter by using effective fin diameter that correlates to 
%same area 
FinDiameter = sqrt(4*A_FinPerTubeIntersection/pi); %[m] 
%effective fin height 
%Error in geometric input often indicated by a negative fin height 
if FinDiameter >= TubeOutDiam 
    FinHeight = (FinDiameter-TubeOutDiam)/2; %[m] 
else 
    disp('Geometric input not physically possible') 
    return 
end 
  
% Minimum Airflow Area 
%minimum area for airflow when viewing the coil face area from direction of 
%air flow 
%coil face area 
A_Face = CoilHeight*CoilWidth; %[m^2] 
%area of fin edges 
A_FinEdge = N_Fins*CoilHeight*FinWidth; %[m^2] 
%area of tube sections in space between fins at maximum tube diameter 
A_TubeMax = N_TubesPerRow*N_Spaces*FinSpace*TubeOutDiam; %[m*2] 
%minimum airflow area 
A_MinAirflow = A_Face-A_FinEdge-A_TubeMax; %[m*2] 
  
%Error in geometric input often indicated by a negative minimum airflow area 
if A_MinAirflow <= 0; 
    disp('Geometric input not physically possible') 
    return 
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end 
  
% Air-side Contact Area 
%section area of tube as it passes through plate fin 
A_TubeIntersectionAnnulus = pi*(TubeOutDiam/2)^2; %[m^2] 
%air contact area of combined fins less the tube annuli 
A_Fin = 2*N_Fins*(A_FinProfile-N_TubesPerRow*N_Rows*A_TubeIntersectionAnnulus); %[m^2] 
%air contact area of tube sections in fin spaces 
A_TubeOut = N_Spaces*N_Rows*N_TubesPerRow*pi*TubeOutDiam*FinSpace; %[m^2] 
%air-side contact area 
A_AirSide = A_Fin+A_TubeOut; %[m^2] 
  
% Water-side Contact Area 
%area of tube contact with water 
A_WaterSide = N_Rows*N_TubesPerRow*CoilWidth*pi*TubeInDiam; %[m^2] 
  
% Number of Circuits 
N_Circuits = N_TubesPerRow/Circuiting; %[] 
  
% Tube Spacing 
TubeSpacing = CoilHeight/N_TubesPerRow; %[m] 
  
% Hydrolic Diameter 
HydrolicDiamLiq = TubeInDiam; %[m] 
HydrolicDiamAir = 4*A_MinAirflow*CoilDepth/A_AirSide; %[m] 
  
% Tube Length 
TubeLength = CoilWidth; %[m] 
  
% Conduction Resistance 
R_TubeCond = 0.5*TubeInDiam*log(TubeOutDiam/TubeInDiam)/K_Tube+FoulingFactor; 
%[m^2*C/W] 
  
% Pressure as a function of alititude 
%from ASHRAE Fundementals - Psychrometrics 
Pressure = 101325*(1-2.25577*10^(-5)*Elevation)^5.2559; %[Pa] 
  
% Dynamic Liquid Viscocity at the Wall 
DynViscLiqWall = 0.93*DynViscLiq; %[kg/m-s] 
  
% Coefficients phi Dry Fin Efficiency Calculation 
RTube = TubeOutDiam/2; 
mFin = TubeSpacing/2; 
lFin = sqrt(RowSpacing^2+mFin^2)/2; 
RRat = 1.27*mFin/RTube*sqrt(lFin/mFin-0.3); 
phi = (RRat-1)*(1+0.35*log(RRat)); 
  
% C1 and C2 for j-factor correlation 
c1 = 0.159*(FinWidth/FinHeight)^0.141*(HydrolicDiamAir/FinWidth)^0.065; 
c2 =  -0.323*(FinWidth/FinHeight)^0.049*((FinSpace+FinWidth)/FinWidth)^0.077; 
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%% Create Table Lookup for Condensate Temp from hsat 
%given an atmoshperic pressure create lookup table for Tdb for 100 relative humidity 
%given an enthalpy 
RH = 100; 
Tdb = 0:.01:40; 
p = Pressure; 
  
%coefficients from ASHRAE Fundamentals Psychrometrics 
C8 = -5.8002206e03; 
C9 = 1.3914993e00; 
C10 = -4.8640239e-02; 
C11 = 4.1764768e-05; 
C12 = -1.4452093e-08; 
C13 = 6.5459673e00; 
  
hsat = zeros(1,numel(Tdb)); 
for i = 1:numel(Tdb); 
    t = Tdb(i); 
     
    %calc saturation pressure - ASHRAE Fundaments-Psychrometrics eqn. 6 
    K = t+273.15; %convert to kelvin, K 
    pws = exp(C8/K+C9+C10*K+C11*K^2+C12*K^3+C13*log(K)); %saturation pressure, Pa 
     
    %calculate saturation humidity ratio 
    %ASHRAE Fundamentsl-Psychrometrics eqn. 23 
    ws = 0.621945*pws/(p-pws); %stauration humidity ratio at dry-bulb, ratio 
     
    %ASHRAE Fundamentals-Psychrometrics eqn. 32 
    h = CpAir*t+ws*(LatHeatVap+CpVap*t); %enthalpy at first air-state, kJ/kg 
     
    hsat(i) = h; 
end 
  
%lookup table for T based on hsat 
Table_hsat_Tdb = [hsat' Tdb']; 
  
%% List needed Variables 
TimeConstant; 
TubeInDiam; 
TubeOutDiam; 
N_TubesPerRow; 
N_Rows; 
N_Spaces; 
N_Circuits; 
FinWidth; 
FinDiameter; 
FinSpace; 
TubeSpacing; 
HydrolicDiamAir; 
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HydrolicDiamLiq; 
A_AirSide; 
A_WaterSide; 
A_Fin; 
A_MinAirflow; 
TubeLength; 
R_TubeCond; 
phi; 
c1; 
c2; 
 

L.3.2: TuningInputs.m 

mA = mean(RData2(:,3)); 
Tai = mean(RData2(:,4)); 
Wai = mean(RData2(:,9)); 
Twi = mean(RData2(:,10)); 
 

L.3.3: PostRun.m 

%Export data into usable file for R to perform 4 Parameter Curve 
csvwrite('newRData.csv',Q_Twi_mW); 
  
%Twi Grouping 
Flow = Q_Twi_mW(:,3); 
InletWater = Q_Twi_mW(:,2); 
Capacity = Q_Twi_mW(:,1); 
Twigroup=ordinal(InletWater,{'<6 C','6-7 C','7-8 C','>8 C'},[],[0,6,7,8,10]); 
figure 
gscatter(Flow,Capacity,Twigroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Twi Binned') 
legend('Location','Southeast') 
  
save2pdf('TwibinAug',1) 
  
  
%Inlet Air Humidity Ratio Grouping 
Wai = Q_Twi_mW(:,4); 
Waigroup=ordinal(Wai,{'Under 0.007','0.007-0.01','0.01-0.012','0.012-0.014','0.014-0.016','Over 
0.016'},[],[0,0.007,0.01,0.012,0.014,0.016,0.2]); 
figure 
gscatter(Flow,Capacity,Waigroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Inlet Air Humidity Ratio Binned') 
legend('Location','Southeast') 
%Delta T Grouping 
DeltaT = Q_Twi_mW(:,5); 
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DeltaTgroup=ordinal(DeltaT,{'Under 1 K','1-2 K','2-3 K','3-4 K','4-5 K','5-6 K','6-7 K','7-8 K','Over 
8'},[],[0,1,2,3,4,5,6,7,8,100]); 
figure 
gscatter(Flow,Capacity,DeltaTgroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Delta T Binned') 
legend('Location','Southeast') 
  
   
 % cleanup 
 rmpath(genpath(pwd)) 
 

L.3.4: TuningInputs4Para.m 

mA = mean(RData2(:,3)); 
Tai = max(RData2(:,4)); 
Wai = max(RData2(:,9)); 
Twi = max(RData2(:,10)); 
 

L.3.5: SecondPostRun.m 

%Producing outputs that need to be recorded in order to accurately compare 
%the various advanced control strategies 
  
%Cropping out initial dynamic behavior before settling occurs in simulation 
%Remove the first hour's data (on 30 sec fixed timesteps) 
  
%maximum setpoint error 
SPError = -min(SetpointDeviance(120:86401,1)); 
  
%Integral Squarred Error 
TotalISE = max(ISE(120:86401,1))-ISE(120,1); 
  
%Cooling power provided to system 
Cooling_pwr = max(CoolingPwrSupplied(:,1)); 
  
%Max flow used 
MaxFlow = max(MaxmW(120:86401,1)); 
  
%Pumping power 
Pump_pwr = max(SummerFlowPower(:,1)); 
  
%Average Delta T 
DeltaTAvg = mean(DeltaT(120:86401,1)); 
  
%Min Delta T 
DeltaTmin = min(DeltaT(120:86401,1)); 
  
%Max Delta T 
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DeltaTmax = max(DeltaT(120:86401,1)); 
  
%Fraction of time advanced control strategy is used 
IndexFraction = SignalSelection <= 1; 
Fraction = numel(SignalSelection(IndexFraction))/numel(SignalSelection); 
  
%Outputs 
OUTPUTS = [Fraction SPError TotalISE Cooling_pwr MaxFlow Pump_pwr DeltaTAvg DeltaTmin 
DeltaTmax]; 
 

L.3.6: RestrictionPlots.m 

%mW Limiting Restriction 
Flow = Q_Twi_mW1(:,3); 
InletWater = Q_Twi_mW1(:,2); 
Capacity = Q_Twi_mW1(:,1); 
mWgroup=ordinal(Flow,{'Unrestricted','Restricted'},[],[0,18.91,1000]); 
figure 
gscatter(Flow,Capacity,mWgroup,['green','red']); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('mW Limiting Restriction') 
legend('Location','Southeast') 
  
save2pdf('mWRestriction',1) 
  
%Delta T Limiting 
DeltaT = -Q_Twi_mW1(:,5); 
DeltaTgroup=ordinal(DeltaT,{'Unrestricted','Restricted'},[],[-100,-5.5,0]); 
figure 
gscatter(Flow,Capacity,DeltaTgroup,['green','red']); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Delta T Limiting Restriction') 
legend('Location','Southeast') 
  
save2pdf('DeltaTRestriction',2) 
  
%Flow/Delta T Limiting 
mW_DT=-Flow./DeltaT; 
DeltaTgroup=ordinal(mW_DT,{'Unrestricted','Restricted'},[],[0,3.41,100]); 
figure 
gscatter(Flow,Capacity,DeltaTgroup,['green','red']); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Flow Over Delta T Limiting Restriction') 
legend('Location','Southeast') 
  
save2pdf('mWDeltaTRestriction',3) 
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%4 Para Control 
FourPara=Q_Twi_mW1(:,4); 
FourParagroup=ordinal(FourPara,{'Unrestricted','Restricted'},[],[0,0.85,100]); 
figure 
gscatter(Flow,Capacity,FourParagroup,['green','red']); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('4 Parameter Control Restriction') 
legend('Location','Southeast') 
  
save2pdf('4ParaRestriction',4) 
  
%Twi Grouping 
Twigroup=ordinal(InletWater,{'<6 C','6-7 C','7-8 C','>8 C'},[],[0,6,7,8,10]); 
figure 
gscatter(Flow,Capacity,Twigroup); 
xlabel('water flow rate [kg/s]') 
ylabel('coil cooling [w]') 
title('Twi Binned') 
legend('Location','Southeast') 
  
save2pdf('TwiBinPlot',5) 
  
 % cleanup 
 rmpath(genpath(pwd)) 
 

L.4: R Script for Optimal Strategy Testing 
 

L.4.1: Strategies_CruveFit.R 

#Updated Miami Script for troubleshooting R errors 

#Cleaning up the workspace 

remove(list=objects()) 

graphics.off() 

library(plyr) 

library(ggplot2) 

library(reshape2) 

#Bringing in the raw data 

Data <- read.csv("newRData.csv", sep=",", header=F) 

names(Data)<-c("Capacity","Twi","Flow") 

#Selection of applicable data to analyze. Line 15 Data$Flow maximum may need adjusting pending 

the dataset 
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#in effort to crop out any data with valve wide open.  This limit would not need to be put in place 

for  

#real world application of this method 

Index<- Data$Flow<=0.95*max(Data$Flow) & Data$Flow>0 & Data$Twi<=8 

Data2<-Data[Index,] 

Q<-Data2$Capacity 

mW<-Data2$Flow 

Twi<-Data2$Twi 

#Applying the Curve Fit through non-linear regression 

CurveFit<-nls(Q ~ (bo + b1*Twi)*(1 - exp(-(b2 + b3*Twi)*mW)),start = list(bo=2*max(Q),b1=-

0.1*max(Q),b2=.1,b3=.001)) 

#Assigning coefficients to outputs so to use in constant Twi curve generation below 

bo<- coef(CurveFit)[1] 

b1<- coef(CurveFit)[2] 

b2<- coef(CurveFit)[3] 

b3<- coef(CurveFit)[4] 

#Drawing constant Twi prediction lines onto graph as sanity check. One can compare these to 

Matlab generated 

#Twi bin plots 

plot(mW,Q) 

legend(0.8*max(mW),.6*max(Q),c("5C Twi","6C Twi","7C Twi","8C 

Twi"),lty=c(1,1,1,1),lwd=c(2,2,2,2), 

       col=c("yellow","red","blue","purple")) 

points(mW,(bo + b1*8)*(1 - exp(-(b2 + b3*8)*mW)),col='purple', lty=1, lwd=2) 

points(mW,(bo + b1*7)*(1 - exp(-(b2 + b3*7)*mW)),col='blue', lty=1, lwd=2) 

points(mW,(bo + b1*6)*(1 - exp(-(b2 + b3*6)*mW)),col='red', lty=1, lwd=2) 

points(mW,(bo + b1*5)*(1 - exp(-(b2 + b3*5)*mW)),col='yellow', lty=1, lwd=2) 

#Setting key parameters 

k1.6.7<- (bo + b1*6.7) 

#Establishing the Range of values to look at for a particular sizing indicator temp maximum 

observed. 
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R<-0.2 

#Identifying the number of degress of freedom for the curvefit that will be applied to each Twi bin 

DOF<-4 

#Setting up Twi of 6.5 as sizing indicator temp for FPMC 

k1.6.5<- (bo + b1*6.5) 

Index.6.5<-Data2$Twi<=(6.5 + R) & Data2$Twi>=(6.5 - R) 

ObservedMax.6.5<- max(Data2$Capacity[Index.6.5]) 

FPMC.6.5<-ObservedMax.6.5/k1.6.5 

#The below measure is intended to be a "goodness of fit". 

#Coefficient of Variation (CV) can be read as average deviation in data from 

#predicted CurveFit as a percentage of maximum the mean capacity 

CV<-sqrt(deviance(CurveFit)/(nrow(Data2)-DOF))*100/(mean(Q)) 

##Determining limits for several advanced control strategies 

#Finding mW when design Twi of 6.7 C theoretically experiences a delta T low limit of 5.55 

f <- function (mWlimt) mWlimt*4181.4*5.55-(bo+b1*6.7)*(1-exp(-(b2 + b3*6.7)*mWlimt)); 

convergence <- uniroot(f, lower = 0.1, upper = 400, tol = 0.0001); 

mWlimit <- convergence$root 

#Finding the flow over delta T limit 

flowoverDTlimit <- mWlimit/5.55 

#Outputs for second Simulink Run 

Outputs<- c(bo,b1,b2,b3,mWlimit,flowoverDTlimit) 

OutputsDF<-matrix(Outputs, ncol=6, nrow=1) 

#Outputs to document for each RData set 

FPMC.6.5 

CV 
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Appendix M: Optimal Control Strategy Testing Results 
 

M.1: Initial Round of Simulations 

 

 

 

 

 

 

 

 

 

Climate Building System Twi Schedule Configuration FPMC CV

Miami Hospital CAV 1 Degrading 7 Row 0.704 1.73

Control Strategy Limit ISE Increase (%)Cooling Pwr Decrease (%)Pumping Pwr Decrease (%)Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 5.0

mW Limiting 15.69 3750 4.65 53 0.014 11.3 5.8

mW/DeltaT Limiting 2.82 4110 4.26 51 0.012 12.0 5.7

DeltaT Limiting 5.55 4970 4.54 52 0.010 11.4 5.7

4 Parameter Control 0.85 387 0.49 17 0.044 34.7 5.1

4 Parameter Control 0.8 1309 1.22 29 0.022 23.5 5.2

4 Parameter Control 0.75 3119 2.31 38 0.012 16.5 5.4

4 Parameter Control 0.7 6325 4.19 48 0.008 11.4 5.7

Climate Building System Twi Schedule Configuration FPMC CV

Miami Hospital VAV 1 Degrading 7 Row 0.72 3.92

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 7.4

mW Limiting 18.91 625 3.30 70 0.112 21.2 7.8

mW/DeltaT Limiting 3.41 976 3.30 70 0.072 21.2 7.5

DeltaT Limiting 5.55 1181 3.75 71 0.060 19.1 7.5

4 Parameter Control 0.85 1255 3.90 71 0.056 18.1 7.6

4 Parameter Control 0.8 2126 5.85 77 0.036 13.1 7.8

4 Parameter Control 0.75 3387 8.11 82 0.024 10.1 8.0

4 Parameter Control 0.7 5180 10.77 85 0.016 7.9 8.4

Climate Building System Twi Schedule Configuration FPMC CV

Miami Office VAV 1 (CAV) Reset 7 Row 0.35 6.52

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%)Pumping Pwr Decrease (%)Pumping/ISE Pumping/CoolingAvg Delta T

DAT Tracking N/A  -  -  - 4.5

mW Limiting 7.16 5065 9.90 52 0.010 5.2 5.4

mW/DeltaT Limiting 1.72 7781 9.20 50 0.006 5.4 5.4

DeltaT Limiting 5.55 122932 20.55 49 0.000 2.4 5.6

4 Parameter Control 0.85 7 0.00 0 -0.006 40.3 4.5

Climate Building System Twi Schedule Configuration FPMC CV

Miami Office VAV 3 Reset 4 Row 0.73 4.97

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%)Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 5.7

mW Limiting 6.96 710 1.09 17 0.024 15.7 5.8

mW/DeltaT Limiting 1.25 525 0.74 13 0.026 18.2 5.7

DeltaT Limiting 5.55 15664 5.08 19 0.001 3.7 5.8

4 Parameter Control 0.8 157 0.18 4 0.028 24.8 5.7

4 Parameter Control 0.75 598 0.56 10 0.016 16.9 5.7

4 Parameter Control 0.7 1628 1.24 15 0.009 12.1 5.8

4 Parameter Control 0.65 3527 2.15 19 0.006 9.1 5.9

Climate Building System Twi Schedule Configuration FPMC CV

LA Hospital CAV 1 Degrading 7 Row 0.59 8.15

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 5.0

mW Limiting 10.01 11741 12.45 76 0.006 6.1 6.3

mW/DeltaT Limiting 1.82 8693 9.38 71 0.008 7.5 6.0

DeltaT Limiting 5.55 6499 6.80 64 0.010 9.4 5.7

4 Parameter Control 0.8 164 0.16 9 0.054 55.1 5.0

4 Parameter Control 0.75 466 0.44 17 0.036 38.6 5.0

4 Parameter Control 0.7 1102 0.90 25 0.023 28.0 5.1

4 Parameter Control 0.65 2234 1.67 35 0.015 20.7 5.2
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Climate Building System Twi Schedule Configuration FPMC CV

LA Hospital VAV 1 Degrading 6 Row 0.283 6.32

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 6.6

mW Limiting 10.01 327 1.82 42 0.128 23.0 6.7

mW/DeltaT Limiting 1.82 842 2.39 47 0.056 19.8 6.6

DeltaT Limiting 5.55 1828 4.17 56 0.031 13.5 6.7

4 Parameter Control 0.85 186 0.46 16 0.085 34.2 6.4

4 Parameter Control 0.8 392 0.92 25 0.065 27.6 6.5

4 Parameter Control 0.75 707 1.55 34 0.048 21.8 6.5

4 Parameter Control 0.7 1200 2.36 42 0.035 17.6 6.6

Climate Building System Twi Schedule Configuration FPMC CV

LA Office VAV 1 (CAV) Reset 5 Row 0.78 2.1

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 4.1

mW Limiting 5.76 39503 22.73 82 0.002 3.6 6.3

mW/DeltaT Limiting 1.04 29280 19.26 78 0.003 4.1 6.0

DeltaT Limiting 5.55 21316 15.10 69 0.003 4.6 5.6

4 Parameter Control 0.75 34 0.02 0 -0.001 -1.9 4.1

4 Parameter Control 0.7 289 0.21 0 0.001 1.9 4.1

4 Parameter Control 0.65 1153 0.89 3 0.003 3.7 4.2

4 Parameter Control 0.6 3500 2.28 9 0.003 4.0 4.3

Climate Building System Twi Schedule Configuration FPMC CV

LA Office VAV 3 Reset 4 Row 1.04 19.4

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 6.1

mW Limiting 3.8 5431 0.84 6 0.001 7.5 6.2

mW/DeltaT Limiting 0.68 384 0.08 1 0.002 8.8 6.1

DeltaT Limiting 5.55 249850 7.13 12 0.000 1.7 6.2

4 Parameter Control 0.75 0 0.00 0 #DIV/0! #DIV/0! 6.1

Climate Building System Twi Schedule Configuration FPMC CV

Atlanta Hospital CAV 1 Degrading 8 Row 0.58 2.04

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 5.8

mW Limiting 16.67 484 1.28 24 0.050 18.9 6.0

mW/DeltaT Limiting 3 947 1.51 27 0.028 17.7 6.0

DeltaT Limiting 5.55 2231 2.47 33 0.015 13.2 6.2

4 Parameter Control 0.75 84 0.09 4 0.042 40.1 5.9

4 Parameter Control 0.7 453 0.68 16 0.034 22.8 5.9

4 Parameter Control 0.65 1357 1.57 25 0.018 15.9 6.0

4 Parameter Control 0.6 3067 3.00 34 0.011 11.3 6.2

Climate Building System Twi Schedule Configuration FPMC CV

Atlanta Hospital VAV 1 Degrading 6 Row 0.69 6.06

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 6.8

mW Limiting 14.97 626 5.24 80 0.128 15.2 7.1

mW/DeltaT Limiting 2.7 751 4.55 78 0.104 17.2 6.8

DeltaT Limiting 5.55 1147 5.98 81 0.071 13.6 7.0

4 Parameter Control 0.85 46 0.18 21 0.460 117.5 6.3

4 Parameter Control 0.8 104 0.71 45 0.432 63.7 6.4

4 Parameter Control 0.75 229 1.40 57 0.250 40.8 6.5

4 Parameter Control 0.7 430 2.33 66 0.153 28.2 6.6
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Climate Building System Twi Schedule Configuration FPMC CV

Atlanta Office VAV 1 (CAV) Reset 6 Row 0.52 9.58

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%)Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 5.6

mW Limiting 9.01 48 0.05 1 0.022 23.0 5.6

mW/DeltaT Limiting 1.62 46 0.02 1 0.015 40.3 5.6

DeltaT Limiting 5.55 102342 9.56 19 0.000 2.0 5.9

4 Parameter Control 0.75 0 0.00 0 #DIV/0! #DIV/0! 5.6

Climate Building System Twi Schedule Configuration FPMC CV

Atlanta Office VAV 3 Reset 5 Row 0.66 11.49

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 5.5

mW Limiting 9.01 3145 5.42 53 0.017 9.8 6.0

mW/DeltaT Limiting 1.62 2015 3.76 45 0.023 12.1 5.8

DeltaT Limiting 5.55 4578 4.08 37 0.008 9.0 5.7

4 Parameter Control 0.8 64 0.10 4 0.058 35.8 5.5

4 Parameter Control 0.75 260 0.45 10 0.039 22.9 5.5

4 Parameter Control 0.7 749 1.17 18 0.024 15.6 5.6

4 Parameter Control 0.65 1686 2.19 25 0.015 11.4 5.7

Climate Building System Twi Schedule Configuration FPMC CV

Boulder Hospital CAV 1 Degrading 7 Row 1.33 22.6

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 5.2

mW Limiting 7.78 1586 6.25 85 0.053 13.5 6.0

mW/DeltaT Limiting 1.4 2192 5.83 84 0.038 14.4 5.9

DeltaT Limiting 5.55 9323 12.20 85 0.009 7.0 6.0

4 Parameter Control 0.85 427 1.89 47 0.109 24.7 5.4

4 Parameter Control 0.8 860 3.03 66 0.077 21.9 5.6

4 Parameter Control 0.75 1584 4.76 78 0.050 16.5 5.9

4 Parameter Control 0.7 2662 7.05 83 0.031 11.7 6.1

Climate Building System Twi Schedule Configuration FPMC CV

Boulder Hospital VAV 1 Degrading 8 Row 0.89 29.76

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 5.9

mW Limiting 7.19 1402 8.99 93 0.066 10.4 6.7

mW/DeltaT Limiting 1.29 1357 6.66 92 0.068 13.8 6.5

DeltaT Limiting 5.55 2578 8.18 91 0.035 11.1 6.5

4 Parameter Control 0.85 985 6.96 45 0.046 6.5 6.3

4 Parameter Control 0.8 1493 9.13 49 0.033 5.4 6.4

4 Parameter Control 0.75 2160 11.53 53 0.025 4.6 6.5

4 Parameter Control 0.7 3005 14.17 58 0.019 4.1 6.6

Climate Building System Twi Schedule Configuration FPMC CV

Boulder Office VAV 1 (CAV) Reset 5 Row 1.33 13.8

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 4.1

mW Limiting 5.24 11959 13.18 70 0.006 5.3 5.1

mW/DeltaT Limiting 0.93 15175 13.94 71 0.005 5.1 5.1

DeltaT Limiting 5.55 70475 26.89 76 0.001 2.8 5.4

4 Parameter Control 0.85 458 0.88 5 0.011 5.6 4.1

4 Parameter Control 0.8 727 1.42 6 0.008 4.2 4.1

4 Parameter Control 0.75 1496 2.53 7 0.005 2.8 4.2

4 Parameter Control 0.7 3507 4.55 14 0.004 3.0 4.4
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M.2: Final Round of Simulations 

 

 

 

 

 

 

 

 

 

 

Climate Building System Twi Schedule Configuration FPMC CV

Boulder Office VAV 3 Reset 6 Row 1.07 24.1

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 5.2

mW Limiting 3.62 2349 2.88 94 0.040 32.6 5.5

mW/DeltaT Limiting 0.652 850 1.11 93 0.109 83.9 5.3

DeltaT Limiting 5.55 13605 6.61 93 0.007 14.1 5.8

4 Parameter Control 0.85 4308 1.75 58 0.013 33.0 5.3

4 Parameter Control 0.8 5821 2.35 61 0.010 26.0 5.4

4 Parameter Control 0.75 7955 3.29 65 0.008 19.8 5.5

4 Parameter Control 0.7 10906 4.82 69 0.006 14.3 5.6

Climate Building System Twi Schedule Configuration FPMC CV

Miami Hospital CAV 1 Degrading 7 Row 0.704 1.73

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%)Pumping Pwr Decrease (%)Pumping/ISE Pumping/CoolingAvg Delta T

DAT Tracking N/A  -  -  - 5.0

mW Limiting 15.69 3750 4.65 53 0.014 11.3 5.8

mW/DeltaT Limiting 3 3554 3.18 48 0.013 15.0 5.6

DeltaT Limiting 5.27 3656 2.73 45 0.012 16.4 5.5

4 Parameter Control 0.745 3564 2.02 39 0.011 19.0 5.4

Climate Building System Twi Schedule Configuration FPMC CV

Miami Hospital VAV 1 Degrading 7 Row 0.72 3.92

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 7.4

mW Limiting 18.91 625 3.30 70 0.112 21.2 7.8

mW/DeltaT Limiting 4.8 608 1.96 62 0.101 31.5 7.3

DeltaT Limiting 4.8 642 2.20 63 0.099 28.8 7.4

4 Parameter Control 0.91 609 2.09 60 0.098 28.4 7.3

Climate Building System Twi Schedule Configuration FPMC CV

Miami Office VAV 1 (CAV) Reset 7 Row 0.35 6.52

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 4.5

mW Limiting 7.16 5065 9.90 52 0.010 5.2 5.4

mW/DeltaT Limiting 1.72 5111 6.81 42 0.008 6.1 5.2

DeltaT Limiting 4.05 5252 2.37 11 0.002 4.5 4.7

4 Parameter Control 0.85 7 0.00 0 -0.006 40.3 4.5

Climate Building System Twi Schedule Configuration FPMC CV

Miami Office VAV 3 Reset 4 Row 0.73 4.97

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 5.7

mW Limiting 7.3 512 0.85 15 0.028 17.1 5.7

mW/DeltaT Limiting 1.25 525 0.74 13 0.026 18.2 5.7

DeltaT Limiting 5.55 525 0.25 4 0.007 14.0 5.7

4 Parameter Control 0.7552 530 0.51 9 0.017 17.5 5.7

Climate Building System Twi Schedule Configuration FPMC CV

LA Hospital CAV 1 Degrading 7 Row 0.73 4.61

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 5.0

mW Limiting 7 455 61.75 95 0.209 1.5 5.8

mW/DeltaT Limiting 1.2 462 61.61 95 0.205 1.5 5.7

DeltaT Limiting 5 450 61.42 94 0.209 1.5 5.7

4 Parameter Control 0.74 477 61.50 94 0.197 1.5 5.7
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Climate Building System Twi Schedule Configuration FPMC CV

LA Hospital VAV 1 Degrading 6 Row 0.283 6.32

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 6.1

mW Limiting 16.25 461 1.63 42 0.091 25.8 6.7

mW/DeltaT Limiting 4.6 419 0.80 33 0.078 41.0 6.5

DeltaT Limiting 4 434 0.67 30 0.070 44.9 6.5

4 Parameter Control 0.845 423 0.31 17 0.039 53.2 6.5

Climate Building System Twi Schedule Configuration FPMC CV

LA Office VAV 1 (CAV) Reset 5 Row 0.78 2.1

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 4.1

mW Limiting 9.7 4853 6.09 48 0.010 7.9 4.8

mW/DeltaT Limiting 2.08 4932 5.71 47 0.009 8.2 4.7

DeltaT Limiting 5 5004 5.59 43 0.009 7.8 4.7

4 Parameter Control 0.58 5116 3.20 14 0.003 4.3 4.4

Climate Building System Twi Schedule Configuration FPMC CV

LA Office VAV 3 Reset 4 Row 1.04 19.4

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 6.1

mW Limiting 3.8 5431 0.84 6 0.001 7.5 6.2

mW/DeltaT Limiting 0.5 5535 0.64 5 0.001 7.6 6.2

DeltaT Limiting 4.758 5201 0.21 0 0.000 1.5 6.1

Climate Building System Twi Schedule Configuration FPMC CV

Atlanta Hospital CAV 1 Degrading 8 Row 0.58 2.04

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 5.8

mW Limiting 16.67 507 0.55 23 0.045 41.8 6.0

mW/DeltaT Limiting 3.8 484 0.09 18 0.038 196.6 5.9

DeltaT Limiting 4.5 498 0.10 18 0.036 177.8 5.9

4 Parameter Control 0.72 512 -0.02 14 0.028 -832.1 5.9

Climate Building System Twi Schedule Configuration FPMC CV

Atlanta Hospital VAV 1 Degrading 6 Row 0.69 6.06

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 6.8

mW Limiting 14.97 626 5.24 80 0.128 15.2 7.1

mW/DeltaT Limiting 3.3 638 4.02 76 0.120 19.0 6.8

DeltaT Limiting 4.8 612 3.75 75 0.123 20.1 6.7

4 Parameter Control 0.666 636 3.20 71 0.111 22.1 6.7

Climate Building System Twi Schedule Configuration FPMC CV

Atlanta Office VAV 1 (CAV) Reset 6 Row 0.52 9.58

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 5.6

mW Limiting 10.01 48 0.05 1 0.022 23.0 5.6

mW/DeltaT Limiting 1.62 46 0.02 1 0.015 40.3 5.6

DeltaT Limiting 4.36 50 0.01 0 0.002 15.8 5.6
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Climate BuildingSystem Twi Schedule Configuration FPMC CV

Atlanta Office VAV 3 Reset 5 Row 0.66 11.49

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%)Pumping Pwr Decrease (%) Pumping/ISE Pumping/CoolingAvg Delta T

DAT Tracking N/A  -  -  - 5.5

mW Limiting 6.5 2010 4.06 47 0.023 11.5 5.9

mW/DeltaT Limiting 1.05 2015 3.76 45 0.023 12.1 5.8

DeltaT Limiting 5.35 1991 2.37 31 0.015 12.9 5.7

4 Parameter Control 0.64 1935 2.45 26 0.014 10.8 5.7

Climate Building System Twi Schedule Configuration FPMC CV

Boulder Hospital CAV 1 Degrading 7 Row 0.848 17.59

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 5.2

mW Limiting 7.78 1586 6.25 85 0.053 13.5 6.0

mW/DeltaT Limiting 1.6 1539 4.44 82 0.053 18.5 5.8

DeltaT Limiting 4.5 1592 3.44 78 0.049 22.7 5.6

4 Parameter Control 0.75 1584 4.76 78 0.050 16.5 5.9

Climate Building System Twi Schedule Configuration FPMC CV

Boulder Hospital VAV 1 Degrading 8 Row 0.89 31.6

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 5.9

mW Limiting 7.19 1402 8.99 93 0.066 10.4 6.7

mW/DeltaT Limiting 1.29 1357 6.66 92 0.068 13.8 6.5

DeltaT Limiting 5.15 1346 5.31 89 0.066 16.8 6.4

4 Parameter Control 0.815 1325 8.45 48 0.036 5.6 6.4

Climate Building System Twi Schedule Configuration FPMC CV

Boulder Office VAV 1 (CAV) Reset 5 Row 1.33 13.8

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 4.1

mW Limiting 5.24 11959 13.18 70 0.006 5.3 5.1

mW/DeltaT Limiting 1.03 11979 11.87 68 0.006 5.7 5.0

DeltaT Limiting 4.18 12058 6.87 44 0.004 6.4 4.5

4 Parameter Control 0.63 11579 9.92 24 0.002 2.4 4.8

Climate Building System Twi Schedule Configuration FPMC CV

Boulder Office VAV 3 Reset 6 Row 1.07 24.1

Control Strategy Limit ISE Increase (%) Cooling Pwr Decrease (%) Pumping Pwr Decrease (%) Pumping/ISE Pumping/Cooling Avg Delta T

DAT Tracking N/A  -  -  - 5.2

mW Limiting 4.5 808 1.28 92 0.114 72.3 5.3

mW/DeltaT Limiting 0.652 850 1.11 93 0.109 83.9 5.3

DeltaT Limiting 3.62 834 0.43 90 0.108 210.3 5.2

4 Parameter Control 1.15 857 0.28 48 0.056 172.4 5.1
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Appendix N: Modified Boulder CAV/VAV Prediction Tool 
 

#Cleaning up the workspace 

remove(list=objects()) 

graphics.off() 

library(plyr) 

library(ggplot2) 

library(reshape2) 

#Bringing in the raw data 

Data <- read.csv("Realworlddata2.csv", sep=",", header=F) 

names(Data)<-c("FlowGPM","TwiF","TwoF","AirflowLpers") 

#Selection of applicable data to analyze. Line 15 Data$Flow maximum may need adjusting pending 

the dataset 

#in effort to crop out any data with valve wide open.  This limit would not need to be put in place 

for  

#real world application of this method 

Index<-Data$FlowGPM>0 & Data$TwiF<=46.4 

Data2<-Data[Index,] 

mW<-Data2$Flow*0.063 

Twi<-(Data2$TwiF-32)*5/9 

Two<-(Data2$TwoF-32)*5/9 

cp<-4180 

Q<-mW*cp*(Two-Twi) 

mA<-(Data2$AirflowLpers) 

Data3<-cbind(mW,Twi,Two,Q) 

DeltaT<-Two-Twi 

#Applying the Curve Fit through non-linear regression 

CurveFit<-nls(Q ~ (bo + b1*Twi)*(1 - exp(-(b2 + b3*Twi)*mW)),start = list(bo=100000,b1=-

.1*max(Q),b2=.1,b3=.001)) 

#Assigning coefficients to outputs so to use in constant Twi curve generation below 

bo<- coef(CurveFit)[1] 
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b1<- coef(CurveFit)[2] 

b2<- coef(CurveFit)[3] 

b3<- coef(CurveFit)[4] 

 

#Drawing constant Twi prediction lines onto graph as sanity check. One can compare these to 

Matlab generated 

#Twi bin plots 

plot(mW,Q) 

legend(0.8*max(mW),.6*max(Q),c("5C Twi","6C Twi","7C Twi","8C 

Twi"),lty=c(1,1,1,1),lwd=c(2,2,2,2), 

       col=c("yellow","red","blue","purple")) 

points(mW,(bo + b1*8)*(1 - exp(-(b2 + b3*8)*mW)),col='purple', lty=1, lwd=2) 

points(mW,(bo + b1*7)*(1 - exp(-(b2 + b3*7)*mW)),col='blue', lty=1, lwd=2) 

points(mW,(bo + b1*6)*(1 - exp(-(b2 + b3*6)*mW)),col='red', lty=1, lwd=2) 

points(mW,(bo + b1*5)*(1 - exp(-(b2 + b3*5)*mW)),col='yellow', lty=1, lwd=2) 

#Establishing the Range of values to look at for a particular sizing indicator temp maximum 

observed. 

R<-0.2 

#Identifying the number of degress of freedom for the curvefit that will be applied to each Twi bin 

DOF<-4 

#Setting up Twi of 6.5 as sizing indicator temp for FPMC 

k1.6.5<- (bo + b1*6.5) 

Index.6.5<-Data3[,2]<=(6.5 + R) & Data3[,3]>=(6.5 - R) 

ObservedMax.6.5<- max(Data3[,4][Index.6.5]) 

FPMC.6.5<-ObservedMax.6.5/k1.6.5 

#The below measure is intended to be a "goodness of fit". 

#Coefficient of Variation (CV) can be read as average deviation in data from 

#predicted CurveFit as a percentage of maximum the mean capacity 

CV<-sqrt(deviance(CurveFit)/(nrow(Data3)-DOF))*100/(mean(Q)) 

#Outputs to document for each RData set 

FPMC.6.5 
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CV 

#Determination based of pre-established, climate dependent Cv to FPMC relationship 

CV.CAV <- 14.89*FPMC.6.5 + 0.404 

CV.VAV <- 14.23*FPMC.6.5 + 7.58 

#VAV predictions will register as TRUE, CAV predictions will register as FALSE 

abs(CV.VAV - CV)<abs(CV.CAV - CV) 

#Accounting for b1 inaccurately being a positive value. It is allowed to be positive as long as  

#crossover of constant Twi does not occur in the mW flow range plotted 

#True mean to trust previous distinction, False means a VAV classification 

((bo + b1*8)*(1 - exp(-(b2 + b3*8)*max(mW))))<=((bo + b1*5)*(1 - exp(-(b2 + b3*5)*max(mW)))) 
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Appendix O: Maxima Proof for k1 and k2 Derivations 
 

 

 

 


