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The compressible Rayleigh-Taylor instability (RTI) occurs when a fluid of low molar mass

supports a fluid of higher molar mass against a gravity-like body force or in the presence of an

accelerating front. Intrinsic to the problem are highly stratified background states, acoustic waves,

and a wide range of physical scales. The objective of this thesis is to develop a specialized com-

putational framework that addresses these challenges and to apply the advanced methodologies

for direct numerical simulations of compressible RTI. Simulations are performed using the Parallel

Adaptive Wavelet Collocation Method (PAWCM). Due to the physics-based adaptivity and direct

error control of the method, PAWCM is ideal for resolving the wide range of scales present in RTI

growth. Characteristics-based non-reflecting boundary conditions are developed for highly strati-

fied systems to be used in conjunction with PAWCM. This combination allows for extremely long

domains, which is necessary for observing the late time growth of compressible RTI. Initial condi-

tions that minimize acoustic disturbances are also developed. The initialization is consistent with

linear stability theory, where the background state consists of two diffusively mixed stratified fluids

of differing molar masses. The compressibility effects on the departure from the linear growth,

the onset of strong non-linear interactions, and the late-time behavior of the fluid structures are

investigated. It is discovered that, for the thermal equilibrium case, the background stratification

acts to suppress the instability growth when the molar mass difference is small. A reversal in this

monotonic behavior is observed for large molar mass differences, where stratification enhances the

bubble growth. Stratification also affects the vortex creation and the associated induced velocities.

The enhancement and suppression of the RTI growth has important consequences for a detailed un-

derstanding of supernovae flame front acceleration and fuel capsule designs for inertial confinement

fusion.
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Chapter 1

Introduction

1.1 Motivation and Objective

The great physicist, Albert Einstein, is quoted as saying “Look deep into nature, and then you

will understand everything better.” Scientists have been doing so for millennia, and the discoveries

made about the natural world are endless. Turbulence and turbulent mixing have been studied for

decades, yet the true nature of turbulence remains one of the greatest and most pressing unresolved

scientific mysteries. Fundamental questions about the physics of the turbulent mixing between fluids

at unstably stratified interfaces have yet to be answered. Rayleigh-Taylor instability arises from

the vorticity generated at perturbed interfaces, in which the direction of the mean density gradient

is opposite an acceleration, due to gravity-like body forces, accelerating fronts, or local differential

motions [69, 82]. The instability occurs in a wide variety of astrophysical, atmospheric, oceanic,

and geophysical flows and plays crucial roles in many engineering applications. The same physics

involved with an overturned glass of water spilling to the floor can explain why some exploding stars

appear as brilliant flashes of light, on astrophysical timescales, that are visible across the universe

and are used to measure galactic distances. The universality of the turbulent mixing throughout

the universe is truly remarkable.

The success of previous experimental, theoretical, and computational investigations of Rayleigh-

Taylor instability lies in both the new physics that have been unveiled and the doors of new explo-

ration that have been opened. Much is known about the early growth of the instability, as small

interfacial perturbations grow exponentially until the amplitudes of the disturbances are sufficiently
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large. Bubble and spike structures form as the two fluids interpenetrate each other. Models for the

asymptotic behavior of individual perturbations have been successful, yet the transition from linear

to nonlinear growth is not fully understood. For Rayleigh-Taylor systems in nature, modal pertur-

bations couple, forming larger structures and an acceleration of the mixing region. As the bubbles

merge, the flow experiences a self-similar growth, where the dominant bubble size is proportional

to the mixing layer height. In this regime, a theoretical universal growth factor can be measured.

The influence of the mixing on the growth rate has profound consequences for many applications,

such as the thermonuclear flame front propagation in type Ia supernovae [9]. The full effects of

compressibility, background stratification, diffusivity, density differences, and initial conditions on

the growth of the instability needs further investigation.

The dependence of the late-time growth on the initial small amplitude perturbations is of

critical importance, since long wavelength perturbations are uncontrolled in experiments. There-

fore, numerical simulations must be employed for the full characterization of the initial conditions,

and thus a full and reliable understanding of the Rayleigh-Taylor system.

Simulations of real Rayleigh-Taylor applications, as well as most turbulent flows, are chal-

lenged by the need to cover a vast dynamic range of scales. For example, the complete resolution

of an exploding white dwarf star would require a computational grid spanning twelve orders of

magnitude in scale. Rayleigh-Taylor instability is generated by small scale motions at the interface,

which develop into large structures as the fluids mix. Therefore, subgrid-scale turbulence models

must take into account the additional mixing dynamics beyond the generally accepted Kolmogorov

energy cascade, where all turbulence is produced at large scales. Whereas large-eddy simulations

have been successful at studying the self-similar growth of the instability [25], obtaining a detailed

understanding of the physics of Rayleigh-Taylor instability lies in the use of direct numerical simu-

lations. Recently, some of the largest direct numerical simulations of turbulent flows to date have

been carried out in order to study Rayleigh-Taylor instability. These studies have shed new light

on the important role Rayleigh-Taylor mixing plays in the violently expanding flame fronts of type

Ia supernovae, which is critical to the luminosity variation observed here on Earth.
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Most of the current research focuses on the incompressible Rayleigh-Taylor instability. How-

ever, most systems where Rayleigh-Taylor instability occurs naturally involve highly compressible

fluids. When the compressive nature is overlooked, the simplified system is easier to deal with, but

much of the physics is lost. When considering the compressible case, one must account for highly

stratified flows, acoustic waves, and a wide range of physical scales. Direct numerical simulations of

compressible Rayleigh-Taylor instability require the use of a specialized computational framework

that efficiently handles all of these issues, which is the main focus of this dissertation.

1.2 Methodology

Simulations of an exploding star where all relevant scales of motion are resolved is not likely

to occur anytime in the foreseeable future, but smaller Rayleigh-Taylor systems where the dy-

namical range cover many orders of scale magnitudes, offer crucial insight into the physics of the

turbulent mixing. Due to the wide range of scales and three-dimensionality requirement intrinsic to

turbulent flows, the need for reliable and computationally affordable predictions of Rayleigh-Taylor

instability necessitates the use of inventive numerical methods. Since computing power, memory,

and time are all scarce resources for the simulation of turbulent systems, the efficiency of a nu-

merical methodology depends heavily on the grid used to represent the flow. Adapting the grid

to match the local dynamical scales is specifically advantageous for systems where the important

dynamics remain in localized regions of the flow, such as Rayleigh-Taylor instability. Adaptive

mesh refinement techniques have been applied to the simulation of Rayleigh-Taylor instability [25],

but the grid generation for these methods is often overly expensive or unrelated to the accuracy of

the solution.

The use of wavelets in representing the evolution of flow variables offers a natural way to

dynamically adapt the mesh as the flow evolves. Thus, the computational resolution matches the

local structures within the system, with minimal extra cost associated with the grid adaptivity.

The Parallel Adaptive Wavelet Collocation Method uses a wavelet representation of the relevant

variables for the computation of partial differential equations, while retaining a direct accuracy
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control, since the error is directly dependent upon the number of wavelets used to approximate the

solution. Due to its efficient use of computational resources, the method has the potential to push

the current limits on the leading direct numerical simulations of turbulent Rayleigh-Taylor flows.

1.3 Organization

The remainder of the dissertation is organized as follows. Chapter 2 has a thorough discussion

on the background of Rayleigh-Taylor instability, including its role in relevant systems, a classical

view of its growth, the physics and models that are used to represent its growth, and a summary

of previous scientific advances. The numerical tools employed for this work are also introduced

in Chapter 2. The advanced computational framework developed for performing direct numeri-

cal simulations of compressible Rayleigh-Taylor systems is presented in Chapter 3. This includes

boundary conditions that efficiently handle acoustic waves with minimal wave reflection, consistent

initialization derivations, and a presentation of efficient time integration schemes. The computa-

tional tools are then applied to a vast set of Rayleigh-Taylor instability simulations, and the results

are presented in Chapter 4. The feasibility of the computational framework is tested by comparing

the results in the incompressible limit with well established theoretical and computational work.

The compressibility effects on the growth of Raleigh-Taylor instability are investigated, with a focus

on the density stratification and the late-time vortex dynamics. The viscous and dimensionality

effects on compressible Rayleigh-Taylor instability are also presented.

A brief introduction is given at the beginning of each chapter that includes a summary of

the motivation and background information necessary for a complete understanding of the subject

matter. The intent is to have chapters that can be read independently for a detailed look into

a particular topic. Of course, the most thorough picture is painted with a full reading of the

dissertation.



Chapter 2

Background

Lord Rayleigh was investigating the formation of cirrus clouds when he first considered the

unstable situation of a light fluid supporting a heavy fluid. The unstable configuration had been

occurring in the clouds long before Rayleigh first derived its motion in 1880. He considered the

simplest case with two incompressible immiscible fluids in Earth’s gravitational field, where the

heavy fluid lies on top of the light fluid [69]. Then, in 1950, Sir G. I. Taylor extended the analysis

for accelerations other than gravity [82]. As he speculated, light fluids had been pushing on heavy

fluids all across the universe well before the instability was named after Rayleigh and Taylor, shown

in Figure 2.1. Since then, scientists have discovered a world of wonders hidden in the dynamics of the

seemingly simple interfacial instability. Numerous observations of Rayleigh-Taylor instability (RTI)

occurring in real systems have broadened the scope of its importance, while countless experiments

and simulations have deepened our understanding.

A complete background of the physics, models, and methods that are utilized in the following

chapters is provided here. The general dynamics are presented first, including technically relevant

Rayleigh-Taylor (RT) systems and a qualitative picture of its growth. Then, the governing equa-

tions are given, followed by a number of models for various flow regimes, including the early-time

linear growth, transition to non-linear growth, and self-similar scaling. Next, the most influen-

tial numerical simulations and experiments of RTI are discussed. Lastly, applicable numerical

techniques are presented, including an adaptive multiresolution method and characteristics-based

boundary conditions.
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(a) Lord Rayleigh (b) Sir G. I. Taylor

Figure 2.1: Rayleigh and Taylor, namesakes of the interfacial instability.

2.1 The Dynamics of Rayleigh-Taylor Instability

RTI occurs when a light fluid lies underneath and, thus, supports a heavier fluid in the

presence of gravity. More generally, RTI develops whenever a light fluid pushes on a heavier fluid

[12, 69, 82]. Small disturbances in the interface lead to vorticity generation and the growth of

the instability. Turbulence and mixing ensue near the interface as the system seeks to reduce

the combined potential energy of the two fluids. The lighter fluid penetrates into the heavier

fluid in the form of bubbles, while a spike of heavier fluid falls into the lighter fluid. The bubble

and spike terminology is used to signify the difference in the cross-sectional area occupied by

the respective fluid structure. That is, the bubbles of light fluid rising encompasses a larger cross-

sectional area than that of the falling spikes of heavy fluid. The relative difference in cross-sectional

area is intensified as the density difference is increased. Since RTI results from such simple system

configurations, that is fluids of differing densities within an accelerating field, it plays a major role

and has vast consequences in many systems of technical relevance.

2.1.1 Rayleigh-Taylor Instability in Real Systems

RTI occurs in a wide-range of natural and human-engineered flows, from the largest systems

in the universe, namely galaxies, to small-scale engineering applications, such as the turbulent

mixing in inertial confinement fusion. On the galactic scale, magnetic fields and cosmic rays acting

perpendicular to the plane of a galaxy can push dense interstellar gas into the ambient medium,
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Figure 2.2: RT structures in the Crab Nebula.

resulting in the instability [100]. The spikes are visible as finger-like structures in the M83 galaxy.

RTI has recently been found to play a dominant role is the thermonuclear flame acceleration in type

Ia supernovae [28, 74, 78, 99]. A white dwarf accretes mass from its partner, a newly formed giant,

until it reaches a critical mass of 1.38 solar masses at which it cannot sustain itself. Ignition occurs

near the center of the star, triggering an expanding wave. As carbon and oxygen are fused into

heavier elements, a violent explosion occurs, which irradiates a large and predictable amount of light.

These “standard candles” are then used as cosmic rulers to measure distances across the universe,

which are then used to investigate dark energy and the expansion of the universe. Uncertainties

in the measurements arise due to slight variations in the brightness of type Ia supernovae. As the

flame accelerates outward, the material behind the front has expanded and is much hotter than

the surrounding gas. Thus, the hot, light fluid pushes on the cold, heavy fluid. The RT processes

assist the churning of raw material inside the star and provide fresh fuel to the reaction, which

leads to acceleration of the frame front. Again, the instability shows itself as finger-like structures,

as observed in the Crab Nebula in Figure 2.2. In order to truly standardize these cosmic rulers, a

detailed understanding of RTI is necessary.
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Figure 2.3: The Thermohaline Circulation (often referred to as the Great Ocean Conveyer Belt) is
a large-scale ocean circulation driven by global density gradients.

(a) Mammatus Cloud (b) Mushroom Cloud

Figure 2.4: Cloud formations caused by RTI.

RTI also occurs naturally in the Earth’s oceans, atmosphere, and crustal rocks. The Ther-

mohaline Circulation, shown in Figure 2.3, is a large-scale ocean circulation pattern that is party

driven by descending plumes of heavy, salty water in the North Atlantic Ocean [19]. Strong winds

from Greenland and Iceland drive evaporation in this reagion, leaving the upper layers of the ocean

saltier and heavier. Due to the unstable configuration, the salty waters plummet to the depths

of the ocean, driving the abyssal ocean circulation. The Thermohaline Circulation is responsible

for carrying the warm waters north from the equator, keeping the climate in Europe rather mild

[11]. Similarly, RTI occurs in the atmosphere whenever temperature inversions exist, which can

explain the formation of mammatus and mushroom clouds, shown in Figure 2.4. Buoyancy is also

the driving force in the formation of salt domes within the Earth’s crust [91]. A salt dome occurs
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Figure 2.5: The process of inertial confinement fusion consists of (1) heating of the capsule surface,
(2) surface blow-off and fuel compression, (3) ignition at the core, and (4) thermonuclear burn of
the fuel.

when a layer of evaporite material, typically salt, becomes buried by increasingly denser sediment.

Rock salt maintains a low density under high pressure. The density inversion leads to the rising

plumes typical of an RT system.

All forms of nuclear fusion known to man are affected by RTI. Nuclear fusion requires a large

amount of kinetic energy to overcome the electrostatic repulsion, known as the Coulomb barrier.

In order to break the barrier and cause ignition, external energy must be confined efficiently.

Gravitational confinement only occurs in stars, such as type Ia supernovae, due to the large amount

of mass needed to achieve the energy confinement time requirement. The idea of inertial confinement

fusion is to apply large amounts of energy uniformly over the surface of a fuel-filled capsule, causing

a symmetric implosion, extreme heating, and a thermonuclear burn of the fuel. The process is

shown in Figure 2.5. The fuel is often a deuterium-tritium mix. Laser beams uniformly impinge

rapid bursts of energy on the capsule. The heated surface violently blows off, causing a rapid

compression of the deuterium-tritium fuel. If the implosion remains spherically symmetric, the fuel

reaches extremely high pressures and temperatures, and ignition occurs at the core. Ideally, the

entire capsule undergoes a thermonuclear burn, offering a high energy gain, which can be cultivated

as a sustainable civilian energy source. However, asymmetries in the compression can occur from

various sources, such as uneven heating or capsule inconsistencies. These asymmetries will lead to

RTI since the light, hot fluid pushes against the heavy, unburned fuel, resulting in a loss of energy

[43, 44]. RTI plays a crucial role in the feasibility of utilizing nuclear fusion power for controlled

civilian purposes.



10

(a) Accidental Painting (b) Cream and Tea

Figure 2.6: The beauty of RTI. (The “Accidental Painting” image is borrowed from a movie created
by Dr. Sandra Zetina and Dr. Roberto Zenit at the National Autonomous University of Mexico.
The “Cream and Tea” image is borrowed from Chris Ostoich, taken as part of a Flow Visualization
course at the University of Colorado.)

Rayleigh-Taylor instability also affects biological systems and occurs in everyday societal life.

Sonoluminescence, a quirky physical phenomenon, is the creation of light bursts from imploding

gas bubbles within a liquid, when the bubbles are excited with acoustic waves. The bubble even-

tually collapses due to instabilities at the interface. Thus, RTI limits the driving pressure for the

occurrence of sonoluminescence [49]. Similarly, snapping shrimp (also referred to as pistol shrimp)

get their name by rapidly shutting their claws, generating a water jet and a cavitation bubble that

collapses due to RTI and gives off a snapping sound [87]. They use this mechanism to stun and

capture small fish as prey.

As with almost any fluid phenomenon that occurs naturally and frequently, if visualized

appropriately, RTI can lead to beautiful art, as offered in Figure 2.6. Artist David Alfaro Siqueiros

first discovered the accidental painting technique in the 1930s, by pouring different color paints,

which naturally have differing densities, onto a wooden panel and allowing the various colors to

infiltrate one another. The result is a structure of Rayleigh-Taylor bubbles. Humans also observe

RTI on a daily basis, such as simply pouring cream (heavy fluid) into coffee (light fluid).
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Figure 2.7: The growth of RTI from initial small-amplitude perturbations, through the linear
growth stage, to the late-time nonlinear growth of the bubble and spike structures. The images
result from the direct numerical simulations presented in Chapter 4.

Figure 2.8: Bubbles and spikes evident in the largest RTI direct numerical simulation to date.
The image, titled “Spikes and Bubbles in Turbulent Mixing: High Atwood Number Rayleigh-
Taylor Instability,” has been kindly provided by D. Livescu (LANL), M. R. Petersen (LANL), S.
L. Martin (Ohio State University), and P. S. McCormick (LANL).

2.1.2 Classical Rayleigh-Taylor Instability

The evolution of RTI involves an early-time linear growth regime, late-time nonlinear growth

of the bubble and spike structures, and a turbulent mixing layer [93]. The evolutionary stages

of two-dimensional, miscible RTI growth are shown in Figure 2.7. Small perturbations of the

interface experience linear growth until the amplitude reaches a significant fraction of the initial
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perturbation wavelength. The linear growth rate is affected by viscosity, diffusion, compressibility,

surface tension, and finite density gradients [27, 46, 53]. As the interface evolves, fluid structures

evolve as the fluids interpenetrate each other. The molar mass ratio of the two fluids plays a major

role in the shape and size of the structures. The Atwood number is a nondimensional quantity that

represents the molar mass ratio, defined as

A =
W2 −W1

W2 +W1
, (2.1)

where W1 and W2 are the molar masses for the bottom and top fluids, respectively. The requirement

for instability is W1 < W2. For the incompressible case, the Atwood number is equivalently defined

as

A =
ρ2 − ρ1

ρ2 + ρ1
, (2.2)

where ρ1 and ρ2 are instead the densities of the bottom and top incompressible fluids, respectively.

The Atwood number ranges from 0 to 1, and is a measure of the variable density effects in the

flow. For high density differences where A is near 1, for example air interpenetrating helium, light

fluid forms rounded bubbles with circular cross section, while the the heavy fluid penetrates the

light fluid as spikes and curtains between the bubbles. A horizontal cross section of this instability

has a honeycomb appearance. The bubble and spike formations are visible in Figure 2.8, which

displays the density field obtained from the largest direct numerical simulation of RTI to date,

with A = 0.75 on a 40962 × 2304 mesh. For small density ratios, A is close to 0, and the system is

more symmetric with two sets of interpenetrating bubbles. In addition to variable density effects,

the formation of these structures is also greatly affected by the dimensionality of the system. The

evolution of structures with various characteristic sizes are affected by nonlinear interactions when

the initial perturbation is multi-mode. For small amplitude initial perturbations, the nonlinear

interaction between the smaller structures dominate the growth of the instability, and memory

of the initial conditions is lost [15, 18, 75]. Bubble amalgamation occurs, where large bubbles

absorb smaller bubbles, causing the larger structures to grow in size and accelerate. Secondary

instabilities develop and affect the growth of the flow structures. The Kelvin-Helmholtz instability
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Figure 2.9: The mixing layer from a RTI simulation on a 30723 mesh with A = 0.5 [9].

is a shear force induced instability that forms along the side of the spikes as cat-eye structures.

The tangential velocity variations near the tip of the spike apply additional drag forces and cause

a Kelvin-Helmholtz type of mushrooming. Compressibility, diffusivity, and viscous effects on the

late-time instability behavior is not currently fully understood. Throughout the growth of the

instability, the majority of the system remains quiescent, since the flow structures remain localized

in the relatively small mixing layer near the interface where the instability evolves and turbulence

ensues.

2.1.3 Homogeneous Isotropic Turbulent Mixing

Turbulent flows that involve the mixing of fluids with different densities are classified as vari-

able density (VD) flows. The fluids participating in VD flows are typically assumed incompressible

such that the turbulent Mach number is small, and the motions within the flow remain relatively

slow. However, the velocity field is not divergence free due to the change in the specific volume as

molecular mixing occurs. VD flows are present in atmospheric, oceanic, and astrophysical systems,

and play important roles in many combustion and chemical engineering applications [32]. RTI is a

fundamental example of VD flows.

At late-times in the growth of RTI, the core of the turbulent mixing layer approaches statis-
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tical homogeneity. The fluid near the edges of the layer experience inhomogeneous mixing, evident

in the asymmetry of the bubble and spike structures. Once the flow has developed far enough

such that little pure fluid reaches the centerline, the turbulent statistics become homogeneous [75].

Figure 2.9 shows the mixing region of a large direct numerical simulation of the instability. To

investigate the turbulent processes within the mixing layer, homogeneous RT systems are studied,

where the two fluids of differing molar masses are initialized as random blobs of pure fluid and are

mixed by turbulent motions generated from a gravitational body force. Buoyancy effects cause the

two fluids to move in opposite directions. At high Atwood numbers, asymmetric mixing due to

RTI is apparent since the different structures appear on opposite sides of the mixing layer, that is

spikes are formed on the light fluid side, and bubbles are formed on the heavy fluid side. Thus, the

pure heavy fluid penetrates deeper into the pure light fluid than the light fluid penetration depth.

However, the mixing is also asymmetrical for the homogeneous RT systems [54, 55]. For high molar

mass ratios, the two pure fluids mix at different rates, with the pure heavy fluid lasting to later

times than the pure light fluid. Previously, none of the mixing models used to study RT turbulence

considered the faster mixing rate of the light fluid.

2.2 Conservation Laws and Analysis

The conservation of mass, momentum, energy, and species mass fraction govern the growth

of RTI. In general, the instability is fully described by the compressible Navier-Stokes, energy, and

species mass fraction transport equations. At early times, small perturbations grow consistent with

linear stability theory, which provides analytical solutions for the growth of the instability. The

linear growth rate depends on viscous, diffusive, compressibility, and finite density gradient effects,

among others. For single-mode systems, analytical models predict asymptotic terminal velocities

for the bubble and spike structures. Conversely, a multi-mode perturbation leads to the generation

of larger and larger structures. At late times, the flow may forget the initial conditions and grow

self-similarly.
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2.2.1 Governing Equations

RT systems are governed by the compressible Navier-Stokes, energy, and species mass fraction

transport equations, where, Y1 corresponds to the mass fraction of the bottom fluid and Y2 is the

top fluid mass fraction. Along with an equation of state, such as the ideal gas law, p = ρRT , the

dimensional form of the governing equations are [90]

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (2.3)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
− ρgi +

∂τij
∂xj

, (2.4)

∂ρe

∂t
+
∂ρeuj
∂xj

= −∂pui
∂xi

− ρuigi +
∂τijui
∂xj

+
∂

∂xj

(
k
∂T

∂xj

)
+

∂

∂xj

(
DρcplT

∂Yl
∂xj

)
, (2.5)

∂ρYl
∂t

+
∂ρYluj
∂xj

=
∂

∂xj

(
Dρ

∂Yl
∂xj

)
, (2.6)

where ρ is the density, p is the pressure, T is the temperature, R is the gas constant, ui is the

velocity in the xi direction, and the specific total energy is defined as

e =
1
2
uiui + cpT −

p

ρ
. (2.7)

In the presentation of the governing equations, summation over repeated indices is assumed. The

viscous stress, assuming Newtonian fluids, is defined as

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
∂uk
∂xk

δij

)
. (2.8)

The gravitational acceleration is constant in the vertical, x1, direction, that is gi = gδi1. Fluid

properties, such as the dynamic viscosity, µ, heat conduction coefficient, k, specific heats at con-

stant pressure and volume, cp and cv, and mass diffusion coefficient, D, are typically mass-averaged

quantities, defined as linear combinations of the individual species’ properties using the mass frac-

tions. For example, the specific heat at constant pressure is defined as cp = cplYl, where summation

over repeated indices is once again used. The RT system is composed of a heavy fluid lying on top

of a lighter fluid in the vertical direction with the interface located at x1 = 0. The requirement
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for instability is for the top fluid molar mass to be greater than that for the lower fluid, that is

W1 < W2. The gas constant for the mixture can be calculated as

R = RlYl = R Yl
Wl

, (2.9)

where R is the universal gas constant.

2.2.2 Linear Stability Analysis

When small amplitude perturbations are applied to the interface between two superposed

fluids, the disturbances grow exponentially for early times [12]. Linear stability theory assumes a

base state, to which small amplitude perturbations are added. The small perturbation quantities

allow analysis of the linearized equations. The flow variables are written as the sum of the base

state and the perturbed field. For example, the pressure is defined as p = p0 + p′, the density

is defined as ρ = ρ0 + ρ′, and the velocity is defined as ui = u0
i + u′i. For a given perturbation

wavenumber k, the interface location is

ηI(x2, x3, t) = ηA exp [i(k2x2 + k3x3) + nt] , (2.10)

where n is the linear growth rate, ηA is the initial perturbation amplitude, and the perturbation

wavenumber has components only in the horizontal directions, k2 and k3, such that k2 = k2
2 + k2

3.

The growth rate for the incompressible case has the simplest form,

ninc =
√
Agk. (2.11)

where the ‘inc’ subscript stands for ‘incompressible.’ An expanded linear stability analysis, which

derives an upper bound for the growth rate including the effects of viscosity and diffusivity for the

incompressible case, gives

nvd =
(
Agk

ψ
+ ν2k4

)1/2

− (ν +D)k2, (2.12)

where ν is the kinematic viscosity and ψ = ψ(A, k, δ) has an empirical relationship with A, k, and

the initial diffusion thickness of the interface δ [27]. The subscript ‘vd’ stands for ‘viscous’ and
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‘diffusion.’ Viscosity and diffusivity inhibit growth for high wavenumbers. Thus, a most unstable

wavenumber, ku, corresponding to a most unstable wavelength λu, grows faster than all other

wavenumbers. Also, diffusion effects prevent instability growth above a critical wavenumber, kc,

with associated wavelength λc. Since most theoretical and computational work on RTI focuses on

the incompressible case, these are commonly used relationships for comparing simulations with the

growth predicted from linear theory.

In order to extend the analysis to include compressibility effects, it is convenient to assume

immiscible, inviscid fluids without surface tension effects [53]. For immiscible fluids, D = 0, and

the system can be analyzed within each pure fluid separately. The governing equations reduce to

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (2.13)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
− ρgi, (2.14)

∂p

∂t
+
∂puj
∂xj

= (1− γ)p
∂uj
∂xj

. (2.15)

The steady base state consists of the two pure fluids at rest (u0
i = 0) with a completely flat

interface. The governing equations require

∂p0

∂x1
= −ρ0g, (2.16)

which represents hydrostatic equilibrium. The base state superscript is replaced with ‘H’ to denote

the hydrostatic background state. That is, ρ0 → ρH and p0 → pH . Since the fluids are in thermo-

dynamic equilibrium, the base state temperature is constant (TH = T0), and the base state density

and pressure are given by

ρHm =
PI

RmT0
exp

(
− gx1

RmT0

)
, (2.17)

pHm = PI exp
(
− gx1

RmT0

)
, (2.18)

where PI is the unperturbed pressure at the interface, and m denotes the fluid species.

A single-mode perturbation is applied to the interface described in (2.10). Solutions for the
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perturbed quantities, ρ′, p′, and ui, have similar dependencies on x2, x3, and time, that is

ρ′ = ρ̃(x1) exp [i(k2x2 + k3x3) + nt] , (2.19)

p′ = p̃(x1) exp [i(k2x2 + k3x3) + nt] , (2.20)

ui = ũi(x1) exp [i(k2x2 + k3x3) + nt] . (2.21)

The resulting linearized equations are

nρ̃ = −ρH(Dxũ1 + ik2ũ2 + ik3ũ3)− ũ1Dxρ
H , (2.22)

nρH ũ1 = −Dxp̃− ρ̃g, (2.23)

nρH ũ2 = −ik2p̃, (2.24)

nρH ũ3 = −ik3p̃, (2.25)

np̃ = −γpH(Dxũ1 + ik2ũ2 + ik3ũ3) + ũ1ρ
Hg, (2.26)

where Dx denotes d/dx1. The speed of sound c =
√
γpH/ρH is constant within each of the pure

fluid species. An equation for ũ1 on each side of the interface can then be obtained as

D2
xũ1m −

γmg

c2
m

Dxũ1m −
(
k2 +

n2

c2
m

+
(γm − 1)g2k2

n2c2
m

)
ũ1m = 0. (2.27)

The perturbation solution has the form

ũ1m = Am exp(λ+
mx1) +Bm exp(λ−mx1), (2.28)

where

λ±m =
γmg

2c2
m

± k
√

1 +
n2

k2c2
m

+
(γm − 1)g2

n2c2
m

+
γ2
mg

2

4k2c4
m

. (2.29)

The coefficients Am and Bm are determined from the conditions that ũ1 vanishes at the boundaries

or at ±∞, ũ1 is continuous across the interface, and from the initial perturbation amplitude, since

∂ηI
∂t

= [u1](x1=0), (2.30)

or, equivalently,

nηA = ũ1(0). (2.31)
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Figure 2.10: Illustration of the cylindrical model for the RT bubbles with A = 1 [47].

The linear growth rate with compressibility effects is obtained by applying a proper jump condition

and assuming an infinite domain,

n2
com = k2g

[
γ2

(
k2c2

1 + n2
com

)
−
(
k2c2

2 + n2
com

)
γ1

λ+
1 γ1

(
k2c2

2 + n2
com

)
−
(
k2c2

1 + n2
com

)
γ2λ
−
2

]
, (2.32)

where the ‘com’ subscript stands for ‘compressible.’ All of the growth rate formulas have two roots,

±n, such that the solutions have both growing and decaying parts. The perturbation fields for the

other quantities can then be obtained from (2.22)-(2.26).

2.2.3 Early Nonlinear Stage

The transition from the early linear stage to the late-time nonlinear regime of RTI growth

has received and continues to receive much attention from researchers in the field. A detailed

understanding of the temporal evolution of the mixing layer for general RT systems not only has

crucial significance for real systems, but also for testing the ability of models to predict the insta-

bility growth and the accuracy of numerical simulations. The structures in single-mode systems are

not subject to the mode coupling and competition that are present when a broadband spectrum

perturbation is applied. Thus, the late-time dynamics vary drastically, depending on the initial

perturbation spectrum. Simulations that apply a single-mode perturbation are not direct repre-

sentations of real RT systems. However, analysis of the single-mode case gives an upper bound for
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the growth rates observed in the multi-mode systems. Furthermore, the dominant wavelength in a

multi-mode system that is horizontally bounded inevitably fills the domain. Thus, these systems

act like single-mode RTI at late-times.

For systems with single-mode periodic perturbations, an array of identical bubbles grow

consistently with linear stability theory at early times. In the early nonlinear stages, the vorticity

is still small and the instability can be described using potential flow theory or a simple buoyancy-

drag model [36, 61]. These types of analyses obtain a late-time terminal velocity for the bubble and

spike structures, since the speeds are large enough where the drag forces offset the buoyancy forces

[66, 88]. This phenomenon was first reported by Layzer, who investigated the A = 1 limit, where

the light fluid is a vacuum, and the heavy fluid is assumed inviscid and incompressible [47]. The

model was developed for two-dimensional planar and three-dimensional cylindrical RT bubbles. An

illustration of the tubular geometry is shown in Figure 2.10, for which the analysis can easily be

extended to an array of bubbles where the cells are hexagonal, and the boundaries are replaced by

planes of symmetry [38]. The system is analyzed with potential flow theory. Thus, the velocity is

represented by a velocity potential, where u = ∇φ. For this analysis, the gravitational acceleration

acts in the vertical x-direction, and the components of velocity in the x, y, and z directions are u,

v, and w, respectively.

For the planar instability, the bubble tip coordinates are [η0(t), y0(t)], and the interface

location near the tip is defined, to second order, by

x = ηI(y, t) = η0(t) + η2(t)(y − y0)2, (2.33)

where the radius of curvature is R = −1/2η2. The kinematic equation, which requires that the

interface moves with the fluid, is

uI − η̇0 − η̇2(y − y0)2 − 2η2(y − y0)(vI − ẏ0) = 0, (2.34)

where the dot represents a time derivative and the velocity components of the interface are uI

and vI . The velocity of the interface is derived from the pure fluid velocity solution taken at



21

the interface location. That is, uI = [u](x=ηI) and vI = [v](x=ηI). The flow is also governed by

Bernoulli’s equation,
∂φ

∂t
+

1
2

(u2 + v2) + gx = C, (2.35)

where the constant, C, is the same everywhere on the interface. The velocity potential is of the

form

φ(x, y, t) = a(t) cos[k(y − y0)]e−k(x−η0), (2.36)

where k = 2π/λ, and λ is the perturbation wavelength. With the imposed form of the velocity

potential, the kinematic equation, to zeroth and second orders of the horizontal displacement from

the bubble tip (y − y0), and the second order Bernoulli’s equation on the interface are

ak + η̇0 = 0, (2.37)

ak2

(
η2 +

k

2

)
− η̇2 + 2ak2η2 = 0, (2.38)

ȧk

(
η2 +

k

2

)
− a2k4

2
− gη2 = 0. (2.39)

This can easily be rearranged to give the following set of ordinary differential equations:

η̇0 = −ak, (2.40)

η̇2 =
[
ak2

2

]
[k + 6η2] , (2.41)

ȧ =
1
k

[
2gη2 + a2k4

k + 2η2

]
. (2.42)

In order to check consistency with the linear regime, the equations are linearized for small values

of a, η0, and η2, which gives the early evolution of the instability as

η̇0 = −ak, (2.43)

η̇2 =
ak3

2
, (2.44)

ȧ =
2gη2

k2
. (2.45)

Taking a time derivative of (2.45) gives the relationship, ä = gka. The growth rate derived here,

n =
√
gk, is equivalent to the results from linear stability analysis with A = 1.
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In the late time asymptotic limit using this potential flow analysis, the bubble reaches a

terminal velocity, defined as

Vb =
[
∂φ

∂x

]
(x=η0,y=y0)

= −ak. (2.46)

The evolution of the bubble height and curvature can be related by combining equations (2.40) and

(2.41) as

η̇0 = −
[

2
k(k + 6η2)

]
η̇2, (2.47)

which has the solution

η0(t) = −
[

1
3k

]
ln[k + η2(t)] + C. (2.48)

The integration constant is found by considering a small initial sinusoidal perturbation with am-

plitude η0(0). The solution is

η2(t) = −k
6

+
[
k

6
− k

2
η0(0)

]
e−3k[η0(t)−η0(0)]. (2.49)

In the asymptotic limit of η0 →∞, the solution converges to η2 → −k/6. Thus, the asymptotic

radius of curvature is R2D = 3/k. The terminal velocity formula, which is achieved by combining

equations (2.40) and (2.42) and plugging in the asymptotic relationships, is Vb2D =
√
g/3k.

The extension to three-dimensional, cylindrical RT bubbles makes obvious the dimensionality

effect on the growth of Raylieh-Taylor instability. The bubble tip coordinates are [η0(t), r0(t)], where

r0 = (y0, z0). The second order formula for the location of the interface near the tip is

ηI(r, t) = η0(t) + η2(t) |r− r0|2 . (2.50)

The velocity potential has the form

φ(x, y, z, t) = a(t) cos
[
k(y − y0)√

2

]
cos
[
k(z − z0)√

2

]
e−k(x−η0), (2.51)

which gives the zeroth and second order kinematic equations, and the second order Bernoulli

equation, for the three dimensional system, as

ak + η̇0 = 0, (2.52)
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ak2

(
η2 +

k

4

)
− η̇2 + ak2η2 = 0, (2.53)

ȧk

(
η2 +

k

4

)
− a2k4

8
− gη2 = 0. (2.54)

The set of ordinary differential equations is

η̇0 = −ak, (2.55)

η̇2 =
[
ak2

4

]
[k + 8η2] , (2.56)

ȧ =
1
2k

[
8gη2 + a2k4

k + 4η2

]
, (2.57)

which is linearized as

η̇0 = −ak, (2.58)

η̇2 =
ak3

4
, (2.59)

ȧ =
4gη2

k2
. (2.60)

The linear growth rate here is n =
√
gk, which is equivalent to the linear stability analysis of the

planar bubble. This is an expected result since the linear growth is independent of dimensionality.

In the asymptotic terminal velocity limit, the radius of curvature is R3D = 4/k, since η2 → −k/8.

The three-dimensional terminal bubble velocity is Vb3D =
√
g/k. The velocity increase from two to

three dimensions is due to the reduced drag per unit volume in three dimensions.

A buoyancy-drag model can be used to extend the terminal bubble velocity analysis to general

Atwood number [61]. The model considers the balance of the inertial, buoyancy, and Newtonian

drag forces for both the bubble and spike regions, which is consolidated by the equation[
(ρin + Caρout)

dV

dt
− β(ρout − ρin)g

]
[Volume] = −CdρoutV |V | [Area] , (2.61)

where V = dh/dt is the velocity of the spike (ρin = ρ2 and ρout = ρ1) or bubble (ρin = ρ1 and

ρout = ρ2), and h is the amplitude of penetration into the outer fluid [20]. The coefficient Ca

represents an added mass effect since the fluid being penetrated is displaced by the motion. In

general, the coefficient depends on the shape and volume fraction of the penetrating objects. A
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reduction in the effect of buoyancy due to finite density gradients from the fluid mixing is applied

through the factor β < 1. The drag coefficient, Cd, also depends on the shape of the bubble and

spike structures. Since the inertial and buoyancy forces are proportional to the volume of the

structures, whereas the drag is proportional to the cross-sectional area, longitudinal length scales,

L, are introduced representing the ratio of the volume to the cross-sectional area.

In the asymptotic limit of the buoyancy-drag model, the bubbles and spikes reach terminal

velocities, that is, as t→∞, V1 → Vs and V2 → Vb. The simplest model treats the bubbles and

spikes as independent tubes, with L = h. The structures approach terminal velocity once the

amplitudes h become comparable to the wavelength, λ, so the height of the tubes is taken to be

equal to the perturbation wavelength, that is L = λ. For the case of immiscible fluids, β = 1, and

(2.61) becomes

(ρ2 − ρ1)g =
Cd
λ
ρoutV

2
m. (2.62)

Thus, the Atwood number dependent formula for the bubble and spike terminal velocities is

Vb/s =
[

2A
(1±A)

gλ

Cd

]1/2

. (2.63)

The drag coefficient is determined from the bubble terminal velocity relationships for the A = 1

limit, which gives Cd2D = 6π and Cd3D = 2π. The added mass coefficients can also be determined

from the A = 1 case as Ca2D = 2 and Ca3D = 1. The compressibility, viscous, diffusion, and surface

tension effects on the terminal velocities are not fully understood.

There have also been many studies attempting to extend Layzer’s potential flow analysis to

general Atwood number and to both the bubble and spike. One such study uses observations of the

velocity field near the tip of the bubble from simulations to set the form of the velocity potential

[36]. During the early stages, the velocity takes on a maximum value at the interface and decays

exponentially toward both the top and bottom of the domain. At later times in the bubble growth,

the velocity continues to decay in the heavy outer fluid. However, the velocity profile of the light

fluid inside the bubble is well approximated by a constant in the vertical direction and zero in the
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horizontal. This motivates the application of the following form for the velocity potential:

φh(x, y, t) = a1(t) cos[k(y − y0)]e−k(x−η0), (2.64)

φl(x, y, t) = b1(t) cos[k(y − y0)]ek(x−η0) + b0(t)x. (2.65)

The kinematic condition remains unchanged. The dynamic condition, that pressure is continuous

across the interface, is applied by setting the pressure terms in the pure fluid Bernoulli equations

equal to one another. The resulting equation,[
∂φ

∂t
+

1
2

(u2 + v2) + gx

]h
(x=ηI)

−
[
∂φ

∂t
+

1
2

(u2 + v2) + gx

]l
(x=ηI)

= f(t), (2.66)

introduces a time-dependent arbitrary integration constant, f(t), whose solution requires the use of

the zeroth order terms (y = y0) of the combined Bernoulli equation. Thus, only the second order in

(y − y0) equation can be used to round out the system of equations for solving the time-dependent

parts of the velocity potentials. The combined Bernoulli equation is essentially an integration of

the momentum equations from an arbitrary location in space to the interface. The momentum

equations cannot be integrated from x→ −∞ due to the assumed form of the light fluid velocity

potential. The lack of a definitive integration results in the arbitrary integration constant, which

represents a loss of physical information about the flow that is intrinsic to the analysis.

The resulting set of ordinary differential equations is

η̇2 = −η̇0
k

2
(k + 6η2), (2.67)

η̈0

[
k2 − 4Akη2 − 12Aη2

2

2(k − 6η2)

]
+ (η̇0k)2

[
(4A− 3)k2 + 6(3A− 5)kη2 + 36Aη2

2

2(k − 6η2)2

]
+Agη2 = 0. (2.68)

The form of the ordinary differential equation matches a drag-buoyancy model, where the first term

corresponds to the acceleration, the second term represents the drag, and the final term is due to

buoyancy. In the limit of small perturbations, the potential flow model converges to the exponential

growth predicted from linear stability theory, with the correct growth rate ninc =
√
Agk. In the

asymptotic limit of t→∞, the analysis is consistent with the drag-buoyancy model. That is,

η2 → −k/6 and

Vb2D =
[

2A
(1 +A)

g

3k

]1/2

. (2.69)



26

In addition to providing an asymptotic terminal velocity, this analysis also offers a model for the

evolution of the bubble height from the early linear growth stage to the constant velocity observed at

later times. Despite the inconsistencies in the integration of the momentum equations, this model

is able to successfully predict the evolution of the bubble height for small to moderate Atwood

numbers. The model for the bubble evolution breaks down at high A.

The potential flow analysis is extended to the spike side of the interface by applying the

following form of the pure fluid velocity potentials:

φh(x, y, t) = a1(t) cos[k(y − y0)]e−k(x−η0) + a0(t)x, (2.70)

φl(x, y, t) = b1(t) cos[k(y − y0)]ek(x−η0). (2.71)

The analysis is similar to the bubble side and gives an asymptotic terminal velocity as

Vs2D =
[

2A
(1−A)

g

3k

]1/2

, (2.72)

which matches the drag-buoyancy model result. At low Atwood numbers (A = 0.1), the evolution

of spike is well predicted by the potential flow analysis. The model does not match the growth

of the spike for moderate to high A, where a terminal velocity may never occur. At later times,

observations from simulations show that the velocity profiles near the tips of the spikes do not

reach a constant value as occurs within the bubbles. This is not consistent with the chosen form

of the velocity potential and could be the reason for the limited success of the model. There is

no consistent behavior of the velocity within the spikes at late times, mostly due to the induced

motion from the vortices created near the tips of the spikes.

Until recently, the asymptotic behavior of the potential flow and buoyancy-drag models was

called the terminal velocity or saturation behavior, since it was believed to describe the late time

behavior of single-mode RTI [34]. However, as vorticity is generated by the Kelvin-Helmholtz insta-

bility on the sides of the bubbles and spikes, such a description becomes inadequate [89]. The late

time growth varies considerably from the potential flow description. Upon reaching the asymptotic

velocity, the bubble and spikes decelerate slightly, followed by a reacceleration region. During the
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creation of the Kelvin-Helmholtz vortices, the friction drag is increased due to the increased surface

area, which causes the deceleration in the flow. After the vortices are fully developed, the struc-

tures reaccelerate since the rolling motion acts to reduce to the friction drag between the bubbles

and spikes. Additionally, the induced flow from the vortices creates a momentum jet that fur-

ther propels the bubbles forward. The structures reach speeds well beyond the analytical terminal

velocities. The true asymptotic behavior beyond the reacceleration region is not fully understood.

2.2.4 Self-Similarity

In practice, RTI develops from a wide range of unstable scales. In most cases, the individual

structures never reach the asymptotic constant velocities present in the single-mode system due

to the interactions among the various bubble and spike formations. If the initial perturbation

spectrum is broad, successively larger and faster bubbles rise to the top of the mixing layer [16].

This occurs due to nonlinear mode-coupling, where short wavelength perturbations merge to form

bubbles with larger diameters, and bubble competition, where long wavelength modes dominate

once shorter wavelength bubbles begin to decelerate at speeds near the terminal velocity. Thus,

long wavelength initial perturbations have a long lasting effect on the growth of the mixing layer.

At sufficiently late times and for idealized conditions, the flow may forget the initial condi-

tions, due to the creation of larger bubbles from the nonlinear merging of smaller diameter bubbles.

This occurs once the dominant wavelength in the flow, λd, becomes significantly larger than the

maximum wavelength perturbation present in the initial conditions, λM . Since memory of the

initial conditions has been lost, the width of the mixing layer depends only on the densities of the

fluids, the gravitational acceleration, and time. Thus, gt2 is the only length scale of importance.

The bubbles grow self-similarly, meaning that the mixing layer height grows proportionally with

the wavelength of the dominant bubbles. Dimensional arguments give

hb = f(A)gt2, (2.73)

where hb is the amplitude of the dominant bubbles with wavelength λb, and the functional rela-
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tionship for the Atwood number needs to be determined. The similarity solution requires that the

bubble diameter, which is approximately equivalent to the dominant wavelength, scales with the

bubble height, that is Db ∝ λb ∝ hb. The Atwood number dependence is obtained by assuming

that the time for a particular wavelength to become dominant, tb, is a constant number of linear

growth periods, Nb. That is,

nbtb = Nb, (2.74)

where nb =
√

2πAg/λb is the incompressible growth rate derived from linear stability theory asso-

ciated with the dominant wavelength. At any given time the dominant wavelength scales as

λb ∝ Agt2. (2.75)

Thus, the self-similar growth of the dominant bubbles is

hb = αAgt2, (2.76)

where α is a dimensionless growth parameter [1, 3]. For small Atwood numbers, the spikes have

a very similar evolution. As A approaches unity, the spikes become narrow, reducing the drag

drastically, and the motion approaches free fall, with hs ≈ gt2/2.

Historically, the quadratic growth relationship, (2.76), derived from dimensional arguments,

has been the widely accepted form for the mixing layer evolution. The growth factor is presumed

constant during the self-similar growth of the instability, and can be solved for as

α =
h

Agt2
. (2.77)

Many experimental [4, 24, 57, 70, 94] and computational [2, 5, 13, 16, 21, 24, 31, 33, 35, 37, 39, 41,

48, 50, 58, 61, 92, 93, 94, 95, 96] studies have attempted to determine the correct value for α by

fitting a line to h versus Agt2 once the self-similar region is believed to have begun. The difficulty

in obtaining a single, correct growth parameter lies in the flow requirements necessary to apply

the formula. First, to ensure that all memory of the initial conditions has been lost, the initial

perturbation spectrum must be band limited, where the maximum perturbation wavelength is λM .
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Otherwise, the exponential growth in (2.10) of the long wavelength perturbations will dominate

the quadratic self-similar growth. The initial conditions are felt by the flow until h� λM , where h

is the mixing layer width. Furthermore, the unstable spectrum must also be peaked near the most

unstable linear growth mode (ku), in order to prevent the exponential growth of the fastest linear

mode from competing with the quadratic growth. The dominant initial perturbation wavelength,

λ0, corresponding the the peak of the wavenumber spectrum (k0), must be approximately equal to

the most unstable wavelength, λu. Second, boundaries must not effect the evolution of the growth

controlling eddies, both horizontally and vertically. The bubble merging process halts when the

dominant wavelength approaches the domain width (λd ≈ Lh) or the height of the mixing layer

approaches the domain height, (h ≈ Lv). Additionally, as the dominant wavelength grows, the

number of modes within the domain decreases, reducing the reliability of the mixing statistics.

Third, diffusive and viscous effects must be negligible. The length scales associated with diffusion

and viscosity must be much smaller than the mixing layer width. The viscous requirement is given

by the Kolmogorov scale,

η =
(
ν3

ε

)1/4

, (2.78)

where ν is the kinematic viscosity and ε is the turbulent kinetic energy dissipation. The diffusion

length scale, referred to as the Batchelor scale, is defined as

lB =
η

Sc1/2
=
(
νD2

ε

)1/4

, (2.79)

where the Schmidt number, Sc, represents the ratio of viscous to diffusivity effects. Therefore,

the Reynolds and Schmidt numbers for the flow must be sufficiently large. A summary of the

requirements for the application of (2.76) is [15]

λ0 ≈ λu < λM � h, Lv � h, Lh � h, lB � h, η � h. (2.80)

The α conflict arises because experiments and numerical simulations each have their own difficulties

in meeting all of these requirements. It is easy to achieve the high Reynolds number requirement

in experiments, but it is extremely difficult to have complete control over the initial conditions.
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Uncontrolled perturbations have a naturally broad spectrum. Large wavelength initial perturba-

tions are almost always inevitable. In order for the flow to forget the initial conditions, which is a

crucial aspect of self-similar growth, there must be no significant energy in the the low to moderate

wavenumbers. Conversely, the initial conditions are easily controlled in a simulation, but there

are resolution limitations, which restrict the range of possible Reynolds and Schmidt numbers.

Viscosity and diffusion introduce additional length and time scales, which affects the self-similar

growth.

A better model for the self-similar evolution of the mixing layer width can be derived using a

similarity assumption [75] or a mass flux and energy balance argument [15]. The former derivation

expresses the solutions to the moment equations as the product of a spatial similarity function and

a temporal scaling function. The latter derivation uses the mass flux through the midplane to set

the layer growth rate, and considers the terminal velocity of a falling sphere of diameter h to model

the vertical velocity fluctuations. The improved formula is

ḣ = 2(αAgh)1/2, (2.81)

which gives a new relationship for the dimensionless growth factor as

α =
ḣ2

4Agh
. (2.82)

The solution for the mixing layer width is

h(t) = αAg(t− t0)2 + 2(αAgh0)1/2(t− t0) + h0, (2.83)

where h0 is the thickness of the layer when the flow enters self-similar growth, at time t = t0. An

approximate solution for the growth factor is

α =

[√
h(t)−

√
h(t0)

]2

(Ag)(t− t0)2
. (2.84)

The additional terms in (2.83) that are not present in the original model for the mixing layer width

given in (2.76), dictate that the growth of the instability has both linear and quadratic behavior.

The persistence of the linear term, and thus the accuracy of the original model, is again determined

by the initial perturbation spectrum.
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(a) Mode coupling

(b) Mode competetion

Figure 2.11: Multi-mode simulations of RTI showing the difference in late-time behavior due to
mode coupling and mode competition [93].

2.3 Current Research of Rayleigh-Taylor Instability

Obtaining a detailed understanding of the growth of RTI has vast consequences in numerous

technical applications, specifically those discussed in Section 2.1.1. For example, investigations into

the effect that mixing has on the growth rate will give a better picture of what drives the flame front

acceleration in type Ia supernovae, which is crucial for understanding dark energy and the fate of the

universe. The shock waves created by RT unstable flame fronts is a possible detonation mechanism

[60]. There has been other recent progress with compressible RTI, yet most of the focus is on

incompressible systems. Investigations into the self-similar nature of the flow leave many questions

unanswered. The dependence of the late-time behavior on the initial perturbations is not fully

understood. Even if all memory of the initial conditions is lost, it is unknown if the flow truly ever

reaches self-similarity. In addition, there is a discrepancy between experiments and computations

when it comes to determining the self-similar growth factor α. Numerical simulations typically

initialize the flow with a spectrum of short wavelength perturbations. The simulations rely on mode

coupling to obtain larger structures that are independent of the initial conditions, thus making the

growth universal. In experiments of RTI, the initial spectrum necessarily includes low wavenumber
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perturbations, due to the broad nature of uncontrolled disturbances. Experiments are, at least

partially, driven to self-similarity by mode competition [21, 23, 67]. The results from simple two-

dimensional simulations are shown in Figure 2.11, which compares the late-time structures when

mode coupling and mode competition drive the flow to self-similarity [93]. The mode coupling

simulation has short wavelength perturbations only. The mode competition simulation has an

additional long wavelength disturbance, which dominates the flow even to late-times. The current

state-of-the-art numerical simulations and experiments of RT systems are discussed in the next

sections.

2.3.1 Numerical Simulations of Rayleigh-Taylor Systems

Numerical experiments of RTI have proven to be an essential compliment to observations

in nature and in the lab. Due to uncontrolled disturbances in every experimental apparatus,

computational studies are necessary to calibrate or validate engineering models before they are

applied to real problems [65]. Simulations of Rayleigh-Taylor systems have historically been crucial

in resolving many previously unsettled issues, including dimensionality and Atwood number effects

on the late-time growth of the bubble and spike structures [10, 92]. At the same time, many

doors have been opened to new unexplained physics, especially regarding the self-similar growth.

Most large simulations calculate α to be much lower than experimental results, but this may be a

consequence of mode competition in the lab. Simulations use band-limited initial conditions, which

is not possible in experiments. The difficulty for numerical simulations is the cost of resolving

the dynamics on a large enough domain to avoid unwanted boundary effects. Performing direct

numerical simulations (DNS), where all relevant scales of motion are resolved, on uniform grids puts

a heavy restriction on the resolvable Reynolds number, even with the most powerful computers in

the world. The requirement for self-similarity states that the Reynolds number must be high

enough for the mixing to be insensitive to viscosity and diffusivity. Large-eddy simulations (LES),

where the effect of subgrid-scale motions are modeled, also have difficulties since the nature of RTI

involves small scale perturbations growing and merging into larger structures. LES models assume
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a Kolmogorov energy spectrum, where the turbulent energy cascades from large to small scales.

The advantage of LES comes from resolving only the large scale self-similar growth, which must

occur at scales well above the initial perturbations based on the requirements in (2.80). Thus,

the relatively coarse grid associated with LES methodology will not accurately capture the inverse

cascade of the kinetic energy generated at the perturbation length scales. Furthermore, the efficacy

of applying a Reynolds-averaged Navier-Stokes (RANS) approach, where all fluctuating quantities

are modeled in order to solve for the mean flow, is unreliable since turbulent diffusion models

must be modified to provide the quadratic self-similar growth. Simulations of RT systems most

commonly apply DNS and LES methodologies. As computational resources continue to grow more

powerful, the prospect for numerical simulations to drastically alter the human understanding of

RTI becomes ever more influential and promising.

Attempting to accurately measure the universal self-similar growth factor for RT flows has

been a pressing issue among scientists for decades. The common approach is to find a portion of

the flow where h grows linearly with Agt2. The slope is then assumed to be α. The first numerical

simulations of RTI considered both two and three dimensional systems [5, 37, 93, 94, 95, 96].

The range of the growth factors was 0.03 < α < 0.05. Later simulations attempted to reduce the

amount of numerical diffusion by utilizing front-tracking techniques, which gave 0.05 < α < 0.08

[2, 29, 31, 33, 35, 39, 48, 61]. Whereas these studies were unable to agree on a growth factor, the

importance of initial conditions and late-time bubble entrainment on the mixing layer growth was

made evident.

2.3.1.1 Incompressible Single-Mode Simulations

The growth stages for single-mode incompressible RTI have been studied in detail for the low

Atwood number (A = 0.04) case [89]. When the viscous effects are small, the instability undergoes

the following range of development stages: diffusion growth (DG), exponential growth (EG) con-

sistent with linear stability theory, potential flow growth (PFG), reacceleration (RA), and chaotic

development (CD). The evolution of the bubble velocity and height during all stages of the growth
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Figure 2.12: The stages of single-mode RTI, where FrB is a nondimensional measure of the instan-
taneous bubble velocity, and HB is the bubble height [89].

of the instability are shown in Figure 2.12. During the early stages (DG, EG, and PFG), vorticity

is generated but has negligible effect on the growth of the instability. During the RA stage, vortices

appear near the centerline of the instability. The late-time growth of single-mode RTI, namely

the CD stage, consists of random acceleration and deceleration phases due to complex vortical

interactions and induced motion. These random variations act on a quadratically growing back-

ground state since the mean acceleration of the bubble is constant. This differs from the long-held

belief that the late-time instability growth is characterized by a constant velocity, which is only

accurate if the PFG stage extends to late-times. The growth coefficient, α, can be calculated from

the late-time mean quadratic growth for the single-mode case and compared with the multi-mode

self-similar growth factor.

The viscous and diffusion effects are quantified by introducing a perturbation Reynolds num-

ber,

Rep =

√
Agλ3

(1 +A)ν2
, (2.85)

with a Schmidt number held at unity. Whereas all growth stages occur at high Rep, as the value

is lowered, the later stages of the instability development are suppressed or eliminated outright.
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Figure 2.13: Isosurfaces of the heavy fluid mass fraction at two times showing the self-similar growth
of the bubbles [25].

Furthermore, the nature of the early stages change with Rep, such as the viscous effects of the linear

growth rate during the EG stage, as discussed in Section 2.2.2. None of the early investigations of

single-mode RTI have achieved the CD stage due to short development times or high viscous and

diffusion effects.

2.3.1.2 The Alpha-Group Monotone-Integrated Large-Eddy Simulations

A recent collaboration, aptly called the Alpha-Group, consisting of five organizations (Atomic

Weapons Establishment, University of Chicago, Lawrence Livermore National Laboratory, Texas A

& M, and Sandia National Laboratory) and utilizing seven various numerical codes (TURMOIL3D,

FLASH, WP/PPM, NAV/STK, RTI-3D, HYDRA, and ALEGRA) performed a series of RTI sim-

ulations in an attempt to improve the previous measures of the growth factor α [25]. The focus

was on the mixing of miscible fluids (low Schmidt numbers) at high Reynolds numbers, such that

there is significant dissipation within a Kolmogorov energy spectrum. The systems are driven to

self-similarity by generating long wavelength bubbles through the mode coupling of multi-mode

initial short wavelength perturbations, in order to make the growth independent of the initial con-

ditions. Figure 2.13 shows isosurfaces of constant mass fraction for the heavy fluid (Y2 = 0.99) at

two times within the self-similar regime. The dominant bubble diameter increases proportionally
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Figure 2.14: Convergence test for the bubble height and velocity, using the HYDRA code, with
(lines) and without (symbols) interface reconstruction [25].

with the layer growth. All but one of the codes are compressible solvers run in the incompressible

limit. Interface reconstruction is used to test the effect that mixing has on late-time entrainment

due to the associated numerical diffusion. The simulations solve the Euler equations and rely on

numerical diffusion to stabilize the problem, which reduces the reliability of the results. All of

the codes are forms of monotone-integrated LES (MILES), which is a total variation diminishing

LES approach [97]. MILES techniques are therefore able to handle the initial density discontinuity

without introducing unphysical oscillations. Some of the codes use a Lagrangian advection phase

that introduces enough dissipation in kinetic energy to make an explicit subgrid-scale model unnec-

essary. This is done at the expense of the trustworthiness of the findings, since the computations

may misrepresent the dynamics of the flow.

Single-mode calculations are performed in order to compare the small amplitude exponential

growth rates with the theoretical values from linear stability theory including viscous and diffusion

effects. The effective numerical viscosity is inferred from the difference. At later times, the terminal

bubble velocities are calculated and compared with the potential flow formulas. The bubble shape

modifies the drag it experiences, which accounts for the variations found in the terminal velocities.
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Figure 2.15: The evolution of the growth factor, αb, is obtained by differentiating hb with respect
to Agt2, and is plotted for two normalizations of time [25].

These differences have a direct relevance on the self-similar growth factor α. The bubble height

and velocity for a sample single-mode case are shown in Figure 2.14. The observed linear growth

rates are typically 80% or more of the values obtained from linear stability theory. The measured

terminal velocities are found to be within 90% of that predicted by potential flow theory.

Results for the multi-mode simulations are displayed in Figure 2.15. The growth factor α is

calculated by differentiating h with respect to Agt2, which is normalized by the horizontal length

of the domain, L = Lh, and the most unstable wavelength. The dotted lines are simulations on

a 128× 128× 256 grid, and the solid lines use a 256× 256× 512 grid. When the most unbstable

wavelength is used, all of the simulations enter the self-similar region when Agt2/λ0 ≈ 250. The

steady state growth factor is measured as α ≈ 0.025, which is about 40% lower than the average

value obtained in experiments, α ≈ 0.057. The disparity is attributed to the absence of long wave-

length initial perturbations in the simulations. Thus, the value obtained for α is the contribution

from mode coupling and represents a lower bound for observations in the lab. The Alpha-Group

also show that the simulations exhibit Kolmogorov power spectra with an inertial subrange above

the dominant bubble wavelength, λb. The dissipation scale is proportional to the grid size, but the

total amount of dissipation remains constant and proportional to the converted potential energy,

which agrees with DNS results. Due to the introduction of numerical dissipation, the effects of fine

scale mixing and entrainment on the simulations are unknown. The use of DNS to fully resolve
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(a) 2D (b) 3D

Figure 2.16: The two and three dimensional LES of a highly compressible RTI system, which show
the presence of a shock wave launched from the unstable interface into the upper fluid [60].

RTI may extend the progress achieved by the Alpha-Group.

2.3.1.3 Rayleigh-Taylor Shock Waves

The majority of simulations and experiments of RTI have been performed in the incompress-

ible limit at low Mach numbers. Little is known about the effects of compressibility and hydrostatic

density gradients on the late-time growth of RTI and the development of RT turbulence. The only

numerical study to date that focuses on the compressive nature of RTI has discovered the presence

of RT shock waves [60]. The results from both a two and three dimensional LES for a system with

high compressibility effects are shown in Figure 2.16. The images show that the rising bubbles

act like pistons, compressing the heavy fluid above the interface, which generates shocklets. The

shocklets are continuously generated on the bubble side of the interface, propagate into the upper

fluid, and coalesce into a strong shock wave. The simulations discredit the idea that RTI is solely

an incompressible phenomenon since RT shock waves could play an important role in the flame

front acceleration of type Ia supernovae.
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Figure 2.17: A comparison of the two formulas for α [9].

2.3.1.4 State-of-the-Art Direct Numerical Simulations

Cabot and Cook recently ran the largest, at that time, numerical simulation of RTI, and the

findings have the potential to drastically alter flame propagation models for type Ia supernovae

[9]. A direct numerical simulation was performed on a 3, 0723 grid, which ran on one of the fastest

computers in the world for two weeks. The system included two incompressible miscible fluids with

A = 0.5. A plot of the mixing layer at the end of the simulation is shown in Figure 2.9. The

simulation acheived Reynolds numbers that far exceed any previous computation of the instability.

The simulation achieved Re = 32, 000, well above the requirement Re > 104 for turbulent flows to

reach an asymptotic state [26]. The definition of the bulk Reynolds number is

Re ≡ HḢ

ν
, (2.86)

whereH is the visual layer width, defined as the range in the vertical direction for which 0.01 ≤ 〈X〉 ≤ 0.99

and 〈X〉 is the horizontal planar average of the molar mass fraction. With such a large compu-

tational domain, all of the requirements for self-similarity in (2.80) are easily satisfied even to

late-times. A comparison of the two methods for measuring the growth factor α, given in relation-

ships (2.77) and (2.82), explains why previous simulations, including the Alpha-Group’s efforts,
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gave a decreasing α as the resolution and Re are increased. As shown in Figure 2.17, the original

model for the growth factor, which does not include the linear growth term for the mixing layer

width, gives a decreasing value for α with time and Re. The improved formula gives a nearly

constant α ≈ 0.02 at moderate Re. Thus, self-similar predictions are valid after t/τ ≈ 6, where

τ =
(
λ0

Ag

)
(2.87)

is the RTI timescale. Even though the lower order terms in the self-similar relations should become

negligible at very late times, these terms remain important throughout the simulation. It was

discovered that the ratio of kinetic energy to released potential energy has a weak Reynolds number

dependence, instead of remaining constant as previously thought. This is evident as a slight increase

in α at higher Re. A further analysis of the results from this very large simulation have shown

that the typical turbulent eddy viscosity, νt ∼ k2
t /ε, is unable to capture the turbulent transport

in the flow. The model breaks down due the the buoyancy production and its effects on the energy

spectrum [56].

An even larger RTI direct numerical simulation has been performed by Livescu, Petersen,

Martin, and McCormick. The simulation is performed using a 40962 × 2304 grid with A = 0.75.

The results have not been published, but an image was kindly offered for presentation in Figure

2.8.

2.3.1.5 Classical Adaptive Mesh Refinement Methods

Solving the Rayleigh-Taylor problem on an adaptive mesh is a promising approach since the

small scale structures remain localized near the interface. Using a full structured grid wastes a large

amount of computational resources, since most of the domain is quiescent, especially at early-times.

Some of the codes in the Alpha-Group, such as FLASH, use an adaptive mesh refinement (AMR)

tool, called PARAMESH, to set the local resolution of the simulation [8]. In classical AMR, the

refinement criteria may be user-specified. For example, the user may require that the mass in any

given cell remains constant, up to a specified threshold. Thus, the grid is adapted based on the
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Figure 2.18: The evolution of the density PDF for a homogeneous RT system at A = 0.5 and two
different resolutions: (a) 2563 and (b) 5123 [55].

density distribution, and the method has no control on the error due to grid adaptation. The

refinement criteria may also be set based on an approximation of the local truncation error. One

common method uses Richardson extrapolation, which estimates the truncation error by comparing

the solutions using various temporal and spatial step sizes. The grid is locally refined where

the approximated error is above a specified threshold. Whereas classical AMR techniques are

successfully used to solve RTI on structured and unstructured grids, increased data compression

rates in smooth regions of the solution can be achieved using adaptive multiresolution methods,

one of which is discussed in Section 2.4.1. Additionally, adaptive multiresolution methods have

a direct control of the grid adaptation error, without the extra computations required in AMR

methodology.

2.3.1.6 Homogeneous Rayleigh-Taylor Simulations

Interest in VD flows is driven by the need to obtain a thorough understanding of the turbulent

mixing processes between fluids of different densities, such that accurate models can be applied to

technical problems. Of crucial importance is obtaining a model for RT mixing and the ensuing tran-
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sition to turbulence, which has been investigated through numerical simulations of homogeneous

RT systems. Early studies of buoyancy-driven turbulence applied the Boussinesq approximation,

where the densities of the species are assumed similar, such that variations of density only affect the

conservation of momentum through the buoyancy force [7]. For true VD flows, where the density

differences can be large, the mixing dynamics have been explored through statistical analysis of the

hydrodynamics [76, 77], the fluctuating velocity field [16, 54, 75], and the scalar field [55].

The largest simulation of a homogeneous RT system was performed on a 10243 grid [54, 55].

The study initialized random blobs of pure incompressible fluids within a triply periodic domain.

The initial probability density function (PDF) for density is equally peaked at the two pure fluids,

such that the heavy and light fluid are equally prevalent throughout the domain. Thus, density

is initialized as a double-delta PDF. The fluids are subjected to buoyancy-driven turbulence as

the two fluids move in opposite directions. The fluids eventually mix due to molecular diffusion

and the turbulence dies out. The study investigated parameters in the ranges of 250 ≤ Re ≤ 1667,

0.05 ≤ A ≤ 0.5, and grid resolutions from 2563 to 10243. For high Atwood numbers, the heavy

fluid is found to experience less stirring and molecular mixing than the light fluid. This effect is

evident in the density PDF evolution in Figure 2.18. The PDF is skewed toward the heavy fluid as

mixing occurs, eventually leading to an approximately Gaussian distribution. Therefore, the light

fluid mixes faster than the heavy fluid. This result is crucial for obtaining an appropriate model

for the mixing layer in RTI, since different amounts of molecular mixing occur on the two sides of

the layer, which could explain why the spikes have higher growth rates than the bubbles.

Another numerical study of a homogeneous RT system attempts to simulate statistically

stationary buoyancy-driven turbulent mixing [14]. The simulation has fringe regions at the top and

bottom of the domain, which supplies the flow with unmixed fluids. The domain is triply periodic

with gravity applied as normal. The injected fluid is always pure and contributes to an unstable

configuration, such that heavy fluid is injected from the top and light fluid from the bottom. Within

each fringe region, the injected fluid is introduced at the exact same mass rate as the fluid that

is removed from that layer such that the conservation laws remain satisfied. DNS are performed
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for parameters in the ranges of 260 ≤ Re ≤ 478, 0.5 ≤ A ≤ 0.75, and grid resolutions from 2563

to 3842 × 768. In addition, LES are used to test a mixing model. The parameters for LES are

Re = 478, A = 0.5, and grid resolutions from 322 × 64 to 3842 × 768.

2.3.2 Experiments of Rayleigh-Taylor Instability

Despite the difficulties presented to the experimentalist trying to study Raleigh-Taylor in-

stability, great amounts of ingenuity have led to the development of numerous disparate ways of

creating instability in the lab. Many experiments have proven to be repeatable and successful for

the validation of mixing layer growth models. Obtaining a reliable approximation of the growth

factor α has been an important but difficult task, since the applicability of equation (2.82) breaks

down if the criteria in (2.80) are not met. Not only are the initial perturbations impossible to fully

characterize in the lab, but also the finite domains of the experimental setup often lead to unwanted

influence of the boundaries deep into the flow, polluting the natural growth of the instability. These

difficulties have spurred the use of inventive techniques in the lab, which have proven useful for

comparison with numerical simulations.

Self-similar analysis must be applied with caution to experimental data. Most experiments

measure a growth factor in the wide range 0.03 < α < 0.08. One strategy is to accelerate a tank

of stable fluids, with the light fluid above the heavy fluid, downward, overcoming the gravitational

acceleration. The “rocket rig” experiment achieved an acceleration of 30g and measured α ≈ 0.063

for a variety of immiscible fluids at various Atwood numbers [70, 94]. A different study used the

Linear Electric Motor to achieve accelerations greater than 100g, which gave α ≈ 0.05, independent

of A [21, 22, 24]. When the surface tension is increased by a factor of 50 in an attempt to reduce the

effect of late-time bubble entrainment, the growth factor increases to α ≈ 0.06. Another technique

involves overturning a tank that is initially stable, light over heavy. One such experiment found

α ≈ 0.07 for small Atwood number systems [4]. Systems in the lab often begin with an unstable

configuration (heavy fluid lying on top of the light fluid), where a separating plate or membrane

is withdrawn carefully [17]. In one case, a membrane is ruptured using electronics, which gives
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α ≈ 0.063 for A = 0.5 and A = 0.9 [45]. Other experiments use magnetic fields to levitate heavy

ferrofluids, which become polarized in the presence of a magnetic field, above light fluids that are

not paramagnetic [40, 62]. Another idea replaces the time evolution of the instability with the

spatial progression of two fluids (heavy over light) flowing past a splitter plate with equivalent

velocities [59, 64]. The variations in growth factors among experiments and in comparison with

simulations prove that the mixing layer growth is heavily dependent upon initial conditions and

late-time bubble entrainment.

2.4 Numerical Tools

Large computational domains are necessary for performing simulations of RTI to late times.

Conversely, near the interface, small grid spacings are required for high Reynolds number flows.

Due to the nature of RTI, a wide range of scales needs to be resolved in order to perform accurate

computations. One promising approach to this issue is the use of an adaptive method, where the

resolution of the computational grid matches the local scale of the flow dynamics. The Parallel

Adaptive Wavelet Collocation Method naturally adapts the mesh to moving structures in the flow,

while retaining a direct control on the error. The top and bottom boundaries must be treated

carefully in compressible RT flows, since acoustic waves are generated at the interface. The initial

instability and resulting turbulent mixing are heavily sensitive to acoustic waves. In order to isolate

the instability, the boundaries of the numerical domain must minimize wave reflections. Typical

wall conditions are not sufficient for the RTI case. Using a characteristic-based representation of

the flow near the boundaries allows for the application of slip walls and non-reflecting inflow and

outflow boundary conditions.

2.4.1 Parallel Adaptive Wavelet Collocation Method

The Parallel Adaptive Wavelet Collocation Method (PAWCM) is an adaptive multiresolution

method, which utilizes wavelets to locally adapt the numerical resolution during the evolution of

complex flows [84, 85, 86]. Thus, localized structures are well-resolved while optimizing the use
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Figure 2.19: Since scaling and wavelet interpolating functions are localized, they provide informa-
tion about the dynamics of a system at the local scale and position. The wavelets are shown for
various levels of resolution, j.

of computational resources. Unlike classical AMR techniques, PAWCM has the advantage of a

threshold parameter that directly controls the error associated with the grid adaptation [79]. In

order to simplify the computation of nonlinear terms, a wavelet collocation method is used, which

ensures a one-to-one correspondence between grid points and wavelets.

PAWCM uses a wavelet representation of flow variables to dynamically adapt the grid to

the local scale of structures within the flow. Wavelets are functions that are localized in both

wavenumber and physical space, which are used as a set of basis functions to represent the flow in

terms of wavelet coefficients. In this sense, wavelets provide both frequency and position information

about the flow. An array of wavelet interpolating functions at varying levels of resolution and a

scaling function are shown in Figure 2.19. PAWCM uses wavelet decomposition to determine those

wavelets that are insignificant for representing the solution while maintaining a direct error control.

Once scaling functions, φjk(x), and wavelet interpolating functions, ψµ,jl (x), are constructed [84], a

function u(x) can be decomposed as

u(x) =
∑
k

c0
kφ

0
k(x) +

+∞∑
j=0

2n−1∑
µ=1

∑
l

dµ,jl ψµ,jl (x). (2.88)

A wavelet coefficient, dµ,jl , will have a small value unless the function varies significantly on the



46

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

Wavlet Coefficients

x

|d
j k
|

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Sample Fucntion

x

u
(x

)

Figure 2.20: The wavelet decomposition of a one-dimensional function with two regions of sharp
transition. The grid is displayed by level of resolution. The points circled in red are deemed
significant since their wavelet coefficients have values above the threshold.

scale j in the immediate vicinity of the wavelet ψµ,jl (x). Figure 2.20 shows a sample function

with two regions of sharp transition that is decomposed into its wavelet coefficients. The complete

grid is given in blue, displayed at various levels of resolution, j, along the y-axis. The relative

magnitude of the wavelet coefficients at each location is given by the black stems. For fields with

isolated structures on a large-scale quiescent background, most of the wavelet coefficients are small.

The wavelets associated with coefficients less than a prescribed threshold parameter, ε, can be

discarded in representing the solution, while retaining an approximation with an error that is O(ε).

Thus, wavelets are deemed significant if |djk| ≥ ε‖u‖. The significant wavelets are shown in red,

since their scaled coefficients are greater than the prescribed threshold ε = 10−2. Since the grid

adapts to localized structures, high resolution is required only in the locations where the small-scale

structures exist. A small percentage of the full nonadaptive grid points are needed to represent the

function accurately, due to the coarse grid where the function remains constant.

To obtain the error associated with using a wavelet-based adaptive approximation for a

function, the wavelet representation given in (2.88) can be split into wavelets whose coefficients are
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above and below the threshold parameter ε,

u(x) = u≥(x) + u<(x), (2.89)

where

u≥(x) =
∑
k

c0
kφ

0
k(x) +

+∞∑
j=0

2n−1∑
µ=1

∑
l

|dµ,jl | ≥ ε‖u‖

dµ,jl ψµ,jl (x), (2.90)

u<(x) =
+∞∑
j=0

2n−1∑
µ=1

∑
l

|dµ,jl | < ε‖u‖

dµ,jl ψµ,jl (x), . (2.91)

The representation of a sufficiently smooth function by only the significant wavelets has an error

that is bounded as

‖u(x)− u≥(x)‖ ≤ C1ε‖u‖, (2.92)

where C1 is a constant. The number of significant wavelets, N , required for the representation is

bounded as

N 1/n ≤ C2ε
−1/p, (2.93)

where n is the dimension of the problem, p− 1 is the order of the wavelet interpolation, and C2 is

a constant. The error bound in terms on the number of significant wavelets is therefore

‖u(x)− u≥(x)‖ ≤ C3N−p/n‖u‖, (2.94)

where C3 is a constant. Derivatives are calculated at the corresponding local resolution using finite

differences. Second-generation wavelets are used, which allow the order of the wavelets, and, thus,

the order of the finite differences, to be easily varied [81].

When solving evolution problems, such as the growth of RTI, an adjacent zone is added

to the points associated with wavelets whose coefficients are significant. By adding the nearest

neighbors of the significant wavelet coefficients in both position and scale, the computational grid

contains points that could become significant during a time advancement step. A reconstruction

check is also performed, ensuring that all the points required to perform the wavelet transforms are
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Figure 2.21: Mass fraction, vorticity, vertical velocity, and the associated adaptive grid for the
early-time exponential growth, consistent with linear stability theory. The images result from the
direct numerical simulations presented in Chapter 4.

included on the mesh. When spatial derivatives are taken, ghost points are also added to the grid

to maintain the desired order of the method. The additional computational cost per grid point of

PAWCM is currently three to five times greater than a standard non-adaptive method. The extra

cost per grid point is negated in systems where small-scale structures occur in a small fraction of

the domain. Applying PAWCM to simulations of RTI is a prime example where the compression

of the grid is very high, since the mixing layer remains localized well into the nonlinear growth

stage. Also, since a small percentage of the grid points are necessary to achieve high effective

global resolutions, memory resources are used efficiently. The dynamic grid adaptation allows the

efficient use of computational resources to resolve a wide range of scale structures as they evolve.

A typical dynamically adapted grid is shown in Figure 2.21 for a RTI simulation during

the early-time exponential growth regime. Acoustic waves are created at the interface from the

initial perturbations. PAWCM dynamically adapts to the waves as they propagate away from the

interface. The effective global resolution is 10241× 1024, yet only 1.9% of the points are used

(199, 593 points, 98.1% compression). Even at late-times, when the mixing layer has filled the

majority of the domain, PAWCM is able to compress the data by 96.4%, as shown in Figure 2.22.

Only 380, 166 points, 3.6% of the non-adaptive grid, are required to represent the flow.

The largest challenge in parallelizing PAWCM lies in applying an effective load balancing

procedure. Due to the dynamically adapting grid, using a geometric decomposition of the domain

will inevitably lead to overloaded processors that act as a bottleneck for the entire simulation.
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Figure 2.22: Mass fraction, vorticity, and the associated adaptive grid for the late-time instability
growth. The images result from the direct numerical simulations presented in Chapter 4.

The data are stored using a tree-like structure with tree roots starting at a sufficiently large level

of resolution to shorten the tree traversing path and to minimize the size of the trees for data

migration. Both static and dynamic domain partitioning approaches have been developed. For

dynamic domain partitioning, the trees are considered to be the minimum quantum of data to

be migrated between the processors. This allows for the efficient and fully automated handling

of a non-simply connected partitioning of a computational domain. Dynamic load balancing is

achieved through domain repartitioning during the grid adaptation step by reassigning trees to the

appropriate processors to ensure approximately the same number of nodes on each processor.

Dynamical load balancing is performed using the Zoltan library, which can refine or reparti-

tion the domain once a specified imbalance threshold is met. For PAWCM, the system is deemed

imbalanced once minp(Nwltp)/maxp(Nwltp) falls beneath a given threshold parameter, where Nwltp

is the number of active wavelets on the pth processor. The dynamical load balancing procedures

using the Zoltan library can easily handle non-simply connected domains. Sample domain decom-

positions for the solution of RTI and the associated adaptive grid in Figure 2.22 are shown in
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Figure 2.23: Domain decompositions associated with the solution and grid in Figure 2.22. The
decomposition type and processor number are specified, where ‘Geom.’ signifies geometrical de-
composition, and ‘Zol.’ represents use of load balancing through the application of the Zoltan
library. The images result from the direct numerical simulations presented in Chapter 4.

Figure 2.23. The geometric decomposition for eight processors uses vertical strips, which leads to

overloaded processors at late times. The domain decomposition using the Zoltan partitioning for

eight, sixteen, and thirty-two processors are also presented.

2.4.2 Characteristics-Based Boundary Conditions

Simulations of systems lacking periodicity often require creative approaches near the compu-

tational boundaries in order to maintain high-order approximations and stability in the solution.

Simulations of compressible flows require an accurate control of wave reflections at the bound-

aries. It is also often desirable to remove waves at the boundaries. Poinsot and Lele developed a

set of Navier-Stokes Characteristic Boundary Conditions (NSCBC) by analyzing the characteristic

lines crossing the boundaries for the associated hyperbolic system, namely the Euler equations

[63]. By considering the well-posedness of the Navier-Stokes equations, the method is extended
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to the full system of equations, including viscous terms. Thus, the propagation of waves from

the Navier-Stokes equations are assumed to be associated only with the hyperbolic part. Since

most simulations are performed for high Reynolds numbers, the approximation is well justified. A

distinction is made between a physical boundary condition, one in which the condition specifies

a known physical behavior, and a soft boundary condition, which is required by the numerical

method without being an explicit physical attribute. The number of physical boundary conditions

required for the well-posedness of the Navier-Stokes equations depends on the nature of the flow,

whether subsonic or supersonic, and the type of boundary, such as a wall, inflow, or outflow. The

proposed numerical implementation requires additional soft boundary conditions for the associated

flow type to keep the system well-posed.

The full system of equations governing the flow of compressible viscous fluids of Ns species is

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (2.95)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
− ρgi +

∂τij
∂xj

, (2.96)

∂ρe

∂t
+
∂ρeuj
∂xj

= −∂pui
∂xi

− ρuigi +
∂τijui
∂xj

− ∂qj
∂xj

+
∂cplTsjl
∂xj

, (2.97)

∂ρYl
∂t

+
∂ρYluj
∂xj

=
∂sjl
∂xj

, (2.98)

where l = 1, 2, ..., Ns, the heat flux is defined as

qj = −k ∂T
∂xj

, (2.99)

the viscous stress, assuming Newtonian fluids, is defined as

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
∂uk
∂xk

δij

)
, (2.100)

and the species flux is defined as

sjl = ρD
∂Yl
∂xj

. (2.101)

The remaining definitions from the equations (2.3)-(2.6) are also used here.
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Characteristic analysis is employed on the hyperbolic terms corresponding to waves propa-

gating in the x1 direction [83]. For waves that are approximately planar, traveling parallel to the

x1-axis, the analysis is simplified by considering the one-dimensional Euler equations,

∂ρ

∂t
+ ρ

∂u1

∂x1
+ u1

∂ρ

∂x1
= 0, (2.102)

∂u1

∂t
+ u1

∂u1

∂x1
+

1
ρ

∂p

∂x1
= 0, (2.103)

∂p

∂t
+ ρc2∂u1

∂x1
+ u1

∂p

∂x1
= 0, (2.104)

where c =
√
γp/ρ is the speed of sound. The system can be recast in terms of the differential

characteristic variables,

δv1 = ρc δu1 − δp, (2.105)

δv2 = c2 δρ− δp, (2.106)

δv3 = ρc δu1 + δp, (2.107)

which results with the following characteristic equations,

∂v1

∂t
+ (u1 − c)

∂v1

∂x
= 0, (2.108)

∂v2

∂t
+ u1

∂v2

∂x
= 0, (2.109)

∂v3

∂t
+ (u1 + c)

∂v3

∂x
= 0. (2.110)

These equations are all of the form
∂vκ
∂t

+ λκ
∂vκ
∂x1

= 0, (2.111)

which is replaced with
∂vκ
∂t

+ Iκ = 0. (2.112)

Thus, the time variation of the characteristic wave amplitudes are given by

I1 = λ1

(
∂p

∂x1
− ρc∂u1

∂x1

)
, (2.113)

I2 = λ2

(
c2 ∂ρ

∂x1
− ∂p

∂x1

)
, (2.114)
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I3 = λ3

(
∂p

∂x1
+ ρc

∂u1

∂x1

)
, (2.115)

with characteristic velocities

λ1 = u1 − c, (2.116)

λ2 = u1, (2.117)

λ3 = u1 + c. (2.118)

The primitive variables can now be written in terms of the amplitude variations of the characteristic

waves as

∂ρ

∂t
+

1
2c2

(I3 + I1 + 2I2) = 0, (2.119)

∂u1

∂t
+

1
2ρc

(I3 − I1) = 0, (2.120)

∂p

∂t
+

1
2

(I3 + I1) = 0. (2.121)

The Local One-Dimensional Invsicid (LODI) relations use the above characteristic analysis

of the one-dimensional inviscid problem to infer values for the wave amplitude variations in a

multidimensional viscous system. Extending the analysis for a d-dimensional velocity field, where

d = 2 or d = 3, and species transfer, the LODI relations are

∂ρ

∂t
+

1
2c2

(INv + I1 + 2I2) = 0, (2.122)

∂u1

∂t
+

1
2ρc

(INv − I1) = 0, (2.123)

∂u(2:d)

∂t
+ I(3:d+1) = 0, (2.124)

∂p

∂t
+

1
2

(INv + I1) = 0, (2.125)

∂Y(1:Ns)

∂t
+ I(d+2:Ns+d+1) = 0, (2.126)

where Nv = Ns + d+ 2 is the total number of evolved variables in the system, and the amplitude

variation of the characteristic waves are

I1 = λ1

(
∂p

∂x1
− ρc ∂u

∂x1

)
, (2.127)
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I2 = λ2

(
c2 ∂ρ

∂x1
− ∂p

∂x1

)
, (2.128)

I(3:d+1) = λ(3:d+1)
∂u2:d

∂x1
, (2.129)

I(d+2:Ns+d+1) = λ(d+2:Ns+d+1)
∂Y1:Ns

∂x1
, (2.130)

INv = λNv

(
∂p

∂x1
+ ρc

∂u

∂x1

)
. (2.131)

The associated characteristic velocities are

λ1 = u1 − c, (2.132)

λ2 = λ(3:d+1) = λ(d+2:Ns+d+1) = u1, (2.133)

λNv = u1 + c. (2.134)

The characteristic waves are grouped for convenience, with their true definitions in brackets, as

X1 =
1

2c2
(INv + I1 + 2I2)

[
= u1

∂ρ

∂x1
+ ρ

∂u1

∂x1

]
, (2.135)

X2 =
1

2ρc
(INv − I1)

[
= u1

∂u1

∂x1
+

1
ρ

∂p

∂x1

]
, (2.136)

X(3:d+1) = I(3:d+1)

[
= u1

∂u(2:d)

∂x1

]
, (2.137)

X(d+2:Ns+d+1) = I(d+2:Ns+d+1)

[
= u1

∂Y(1:Ns)

∂x1

]
, (2.138)

XNv =
1
2

(INv + I1)
[
= u1

∂p

∂x1
+ ρc2∂u1

∂x1

]
, (2.139)

and the full system of equations can be written as

∂ρ

∂t
+ X1 +

d∑
n=2

∂ρun
∂xn

= 0, (2.140)

∂ρui
∂t

+ uiX1 + ρXi+1 +
d∑

n=2

∂ρuiun
∂xn

= − ∂p

∂xi
(1− δi1)− ρgi +

∂τij
∂xj

, (2.141)

∂ρe

∂t
+

1
2

(ujuj)X1 + ρujXj+1 +
XNv
γ − 1

+
d∑

n=2

∂ρeun
∂xn

=

−
d∑

n=2

∂pun
∂xn

− ρuigi +
∂τijui
∂xj

− ∂qj
∂xj

+
∂cplTsjl
∂xj

, (2.142)

∂ρYl
∂t

+ YlX1 + ρXl+d+1 +
d∑

n=2

∂ρYlun
∂xn

=
∂sjl
∂xj

. (2.143)
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The major advantage of casting the equations in this form is that, when considered near a com-

putational boundary, the set of Iκ represent the amplitude variations of the characteristic waves

crossing a boundary in the x1 direction. Caution must used when applying the LODI analysis to

numerical simulations, since the full Navier-Stokes equations involve both viscous and tangential

terms. The approximation is valid for sufficiently planar waves and small viscosity. The LODI

relations have been successfully extended to non-planar three-dimensional waves [52].

The NSCBC are applied by first eliminating a conservation equation corresponding to each

inviscid physical boundary condition. Then, the LODI relations (2.122)-(2.126) are used to express

the wave amplitude variations, Iκ, for the incoming waves in terms of the Iκ for the outgoing waves.

Lastly, extra viscous conditions required by the use of the Navier-Stokes equations are applied and

the remaining conservation equations (2.140)-(2.143) are solved on the boundaries. Two sample

boundary types for subsonic flow are discussed in more detail in the following sections.

The NSCBC that make use of the classical LODI relations cannot be applied successfully

to stratified flows such as RTI, since they assume a constant background state. The stratification

leads to unstable boundaries and strong wave reflections. One of the objectives of this thesis is to

extend these non-reflecting boundary conditions for highly stratified flows.

2.4.2.1 Adiabatic Slip Wall Representation

Representing a slip wall using the LODI relations allows accurate handling of wave reflections

for subsonic compressible flows. The single inviscid condition is that the normal velocity at the

wall is zero, that is u1 = 0. The only two wave amplitude variations that are not zero are related to

one another through (2.123), which gives I1 = INv , one of which represents an incoming wave, the

other an outgoing wave. The outgoing wave Iκ is calculated from internal points and set equal to

the incoming wave amplitude variation. The viscous conditions associated with an adiabatic slip

wall require zero tangential viscous stresses, normal heat flux, and normal species flux. That is, at

the wall,

τ12 = τ13 = q1 = s1l = 0. (2.144)
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The system is then evolved using the remaining conservation equations (2.140)-(2.143), not includ-

ing the x1 momentum equation.

2.4.2.2 Non-Reflecting Boundary Conditions

Whereas a perfectly non-reflecting boundary condition is not likely possible for the general,

stable computation of the Navier-Stokes equations, the NSCBC methodology offers an exact non-

reflecting treatment of boundaries for one-dimesional systems that remains well-posed for multi-

dimensional problems. For compressible problems with waves propagating through a non-reflecting

boundary, the mean pressure must be controlled by setting a static pressure p∞ and allowing

small amplitude wave reflections. In this sense, the LODI relations are used for the application

of partially-reflecting boundary conditions. By imposing a static pressure, none of the dependent

variables are fixed on the boundaries, and all of the conservation equations must be solved. The

incoming wave amplitude variation is Iin = I1 for the top boundary and Iin = INv for the bottom

boundary. In order to satisfy the condition of constant pressure at infinity, the incoming wave

amplitude variation is set to

Iin = K(p− p∞), (2.145)

such that the pressure at the boundary evolves toward the static pressure over a timescale K−1.

The constant coefficient is

K = σ(1−M2)
c

L
, (2.146)

where M is the maximum Mach number in the flow, L is a characteristic size of the domain, and

σ is a constant that measures the relative amount of wave reflection. Setting σ = 0 leads to a

perfectly non-reflecting boundary, which makes the system ill-posed. The optimal value in test

cases was found to be σ = 0.25. The viscous conditions require that the tangential stresses, normal

heat flux, and normal species flux have zero spatial derivatives along x1. The conditions,

∂τ12

∂x1
=
∂τ13

∂x1
=
∂q1

∂x1
=
∂s1l

∂x1
= 0 (2.147)
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are implemented directly into the system of equations by explicitly setting the derivatives to zero.

The system is then evolved using all of the conservation equations (2.140)-(2.143).



Chapter 3

Computational Advances for the Simulation of

Compressible Rayleigh-Taylor Instability

Most Rayleigh-Taylor instability (RTI) research focuses on the incompressible regime, whereas

most RTI applications, such as type Ia supernovae and inertial confinement fusion, involve highly

compressible fluids. The combined effects of compressibility and large density gradients on the late-

time behavior of RTI is not currently fully understood [30, 56]. For thermal equilibrium, acoustic

and stratification properties of the background flow are interrelated, with stratification itself playing

an important role. Attempting to perform numerical simulations of the compressible RTI system

introduces a variety of additional complications, such as resolving the acoustic time scale, handling

acoustic waves and RT shock waves at the boundaries, and performing computations over a vast

range of density scales. In order to capture the late time behavior, the simulations need to be

performed in long vertical domains, with density ranges spanning many orders of magnitude. To

minimize the computational effort required for high resolution simulations on such domains, adap-

tive meshes are utilized so that the resolution of the computational grid matches the local scale

of the system. Single-mode RTI remains a spatially localized phenomena near the interface well

after the bubble and spike have formed. Most of the computational domain is therefore quiescent.

Multi-mode systems grow from the small scales of the initial perturbation to large scales as the

bubbles merge due to nonlinear mode coupling. Thus, applying an adaptive multiresolution method

efficiently resolves the required wide range of scales.

The use of a wavelet-based adaptive method for the simulation of complex fluid systems
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permits efficient use of computational resources, since high resolution simulations are performed

only where small structures are present in the flow. The wavelets allow the grid to dynamically

adapt to the structures in the flow as they evolve in time while maintaining a direct control of the

error [79]. The Parallel Adaptive Wavelet Collocation Method (PAWCM) has been efficiently used

for simulations of incompressible flows [42, 72] and compressible inert and reactive flows [51, 73].

PAWCM has not been previously used for the study of RTI systems. The extension of PAWCM to

simulations of RTI is promising due to the localized nature of the system.

For the compressible case, care must be taken to apply a consistent initialization, such that

generation of acoustic waves is suppressed and the instability growth remains pure. Care must also

be taken at the computational boundaries in order to remove acoustic and shock waves from the

domain, thus isolating the growth of RTI from wave reflections. An investigation of compressible

RTI requires the use of efficient numerical methods, advanced boundary conditions, and a consis-

tent initialization in order to capture the wide range of scales present in the system while reducing

the computational impact associated with acoustic wave generation and the subsequent interaction

with the flow. In the following sections, the nondimensional governing equations and parameters of

interest are introduced, optimally consistent initializations are discussed for both the RTI system

and a compressible homogeneous isotropic turbulent mixing case, boundary conditions are devel-

oped for handling acoustic waves within stratified flows, and various time integration schemes are

presented.

3.1 Problem Description

RTI occurs when a light fluid supports a heavier fluid in the presence of a gravity-like body

force, an accelerating front, or local differential motions. The density difference at the interface is

characterized by the Atwood number. The compressibility effects are measured by the isothermal

Mach number, which does not include the effects of the specific heat ratio. The stratification within

the system is affected by both the Atwood and Mach numbers.
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3.1.1 Nondimensional Governing Equations

The nondimensional form of the governing equations (2.3)-(2.6) is

∂ρ∗

∂t∗
+
∂ρ∗u∗j
∂x∗j

= 0, (3.1)

∂ρ∗u∗i
∂t∗

+
∂ρ∗u∗iu

∗
j

∂x∗j
= − 1

M2

∂p∗

∂x∗i
− ρ∗δi1 +

1
Re

∂τ∗ij
∂x∗j

, (3.2)

∂ρ∗e∗

∂t∗
+
∂ρ∗e∗u∗j
∂x∗j

= − 1
M2

∂p∗u∗i
∂x∗i

− ρ∗u∗1 +
1
Re

∂τ∗iju
∗
i

∂x∗j

− γI
M2(γI − 1)

(
1

RePr

∂q∗j
∂x∗j
− 1
ReSc

∂c∗plT
∗s∗jl

∂x∗j

)
, (3.3)

∂ρ∗Yl
∂t∗

+
∂ρ∗Ylu

∗
j

∂x∗j
=

1
ReSc

∂s∗jl
∂x∗j

, (3.4)

where the asterisk (∗) represents a nondimensional variable. The equation of state remains un-

changed, P ∗ = ρ∗R∗T ∗. The specific total energy is

e∗ =
1
2
u∗iu

∗
i +

1
M2

(
γI

γI − 1
c∗pT

∗ − P ∗

ρ∗

)
. (3.5)

The viscous stresses, heat flux, and species flux all remain unchanged,

τ∗ij = µ∗

(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i
− 2

3
∂u∗k
∂x∗k

δij

)
, (3.6)

q∗j = −k∗∂T
∗

∂x∗j
, (3.7)

s∗jl = ρ∗D∗
∂Yl
∂x∗j

. (3.8)

The reference length scale used to nondimensionalize the equations is the width of the domain Lh.

For the single-mode case, the initial interface is perturbed with a single mode that fills the domain

such that the perturbation wavelength equals the width of the domain, Lh = λ. The reference

pressure and temperature take on the background interfacial values PI and TI , where the interface

is defined to be the location where the two fluids are equally mixed based on the molar mass

fraction, that is XI1 = XI2 = 1/2. The molar mass fraction is defined as

Xκ =

Yκ
Wκ

Ns∑
l=1

Yl
Wl

, (3.9)
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where repeated indices do not imply summation, unless a summation symbol, Σ, is present. For

the system with a background state in thermal equilibrium, the reference temperature is simply

the background value, TI = T0.

3.1.2 Nondimensional Parameters

In order to investigate the compressibility effects on RTI, a distinction is made between

fluid compressibility characterized by the values of the ratios of the specific heats, γ1 and γ2, and

compressibility effects in response to the thermodynamic state of the system, characterized by a

Mach number defined using the magnitude of a characteristic velocity relative to the speed of sound

[53]. Since the flow starts with zero velocity, the Mach number is defined based on the gravity wave

speed,
√
gλ, which characterizes the instability driving force, and the isothermal speed of sound

a0 =
√
PI/ρI , which removes the effects of the specific heats from the definition [53, 98]. The

definition of the isothermal Mach number is

M =
√
ρIgλ

PI
, (3.10)

where the fluid density at the interface is given as

ρI =
RT0

PI

(
W1 +W2

2

)
. (3.11)

For certain classes of initial conditions, such as the thermal equilibrium case, M also determines

the vertical variations of the equilibrium density and pressure profiles. In these cases, it can be

regarded, in addition, as a stratification parameter [30]. The reference values for the fluid properties,

namely µI , kI , cpI , cvI , and DI , are also taken to be the equally mixed quantities based on the

molar mass fraction. The equally mixed ratio of specific heats is then defined as γI = cpI/cvI .

In general, an arbitrary reference velocity scale, U0, makes necessary the definition of the Froude

number. Keeping in mind that the velocity scale, for the case presented here, is set by U0 =
√
gL,

and the length scale is set as L = λ, a general list of all the nondimensional parameters and their

definitions is provided in Table 3.1.
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Parameter Definition Effect

Atwood number A = W2−W1
W2+W1

variable density / stratification

Mach number M =
(
ρIU0

PI

)1/2
acoustic / compressibility / stratification

Reynolds number Re = ρIU0L
µI

viscous

Schmidt number Sc = ρIµI
DI

mass diffusivity

Prandtl number Pr = cpIµI
kI

thermal diffusivity

Froude number Fr = U0

(gL)1/2
gravitational / stratification

Specific heat ratio γI = cpI
cvI

compressibility

Table 3.1: Relevant parameters for compressible RTI are listed, along with the effects each has on
the flow.

3.2 Initialization

The initialization of the thermodynamic quantities and the velocity field for RTI simulations

must be derived directly from the governing equations to prevent strong acoustic wave generation

at the interface. A mismatch in enthalpy and species diffusion prevents complete consistency,

but an initialization strategy can be achieved where pressure disturbances are minimized. Linear

stability theory offers consistent initial conditions for a slightly perturbed interface with a stratified

background. An ideal initialization for the compressible homogeneous isotropic turbulent mixing

case has equal representation of the two pure fluids using the density distribution.

3.2.1 Thermodynamic Initialization for Raleigh Taylor Instability

The RTI system is initialized with a hydrostatic background state, to which linear perturba-

tion fields for density and pressure are added due to the interface perturbation. Alternatively, the

modes can also be superimposed such that no perturbation is required for the interface, density, or

pressure, but a linear perturbation field for velocity is added.

The background state has a zero velocity field, representing a system at rest. Plugging ui = 0
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into the vertical momentum equation, the hydrostatic background state requires:

∂pH

∂x1
= −ρHg. (3.12)

Assuming a background state in thermal equilibrium, TH = T0, the solution for each fluid is

pHm = PI exp
(
− gx1

RmT0

)
, (3.13)

ρHm =
PI

RmT0
exp

(
− gx1

RmT0

)
, (3.14)

where the subscript m denotes the fluid species.

The nondimensional version of the background equilibrium state is

pH∗1,2 = exp
[
−M2(1∓A)x1

]
, (3.15)

ρH∗1,2 = (1∓A) exp
[
−M2(1∓A)x1

]
. (3.16)

Figure 3.1 shows the background density profiles for various M and A. It is easily observed from the

profiles and the analytical solution for the background density that M is a measure of stratification,

and A is a measure of the interfacial density difference, for this case. Additionally, the stratification

is also strongly affected by A. At high values of A, the density profiles for the bottom fluid are

largely unaffected by M , while the stratification in the top fluid is drastically affected by M .

A single-mode perturbation is added to the hydrostatic background state consistent with

linear stability theory [53]. The perturbation fields for the two-dimensional system are of the form

p′m = Fm(x1) exp(ikx2 + nt), (3.17)

ρ′m = Gm(x1) exp(ikx2 + nt). (3.18)

The x1-dependent functions are solved from the governing equations (2.13)-(2.15) with the imposed

solution from (3.17) and (3.18), as is done is Section 2.2.2. For the fully compressible case, the

growth rate n is described through the nonlinear relationship (2.32). The extension of linear

stability analysis to the compressible case has shown that the effects of compressibility on the early

time growth rate are not characterized by a single parameter [53]. The added complexity due to
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Figure 3.1: Background density profiles at various M and A for the thermal equilibrium case.

the effects of compressibility is expected to increase as the late time growth of RTI is investigated.

The initial fields for pressure and density for each fluid are

pm = pHm + p′m, (3.19)

ρm = ρHm + ρ′m. (3.20)

To ensure the initialization is well resolved, the interface is smoothed by setting the molar

mass fraction to X1 = [1 + erf((x1 − ηI(x2, x3))/δ)]/2, where ηI(x2, x3) represents the location of

the perturbed interface, and δ is the initial diffusion thickness of the interface. The error function

is used in the molar mass fraction initialization because it is an exact solution to the diffusion

equation. This initialization allows for an analytical solution of the smoothed background pressure

and density fields,

pH = PI exp
[ −g
RT0

(
x1 − ηI −

δ2

2
∂ lnR
∂x1

)]
, (3.21)

ρH =
pH

RT0
. (3.22)

These definitions represent smoothed fields because the gas constant takes on the local value ac-

cording to the local mass fraction. Additionally, the extra smoothing term in the exponential is a
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Pressure Variation from Background

Figure 3.2: The stationary, isothermal, hydrostatic background state leads to the generation of
strong acoustic waves at the interface. The plots show the time evolution of vertical lines of the
pressure variations from background state, where time increases downward.

direct result of the molar mass fraction initialization.

The initial fields are smoothed at the interface using the contribution of the pure fluid solution

to the smoothed hydrostatic background state. That is,

p = p1
pH

pH1
and ρ = ρ1

ρH

ρH1
for x1 ≥ ηI , (3.23)

p = p2
pH

pH2
and ρ = ρ2

ρH

ρH2
for x1 ≤ ηI , (3.24)

The perturbed initial temperature is then derived from the equation of state. Any potential jump

in temperature at the interface is smoothed by numerically solving the diffusion equation for the

temperature field. The smoothing is only done until the temperature field is well resolved. Any

variation introduced from this final smoothing process is accounted for in the density field.
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3.2.2 Velocity Field Initialization for Raleigh Taylor Instability

A zero velocity initialization is an obvious choice for the comparison of numerical simulations

to experimental results, since most experiments attempt to start with static fluids. The zero initial

velocity assumption is an intrinsic part of the linear stability analysis, which leads to consistent

initial fields for the thermodynamic variables. The governing equations can be written as

Dρ
Dt = −ρ∂uj

∂xj
, (3.25)

Dui
Dt = −1

ρ

∂p

∂xi
− gi +

1
ρ

∂τij
∂xj

, (3.26)

Dp
Dt = −γp∂uj

∂xj
+ (γ − 1) τij

∂ui
∂xj

+ (γ − 1)
∂

∂xj

[
k
∂T

∂xj

]
+ (γ − 1)Dρ

∂cP
∂xj

∂T

∂xj
+ γT

∂

∂xj

[
Dρ

∂R

∂xj

]
, (3.27)

DR
Dt =

1
ρ

∂

∂xj

[
Dρ

∂R

∂xj

]
, (3.28)

where D/Dt represents the material derivative. Applying the stationary (ui = 0), isothermal

(T = T0), and hydrostatic (∂p/∂xi = −ρgi) assumptions to the governing equations associated with

the background state leads to Dp/Dt 6= 0. The inconsistency arises because the species diffusion

leads to a nonzero enthalpy diffusion term in the energy equation, which inevitably creates distur-

bances in the pressure field at the interface. These disturbances lead to the generation of relatively

strong acoustic waves that propagate out from the initial interface. Figure 3.2 shows the generation

and propagation of strong acoustic waves due to the inconsistent initialization.

The initialization can be improved by minimizing the pressure disturbances in place of the

stationary assumption. In order to satisfy Dp/Dt = 0 after applying only the isothermal (T = T0)

and hydrostatic (∂p/∂xi = −ρgi) assumptions, and neglecting the viscous term, a balance is re-

quired for the remaining two terms,

γp
∂uj
∂xj

= γT
∂

∂xj

[
Dρ

∂R

∂xj

]
. (3.29)

An equation for the divergence of velocity is found and expanded as

∂uj
∂xj

=
1
ρR

∂

∂xj

[
Dρ

∂R

∂xj

]
=

∂

∂xj

[
D
∂ lnR
∂xj

]
+D

∂ lnR
∂xj

∂ ln ρR
∂xj

. (3.30)
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Pressure Variation from Background

Figure 3.3: The diffused, isothermal, hydrostatic background state leads to the generation of weak
acoustic waves at the interface. The plots show the time evolution of vertical lines of the pressure
variations from background state, where time increases downward.

The last term typically has a small contribution, but may become significant for highly stratified

cases with large initial diffusion thickness. The final term is neglected, leaving a divergence on both

sides of the equation,
∂uj
∂xj

=
∂

∂xj

[
D
∂ lnR
∂xj

]
, (3.31)

which is integrated to give the initial velocity field for minimizing pressure disturbances at the

interface,

ui = D
∂ lnR
∂xi

. (3.32)

For variable density flows in the limit of incompressible pure fluids, mixing by species diffusion leads

to non-zero divergence of velocity [54], which is equivalent to the result obtained for the compressible

case. Thus, the modified initialization represents a non-stationary, diffused, isothermal, hydrostatic

background state. Figure 3.3 shows the generation and propagation of acoustic disturbances that
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are weak compared to the waves generated from the stationary background state shown in Figure

3.2.

With the presence of initial diffusive mixing in the compressible case, there is no way to

obtain a fully consistent initialization that accounts for both the species and enthalpy diffusion in

the energy equation. Therefore, acoustic waves are necessarily generated from the initial conditions,

whose magnitudes are dependent upon M , A, D, and the initial diffusive layer thickness, δ. The

diffused background state is an optimally consistent initialization, where small pressure disturbances

are introduced due to the presence of the viscous terms, the neglected term in the divergence of

velocity formula given in (3.30), and the interaction between the background state and the initial

perturbed fields consistent with linear stability theory. The acoustic waves are greatly reduced by

setting the initial velocity field to the diffusive mixing velocity given in (3.32). The initialization

represents a diffused interface that experiences a sudden perturbation. The effects of the diffused

and perturbed interface are introduced independently, but are combined in (3.23).

The advantages of the diffused initialization over a zero velocity initial state include higher

consistency, uncontaminated flow evolution, and more efficient use of computational resources. The

original motivation for applying a stationary initialization in order to match experiments is actually

a significant approximation when miscible fluids are used in the lab. The diffused initialization is

optimally consistent in terms of acoustic generation and is a better physical representation of any

real system. Furthermore, any acoustic wave generated at the interface must be dealt with at the

boundaries of the computational domain, in order to prevent wave reflection and contamination

of the pure instability growth. When adaptive grids are used for numerical simulations of RTI,

additional computational resources must be used to resolve the propagation of the acoustic waves

generated from the inconsistencies in the initialization. Waves with higher amplitudes require

higher resolution, and more resources are used to resolve the acoustics instead of the RTI growth.

This can be observed in the adaptive grids associated with the two initializations, shown in Figure

3.4. The stationary initialization generates stronger acoustic waves and requires almost three times

the number of active wavelets used to represent the diffused initialization case, where the acoustic
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(a) Stationary Initialization

(b) Diffused Initialization

Figure 3.4: Early time acoustic wave propagation for the two initializations. The grid for the
stationary and diffused initializations encompass 116,828 and 39,537 active wavelets, respectively.
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generation is much weaker. The acoustic effect on the adaptive grid also has a longer duration for

stronger acoustic waves. The adaptive grids at a later time, where the RTI growth is well into the

linear regime, are shown in Figure 3.5. The computational boundaries represent reflecting walls,

such that the acoustic waves remain inside the computational domain and their late time effects can

be observed. The grid continues to resolve the acoustics from the stationary initialization, whereas

the diffused initialization case is only weakly adapting to the waves. Even at this late time, the

zero initial velocity case uses 57% more points than the optimally consistent initialization.

3.2.3 Consistent Initialization for Compressible Homogeneous Isotropic Turbulent

Mixing

The turbulent mixing layer of RTI is often studied as a homogeneous buoyancy-driven VD

flow, where the fluids are assumed incompressible. For significantly late times and, consequently,

wide mixing regions, the turbulence that occurs deep within the layer, away from the edges, is sta-

tistically homogeneous. As discussed in Section 2.3.1.6, the homogeneous RT system is investigated

in an attempt to understand the physics of turbulent mixing subjected to differential accelerations.

Compressible variable density (CVD) flows are characterized by the molecular mixing of fluids with

different molar masses. A simple CVD flow is compressible homogeneous isotropic turbulent mixing

(CHITM), which is valuable for studying the compressibility effects on molecular mixing. With the

exception of the buoyancy terms, the governing equations for CHITM are equivalent to those used

for compressible RTI simulations.

The CHITM system is initialized as random blobs of two pure compressible fluids, subjected

to a turbulent velocity field. As the turbulence decays, the fluids mix, inevitably resulting in

a perfect mixture of the two fluids filling the domain. The mixing rates of the two fluids are

evaluated from the evolution of the probability density function (PDF) for various flow properties

that measure the relative concentrations of the pure fluid species. The problem is assumed triply-

periodic without gravitational effects. The buoyancy-driven turbulence that occurs within the RT

mixing layer is therefore replaced with an initial turbulent velocity field in the CHITM system.
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(a) Stationary Initialization

(b) Diffused Initialization

Figure 3.5: Late time acoustic wave propagation for the two initializations showing the duration
of acoustic effect on the adaptive grid. The grid for the stationary and diffused initializations have
32,173 and 20,465 active wavelets, respectively.
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The velocity scale is set by the isothermal speed of sound a0 =
√
PI/ρI . The compressibility

effects are again split between the thermodynamic and specific heat ratio effects, by defining the

Mach number based on the initial turbulent kinetic energy kt and the isothermal speed of sound,

M =
√
ρIkt
PI

. (3.33)

A consistent initialization is important for physically accurate simulations of CHITM. The

ideal initial state is composed of large random blobs of two pure fluids, which is then subjected

to a turbulent velocity field to generate the mixing. In order to explore the mixing between two

pure fluids, the initial state should be composed of a density field where the two fluids are equally

present. The PDF for the density field should therefore consist of two sharp peaks, corresponding to

the densities of the two pure fluids at the mean pressure and temperature of the thermodynamically

equilibrated state. The fluids are assumed miscible. Therefore, the interfaces between the initial

blobs of pure fluid have a small diffusive layer. The resulting initial PDF for ρ should be nearly-

double-delta with minimal frequency for the values between the peaks. There are various strategies,

each assuming different thermodynamic equilibrium conditions, that may be used to obtain the

initial fields. An ideal initialization has nearly equal concentrations of each of the pure fluids based

on the density field. Furthermore, an accurate initialization must ensure that all of the variables

remain physical. For example, the mass fractions, Yl, must be bounded by zero and one.

A random solenoidal velocity field, usi , is generated with the following spectrum

E(k) =
k4

k5
0

exp

[
−2
(
k

k0

)2
]
, (3.34)

where k is the wavenumber vector in Fourier space, the wavenumber magnitude is k = |k|, and k0

is a reference wavenumber that controls the width of the spectrum. The thermodynamic quantities

are found using this divergence-free velocity field, consistent with the compressible equations.

In order to obtain an initialization with the idealized nearly-double-delta PDF, a field is

assigned a random Gaussian distribution with a low wavenumber top-hot spectrum. All negative

values are set to zero, and all positive values are set to one, creating random large-scale blobs with
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(a) ρ-Symmetric Initialization
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(b) ρY -Symmetric Initialization
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(c) Y -Symmetric Initialization
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(d) X-Symmetric Initialization

Figure 3.6: The PDFs associated with the four initialization strategies.
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a true double-delta PDF. This field is characterized by sharp interfaces and is referred to as ψsh.

The field is slightly diffused so that the interfaces are well-resolved by applying a smoothing filter

in Fourier space,

ψ̂sm = ψ̂she
−αdk2

, (3.35)

where αd is a smoothing parameter, chosen just large enough to fully resolve the interface. The

resulting field now has a nearly-double-delta PDF. The initial state is produced by setting a partic-

ular variable, one that represents the relative concentration of each fluid, based on ψsm. Since the

ideal initialization contains equal amounts of the pure fluid densities, assigning ψsm to the density

field is a natural choice, and is referred to as the ρ-symmetric initialization. Additionally, the heavy

fluid mass fraction, Y2, volume fraction, ρY2, or molar mass fraction, X2, can also be initialized al-

gebraically using ψsm. The definitions for the first step of each of these four initialization strategies

are as follows,

ρ-symmetric: ρ =
PI
RT0

[(W2 −W1)ψsm +W1] , (3.36)

Y -symmetric: Y2 = ψsm, (3.37)

ρY -symmetric: ρY2 =
PIW2

RT0
ψsm, (3.38)

X-symmetric: X2 = ψsm. (3.39)

The remaining thermodynamic variables are computed through an assumption about the

equilibrium state and by taking the divergence of the momentum equations. The isothermal as-

sumption, with constant T = T0, is the most straightforward. Neglecting the viscous term, the

divergence of the momentum equations give

∂

∂xi

[
usj
∂usi
∂xj

]
= −T0

∂

∂xi

[
1
ρ

∂ρR

∂xi

]
, (3.40)

which can be solved for ρ or Y2, depending on the initialization type.

The four initialization strategies are compared based on the quality of the PDFs for the

derived fields. The PDFs of ρ, ρY2, Y2, and X2 that are obtained using each of the initialization

types is shown in Figure 3.6. The ρ-symmetric case is the natural choice, but the Y PDF for high
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Figure 3.7: The CHITM system is initialized as random blobs of pure fluids with different molar
masses.

Atwood numbers is heavily skewed toward the heavy fluid, such that the pure light fluid is poorly

represented. The ρY -symmetric initialization similarly leads to skewed PDFs of Y at high A. The

Y -symmetric strategy gives density PDFs where the height of the peaks are drastically different.

Thus, the best choice for the isothermal case is the X-symmetric initialization, since the PDFs

of ρ and Y both represent a system of pure fluids with equal concentration. The resulting three-

dimensional initial field for the density is displayed in Figure 3.7. The set of possible initializations

is easily extended to include the thermodynamic equilibrium state where ρR = const, which cor-

responds to the incompressible limit. For this case, the ρ-symmetric and X-symmetric cases are

identical. Also, ρ and Y2 can be algebraically computed for all four initialization strategies.

The species transport equations give a relationship for the dilatational velocity field that is

applicable for the mixing of pure incompressible fluids, where ρR = const, [54],

∂udj
∂xj

= − ∂

∂xj

(
D
∂ ln ρ
∂xj

)
. (3.41)

It is assumed that the dilatational velocity is strictly due to the diffusive mixing of the fluids. The

full velocity field is taken to be the sum of the dilatational velocity,

udj = −D∂ ln ρ
∂xj

, (3.42)
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and the turbulent solenoidal part, that is ui = usi + udi .

The pressure field is then obtained from the divergence of the momentum equations, where

the viscous terms are included such that the initialization is consistent for all Re,

∂

∂xi

[
1
ρ

∂p

∂xi

]
= − ∂

∂xi

[
∂ui
∂t

]
− ∂

∂xi

[
uj
∂ui
∂xj

]
+

∂

∂xi

[
1
ρ

∂τij
∂xj

]
. (3.43)

Simplifying the evolution term requires only the dilatational part of the velocity field and uses the

continuity equation to obtain

− ∂

∂xi

[
∂ui
∂t

]
= − ∂

∂t

[
∂ui
∂xi

]
=

∂

∂t

[
∂

∂xi

(
D
∂ ln ρ
∂xi

)]
=

∂

∂xi

[
D

∂

∂xi

(
1
ρ

ρuj
∂xj

)]
. (3.44)

With the rewritten evolution term, the right-hand side of the equation for pressure is represented

by the Laplacian of a function, F , where

∂2F

∂xi∂xi
=

∂

∂xi

[
D

∂

∂xi

(
1
ρ

ρuj
∂xj

)]
− ∂

∂xi

[
uj
∂ui
∂xj

]
+

∂

∂xi

[
1
ρ

∂τij
∂xj

]
. (3.45)

This substitution takes advantage of the relative ease of computing inverse Laplacians, such that

F can be treated as a known quantity. The equation for pressure is

∂

∂xi

[
1
ρ

∂p

∂xi

]
=

∂2F

∂xi∂xi
. (3.46)

Integrating once gives
1
ρ

∂p

∂xi
=
∂F

∂xi
+ Zi, (3.47)

where the Zi are global constants, but are not known and must be computed. In order to solve for

pressure, equation (3.47) is rewritten as a Poisson equation for pressure as,

∂2p

∂xi∂xi
=

∂

∂xi

[
ρ
∂F

∂xi

]
+ Zj

∂ρ

∂xj
. (3.48)

The terms on the right-hand side are rewritten as Laplacians,

∂2G

∂xi∂xi
=

∂

∂xi

[
ρ
∂F

∂xi

]
, (3.49)

∂2Qj
∂xi∂xi

=
∂ρ

∂xj
, (3.50)
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such thatG andQj can be computed by taking inverse Laplacians. This leads to a simple differential

equation for pressure,
∂2p

∂xi∂xi
=

∂2G

∂xi∂xi
+
∂2QjZj
∂xi∂xi

, (3.51)

which is solved for the perturbation of pressure from the background state as

p′ = G+QjZj . (3.52)

The constant background pressure can then be added to obtain the full solution for pressure

as p = PI + p′. Once pressure is calculated, temperature is solved using the equation of state,

T = p/ρR.

In order to compute the pressure, the Zi must first be calculated. Since the domain is periodic

in all dimensions, taking a spatial average of equation (3.47) gives,〈
1
ρ

∂p

∂xi

〉
= Zi, (3.53)

where 〈G〉 signifies the spatial average of the quantity G. The solution for pressure can be rewritten

to match the form of Zi by taking the gradient of equation (3.52), dividing by density, and averaging

to obtain

Zi =
〈

1
ρ

∂G

∂xi

〉
+ Zj

〈
∂Qj
∂xi

〉
, (3.54)

which is a simple algebraic system of equations that can be solved for Zi.

3.3 Boundary Conditions

For compressible RTI, pressure waves are generated at the interface from the initialization

and continuously as the instability grows [60]. The acoustic waves travel outward and must be

dealt with at the computational boundaries. Figure 3.8 shows the background density and pressure

profiles associated with the test case used for presenting the various boundary conditions. The

A and M are chosen such that the acoustic speed of the light fluid is exactly twice that of the

heavy fluid. The stratification within each pure fluid adds an additional layer of complexity that

must be accounted for when treating the computational boundaries. Figure 3.9 shows the acoustic
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Figure 3.8: Background density and pressure profiles for the A = 0.6 and M = 0.3118 case.

wave generation and propagation for the test case when slip walls are applied at the vertical

boundaries. Vertical lines of the pressure variations from the background state are shown, with

time increasing downward. The wave is free to reflect off the walls and interfere with the growth

of the instability, thus highlighting the importance of properly handling the acoustic disturbances

near the boundaries. Multiple vertical lines are displayed to show the planar nature of the wave.

Simulations of RTI are performed with a domain that is periodic in the horizontal (x2) direction.

The boundary conditions in the vertical (x1) direction are designed to simulate an infinite domain

such that any pressure wave approaching the numerical boundaries is not reflected and, thus, does

not interact with and disturb the growth of the instability. The instability is isolated by applying

either a diffusion buffer zone or non-reflecting characteristics-based boundary conditions at the top

and bottom of the domain.

3.3.1 Numerical Diffusion Buffer Zone

Applying a numerical diffusion zone near the vertical edges of the computational domain does

not remove the acoustic waves, but sufficiently reduces the intensity such that any wave reflection

has negligible effect on the flow. The zone must be large enough for sufficient damping to occur.
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Figure 3.9: Acoustic wave propagation with slip wall boundaries.



80

Since an adaptive grid is utilized, the computational cost of the buffer layer is negligible. Therefore,

the buffer layer can be extended to extreme lengths to accommodate large damping.

The governing equations (2.3)-(2.6) are rewritten as

∂U
∂t

= F(U), (3.55)

where all of the evolved variables are combined as U = [ρ, ρui, ρe, ρYl], and F(U) represents all of

the terms but the time derivatives. The fully conservative formulation of the diffusion buffer zone

for a one-dimensional system is

∂Ui

∂t
= F(U)i +

1
∆x

[
ξi+1/2

(
UP
i+1 −UP

i

∆x

)
− ξi−1/2

(
UP
i −UP

i−1

∆x

)]
, (3.56)

where the subscripts signify the indices for the spatial grid, ξ is a function that accounts for the

geometry and local strength of the numerical diffusion zone, and UP represents the perturbed

quantities of the evolved variables from the background state, UP = U−UH . Performing the

numerical diffusion on the perturbation quantities accounts for spatially varying fields, specifically

those affected by the stratification intrinsic to compressible RTI.

Using smooth transitions for the diffusion buffer layer near the vertical boundaries, where the

strength of the diffusive effects is gradually increased, allows the use of a simplified non-conservative

scheme,
∂U
∂t

= F(U) + νdξd
∂2
LUP

∂xi∂xi
− σbξbUP . (3.57)

This formulation diffuses momentum and reduces kinetic energy in the buffer zone, but it is not

fully conservative. The function ξd(x1) represents a mask function for the numerical diffusion zone.

In the middle of the domain, ξd = 0, and no numerical diffusion is applied. Near the boundaries,

ξd is gradually increased to one. The numerical diffusion coefficient, νd, is set locally to

νd(x1, x2, x3, t) =

(
2∆t

∑
α

1
∆x2

α

)−1

, (3.58)

where ∆xα changes is space and time as the grid dynamically adapts to the flow. Setting the dif-

fusion coefficient in this way allows for maximum diffusion without introducing additional stability
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requirements. A low order derivative is used for the diffusion terms in order to reduce computa-

tional cost and to preserve monotonicity. The ‘L’ subscript on the second derivative signifies the

low order nature of the discretized operator.

A Brinkman-type penalization term is included to force the solution toward the background

state within the Brinkman zone, represented by the Brinkman mask function, ξb. In practice, it is

common to use the same mask function for both the numerical diffusion zone and the Brinkman

zone; that is, ξb = ξd. The forcing parameter, σb, is inversely proportional to the timescale of the

damping. Large values of σb lead to a rapid driving of the solution to the background state at

the expense of wave reflections at the boundaries of the Brinkman zone. At the opposite extreme,

significantly small values of σb result in no forcing effect on the solution. An optimal amount of

forcing for simulations of compressible RTI within the numerical diffusion zone is achieved using

σb = 0.25
c

L
, (3.59)

where c is the characteristic acoustic speed and L is a characteristic length scale. The local pure

fluid acoustic speeds and length scales are applied, which leads to the final form of the forcing

parameter,

σb,κ = 0.25
√
γκRT0

Wκλ2
, (3.60)

where summation over the repeated index, κ, is not assumed. Thus, the numerical diffusion zone

at the bottom and top of the computational domain have different forcing parameters, σb,1 and σb,2

respectively.

A numerical diffusion buffer zone is applied to the test case and shown in Figure 3.10. The

diffusion layer mask, ξd, is gradually increased from zero to one between 3 < |x| < 3.25, and the

buffer zone takes full force, ξd = 1, where 3.25 < |x| < 4. Slip wall conditions are applied at the top

and bottom boundaries. When compared to the case without a diffusion zone, the acoustic waves

are quickly and drastically damped upon entering the diffusion layer. The waves are not completely

removed, but the amplitude is reduced significantly. This reduces the impact the acoustics have on

the instability growth, while eliminating the computational cost of resolving the waves.
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Figure 3.10: Acoustic wave propagation with a diffusion buffer layer for |x| > 3.
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3.3.2 Non-Reflecting Boundary Conditions for Stratified Flow

The NSCBC method from Section 2.4.2 using the LODI relations introduced by Poinsot

and Lele [63] requires a modification to account for stratified background states. The analysis is

performed on the one-dimensional Euler equations,

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0, (3.61)

∂u

∂t
+ u

∂u

∂x
+

1
ρ

∂p

∂x
= 0, (3.62)

∂p

∂t
+ ρc2∂u

∂x
+ u

∂p

∂x
= 0. (3.63)

The waves are approximately planar and viscous effects are not considered. Pressure and density

can be decomposed into the steady hydrostatic background state and the unsteady fields as follows,

p(x1, x2, x3, t) = pH(x1) + p̌(x1, x2, x3, t), (3.64)

ρ(x1, x2, x3, t) = ρH(x1) + ρ̌(x1, x2, x3, t). (3.65)

The hydrostatic quantities are equivalent to the background state from the linear stability analysis.

The relationship given in (3.12) holds true for pH and ρH , and both are assumed constant with

time. However, the hydrostatic fields vary with x1 everywhere, including near the boundaries.

Therefore, the hydrostatic background state is removed from the pressure and density evolution

terms before the characteristic equations are derived. The modified Euler equations are

∂ρ̌

∂t
+ ρ

∂u

∂x
+ u

∂ρ̌

∂x
= −u∂ρ

H

∂x
, (3.66)

∂u

∂t
+ u

∂u

∂x
+

1
ρ

∂p̌

∂x
=

ρHg

ρ
, (3.67)

∂p̌

∂t
+ ρc2∂u

∂x
+ u

∂p̌

∂x
= ρHgu. (3.68)

The differential characteristic variables for this system are

δv1 = ρc δu− δp̌, (3.69)

δv2 = c2 δρ̌− δp̌, (3.70)

δv3 = ρc δu+ δp̌, (3.71)
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which results with the following characteristic equations:

∂v1

∂t
+ (u− c)∂v1

∂x
= −(u− c)ρHg, (3.72)

∂v2

∂t
+ u

∂v2

∂x
= u(γ − 1)ρHg, (3.73)

∂v3

∂t
+ (u+ c)

∂v3

∂x
= (u+ c)ρHg. (3.74)

Therefore, the LODI relations are applied only to the unsteady fields, with the hydrostatic back-

ground state affecting the system through appropriate source terms in the characteristic equations.

The modified wave amplitude variations are

I1 = λ1

(
∂p̌

∂x1
− ρc ∂u

∂x1

)
, (3.75)

I2 = λ2

(
c2 ∂ρ̌

∂x1
− ∂p̌

∂x1

)
, (3.76)

I(3:d+1) = λ(3:d+1)
∂u2:d

∂x1
, (3.77)

I(d+2:Ns+d+1) = λ(d+2:Ns+d+1)
∂Y1:Ns

∂x1
, (3.78)

INv = λNv

(
∂p̌

∂x1
+ ρc

∂u

∂x1

)
, (3.79)

with characteristic velocities

λ1 = u1 − c, (3.80)

λ2 = λ(3:d+1) = λ(d+2:Ns+d+1) = u1, (3.81)

λNv = u1 + c. (3.82)

The full system can then be written as

∂ρ

∂t
+
(
X1+u1

∂ρH

∂x1

)
+

d∑
n=2

∂ρun
∂xn

= 0, (3.83)

∂ρui
∂t

+ ui

(
X1+u1

∂ρH

∂x1

)
+
(
ρXi+1−ρHgi

)
+

d∑
n=2

∂ρuiun
∂xn

=

− ∂p

∂xi
(1− δi1)− ρgi +

∂τij
∂xj

, (3.84)

∂ρe

∂t
+

1
2

(ujuj)
(
X1+u1

∂ρH

∂x1

)
+
(
ρujXj+1−ρHg1u1

)
(3.85)
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(b) NSCBC Non-Reflecting Conditions

Figure 3.11: The two characteristic-based boundary condition types are applied for the one-
dimensional mixing in the RT unstable configuration. The pressure perturbation from the hydro-
static background is plotted at various times to show the acoustic waves approaching and reacting
to the domain edges.

+
1

γ − 1
(
XNv−ρHg1u1

)
+

d∑
n=2

∂ρeun
∂xn

=

−
d∑

n=2

∂pun
∂xn

− ρuigi +
∂τijui
∂xj

− ∂qj
∂xj

+
∂cplTsjl
∂xj

, (3.86)

∂ρYl
∂t

+ Yl

(
X1+u1

∂ρH

∂x1

)
+ ρXl+d+1 +

d∑
n=2

∂ρYlun
∂xn

=
∂sjl
∂xj

, (3.87)

where the terms that have been added to account for stratification are colored blue. The definition

for the set of Xκ is

X1 =
1

2c2
(INv + I1 + 2I2)

[
= u1

∂ρ

∂x1
+ ρ

∂u1

∂x1

]
, (3.88)

X2 =
1

2ρc
(INv − I1)

[
= u1

∂u1

∂x1
+

1
ρ

∂p

∂x1

]
, (3.89)

X(3:d+1) = I(3:d+1)

[
= u1

∂u(2:d)

∂x1

]
, (3.90)

X(d+2:Ns+d+1) = I(d+2:Ns+d+1)

[
= u1

∂Y(1:Ns)

∂x1

]
, (3.91)

XNv =
1
2

(INv + I1)
[
= u1

∂p

∂x1
+ ρc2∂u1

∂x1

]
, (3.92)

which is the same as in (2.135)-(2.137), but is included here for consistency.

Both the adiabatic slip wall and non-reflecting boundary conditions discussed in Sections

2.4.2.1 and 2.4.2.2 can be implemented with the modified NSCBC for stratified flow. For both



86

boundary condition types, the well-posedness of the system is ensured by treating the flux terms

consistent with the LODI conditions. Figure 3.11 shows the two boundary condition types applied

to the one-dimensional mixing of RT-unstable fluids. Acoustic waves are generated from the initial

conditions due to the molecular mixing and travel outward towards the boundaries. The non-

hydrostatic component of pressure is plotted at five times. Whereas the wave fully reflects with

the wall condition, there is essentially no reflection when the modified characteristic conditions are

applied, successfully simulating an infinite domain with a non-constant background pressure field.

The characteristics-based non-reflecting boundary conditions for stratified flows is applied

to the test case and shown in Figure 3.12. In comparison with the slip wall and diffusion buffer

zone cases, the non-reflecting boundaries admit no appreciable wave reflection. The small additional

computational cost required to use a non-reflecting boundary condition is outweighed by its success

at simulating an infinite domain with stratified fluids. For dynamically adaptive methods, complete

removal of the acoustics at the boundaries prevents unnecessary adaptation on the propagating

waves, leading to an efficient use of computational resources.

3.4 Time Integration Schemes

When performing time-dependent numerical simulations of fluid systems, there is no general

time integration scheme that is optimal for all cases. An effective time discretization method

depends on the nonlinearity of the governing equations, the diversity of terms in the equations,

the stiffness of the system, stability requirements, and the required accuracy of the solution. Thus,

different time integration schemes are optimal for different problems. Furthermore, various time

discretization methods may be employed throughout a single simulation, as the evolution of the

flow and the dynamically adaptive grid leads to temporal fluctuations of the stability requirements.

3.4.1 Implicit Schemes

Implicit time integration schemes are commonly utilized to solve the full Navier-Stokes equa-

tions, where diffusion is important. This avoids any restriction placed on the size of the time-step
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Figure 3.12: Acoustic wave propagation with non-reflecting boundaries.
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for high resolution simulations, which must be considered when using an explicit time discretiza-

tion. The simplified governing equations from (3.55) can be discretized using the Crank-Nicholson

method as,
Un+1 −Un

∆t
=

1
2
[
Fn + Fn+1

]
, (3.93)

where the superscripted quantities, Un and Un+1, represent the solution at the beginning and

end, respectively, of the current time step. Also, the terms on the right-hand side of the equation

represent the evaluation of F(U) at the appropriate time level, that is Fn ≡ F(Un). The Crank-

Nicholson method is unconditionally stable and second-order accurate, that is, O(∆t2). For systems

where higher accuracy is needed, preconditioned Krylov-subspace solvers are often used. Implicit

methods often use a linearization of the discretized equations and require an iterative scheme, such

as the preconditioned biconjugate gradient stabilized (BiCGSTAB) method, to handle nonlinearity

in the system. When PAWCM is used, a multilevel method, similar to the multigrid method but on

an adaptive grid, can optimize the iterative process within the BiCGSTAB method. However, for

highly nonlinear systems, where the hyperbolic terms in the governing equations are significant, the

convergence of the iterative process is not predictable, making the use of implicit time integration

methods inefficient.

3.4.2 Explicit Schemes

When using implicit schemes, the Courant-Friedrichs-Lewy (CFL) stability condition must be

satisfied when nonlinearities in the system are significant. The convective-acoustic CFL condition

is
(U + c)∆t

∆x
≤ C, (3.94)

where U is the local absolute fluid velocity, c is the local speed of sound, and C is the CFL coefficient

that depends on the discretization scheme. Typically, C ≤ 1, where the maximum allowed time step

size is directly proportional to C. For cases where the CFL condition is stricter than any of the

diffusion stability requirements when setting the time step size, explicit time integration schemes
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are the optimal choice. The fully explicit Runge-Kutta (ERK) scheme,

U∗ = Un + ∆tFn, (3.95)

Un+1 =
1
2
Un +

1
2
U∗ +

1
2

∆tF∗, (3.96)

where U∗ represents the solution at an intermediate time level, is second-order accurate, that is

O(∆t2), and total variation diminishing (TVD) [80]. TVD schemes are successful at simulating

the propagation of shock waves while preserving monotonicity. A TVD time integration scheme

is a good choice for simulations of compressible RTI, due to the presence of sharp acoustic waves,

especially when the molar mass difference is large and the stratification is strong. The second-order

TVD Runge-Kutta scheme can also be written as

U∗ = Un + ∆tFn, (3.97)

Un+1 = Un +
∆t
2

[Fn + F∗] . (3.98)

A third-order, that is O(∆t3), fully explicit TVD Runge-Kutta scheme is

U∗ = Un + ∆tFn, (3.99)

U∗∗ =
3
4
Un +

1
4
U∗ +

1
4

∆tF∗, (3.100)

Un+1 =
1
3
Un +

2
3
U∗∗ +

2
3

∆tF∗∗, (3.101)

where U∗ and U∗∗ are the solutions at intermediate time levels [80]. This scheme has a low storage

requirement because the evaluations of F(U) are always taken at the current intermediate time

level. The third-order TVD ERK scheme can also be written as

U∗ = Un + ∆tFn, (3.102)

U∗∗ = Un +
∆t
4

[Fn + F∗] , (3.103)

Un+1 = Un +
∆t
6

[Fn + F∗ + 4F∗∗] . (3.104)

Both of the TVD ERK schemes have a CFL coefficient of unity.
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3.4.3 Implicit-Explicit Schemes

The use of a fully explicit time integration scheme is unreasonable for high resolution simu-

lations of a fluid system where viscous and diffusion effects are significant, due to strict stability

requirements from the diffusion terms. However, fully implicit schemes may also be inefficient due

to the need to iterate on the nonlinear hyperbolic terms. A third option is to discretize each term in-

dividually in order to take full advantage of the benefits of implicit and explicit methodology, while

eliminating many of the drawbacks. Implicit-explicit (IMEX) Runge-Kutta schemes combine diag-

onally implicit Runge-Kutta (DIRK) and ERK schemes [6]. The hyperbolic and parabolic terms

are grouped separately, such that F(U) = H(U) + P(U), and the generalized governing equations

from (3.55) are rewritten as
∂U
∂t

= H(U) + P(U). (3.105)

The hyperbolic part, H(U), corresponds to the convection, pressure gradient, and body force

terms. The remaining diffusion terms make up the parabolic part, P(U). Systems with negligible

diffusive effects (P ≈ 0) are generally nonlinear, but not too stiff. Conversely, diffusion dominated

systems (H ≈ 0) tend to be highly stiff, but mostly linear. Thus, IMEX schemes use an ERK

method for the discretization of H(U) and a DIRK method for P(U), while optimizing the DIRK

attenuation properties and the combined stability regions. The required number of iterations

is often small during the implicit steps of these IMEX schemes, especially when using efficient

iterative solvers, such as the multilevel BiCGSTAB method performed on an adaptive grid while

using PAWCM. However, since an implicit stage is more expensive then an explicit step, IMEX

schemes are developed to reduce the number of implicit steps while maintaining the required order

of accuracy.

A single-stage DIRK scheme is combined with a two-stage ERK method to form a second-

order IMEX scheme as [6],

U∗ = Un +
∆t
2

[Hn + P∗] , (3.106)

Un+1 = Un + ∆t [H∗ + P∗] . (3.107)
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Applying the test equation, ∂U/∂t = λU , to this DIRK method, with z = λ∆t, the convergence

factor in the stiffness limit of z → −∞ is R(∞) = 1, which corresponds to no attenuation. However,

the scheme is A-stable, since |R(z)| ≤ 1 for Re(z) ≤ 0.

A similar second-order IMEX scheme can be derived by combining the two-stage TVD ERK

method from (3.97)-(3.98) with a Crank-Nicholson single-stage implicit method as,

U∗ = Un +
∆t
2

[2Hn + Pn + P∗] , (3.108)

Un+1 = Un +
∆t
2

[Hn + Pn + H∗ + P∗] . (3.109)

Whereas this combination has the benefits of a TVD explicit scheme and an A-stable implicit

scheme, there is no attenuation in the stiffness limit.

A third-order IMEX scheme using a two-stage, A-stable DIRK and a three-stage ERK method

is [6],

U∗ = Un + ∆tγ [Hn + P∗] , (3.110)

U∗∗ = Un + ∆t [(γ − 1)(Hn − 2H∗) + (1− 2γ)P∗ + P∗∗] , (3.111)

Un+1 = Un +
∆t
2

[H∗ + P∗ + H∗∗ + P∗∗] , (3.112)

where γ = (3 +
√

3)/6. This method has some attenuation of the stability function in the stiffness

limit, since |R(∞)| = 0.7321.

The three-stage TVD ERK scheme from (3.102)-(3.104) is combined with a two-stage DIRK

method to produce a second-order IMEX scheme as,

U∗ = Un + ∆t [Hn + P∗] , (3.113)

U∗∗ = Un +
∆t
4

[Hn + H∗ − 2P∗ + 4P∗∗] , (3.114)

Un+1 = Un +
∆t
6

[Hn + H∗ + 4H∗∗ + 6P∗∗] . (3.115)

The attenuation is even stronger with this A-stable method, since |R(∞)| = 0.5.

For highly-stiff problems, it is important that the discretization is L-stable, which combines

A-stability with full attenuation in the stiffness limit, that is |R(∞)| = 0. A second-order IMEX
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scheme that combines a two-stage, L-stable DIRK and a three-stage ERK method is [6],

U∗ = Un + ∆tγ [Hn + P∗] , (3.116)

U∗∗ = Un + ∆t [δHn + (1− δ)H∗ + (1− γ)P∗ + γP∗∗] , (3.117)

Un+1 = Un + ∆t [(1− γ)(H∗ + P∗) + γ(H∗∗ + P∗∗)] , (3.118)

where γ = (2−
√

2)/2 and δ = −2
√

2/3.

The previous IMEX schemes all include an additional explicit step following the final implicit

stage. Identifying the last internal stage with the solution at the next time step ensures L-stability

and is particularly good for highly-stiff problems. A second-order IMEX scheme using a two-stage,

L-stable DIRK scheme and a two-stage ERK method is [6],

U∗ = Un + ∆tγ [Hn + P∗] , (3.119)

Un+1 = Un + ∆t
[
δHn + (1− δ)H∗ + (1− γ)P∗ + γPn+1

]
, (3.120)

where γ = (2−
√

2)/2 and δ = 1− 1/(2γ).

A second-order IMEX method results from the combination of the three-stage TVD ERK

scheme from (3.102)-(3.104) and a three-stage, L-stable DIRK method as,

U∗ = Un + ∆t [Hn + P∗] , (3.121)

U∗∗ = Un +
∆t
4

[Hn + H∗ − 2P∗ + 4P∗∗] , (3.122)

Un+1 = Un +
∆t
6
[
Hn + H∗ + 4H∗∗ − 6P∗ + 6P∗∗ + 6Pn+1

]
. (3.123)

The cost of an additional implicit step should be weighed against the need of a TVD explicit method

and a L-stable implicit scheme.



Chapter 4

Simulations of Single-Mode Rayleigh-Taylor Instability

Until recently, reaching and maintaining a terminal velocity was thought to be the late

time behavior of the Rayleigh-Taylor instability (RTI) system where only a single wavelength

perturbation is introduced [34]. This conclusion was supported by experimental and theoretical

results, which temporarily closed the book on the single-mode RTI system. Furthermore, it was

concluded that the single-mode case had little impact on a thorough understanding of the multi-

mode RTI system. It is now known that the vortical motions generated due to the density jump

play a dominant role in the late-time evolution of the bubbles and spikes, and that the velocity is

far from constant [89]. Furthermore, the dynamics of the single-mode case contain valuable insights

for the multimode case. Specifically, the single-mode growth is an upper bound for the multimode

mixing layer.

Similarly, most of the current research on RTI focuses solely on the incompressible case. RTI

can be observed in a wide range of astrophysical and atmospheric flows [28, 74] and has drastic effects

on many engineering systems of interest, such as inertial confinement fusion [43, 44]. The majority

of the systems where RTI naturally occurs involve highly compressible fluids. Of particular interest

is the crucial role Rayleigh-Taylor mixing plays during the thermonuclear flame front acceleration

in type Ia supernovae [9]. The compressibility effects during this violent expansion are potentially

drastic. Thus, a detailed understanding of the compressibility effects on the growth of RTI is

necessary. Linear stability theory has shown that there is no unique parameter characterizing

compressibility [53]. Acoustic effects, material properties, and background stratification can all
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affect the instability growth, often in opposed ways. At late times, as the nonlinear effects become

important, the number of these parameters is only expected to increase and their interactions to

become even more complicated.

An investigation of compressible RTI requires the use of efficient numerical methods, advanced

boundary conditions, and a consistent initialization in order to capture the wide range of scales

present in the system while reducing the computational impact associated with acoustic wave

generation and the subsequent interaction with the flow. Numerical simulations are performed

on an adaptive mesh using the Parallel Adaptive Wavelet Collocation Method (PAWCM). The

combined effects of compressibility and large density variations on the late-time behavior of RTI

is not currently fully understood [30, 56]. For thermal equilibrium, acoustic and stratification

properties of the background flow are interrelated, with stratification itself playing an important

role. In order to capture the late time behavior, simulations need to be performed in long vertical

domains, with density ranges spanning many orders of magnitude. The utilization of PAWCM for

simulations on such domains minimizes the computational effort, since Rayleigh-Taylor instability

remains a spatially localized phenomenon near the interface well into the turbulent stage.

A thorough investigation of the single-mode RTI is presented in the following sections. The

parameters and computational methodologies that are held consistent throughout all cases are pre-

sented first. Then, simulations run in the incompressible limit are compared against well established

results. The compressibility effects on the growth of RTI are then discussed, with a focus on the

background stratification and vortex dynamics. Finally, low-resolution three-dimensional cases are

presented to look at the dimensional dependence of the compressibility effects.

4.1 Implementation of the Parallel Adaptive Wavelet Collocation Method

In this study, direct numerical simulations are performed using the PAWCM within the ad-

vanced computational framework discussed in Chapter 3. Once the significant wavelets are flagged,

in addition to the adjacent zone, required for resolving flow evolution, and the reconstruction check,

a symmetry check is applied to ensure the grid remains symmetric around the centerline of the bub-
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Figure 4.1: Mole fraction, density, vorticity, and the associated adaptive grid for the late-time
instability growth with M = 0.3 and A = 0.3.

bles and spikes. Ensuring the grid is symmetric leads to stable simulations with longer durations.

The solution itself is not forced to be symmetric, but only the grid. A half wavelength instability

can be studied with mirror boundary conditions, which ensures the solution is symmetric. However,

simulating the full wavelength acts as an accuracy check on the implementation of the numerical

method. A typical dynamically adapted grid with the symmetry check applied is shown in Figure

4.1 for a late-time RTI simulation. The effective global resolution is 8193× 512, yet only 16.5% of

the points are used (690,318 points, 83.5% compression). The initialization for the perturbed fields

can be applied to the thermodynamic variables on a perturbed interface, or equivalently to the ve-

locity field on a flat interface. The latter option leads to longer durations with symmetric solutions

for the single-mode case. Thus, velocity perturbations are applied as the initial conditions.

The domain is periodic in the horizontal (x2) direction. Either a diffusion buffer zone or

the characteristics-based non-reflecting boundary conditions are utilized in the vertical direction.
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Figure 4.2: Resolution convergence study where the threshold parameter ε is varied. A zoomed view,
corresponding to the region between the two vertical red lines, is presented for clear observation of
the line variability for the high-ε cases. A = 0.7 for all cases.

The diffusion layer zone is the more computationally efficient technique, while the non-reflecting

boundary conditions presented in Section 3.3.2 have the least wave reflection.

Grid adaptation can be done in different ways. One way is simply to adapt on each inte-

grated variable. Another method, used in this work, involves adaptation on additional dynamically

important physical quantities, which ensures adequate resolution of the flow structures that control

the dynamics of the flow evolution. The adapted variables are the heavy fluid mass fraction and

its gradient, the velocity field, vorticity, and strain rate.

The Runge-Kutta schemes introduced in Section 3.4 are used for time integration. When

using an explicit method, the time integration stability requirements for every term must be sat-

isfied. Since long vertical domains are used with strongly stratified fluids, a constant kinematic

viscosity, ν, is applied in each pure fluid. Using a constant dynamic viscosity, µ, which is the true

fluid property, leads to extremely restrictive stability requirements where the density values are

very small, namely near the top of the domain.

4.1.1 Resolution Convergence Studies

Traditionally, the resolution studies for PAWCM are performed by increasing and decreasing

the threshold parameter, ε, while adjusting the maximum level of resolution and the number of
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Figure 4.3: The results of the resolution study are shown for the entire bubble height evolution, as
well as for a small window near the separation of the two bubble height line plots, corresponding
to the red box. J is the maximum number of resolution levels. For all cases, A = 0.7 and ε = 10−3.

wavelets used to represent the solution. The resolution convergence study is presented in two ways.

First, the threshold parameter, ε, is varied with a fixed maximum level of resolution. Since the

RTI simulations are initialized with an interface that is as sharp as the grid will allow, all available

levels of resolution are initially filled. After the interface has diffused, wavelets on the higher levels

of resolution may be left out of the solution. As seen in Figure 4.2, the lines corresponding to the

ε = 10−3 and ε = 10−4 cases lie on top of one another. Thus, the solution is assumed to be converged

at ε = 10−3. The variability for ε = 10−2 is small, but noticeable. The threshold parameter is set

to ε = 10−3 for all cases presented here.

In order to ensure that the maximum level of resolution is sufficient, a second resolution study

is performed by increasing and decreasing the effective resolution, while keeping ε constant. When

the maximum level, J , is increased by one, the effective resolution increases by a factor of two in

each dimension. The results of the resolution study for the A = 0.7 case are presented in Figure

4.3. The solution is clearly converged as the effective resolution increases.

4.1.2 Simulation Parameters

Whereas a complete understanding of RTI requires a thorough investigation of all the param-

eters that may affect the instability growth, the work presented here focuses on the compressibility
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and variable density effects. The Atwood numbers range from A = 0.1 to A = 0.9. The Mach num-

bers of interest are M = 0.1, which well represents the incompressible limit, to M = 1.5. To ensure

the domain can support the late time growth of RTI, the vertical axis is extended to x1 = ±8. The

M = 1.0 cases have density values that span seven orders of magnitude, while the M = 1.5 cases

have a density range over fifteen orders. Thus, the density stratification adds a layer of complexity

to simulations of compressible RTI.

The viscosity is set based on the perturbation Reynolds number,

Rep =

√
Agλ3

(1 +A)ν2
, (4.1)

which is the best measure of viscous effects when the various Atwood number is varied. The typical

value used is Rep = 5000, but Rep = 1500 and Rep = 10000 cases are used to test the effect of the

Reynolds number. The other dimensionless parameters are held constant at Sc = 1.0 and Pr = 1.0.

The compressibility effect from the ratio of specific heats has been removed from the definition of

the Mach number. The pure fluid values are γ1 = γ2 = 1.4. The initial diffusion layer thickness

is chosen such that 32 points lie across the interface at the maximum level of resolution. This

ensures the initial conditions are well resolved. The simulations show a diffusion growth regime

as the first stage of RTI growth, which proves that the initial layer is not too large. The initial

perturbation amplitude is chosen to be as small as possible, while still significantly larger than the

initial diffusion layer thickness. In practice, the initial amplitude is set to ηA = 0.005.

4.2 Simulations of Incompressible Rayleigh-Taylor Instability

The incompressible single-mode RTI system is well researched, and a recent study has clas-

sified the stages of growth as follows [89]:

• DG - diffusive growth (species diffusion)

• EG - exponential growth (described by linear stability theory)

• PFG - potential flow growth (until terminal velocity is reached)
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(a) IC (b) DG (c) EG (d) PFG (e) RA (f) CD

(g) IC (h) DG (i) EG (j) PFG (k) RA (l) CD

Figure 4.4: The stages of incompressible RTI are labeled as: IC - initial conditions, DG - diffusive
growth, EG - exponential growth described by linear stability thoery, PFG - potential flow growth,
RA - reacceleration, and CD - chaotic development.

• RA - reacceleration (induced flow from vortical motions)

• CD - chaotic development (mean quadratic growth)

Diffusion dominates early, while the perturbation, too small to have any effect yet, begins to grow

exponentially consistent with linear stability theory. Once the structures begin approaching the

theoretical terminal velocities, they experience a deceleration as vortical structures are created

along the interface. The vortex pair interacts with the bubbles and spikes and induces motion to

reaccelerate the instability growth. In the extremely late times, a chaotic development is observed,

where vortices interact with each other to produce rapid acceleration and deceleration of the bub-

ble and spikes. The late time velocity is observed to fluctuate around a mean value that grows

quadratically. The five stages of RTI growth (with the initial conditions as an additional step) are

displayed in Figure 4.4. From the mole fraction images, the locations of the interface and the pure

fluids can be observed. The vorticity at each stage is also provided. At the end of the potential
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Figure 4.5: Bubble height and velocity for A = 0.1 and M = 0.2. The red circles represent diffusive
growth and the black crosses match the exponential growth predicted by linear stability theory.
The dotted line in the bubble velocity plot represents the terminal bubble velocity, V ∗b , from the
potential flow analysis.

flow growth stage, the vortex generation becomes significant, leading to a vortex pair that drives

the reacceleration. The late-time chaotic development is characterized by numerous vortex pairs

influencing the bubble and spike tips and interacting with each other.

As a feasibility study, simulations of the incompressible case (M = 0.2) has shown that

PAWCM successfully captures the linear regime, bubble and spike formations, and late-time flow

characteristics for the single-mode perturbation case [71]. Early-time and late-time plots of the

mass fraction, vorticity, vertical velocity, and adaptive grid for the incompressible case are shown

in Figures 2.21 and 2.22. The bubble height and velocity plots for the A = 0.1 case are shown in

Figure 4.5. The early-time diffusive and exponential growth stages are matched in the plot, where

the linear solution is approximated using the diffusive and viscous formula (2.12). This formula

yields similar results to those obtained numerically in [30]. For the values considered here, diffusive

and viscous effects on the linear growth rate account for a 30% decrease from the incompressible,

immiscible result in (2.11). Compressibility has less than a 2% influence on the linear growth rate.

Once the bubble reaches the asymptotic velocity, signified by the horizontal dotted line, a brief

deceleration is observed, followed by a reacceleration region [68]. Due to the viscous effects and

limited duration of the simulation, the chaotic development is not observed for this case.
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(a) A = 0.1 (b) A = 0.3 (c) A = 0.5 (d) A = 0.7 (e) A = 0.9

(f) A = 0.1 (g) A = 0.3 (h) A = 0.5 (i) A = 0.7 (j) A = 0.9

Figure 4.6: The spike and bubble shapes are compared across the range of Atwood numbers. This
is a M = 0.1 case, which well represents incompressible flow.

(a) A = 0.1 (b) A = 0.3 (c) A = 0.5 (d) A = 0.7 (e) A = 0.9

(f) A = 0.1 (g) A = 0.3 (h) A = 0.5 (i) A = 0.7 (j) A = 0.9

Figure 4.7: Late-time spike and bubble shapes for various Atwood numbers. The M = 0.3 case is
presented here, which is near the limit for incompressibility.
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(a) Bubble Velocity A-Dependence (b) Spike Velocity A-Dependence

Figure 4.8: Bubble and spike velocity normalized by the asymptotic values derived from potential
flow analysis. The horizontal axis is time normalized using the exponential growth rate from linear
stability theory. The dotted lines are at unity, where the velocity matches the theoretical terminal
velocity.

Labeling the structures as bubbles and spikes is not representative of the low-A case, since

the two sides of the interface are mostly symmetrical. As the density difference of the two pure

fluids is increased, the heavy fluid falls in a sharper and more narrow fashion, as observed in Figure

4.6. The light fluid simultaneously rises in a more rounded and smooth way. Thus, the bubble

and spike names fit at moderate to high Atwood numbers. The Atwood-dependent shape effect

is observed early on during the linear growth (Figure 4.6) and has drastic consequences on the

late-time instability development, as seen in Figure 4.7. The narrowness of the spike is intensified

as A is increased. In order to maintain an equal volume of each fluid, the bubbles become wider

and flatter at higher A.

The vorticity plots in Figures 4.6 and 4.7 show that as the density difference increases, the

vorticity generated also grows in intensity. Furthermore, whereas the vortices are generated near

the horizontal centerline for the low-A case, the vortex creation occurs near the bubble tip for the

high-A cases.

The Atwood number dependence on the asymptotic velocity that the bubble and spike achieve

before decelerating is well predicted by the potential flow analysis. Figure 4.8 plots the evolution of
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the bubble and spike velocity, normalized by the asymptotic values, that is vb/Vb and vs/Vs. Time

is normalized using the exponential growth rate from linear stability theory for the incompressible

case. The normalized velocity is near unity for all cases. The PAWCM simulations of the incom-

pressible single-mode RTI successfully capture all stages of the instability growth, while utilizing

computational resources efficiently.

4.3 Compressibility Effects on Rayleigh-Taylor Instability

The compressibility effects on RTI growth is closely tied to the background stratification for

the thermal equilibrium case. The Mach number not only represents the intrinsic compressibility of

the fluids by scaling the interfacial pressure, but also has a direct effect on the vertical variations in

density. As shown in Figure 3.1, the molar mass difference between the two fluids plays a secondary

role in setting the differences in the background density profiles of the two fluids. At low-A, any

increase in M affects the stratification in both fluids similarily. However, at high-A, increasing M

has drastic effects on the density profile in the heavy fluid, while having minimal effect on the light

fluid.

A set of PAWCM simulations is presented in Figure 4.9. Each row represents a constant

Atwood number, with bubble height, spike height, bubble velocity, and spike velocity displayed

in each columns one through four, respectively. The Mach number dependence is plotted in each

image.

The differences in the exponential growth matches the compressible dependence on growth

rate obtained using linear stability analysis. The compressible effects on the linear growth rate has

a larger impact at low-A. For example, increasing M from 0.1 to 1.0 decreases the growth rate by

10.7% at At = 0.1, but only decreases ncom by 4.1% at At = 0.3 and 1.8% at At = 0.7. This effect

can be seen most clearly in the bubble velocity plots, where there is an obvious differences in the

linear growth rate at At = 0.1, but almost no difference for At ≥ 0.5

The behavioral differences observed in the exponential growth regime extend to the later

stages. For low-A, the decrease in the linear growth as M increases leads to a decrease in the
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(a) hb for A = 0.1 (b) hs for A = 0.1 (c) vb for A = 0.1 (d) vs for A = 0.1

(e) hb for A = 0.3 (f) hs for A = 0.3 (g) vb for A = 0.3 (h) vs for A = 0.3

(i) hb for A = 0.5 (j) hs for A = 0.5 (k) vb for A = 0.5 (l) vs for A = 0.5

(m) hb for A = 0.7 (n) hs for A = 0.7 (o) vb for A = 0.7 (p) vs for A = 0.7

(q) hb for A = 0.9 (r) hs for A = 0.9 (s) vb for A = 0.9 (t) vs for A = 0.9

Figure 4.9: The M -dependence of the evolutions of bubble height, hb (far left column), spike height,
hs (second column), bubble velocity, vb (third column), and spike velocity, vs (far right column)
are shown for various A (rows). The dotted line represents the asymptotic velocity values from
potential flow theory.
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transitional constant bubble velocity, and an overall suppression of the instability growth. At

high-A, a transitional constant bubble velocity never occurs.

On the spike side of the interface, the differences continue between low and high Atwood

cases. For low-A, the behavior is similar to its bubble counterpart, where the constant velocity

and the overall growth is suppressed as compressibility is increased. However, for high-A, the spike

behavior converges for all M . At late times, a spike reacceleration occurs and leads into chaotic

development.

There is a drastic change in the monotonic behavior of the RTI growth as M increases

when different Atwood regimes are considered. Compressibility and stratification act to suppress

the growth when small molar mass differences are involved. Alternatively, for large molar mass

differences, an enhancement in the growth occurs when compressibility and stratification increase.

The change in behavior occurs during different stages of the instability growth. For low-A,

the suppression occurs during the early exponential growth, because the growth rate is strongly

affected by M . For high-A, the early growth is independent of the Mach number and enhancement

occurs later, after the incompressible case reaches the asymptotic velocity and the reacceleration

regime.

A conservation of mass principle explains the high-A observation. In this limit, the Mach

number has little effect on both the shape of the falling spike and the density profile of the light

fluid that the spike is falling into. Since the spike growth converges for all M in the this regime,

the mass of the heavy fluid within the the spike is nearly equivalent across all M . The heavy fluid

stratification is drastically affected by the increase in M . When the compressibility effects are high,

the heavy fluid density profile falls off rapidly away from the interface, and a greater volume of

heavy fluid is required to support the spike growth. Thus, the bubble of light fluid rises at an

accelerated rate in order to displace the greater volume of heavy fluid.

In order to observe the stratification effects on the growth of the instability as M is varied,

Figure 4.10 compares the M = 0.3 and M = 1.0 cases for A = 0.1. At low A, the stratification is

about the same on both sides of the interface, since there is very little density difference. For low-M
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(a) hs = 0.5 for M = 0.3 (b) hs = 0.5 for M = 1.0

(c) hs = 0.8 for M = 0.3 (d) hs = 0.8 for M = 1.0

(e) Late-time for M = 0.3 (f) Late-time for M = 1.0

Figure 4.10: Mole fraction and density profiles for A = 0.1, at M = 0.3 (low compressibility) and
M = 1.0 (high compressibility) for comparison.
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(a) hs = 1.0 for M = 0.3 (b) hs = 1.0 for M = 1.0

(c) hs = 2.0 for M = 0.3 (d) hs = 2.0 for M = 1.0

(e) Late-time for M = 0.3 (f) Late-time for M = 1.0

Figure 4.11: Mole fraction and density profiles for A = 0.3, at M = 0.3 (low compressibility) and
M = 1.0 (high compressibility) for comparison.
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(a) hs = 1.0 for M = 0.3 (b) hs = 1.0 for M = 1.0

(c) hs = 2.0 for M = 0.3 (d) hs = 2.0 for M = 1.0

(e) hs = 3.0 for M = 0.3 (f) hs = 3.0 for M = 1.0

Figure 4.12: Mole fraction and density profiles for A = 0.7, at M = 0.3 (low compressibility) and
M = 1.0 (high compressibility) for comparison.
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and low-A, the heavy fluid is compressed as it falls, while the density in the light fluid decreases as

it rises. This maintains an unstable situation as the instability grows. For high-M and low-A, the

initial density difference at the interface is small when compared to the background stratification.

The spike only falls a short distance before equilibrium is achieved with global stability.

Figure 4.11 shows results for the moderate A = 0.3 case. Once again, the background

stratification is vastly different between the M = 0.3 and M = 1.0 cases. Also, the shapes of the

bubbles and spikes are considerably unique. Despite these differences, the growth of the instability

is largely the same for both the bubbles and the spikes until a relatively late time, when spike

height reaches 2.5λ. At that point, the high-M case is once again suppressed. There is a long

period where the density inside the spike is actually lower than the surrounding media. This is

attributed to both inertial and compressibility effects. The behavior at A = 0.3 is similar to, but

delayed with respect to, the A = 0.1 case.

The large density difference case is presented in Figure 4.12, where A = 0.7. There are

differences in the background stratification, but most of the variance occurs in the top fluid. Since,

the lower fluid’s molar mass is much smaller than that of the top fluid, the densities are much

smaller, which leads to relatively low stratification. Thus, the lower fluid is largely unaffected by

the compressibility effects, which explains the moderate convergence of spike velocities in the high-

A regime. Although the spike velocities for all M approach the M = 0.1 curve, the incompressible

case remains the upper bound for the growth of the spike. Conversely, the growth of the bubble

increases with M , as observed in Figure 4.12. The increased bubble velocity is directly linked to

the spike evolution and the need for more heavy fluid material to maintain the rate of the falling

spike.

Vorticity is suppressed in the higher M systems for all cases presented. Also, the wake of

the vortices is kept closer to the spike when the stratification is high. That is, the horizontal cross-

sectional area of the spike and its trailing vortices is much smaller for the high-M cases. Not only

is vortex production suppressed, but the vortex spreading and interaction remains confined. The

spike is more streamlined when stratification is high. This is investigated in more detail in next
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(a) Mlocal (b) X, ω, T , and the adaptive grid

Figure 4.13: Rayleigh-Taylor shock wave with a highly stratified background state (M = 1.5 and
A = 0.9).

section.

Figure 4.13 shows the grid for highly stratified RTI. In this case, the bubbles act like pistons

continually generating shock waves [60]. The Rayleigh-Taylor shock wave can be seen as a tem-

perature jump above the bubbles. The local Mach number is defined as Mlocal = |u|/c, where the

local speed of sound is c =
√
γp/ρ. The rapid acceleration of the bubble causes the flow behind the

shock to become highly supersonic. The grid dynamically adapts to the formation and propagation

of the shock wave. For this case, the effective global resolution is 8193× 512, yet only 9% of the

points are used (375,634 points, 91% compression).

4.4 Vortex Dynamics in Rayleigh-Taylor Instability

The late-time growth of single-mode RTI is dominated by vortex creation, interactions, and

the induced velocities. The chaotic nature of the bubble and spike evolution at late-times is due

to the sporadic jets produced from vortex pair interactions and the stretching and squeezing of

the spike stem. This can lead to puffing of the spike, characterized by quick burts of acceleration

as material is propelled downward. When vortex pairs reach the bubble or spike tip region, the

induced velocity drives the growth of the bubble or spike.

The vortex dynamics can be analyzed by studying the vorticity equation. However, in order
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(a) Baroclinic Decomposition M = 0.3 and A = 0.1

(b) Baroclinic Decomposition M = 0.3 and A = 0.7

(c) Baroclinic Decomposition M = 1.0 and A = 0.1

(d) Baroclinic Decomposition M = 1.0 and A = 0.7

Figure 4.14: In order to compare the Atwood and Mach effects on the baroclinic generation of
enstrophy, the gradients of ln(ρ) and ln(p) are vector plotted above the fields themselves. The
vector plot for pressure is also multiplied by c2. Baroclinic generation of vorticity is simply the
cross product, labeled as “Baroclinic.”
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take advantage of the symmetry of the system, horizontal averages will be taken. This motivates

use of enstrophy, defined as

Ω =
1
2
~ω · ~ω, (4.2)

which is simply a measure of the vorticity magnitude. When a horizontal plane has a large average

enstrophy, it is a sign that the vorticity is large and the surrounding media will be influenced by

the induced velocities. The enstrophy transport equation is

∂Ω
∂t

= −(~u · ∇)Ω + ~ω · [(~ω · ∇)~u]− 2Ω(∇ · ~u) +
~ω

ρ2
· [∇ρ×∇p] + ~ω ·

[
∇×

(∇ · τ
ρ

)]
, (4.3)

where the terms on the right hand side of the equation are, in order, the convection, stretching,

compressive, baroclinic, and viscous terms. For the two dimensional case, the stretching term has

no contribution.

RTI is driven by the baroclinic generation of vorticity, since misaligned pressure and density

gradients are responsible for the early instability growth. The baroclinic term can be rewritten as

~ω

ρ
· [∇ρ×∇p] =

c2~ω

γ
· [∇ ln(ρ)×∇ ln(p)]. (4.4)

Figure 4.14 shows a decomposition of the baroclinic term by vector plotting the gradients. Strong

enstrophy production occurs in locations where the two fields are perpendicular. For the low-

A, low-M case, the density gradients are always normal to the interface, and pressure gradients

are strictly vertical. Thus, the baroclinic generation is strongest where the interface is vertically

aligned, which occurs near the mid-plane. As the Atwood number is raised to A = 0.7, the density

gradients remain normal to the interface, but pressure takes on strong local variations due to the

motion of the spike. The strongest baroclinic generation occurs near the spike tips. There is little

baroclinic generation near the bubble tips.

In addition to occurring closer to the spike tips, the baroclinic generation is also stronger

for higher A, because the density gradients are larger. This effect can be seen in the horizontal

averaged plots shown in Figure 4.15, where the peak of the baroclinic generation of enstrophy lies

near the mid-plane between the bubble and spike for the A = 0.1 cases and near the bubble tip for
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(a) M = 0.3, A = 0.1 (b) M = 1.0, A = 0.1

(c) M = 0.3, A = 0.7 (d) M = 1.0, A = 0.7

Figure 4.15: Horizontal averaged baroclinic enstrophy for early times. The red dashed lines rep-
resent the outer limits of the spike tip along x1 = 0.5. The blue dashed lines represent the outer
limits of the bubble tip along x1 = 0.

the A = 0.7 cases. Also, the baroclinic enstrophy generation is two orders of magnitude greater for

the high-A cases.

The compressibility effects cause a weakening of the early enstrophy generation from the

baroclinic terms. For the incompressible case, the only density gradients lie normal to the interface

between the two species. The compressibility effects lead to stably stratified background states

within each pure fluid. This cancels some of the interfacial density gradient effects as observed

in the baroclinic decomposition in Figure 4.14. Compressibility has little effect on the Atwood
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(a) M = 0.3, A = 0.1 (b) M = 1.0, A = 0.1

(c) M = 0.3, A = 0.7 (d) M = 1.0, A = 0.7

Figure 4.16: Horizontally averaged enstrophy convection terms show the transport of enstrophy
toward the bubbles and spikes. The red dashed lines represent the outer limits of the spike tip
along x1 = 0.5. The blue dashed lines represent the outer limits of the bubble tip along x1 = 0.

dependence on the baroclinic generation. The observations made in the incompressible limit, as A

is increased, hold true for the high-M cases. That is, the baroclinic generation in the high-A cases

is stronger in magnitude and skewed away from the bubble and toward the spike.

The early time growth is dominated by baroclinic generation, and is the cause for the vortex

roll-up of the interface. The induced velocities from the initial vortex pair cause a reaccleration

of the instability. The vorticies themselves then begin to move with the flow. At later-times, the

enstrophy is transported toward the bubble and spike tips, which can be seen in the horizontally
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(a) M = 0.3, A = 0.1 (b) M = 1.0, A = 0.1

(c) M = 0.3, A = 0.7 (d) M = 1.0, A = 0.7

Figure 4.17: Late-time horizontally averaged baroclinic enstrophy. The red dashed lines represent
the outer limits of the spike tip along x1 = 0.5. The blue dashed lines represent the outer limits of
the bubble tip along x1 = 0.

averaged quantities in Figure 4.16. The enstrophy transport is symmetric for the low-A case.

For large Atwood number, the enstrophy transport toward the bubble is suppressed. The vortical

motion do not need to travel far to reach the spike, however, and therefore have an almost immediate

impact on the growth of the spike. At late-times, enstrophy transport and compression may play a

large role, but there remains baroclinic generation at the spike tips, as seen in the high-M , high-A

results from Figure 4.17. The newly generated enstrophy near the spike tips results in newly formed

vortices, which lead to vortex interactions. In this sense, the spike tips act as a vorticity generator
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(a) (b) (c) (d) (e)

Figure 4.18: Enstrophy compression at spike tip for M = 0.1 and A = 0.3.

that inevitably gets transported toward the bubble, but never reaches the bubble for high Atwood

numbers. The vortices are interrupted by other vortical motions as they travel upwards. The

vortical flow initially generated near the spike tips, is more likely to return to the spike, causing

sporadic accelerations.

In some cases, after the enstrophy generation at the spike tips and transport toward the

bubble, a vortical structure is pulled back down by the induced motion from other vorticies. It

travels toward the spike tip along the stem. Upon reaching the spike tip, a strong compression

occurs, which acts to further enhance the local enstrophy and intensifies the induced flow. Figure

4.18 is an example of the compression term having a large impact on the growth of the spike. This

case corresponds to the high-M case shown in Figure 4.11. At very late times, the density within

the spike tip is actually significantly less than the surrounding media. The enstrophy compression

and the resulting intense induced flow within the spike tip overcomes the buoyant forces that try
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(c) A = 0.7

Figure 4.19: Bubble velocity plotted for various perturbation Reynolds numbers.

to pull the spike back up. The viscous terms are small, and act as drag on the enstrophy transport.

4.5 Viscous Effects on Rayleigh-Taylor Instability

The growth of RTI may have a large Reynolds number dependence. The vortical motions

generated from the baroclinic terms have a dominant role in the chaotic nature of the late-time

RTI growth. Viscosity may strongly influence the late-time behavior since it tends to damp vortical

motions.

The bubble velocity evolution as A, M , and Rep are all varied are shown in Figure 4.19, in

order to test the Reynolds dependence on the reversal of the monotonic relationship for M and A.

The Rep = 1500 case is time-shifted since a large initial amplitude is applied for that case. Viscosity
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(a) Rep = 1500 (b) Rep = 5000 (c) Rep = 10000

(d) Rep = 1500 (e) Rep = 5000 (f) Rep = 10000

Figure 4.20: Early time Reynolds number comparison.

acts to decrease the exponential growth rate predicted from linear stability theory. This effect can

be seen in the figure. The qualitative behavior remains the same across all Reynolds numbers

well into the reacceleration region. The largest deviation occurs at late-times for A = 0.3, where

the low-Rep bubble undergoes a strong reacceleration and the moderate-Rep bubble experiences a

small acceleration. In this case, the higher viscosity case has an enhanced growth. This supports

the theory discussed in Section 4.4 that vorticity suppression enhances the growth of the bubbles

and spikes.

The viscosity effect on the molar mass fraction and vorticity is shown in Figure 4.20. Viscosity

not only causes a larger diffusion layer at the interface but also leads to decreased vorticity during

the early stages of RTI growth. Figure 4.21 compares the Rep = 1500 and Rep = 5000 cases
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(a) Rep = 1500 (b) Rep = 1500 (c) Rep = 5000 (d) Rep = 5000

(e) Rep = 1500 (f) Rep = 1500 (g) Rep = 5000 (h) Rep = 5000

(i) Rep = 1500 (j) Rep = 1500 (k) Rep = 5000 (l) Rep = 5000

Figure 4.21: Late time Reynolds number comparison.
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Figure 4.22: Dimensional effects on bubble velocity evolution.

into the late time RTI growth. There are large visual differences, yet the bubble growth is largely

unaffected.

4.6 Dimensionality Effects on Rayleigh-Taylor Instability

Three dimensional single-mode RTI cases are presented as a qualitative comparison of the

dynamics observed in the two dimensional cases. The dimensional effects on single-mode RTI are

investigated for Rep = 1500. A comparison of the bubble velocity evolution is shown in Figure

4.22. The three dimensional cases have the same change in monotonic behavior observed for the

two dimensional cases. That is, the compressibility effects suppress RTI growth at low-A and

enhance the late-time bubble growth at high-A, for both 2D and 3D. The transition occurs around
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(a) Bubble,
M = 0.3, A = 0.1

(b) Spike,
M = 0.3, A = 0.1

(c) Bubble,
M = 1.0, A = 0.1

(d) Spike,
M = 1.0, A = 0.1

(e) Bubble,
M = 0.3, A = 0.3

(f) Spike,
M = 0.3, A = 0.3

(g) Bubble,
M = 1.0, A = 0.3

(h) Spike,
M = 1.0, A = 0.3

(i) Bubble,
M = 0.3, A = 0.7

(j) Spike,
M = 0.3, A = 0.7

(k) Bubble,
M = 1.0, A = 0.7

(l) Spike,
M = 1.0, A = 0.7

Figure 4.23: The three dimensional RTI cases are presented with isosurfaces of the interface, where
the fluids are equally mixed based on the molar mass fraction.

A = 0.3. The drag coefficient used to obtain the asymptotic velocity from potential flow theory

is lower for the 3D case than for 2D. A deceleration of the 3D bubbles occurs upon reaching the

asymptotic velocity for the cases run in the incompressible limit.

Figure 4.23 highlights the shapes of the 3D bubbles and spikes at the point where the bubble
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(a) Bubble,
x3 = 0,
M = 0.3,
A = 0.1

(b) Midpoint,
x3 = 0.25,
M = 0.3,
A = 0.1

(c) Spike,
x3 = 0.5,
M = 0.3,
A = 0.1

(d) Bubble,
x3 = 0,
M = 1.0,
A = 0.1

(e) Midpoint,
x3 = 0.25,
M = 1.0,
A = 0.1

(f) Spike,
x3 = 0.5,
M = 1.0,
A = 0.1

(g) Bubble,
x3 = 0,
M = 0.3,
A = 0.3

(h) Midpoint,
x3 = 0.25,
M = 0.3,
A = 0.3

(i) Spike,
x3 = 0.5,
M = 0.3,
A = 0.3

(j) Bubble,
x3 = 0,
M = 1.0,
A = 0.3

(k) Midpoint,
x3 = 0.25,
M = 1.0,
A = 0.3

(l) Spike,
x3 = 0.5,
M = 1.0,
A = 0.3

(m) Bubble,
x3 = 0,
M = 0.3,
A = 0.7

(n) Midpoint,
x3 = 0.25,
M = 0.3,
A = 0.7

(o) Spike,
x3 = 0.5,
M = 0.3,
A = 0.7

(p) Bubble,
x3 = 0,
M = 1.0,
A = 0.7

(q) Midpoint,
x3 = 0.25,
M = 1.0,
A = 0.7

(r) Spike,
x3 = 0.5,
M = 1.0,
A = 0.7

Figure 4.24: Vertical slices of three dimensional cases

begins to decelerate. Isosurfaces are shown, representing the interface where the heavy and light

fluids are equally mixed based on the molar mass fraction, that is, X = 1/2. To further enhance

the bubble and spike shape comparison, vertical slices of the molar mass fraction at the same time

instances are shown in Figure 4.24. Each case is represented by three images, with A increasing

downwards and M increasing to the right. The small density differences for A = 0.1 lead to an

instability growth that is nearly symmetric about the mid-plane. The shapes of the bubbles and

spikes are nearly identical. This is also apparent when looking at horizontal slices, presented in

Figure 4.25. The low-A case is shown in the first row. As the density difference is increased, the

spikes become more narrow surrounded by smoother and rounder bubbles. As M is increased, the
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(a)
Spike,
x1 = −4.0,
M = 0.3,
A = 0.1

(b)
Spike Stem,
x1 = −1.0,
M = 0.3,
A = 0.1

(c)
Symmetry,
x1 = −0.04,
M = 0.3,
A = 0.1

(d)
Center Plane,
x1 = 0.0,
M = 0.3,
A = 0.1

(e)
Bubble Stem,
x1 = 1.0,
M = 0.3,
A = 0.1

(f)
Bubble,
x1 = 4.0,
M = 0.3,
A = 0.1

(g)
Spike,
x1 = −8.2,
M = 0.3,
A = 0.7

(h)
Spike Stem,
x1 = −5.7,
M = 0.3,
A = 0.7

(i)
Spike Stem,
x1 = −4.3,
M = 0.3,
A = 0.7

(j)
Curtain,
x1 = −2.0,
M = 0.3,
A = 0.7

(k)
Center Plane,
x1 = 0.0,
M = 0.3,
A = 0.7

(l)
Bubble,
x1 = 1.7,
M = 0.3,
A = 0.7

(m)
Spike,
x1 = −8.0,
M = 1.0,
A = 0.7

(n)
Spike Stem,
x1 = −5.4,
M = 1.0,
A = 0.7

(o)
Spike Stem,
x1 = −3.0,
M = 1.0,
A = 0.7

(p)
Curtain,
x1 = −2.0,
M = 1.0,
A = 0.7

(q)
Center Plane,
x1 = 0.0,
M = 1.0,
A = 0.7

(r)
Bubble,
x1 = 4.0,
M = 1.0,
A = 0.7

Figure 4.25: Horizontal slices of the three dimensional cases.

vortical structures generated near the spike tip remain more localized to the stem of the spike.

Thus, the compressibility effects cause the spike to become more streamlined. These structural

observations of the 3D RTI growth match the 2D cases. However, there are some characteristics

of RTI growth that can only exist in the full three dimensional system. For example, when the

Atwood number is high, the descending spikes are accompanied by thin curtains of heavy fluid that

surround the wide bubbles, as seen in the middle row of the horizontal slices matrix. The curtain

effect is enhanced by increasing the Mach number (bottom row of the horizontal slices matrix), as

the spike shape becomes more streamlined. Another three dimensional effect is the square cross-

sectional of the spike stems, which results from a forced symmetry due to the geometry of the
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bubbles and spikes.



Chapter 5

Conclusions and Future Work

Simulations of compressible Rayleigh-Taylor systems require the development and implemen-

tation of computational tools that efficiently handle acoustic waves, extreme density ranges, and

a wide array of physical scales. These difficulties are successfully dealt with by the use of the

Parallel Adaptive Wavelet Collocation Method in conjunction with two different, but equally effec-

tive, boundary treatments that successfully remove acoustic disturbances from the computational

domain. The first method applies a buffer zone near the vertical edges, where strong numerical

diffusion is applied. The use of a dynamically adaptive grid allows the diffusion zone to be extended

to extreme lengths, which ensures maximum damping of the acoustic waves with negligible added

computational cost. The second method utilizes characteristic analysis to apply a non-reflecting

boundary condition that removes the energy in the acoustic waves from the system at the domain

boundaries. The analysis takes into account the background stratification present in compressible

Rayleigh-Taylor systems. The generation of acoustic waves due to inconsistencies in the initializa-

tion is limited by minimizing pressure disturbances near the interface, which further optimizes the

use of computational resources.

The advanced computational framework developed specifically for direct numerical simula-

tions of compressible Rayleigh-Taylor systems has shed new light on the true nature of the instabil-

ity. The compressive quality cannot be summarized by any one single quantity, nor are the effects

universal. Stratification is closely tied to the intrinsic compressibility within the system, but it is

also affected by the molar mass difference between the two fluids. When the difference is small,
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compressibility acts to quickly suppress any mixing, and global stability can be achieved quickly.

Such a suppression of Rayleigh-Taylor instability is required for the future feasibility of inertial

confinement fusion technology. Conversely, for systems like type Ia supernovae, where there is a

large difference in molar mass, unstable configurations within a highly compressive system lead to

an enhanced growth when compared to the incompressible system.

It is apparent that the late-time behavior of single-mode Rayleigh-Taylor instability is heavily

influenced by the vortical nature of the system. Vorticity is initially generated inside the mixing

layer due to the misalignment of the density and pressure fields. The vortical structures are then

transported outward and may reach the bubble and spike tips, where the induced velocities cause

a chaotic growth. When compressibility effects are high, the vorticity generation is weakened and

the spike takes on a more streamlined shape, where the vortices remain close to the spike stem.

Additionally, the compressive nature of the fluids provide a mechanism to enhance the induced

motion near the spike tip. Because the late-time growth is dominated by vortical influences, the

strength of viscous and diffusion effects on Rayleigh-Taylor systems becomes important. If the

Reynolds number is too small, vorticity may be suppressed before the induced motion has any affect

on the flow, which can drastically alter the nature of the instability growth at late-times. In order to

investigate real systems where Rayleigh-Taylor instability plays a role, simulations must be carried

out at significantly high Reynolds numbers. Furthermore, the late-time Rayleigh-Taylor instability

growth must be studied in a three-dimensional domain to allow the tilting of vorticity that is absent

from two-dimensional flows. Many of the flow characteristics observed in the two-dimensional

system extend to the three-dimensional case, including exponential growth, deceleration near the

asymptotic velocity from potential flow theory, reacceleration, vorticity production near the spike

tip, Atwood-dependence on the bubble and spike shape, Mach-dependence on the streamlining of

the spike, and the combined Mach-Atwood growth rate effects. Whereas the qualitative behavior of

the early-time growth is unaffected by the additional dimension, the intrinsic three-dimensionality

of turbulent flows is likely to play an important role in the late-time growth of Rayleigh-Taylor

instability.
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A complete investigation of compressible Rayleigh-Taylor instability must consider the rel-

evant parameters listed in Table 5.1. The simulations presented in this dissertation need to be

extended to higher resolutions in order to achieve the large Reynolds number flows required to

fully understand the true late-time behavior. Only then can it be concluded whether or not the

growth of the single-mode system is an upper bound for the multi-mode compressible Rayleigh-

Taylor instability. Furthermore, it must be determined whether or not the compressibility effects

on the multi-mode instability growth have a reversal at high Mach numbers, as observed for the

single-mode case.

The true nature of Rayleigh-Taylor instability will only be understood by looking deeper.

High-resolution three-dimensional numerical simulations are the key to unlocking the true physics

behind the seemingly simple interfacial instability that plays such a large role in countless systems

across the universe: from supernovae to inertial confinement fusion; from galaxies to the Earth’s

rocks, atmosphere, and oceans; from the tiny shrimp living in those oceans, just looking for a meal,

to a human enjoying a cup of coffee and the beauty of the extra-bubbly clouds in the sky. Look

deeper, for only then will it be understood better.
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Parameter Definition Effect Relevant Values

Mach number M =
(
ρIgL
P0

)1/2
acoustic,
compressibility,
stratification

10−2 − 102

Specific heat ratio γI = cpI
cvI

compressibility 1− 5/3

Atwood number A = W2−W1
W2+W1

variable density,
stratification

0.01− 0.99

Schmidt number Sc = µI
ρIDI

mass diffusivity 10−3 − 103

Reynolds number Re = ρIg
1/2L3/2

µI
viscous 102 − 106

Prandtl number Pr = cpIµI
kI

thermal diffusivity 10−2 − 102

Froude number Fr = U0

(gL)1/2
gravitational,
stratification

10−2 − 102

Peak wavelength λ∗0 = λ0
L initial condition 10−3 − 1

Initial amplitude η∗0 = η0
L initial condition 10−6 − 1

Interfacial thickness δ∗ = δ
L interfacial gradient 10−6 − 10−2

Interfacial resolution NI = δ
∆ resolution 8− 32

Table 5.1: The effects and ranges for the parameters relevant to simulations of compressible
Rayleigh-Taylor instability are listed.
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