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ABSTRACT

A generalized edge boundary condition (GEBC) relating the tangential electric and
magnetic fields at the edge of an arbitrarily shaped microstrip patch antenna on thin sub-
strate is developed. This boundary condition incorporates the dynamical edge effects and
the coupling over the patch. Based on this edge condition, commonly used microstrip
patches can be accurately and efficiently analyzed. Using perturbation theory, resonant
frequencies and Q-factors can be readily determined for simple patch shapes. Rectangular
and circular microstrip antennas are analyzed in detail, and calculated results are com-
pared with previously published experimental data.



1. INTRODUCTION

In the last decade, many analysis techniques have been applied to microstrip patch
antennas. Numerical approaches such as full-wave analysis [1], and direct solution of the
exact integral equation for the patch current [2]-[5] can provide the needed accuracy for
many designs. However, lengthy computing times limit the applicability of such numerical
techniques. On the other hand, models relying strongly on the physics of the problem, such
as the transmission line model [6]-[8] and the cavity model [9]-[11], have been extensively
used for simple patch shapes. In these two models, fields are reckoned under the patch and
obey a transmission-line equation and a two-dimensional Helmholtz equation respectively.
One of the main difficulties faced by these simple analysis techniques, is the accurate
determination of the condition that the field must satisfy at the edge of the patch. This
boundary condition, directly related to the fringing of the field, plays a crucial role in the
accuracy of the analysis.

We will develop here a generalized edge boundary condition (GEBC) at the edge of an
arbitrarily shaped microstrip patch antenna on electrically thin substrate (kd<<<1). This
boundary condition will include the effects of the coupling over the patch, radiation waves
and surface waves.

First we set up an aperture field integral relation (AFIR) in the region extending from
the edge of the patch to infinity at the air-dielectric interface. Second, we derive an
integral expression for the tangential magnetic field at the edge of the patch and combine
this relation with the AFIR. Third, the field distribution close to the edge is approximated
by an equivalent static distribution multiplied by an amplitude factor dependent on posi-
tion along the edge. Finally, we accurately approximate the kernel of our integral relation
s0 as to isolate known static field integrals. The result is an expression for the tangential
magnetic field at a given point along the edge as a function of the tangential magnetic
field and the vertical electric field around the patch. This expression, or GEBC, allows two
interesting applications. First, we derive a segmented version of the GEBC, useful for the
analysis of arbitrarily shaped microstrip patches. Second, we develop a perturbation
approach to analyze efficiently and accurately simple patch resonators. The time conven-
tion e*“! is used throughout.

2. APERTURE FIELD INTEGRAL RELATION

In contrast to most integral equation formulations [2]-[5], that set up an integral equa-
tion on the surface of the patch, we will derive an aperture field integral relation (AFIR)
at the air-dielectric interface away from the patch. This approach bears some resemblance
with one used a few years ago by Butler for the circular patch [12].

Consider the geometry of an arbitrarily shaped patch antenna illustrated in Fig. 1. A
local coordinate system (d,,d;,d,) is introduced everywhere along the edge of the patch.
Let also S denote the surface of the conducting patch and S4 denote the aperture surface
complement of S¢ at 3=d.
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Fig. 1. Arbitrarily shaped microstrip patch.

In a homogeneous source-free region, let G be the Green function solution of
[V2+ k4G = —6(f—¥) (1)

where k =kq(€, 11, )% and ko=w/(€gpso)* is the free space wavenumber. Let ¢ be any constant
vector. If we denote the scattered magnetic field by H*, we have the following integral
relation, variant of a formula given by Harrington [13]:

¢ -H'(f)= —pds . {I?' X (V' XEG)—éeG X (V' X HY)+H (V" . éG)} (2)
s

Since ¢ is a constant vector:
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Also, the corresponding source-free Maxwell equation gives the curl of the magnetic field:
V' X H* =iweee,E*
We therefore write directly
;) = ds” - {(H’ X (X N'G)+iwee, G X E*) — H*(é - V'G)} (3)
We also can expand ’
H'X(¢XN'G)=(H* - V'G)é —(H* . &)%'G
and thus (3) becomes
¢ H*(7) =
gdé’ C(H VG —(H* - &) VG +iwee, G(EXE)—H*(¢é - V’G)} (4)

We will now use this integral relation to derive expressions for the tangential magnetic
field on both sides of the air-dielectric interface. Let’s indicate the air region (z>d) by the
subscript 1 and the dielectric region (0<z<d) by the subscript 2, as shown in Fig. 2. The
volume V; occupies the entire half-space above the patch, its boundary S; receding to
infinity. The volume V', encloses the entire dielectric slab, the lateral sides of its boundary

S, also receding to infinity.
In the region 1 (z>d), we define a Green function G, as follows

V2 +kE)Gy = —6(F — 7)) ‘ -~ (5)
along with a Neumann boundary condition on the interface plane:

0G,
T | 2-a

=0 ; VY (6)
Appendix A gives the well-known result:
=L
Gy 4T
-i"o((z-z')’ +(y-y )+ )% -"‘o((z =z P+ (y=y' P + (s+5°—24)t )%

. [(( z P+ (y—y )“”—Z 2) ((ﬂt—z (y—y)? + (z+2"—2d)? )"

Replacing G by G, and S by S, in (4), we can discard the portion of S, at infinity, since

—
-~
S



Fig. 2. Volumes V, and V, for application of Green’s theorem.

Gy =0(™MV = /1 _#)  as|f—F| =00 inV, (8)
and we can apply the limiting absorption principle. Thus,

¢ H'(#) =

[ a5 . {(ﬁ' “VG)E—(H' - &)V'Gy +iweGy(e X E*) — H(é - \"Gx)}

Sc + SA
with d5’= - 4,”ds” and z° = d*. Now, we choose the arbitrary constant vector ¢ as any
vector in the z=d plane. Then, enforcing the boundary condition (6):

Hi(#)= [ ds’{H,‘V’Gl —iweGy(E* X a,')}

Sc+S5,

where A/ is the projection of H* in the plane z = d*. Since the surface of the patch is
perfectly electrically conducting
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We can finally write
F)=[ ds {H!V' G, —iweGy(E* x 4,)} ; 2" =d* 9)
S4
where 7; € V;. In the region 2 (0<z<d), we define a Green function G, as follows

(V2 + kY Gy = — 6(F — 7) (10)

with a Neumann boundary condition on the interface plane z = d and the ground plane
z2=0

G, ,
Jdz lz=0d =0 ’ \v/p (11)

Appendix A gives the well-known result:

Gy =Gf + G (122)
with
. o . 2.2 %
GZ = _—‘-a- Z m7rz osm;r‘z Hm((k “TW) lﬁ“lyl) (12b)
m=1 d
GTEM - _ i H"’(kl‘_ 57 |)
= H p—p (12¢)

where H((,z) is the Hankel function of the second kind of order 0 and the branch of the
square root is given as

R ] (13)

Also, as source and observation points move apart, G, behaves as
Gy =0 (elmlip=F1 /15— p|%)  as|p—p'| = 00 in V,

so that we can discard the contribution of S, at infinity. Following closely the derivation
of (9), we get a similar expression for the horizontal magnetic field in region 2:

H{(7) =,._f ds’ {H;\"G’z — twege, Go(E* X d,')} ;2 =d” (14)
S4
Consider an incident TEM field under the patch. This field corresponds to the dominant

mode of the corresponding parallel-plate waveguide. We assume its presence everywhere in
the dielectric slab:



E‘. = dzE;(i)
~ . ' V6 ;5 0<z<d (15)
H' = a,Hi(p) + d Hj(p)

We note that the incident field satisfies the boundary conditions on the top patch and on
the ground plane. At the edge of the patch, the normal surface electric current or,
equivalently, the discontinuity of the total tangential magnetic field must vanish:

g - {ﬁg(n =0,z =d*) -~ H{!(n =0,z =d~) —Hi(n =0,l,z = d')}= 0 (16)
Replacing H{ by the integral expressions developed above, (9) and (14), we obtain an
important aperture integral relation:

Hi(n=0,z=d") =

. . P — NG, | . S .. -

a - f ds H,(ﬂ ,l )[V Gl -+ T] — W€y [E(n ,I ) X a, ][Gl -+ C,GzJ (17)

Sa r
where

G =Gy(n=0l,z=d;n"l" 2" =d)
Gy =Gy(n=0,l,z=d;n",l',z" =d)

H,(n",l") = Hy(n"l",2" =d¥)

3. TANGENTIAL MAGNETIC FIELD AT THE EDGE OF THE PATCH

Our next step will give an integral expression for the tangential TEM part of the scat-
tered magnetic field under the patch. This TEM component corresponds to the dominant
modes we want to excite under the patch. Equation (14) yields at once

HTEM® (n =01,z =d") =

v'G TEM -
dl * f ds’ { - Hz(n'yl’) ”f + i“’fofr GZTEM [E (n’al') X dz']} (18)
54

where the kernel GI** is given by (12c). As it stands now, (18) is an exact relation. But,
since we do not know the field components H, and (E X d,) in the aperture S, this equa-
tion is not directly useful. The strategy here consists of finding a suitable static approxima-
tion for the field in the aperture region. However, If we were to introduce these approxi-
mations in equation (18) directly, the resulting approximation for HT¥ would likely be
inaccurate. Following a scheme successfully applied earlier in a similar problem [14], we
combine (18) with the integral form of the edge condition (17). Then, the approximation of
the aperture field by quantities proportional to the corresponding static distribution will



give us accurate results.

Recalling the edge condition (17) and denoting the total tangential TEM magnetic field
by HT*™ = HI®:* 4 Hj, (18) becomes

H™ (n=0lz=d") =

R NGE L e .
a - {9 ds’ {H,(n UV NGy + I, | —twe [E(n,17) X d,°][G, +e,G2°]}(19)
. .

In order to justify the approximations we will use for the aperture fields, we need to stress
a few points. First H™ is a small quantity around the patch. Indeed, "ideal" cavity
models set this component of the magnetic field to zero along the edge. Second, we must
see that the dominant contribution in the right-hand side of (19) comes from a narrow
region close to the edge because of the fast decay of the aperture field away from the edge.
Third, the surface wave and radiation wave contribution are accounted for by the
corresponding kernels, even if the aperture fields are not accurately approximated away
from the edge. To approximate the true electric aperture field in the integral expression
(19), we assume that the field emerges perpendicularly from the locally “straight™ edge of
the patch. Thus the dynamic field contribution can be adequately modelled by the product
of a voltage V(!) dependent on position along the edge and the static field distribution

Eo,,(n):

V(i

+nx(1)] (20)

E x 6, >~ — d;Eqa( n) [1

where x(!) is the curvature of the perimeter P at the point (n=0,!). The denominator of
(20) takes care of the spreading of the field lines . The surface integral transformation is
thus given by

ds =dndl[l + nx(l)] : (21)

To uniquely specify the static edge voltage, we enforce the following normalization:
[+ ] .
[ dn” Ega(n) =1 (22)
0

We can make a similar argument for the z-directed component of the aperture magnetic
field, product of an amplitude factor W(!) dependent on position along the edge and the
static field distribution Hy,(n) at z=d™:

w(l

H et HO: n) [l +ny [)] (23)
with a corresponding normalization:
[+ 2]
f dn’ Ho,(n’)=1 ; z2=d* . (24)
0

Although the static fields Ey, and Hg, stem from uncoupled static problems, the dynami-
cal behavior of the field imposes a relatlonshlp between the amplitude factors V(i) and
W(l). Faraday’s equation applied at the locally "straight” edge yields



10

. OE, OE,
—twyoH,=—aT‘—--W ; z=dt (25)

Introducing the field approximations (20) and (23) into (25)

— iwpo W()Ho,( n)_{1+nx1)]-—--Eo,,( ) LU0 g

Integrating both sides of the above relation with respect to n from the edge to infinity, we
get ’

— iwpW(l) j:?dnHo,(n)= - o¥n [dnEo(n) ;5 z=d* (26)
0

where we have used both radiation condition E;(n — 00) = 0 and the perfectly conducting
edge condition Ej(n =0) = 0. Recall the static field normalizations (22) and (24) to obtain

t JV
W(l) = —m—a‘gﬂ' (27)

We can now put the pieces together and write down the approximate expression for the
TEM part of the tangential magnetic field at the edge:

[+ o]
H[TEM (n =0,1,z=d')=d, fdn'ﬁ dl’
0 P
—i 9V A \V'GS s .
. [———W}l; ‘B‘i?Ho,(n )[V Gl + i, ] + tWe€ga V(I )Eo,,(n )[Gl -+ €,G2c] (28)
with
—ikolp — #°|
_ L e
G‘_27r{ T }
[e 2] 21r2 % . ..
Gf = —37 3 Ho (K =27-) 15—4)

4. GENERALIZED EDGE BOUNDARY CONDITION

Although the static field is known exactly from a Wiener-Hopf solution of the edge prob-
lem [15],(16], the integral relation (28) still does not prove very useful. The two-dimensional
integration domain is infinite along one direction and the calculation of the static field
requires computing a Laplace-transform integral [15]. . This makes the evaluation of equa-
tion (28) very inefficient. One of the key features of the technique presented here is that
the infinite integral can be approximated very accurately in closed form, making the result
a function of a perimeter integral only.
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For convenience, define a function A(/) on the perimeter of the patch. We require A(l)
to be a smooth function of the edge coordinate /. By smooth, we mean

A(l +6) ~ A(l)

where 6 is a small distance of the order of a few d. We first form an inner product
between expression (28) and A(!) over the perimeter P:

©0
 AA(HT™ (n=0l,z=d")= P dlA(l)d, [dn" P dl’
P P 0 P
oV . V'Gy ,
— D g Hou(n ")V Gy + =] + iwead V(I)Eoa(n”)[Gy + €, Gf |

Assuming we can change the order of the primed and unprimed integrals, the right-hand
side of the above equation can be treated as the sum of four terms:

 dIN(I)H™ (n=0,l,z=d") = Ry; + R13 + Ry + Ry, (29)
P
where

Ry =iwg fdn jidz V(I')Eoa(n’)d 95 diA(l)a (30)
o0

Ryz=iwee, [dn" § dl’V(I')Egu(n')d,” - P dIA(l) G (31)
(] P P

i T Vv
Rn= - o= {dn Sf’dz 57 Hou(n )f}d!A(l)a, . V' G, (32)
Ry = — f &) AN A () dIA(l) g, - V'GE (33)
wu T b ol 3 P 2

These four terms are evaluated in Appendix B:

“"o(“’ ~ Byt + dB)%

TWe
Rll_’ 0 fdn EOn(n )ﬁdl V ﬁ‘”A(l)aI (Iﬁ ﬁ'|2+d2)%
—Fo
. o0 .
~E0 [ dn’ Eop(n’ —"d— ) $ di’ (34)
0 P
Ryp = _&‘of_r fd,, Eon(n’)In(1 — e=*n'/4 4541 Ay V() (35)

(k18 = A1+ a1
(16 —po"|2 +d2)¥
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i T
- ok {dn Ho,(n")In( —)§> di’A(l’ )az 5 (36)
A ) — iy OV
R22= —_ _I:ZI—[;;;IT {dﬂ Ho‘(n )ln(l — € xn /d)ﬁ;dl A(’ ) 81,2 (37)

where gy (n” =0,") is the projection of §"(n’,l") on P as shown in Fig. Bl. At this point,
we recall two dual results on static field integrals derived in a previous report [14]. We
must emphasize that these integrals, based on a Wiener-Hopf solution of the static straight
edge problem, are exact.

fdn'Eo,‘ ") ln( ] ) +6eIn(l —e ™ /8) =1n2 + 2¢,Qo(—6) — ¢ In(27) — 1 (38)
0

where
[« .
Qufz) = 3 2" lnm (59)
m=1
and &, is a dielectric contrast coefficient given by
€, —1
be = €& +1 (40)
Likewise,
Tdn'Ho (n') | In (&) + L ln(1 — e*/4)| =1n2 + 2= Qo(8,) — ——In(2m) —1 (41)
o * d By by B,
where
"r -1
b= w1 (42)

If we substitute expressions (38) and (41) together with normalizations (22) and (24) into
the four terms (34)-(37) and rearrange, then the boundary condition (29) becomes

45 dl A() HF (n =0,l,z =d") =

av

“"‘° 45 vl ji dl A1) & Galll') + g jidz S P dlA() 5 Galhl)
P
twe oV
- —=F(¢) 36 dl’ A V) = 5o F(—w5 di' A(") 57 (43)
where we have defined for convenience
F(z)=ln2+2:Qoti_:]—-zln(2x)—l (44)

and



13

Q—tkalll = 41t + d)s

R (7 = XL | saver

(45)

Equation (43) can be considered as the generic form of a generalized edge boundary condi-
tion (GEBC). The relative freedom we have in choosing A(!/) allows for several distinct
applications. In the following sections, we will describe two such developments. First, seg-
menting the patch and letting A(/) become a pulse function, we get a generalized boundary
condition readily applicable to various microstrip structures, such as antennas and discon-
tinuities. Second, letting A(/) = V(!), the actual edge voltage, we can build a perturbation
expression for the resonant frequencies and Q-factor of microstrip patch resonators.

Letting A(!) become a sequence of functions approaching a Dirac impulse, we can write
a "local form" of the GEBC:

HI™ (n =0,1,2 = d-) = ——0 [_ Fle,) V() + L 6 di v(i*)[a, - a,)G,(1,1%)
! T l ) A
i PV p Ly 12640V g
taom | o TE) T3 azf, a1 Gall! )} (46)

We have however to keep in mind that this expression is only valid, strictly speaking, when
we take an inner product on both sides with a relatively smooth function A(!). Neverthe-
less, this local form of the GEBC provides a convenient tool, with much physical insight.

5. SEGMENTATION OF THE PATCH

We represent an arbitrarily shaped patch by a succession of straight segments, as
shown in Fig. 3. In order to provide as much generality as possible, the segments S; can be
of unequal lengths A,;. Furthermore, we assume that the number of segments is such that
the shape of the patch is reasonably well approximated and that the edge voltage does not
vary widely along one segment. We denote by 4;; the unit vector tangent to the segment
S;. Also we indicate by g;(n =0, =1[;) the position vector of the segment’s middle-point.
Consistent with this segmentation, we let A(l) = II,(!), where II,;(/) is a piecewise constant
pulse function defined as follows

() =10 ; otherwise

Therefore, we can write a segmented version of the generalized boundary condition
directly from expression (43):
i(déo
27FA,'

HI™ (1) = $dr V(') a7 - [ dldy Ga(l,l")
P Si
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Fig. 3. Segmentation of the patch.

. av p'-p"+d'uA;/2

K .
= P dl’' 7= Gy(1,1

+ 2wy i ol d( )I F=p,—d:A; /2

1weg iV 1
== V(k) F(e,) —m—ap-l,_,‘. F(2-) (47)

This GEBC allows the efficient and accurate analysis of various patch structures of
arbitrary shapes. Some applications will be presented in a forthcoming report.

6. PERTURBATION APPROACH

It is well known that the cavity model [9]-[11] provides an efficient way of analyzing
microstrip patch antennas and resonators. Closed form results can be obtained for simple
patch shapes such as rectangles, circles and ellipses. Opinions differ, however, on what
kind of boundary condition should be imposed at the edge of the patch. This inability to
find an accurate boundary condition has originated mainly from the complexity of the field
behavior close to the edge. Our generalized boundary condition is well suited for developing
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a perturbation approach. The unperturbed problem will be that of a closed cavity under
the patch, with perfectly electrically conducting top and bottom walls and perfectly mag-
netically conducting side walls. This representation is often called an "ideal" cavity model.
The perturbed situation will correspond to the actual patch, with dynamical edge effects,
radiation and coupling between edges. We will consider here unloaded patch resonators
only.

Following the normalization (22), we can define a voltage from the z-directed com-
ponent of the TEM electric field:

V=—E™{ (48)
The true voltage satisfies the source-free wave equation:

(VE+k)V =0 (49)
where ¥, = d,9/0, + d,9/0,. Faraday’s equation applied at the edge of the patch, for
0< z <d, yields directly

v

on lon p = T iWHoR d H (50)

on P

The "ideal” cavity model voltage for the same patch satisfies the equation:
(V?+E%)V=0 (51)
with the boundary condition

_0_‘7|

Jn lon P
where we have indicated with a tilde all variables pertalmng to the "ideal" cavity model.
Recall Green’s theorem [17]:

=0

i ds(VVfV—ﬁ\‘fV)=56 a (vi¥ - 7o) (52)
Se¢

Substituting the wave equations (49) and (51) into (52), and using a standard procedure, we
find the correction for eigenvalues:

iwop, d $ di V(1) HT# (1)

K —F%= £ = ' (53)
f ds vV
So

The numerator can be readily evaluated if we recall our generalized boundary condition
(43) with A(I) = V(l). In what is the key feature of a perturbation procedure (18], we then
approximate the edge voltage V() by its cavity-model counterpart V(l) Then,
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iw o, d(Ny + Np)

k2 —F?~ (

> 54)

f ds V2
with Se
Ny= 2§ dl §di [a - &) F(1) V() G4 - =2 Fle,) i 72 (55)
P P " P
= v av . i 1 ov.? .

N 2rwp f,dl f,dl L ol Ga(hV) + TW g F( I‘r) é dl (—1) (56)

where we have integrated by parts to obtain the term No.

Once the perturbed eigenvalues k are computed, we can easily find the corresponding
unloaded quality factor Q [19]:

Q= 71%%37 (57)

7. THEORY OF THE RECTANGULAR PATCH ANTENNA

The rectangular microstrip antenna has received more attention than all other shapes
taken together. The simplicity of the geometry has led to many specialized techniques.
Furthermore, even the most general numerical techniques usually work better on rectangu-
lar shapes. Finally, because of the large amount of experimental data available in the
literature, the rectangular patch has become a benchmark for comparisons.

First attempts to analyze the rectangular patch antenna were made by Munson [6] and
Derneryd [7], [20] in the mid-seventies. They used an analogy with a section of transmission
line terminated by lumped impedances. This method became known as the transmission-
line model and was later refined by Dubost [21], Lier [22] and Pues and Van de Capelle [8].
Approximate formulas for the resonant frequency based on the same approach have been
given by Sengupta [23]. .

At the same time, microstrip antennas were also looked at as resonators. Wolff and
Knoppik [24] introduced equivalent dimensions and dielectric constants to simulate the
effects of the fringing field. Lo et al. [9], [25], Richards et al. [10] and Derneryd and Lind
[26] improved and completed what has been called the cavity model. Simultaneously,
Carver [27] and Carver and Mink [11] have presented a technique based on modal expan-
sion and lumped equivalent wall admittances.

Using a very different point of view, Chang (28] and Kuester et al. [29] have considered
the rectangular patch using a transverse resonance model, where TEM waves bounce off
the edges of the patch. Analytical results for the resonant frequency and the Q-factor,
valid for electrically thin substrates, are given in [29].
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Fig. 4. Rectangular microstrip patch.

Lastly, many different numerical approaches have been proposed. In 1973 already, Sil-
vester introduced a finite element analysis [30]. Two years later, Akhtarzad and Johns [31]
presented a transmission-line matrix (TLM) approach. However, these two techniques have
difficulty including radiation and surface wave effects. Later, Itoh and Menzel [1] have
‘presented a dynamic full-wave analysis based on an integral transform of the wave equa-
tion. In what appears the most accurate analysis available, several authors have presented
‘models based on direct solution of the integral equation for the patch current. Bailey and
Deshpande [2], Newman and Tulyathan [32], Mosig and Gardiol [4], [5] and Pozar (3] have
all given results for the rectangular patch. Recently, Shimin [33] has given approximate
formulas based on {2]. In all cases, numerical methods appear handicapped by lengthy
computing times.

In this section, we will compute the resonant frequency and the quality factor of a rec-
tangular microstrip patch, based on the expressions (54) and (57). The results can be
expressed in a simple form for the modes TM,q and TMy;.

Consider the geometry of the rectangular patch shown in Fig. 4. The solution of the
"ideal” cavity model, with magnetic walls at x =0, /; and y = 0, [, is easily obtained by
separation of variables in the two dimensional wave equation (51). For the sake of clarity,
we will limit ourselves to the dominant mode TM;,. Along the edges of the patch:
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V(z =0) = Ay 0<y <y - (58a)
Viz=1)= — Ay 0<y <, (58b)
V(y =0) = Asgeos(4F) 0<z<l, (58¢)
V(y =14,) = Arcos (F7) 0<z<y, (584)

where A;g is the mode amplitude constant for the mode TM,, Recall the correction for
the eigenvalues given by equation (54):

iwpop, d(Ny + N,)

k2 —%% ~
[ ds V?
Se
with
. twe T, i twe ~
Ni= gt d § o - al V) P Gulbt) = =2 Fle) $ at 7°

~ 2
F(L) ¢ @ (57

v oV
ﬁdlﬁd = (”)+7rwp ) B3I

N, IR

21rwuo

It is convenient to number the sides of the rectangular patch as indicated in Fig. 4, to
obtain

tweg A & twe ~
Ny=—=3 3 I —— F(c,)%dl V? (59)
i=1 y=1

where the coupling integrals ;; are given by
= [ di [ ar VQ)V()|ay - dy] Gu(1,l’ ) (60)
sdes  ode §

Because of the symmetry of the geometry and the scalar product [d) « d4);], we are left
with four terms only. Note also that, without loss of generality, we can set the arbitrary
mode amplitude constant A to unity. Therefore,

twe

N, = T [Iu + Iz + Iy +1I3y — F(e,) (L, +2Iy)] (61)
where
lz ‘c "fko ((8—8')' + d2 )*

I, = fdz fdz' coskzcoskz’ (62a)
0 0

((::—:r:')2 + dz)*
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fs jl dz - - e—l'h,((z—z')’ + l,’ + 42 )‘
I3 = — dz ‘ coskz coskz’ 62b
13 0 0 ((:1:—:')2 + 17 + dz)" (620)
y L —ikg ((y—y)t + a¥)%
Ipo= [ dy [ dy = - (62¢)
{ { ((y—y)? + a2)*
by !y —iko((y=y Pt + 1} + a2 )%
I,= [ d dy” = 62d
24 { Y { y ((y_y,)z +l‘z + dz)“ ( )

where ¥ = /I, is the dominant mode, unperturbed, wavenumber. The integral I;; can be
approximated in closed form as shown in Appendix E:

xln (%% — k¢)

. Si(7l’) T
= —_—_— - = d - =
Iy =1 Ci(m) — == = (7 +1n(d/2)) o
-~ —kal ~
_ 1 E + ko e 0¢ 1 k + ko (+ +m : .
+i [1. oy o tw In(= —ko)] = Ex(ikol; — im)
+ ———l(‘;F” E, (ikol, + im) + ~{T) ""/g“ x Ci (n) (63)

where the cosine integral Ci, sine integral Si and exponential integral E; functions are
defined in Appendixes E and F. This approximation, valid for small kod, may fail to give
accurate results for electrically thick substrates. A better approximation could presumably
be derived using the Mellin Transform approach {29]. Another, more practical, approach is
to seek a numerically efficient expression such as the one proposed in Appendix G:

! ¢~ tholpT+eT)" [(L — p)cosip — sinkp ] -t

In= [ dp £ + L sinh1(l, /d)  (64)
(1]

(p% +d%)%

Comparisons between the expressions (63) and (64) show that the relative error in (63) is
probably of order kd (Fig. 5). The approximation (63) has however proved to be satisfac-
tory for all cases tested. The terms I3, I3; and I, can all be expressed in a numerically
efficient form (Appendix G):

~

! e-—z’k.(p3+l,’+4’)i [(lz — p)eosip — sinkp ]

* 3 65)
[in= — [ d (
13 { 4 (P2 + 12 + d?)%

g (&, —p) ¢ ~Hilptra)
I, =2 [ dp - L 4 2L sinh~1(l, /d (66)
22 { P (pz + dz )“ " ( '] / )

! —iky(p2+ 13+ d2)%

¥ e L 1]
Ipa =2 f dp (I, —p) (p? + 12 + d2)% (67)
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In |[(64)-(63)]1/ (64)|
In |[(exact result) - (72)] / (exact result)|

Re [I11]

N\
\\\\\° Re [I1]

Im [J11]
* Im [11]

5.1001  5.102 5.103 5.104 5.10°5

Fig. 5. Relative error on terms I;; and Jy;.
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The term N, can be written

1 0V
N, = 2w”0 .§ ,gl Ji + m” F(I)Si di ('aT) (68)
where the coupling integrals are given by
. OV oV .
Ji= [d [ d SI 5 Galbl) - (69)

side s side §

Because the derivative of the edge voltage, 8‘7/81, vanishes along the sides 2 and 4, and
because of the symmetry of the geometry, (68) reduces to

—1 1, w2
Ny =55 [Ju + Ju - F(50) -] (70)
where
b it{(s-s ) + )8 (
Jy=*% dz dz’sinkz sinkz’ - 71a)
" 0 0 ((’3—3 )2 + dz)*
I, i . —ik.((z—z’)’ + l” + d')"
Jia= — k2 dz dz’sinkz sinkz’ 71b
. { { ((z=2") + 42 + a*)% (7o)

A closed form expression for J;; can be obtained along the same lines as for the term /;;:

Ju =;‘£( “’;2’{ —In(¥ +ko) + 3 fko ~ (4 ;‘")[;n—ln(zz—kg)]
—ikgl, _
(" Thoe ) b L[+ im By (ikol, — ) = (1 — im) Eylikoly +im)] ) (72)

Comparisons between the approximation (72) and the exact result shows that the rela-
tive error is of order (kd)? (Fig. 5). The expression (72) is thus valid in all cases within the
frame of our theoretical development. Following Appendix G, J;3 can be written in a form
that suits numerical integration:

L RN p)cosTp + S22

= _52[ [ (73)
R e ]
Since,
Ll :
[ dsVi=S5t (74)

Sc
the eigenvalue shift for the TM,y is given by equation (54):
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k2 _T2 2iwpop, d [:weo(

10 —kjp = i1, Iy + L+ Ing + Ipg — Fle,) (U, +21y))
1 w2
7rwp (Ju + J13 — F(';,T)i[;"” (75)

Interchanging I, and [, the above result gives directly the correction for the eigenvalue of
the TMy, mode.

8. RESULTS FOR THE RECTANGULAR PATCH

In order to assess the value of our theory, it is essential to check it against experimen-
tal results and other theoretical approaches. By choosing published experimental data, we
have minimized the risk of biased comparisons. Among the relatively large quantity of pub-
lications available, we have selected the measurements of Y.T. Lo and his group in Illinois
because of their reliability and accessibility.

In [9], Y.T. Lo et al. present measured results for the resonant frequencies and Q-
factors for different rectangular patches. An interesting feature is that the length of the non
radiating edge is kept constant. This provides a clear visualization of effects impossible to
see with an "ideal” cavity model.

On the theoretical side, we have compared our approach with Carver’s modal expan-
sion model [27) and Kuester et al.’s wide patch analytical formulation [29]. To help the
reader, we have collected the detailed calculations for all three theoretical models in Appen-
dix H.

Fig. 6 shows the results for the resonant frequencies. Care must be exercised in inter-
preting the results. The theoretical curves are indeed very sensitive to minute changes in the
dielectric constant of the substrate. It is thus not surprising that we do not see an overlap of
experimental and theoretical curves. More meaningful is the relative position of the theoreti-
cal curves and the shape correlation of ‘the curves between experimental and theoretical
results.

Note the complete failure of the "ideal” cavity model to take into account variations in
the length of the radiating edge (/). Remark also the limitations of Carver’s theory for
wide patches. Finally, observe the good behavior of the present theory, which predicts the
shape of the curve almost exactly without using any equivalent parameters such as edge
extension or effective dielectric constant.

Fig. 7 shows the results for the Q-factor. Note the excellent agreement between our
theory and the experimental results.

Although numerical integrations are needed in the present model, the required compu-
tational effort is very small. Typically, ten points in a Gaussian quadrature are more than

enough. :
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9. THEORY OF THE CIRCULAR PATCH ANTENNA

Because of the axial symmetry, the circular microstrip patch antenna has called for spe-
cialized analytical techniques. At the same time, people have adapted "“classical”
approaches, such as the cavity model, to this geometry.

Watkins [34] obtained first the resonant frequencies for a circular patch using an "ideal”
cavity model. Next, attention was focused on quasi-static approaches to give corrections
for the "fringing" field. A detailed account of earlier work to solve the static circular capa-
citor has been given by Kuester [35]. Numerical computations for the same problem have
been presented by Itoh and Mittra [36). Borkar and Yang [37], Coen and Gladwell [38] and
Mosig [39] improved later the numerical formulation. Wolff and Knoppik [24] and Shen et
al. [40] have given formulas for the resonant frequency based on this quasi-static approach.

Cavity model results have been presented by many authors. Long et al. {41], [42] and
Derneryd [43] were the first to give such an analysis. Later, Carver [27], Richards et al.
(10] and Yano and Ishimaru [44] refined the model. More recently, Davidovitz and Lo [45]
have adapted the cavity model to thicker substrates.

Chew and Kong [46]-[49] have studied the resonance with various techniques. In particu-
lar, they have given asymptotic formulas valid for thin substrates (48], and have solved
dual integral equations using a Hankel transform approach (49].

Araki and Itoh [50] have used a full wave analysis with spectral domain basis functions,
and Wood [51] has employed a similar technique with spatial domain basis functions.
Quite recently, Dubost and Beauquet [52] adapted a transmission-line type of approach to
the circular patch.

Few numerical solutions based on the integral equation for patch current have been pro-
posed, probably because of the difficulties in discretizing the circular surface in elementary
cells. Agrawal and Bailey [53] considered the circular patch in their early approach with a
homogeneous Green function. Butler [12] has presented a technique based on an aperture
integral equation. Recently, Bailey and Deshpande [54] have looked specifically at the cir-
cular patch with a moment method solution.

In this section, we will compute the resonant frequency and the Q-factor of the dom-
inant mode TM,, of the circular patch, based on expressions (54) and (57). Consider the
geometry of the circular microstrip patch antenna shown in Fig. 8. The solution of the
“ideal” cavity model is obtained by solving the wave equation (51) together with a Neu-
mann boundary condition at the edge of the patch [55. If R denotes the radius of the
patch, the unperturbed wavenumber % is solution of the eigenvalue equation:

J,(FR) =0 (76)

where J, is the Bessel function of order n and the prime indicates the derivative with
respect to the argument. Recalling a conventional notation (56],

ER=j'am (77)

where ;'  is the m! positive zero of J; . For the dominant (non static) mode TMy,,
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Circular patch
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Fig. 8. Circular microstrip patch.

bt}

I
1n=-g (78)

with 7 ; = 1.8411837... . The edge voltage V and its edge derivative 8?/01 are given by

V:AlldJl(J“p)cow _ (79)
IV X
%—I = — AR Jl(Jln}p)siné (80)

where A,; is an arbitrary mode amplitude factor. Without loss of generality, we can set

this amplitude coefficient to unity. The correction for the eigenvalue is given by equation
(54):

B2 T2 = iw”o”rd(Nl'*‘NZ)
11

11 = Is (81)

where
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Ii=[ ds V* (82)
Sc

while the terms N; and N, are given by (55) and (56). For the circular geometry,

N, = ”"‘° I - ”‘7’:° Fle,) § ai” V2(1") (83)
P

where the coupling integral I is given by

Ic=$dd e -a) V() V({I') Gl (84)
P P
Similarly,
Ny = o= Jg + =i (L) § ar (2L )2 (85)
27 2rwpg ¢ T mwpg Bl ar

with the coupling integral
Jo=pufa L oY 6,0 (86)

The three integrals I, Jo and I5 are computed in Appendix I:

( 4R? ) . .
= . )|2 4R% 4+ d* ) coslar e-tko (4R*sin?(a/2) + d2)% 1 g7
Ic =2n [dR J,(j 1,1)] [ (4R? + d%)% [de (4R?sin?(a/2) + d2)* ] (87)

where K is the complete elliptic integral of the first kind, whose argument (following Milne-
Thomson) is taken as the modulus squared [57];

4R?
: 2K (‘_T'_z) r ~iky (4R sint (a/2) + d?)%
Jp = 27"42-]12(]"1,1) [ 42R +2¢i f‘da cosa e — — — 1 ] (88)
(4R? + d?) (4R?sin?(a/2) + d?)
and
d’R? 1 .,

Iy = 25— (1= =) 3 (i) (89)
The remaining integrals in equations (83) and (85) are straightforward

56 di” V(1) = md?R 32 (57,) (90)

av nd? 32 .
ﬁ‘” ('a—")= 7 Ji(5) (91)

We then have all the terms we need to compute directly the eigenvalue shift from equation
(81).
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10. RESULTS FOR THE CIRCULAR PATCH ANTENNA

We have compared our theoretical results for the dominant mode TM;; with experimen-
tal data and Carver’s modal expansion theory [27]. Unlike the rectangular patch, complete
data for the resonant frequencies and Q-factors are not widely available. Long et al. [41],
[42] and Wood [51] have however published fairly detailed results. We have chosen the
latter for direct comparisons against our theory.

We again have used Carver’s modal expansion model [27] as theoretical comparison. His
results, based on some empirical considerations, have usually proved to be in good agree-
ment with measurements. To help the reader, we have collected the detailed calculations
for the two theoretical models in Appendix J.

Fig. 9 shows the resonant frequency of a circular patch versus the ratio of the radius of
the patch to the height of the substrate. Fig. 10 gives the Q-factor for the same patch.
Note that for small thicknesses d, the Q-factor, as expected, grows substantially. As a
consequence, we cannot neglect conduction losses any more. James et al. [58] give a simple
way to take care of this effect efficiently. Through an equivalent conductance loss Q-factor,
they are able to match experimental results for high Q’s. The same technique can easily
be applied to our results.

11. CONCLUSION

A new approach has been applied here to the analysis of arbitrarily shaped microstrip
resonators and antennas. The model yields a generalized boundary condition at the edge of
a microstrip patch. Unlike previous theories, this GEBC has contributions from the whole
contour of the structure taking care of mutual coupling effects.

Based on this GEBC, we can analyse arbitrarily patches after a segmentation of the
contour. Successful results will be presented in a forthcoming report and a soon to be pub-
lished technical paper [59].

Directly from this GEBC, we have developed a perturbation approach for computing
resonant frequencies and Q-factors for geometries where the wave equation has a closed-
form solution. Simple expressions have been given for the dominant modes of the rectangu-
lar and circular patches. Theoretical results agree well with experimental results. In par-
ticular, computed Q-factors are always in much better agreement with experimental data
than the modal expansion model.

The absence of artificial parameters such as edge extensions, the accuracy of the results

and the relative simplicity of the computations make the approach described in this report
very suitable for the analysis of microstrip antennas and resonators in a CAD context.
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APPENDIX A

In this appendix, we calculate two simple Green functions for the half-space and paral-
lel plate problems. First, G; is solution of

[V2+ k3] Gy = —6(F — ') (A1)
with a Neumann boundary condition at z = d

0G, -
Tz lsma =0 3 V7 (A2)
We can replace the boundary condition by an image charge at

Fr=d,z +dyy +4d,(2d —27)

Hence, the Green function G, can be replaced by the sum of two free-space Green func-
tions:

G, =G,y +6G,”

which satisfy
N2+ k)G = —6(F —F)
[V24+ k)G = —6(F —77)

Thus, we recall the well known free-space Green function [60], and we have

47|'Gl =
—iko((z-z‘)’ + (y-y' P+ (:—t‘)’)* —tko((z=2" ) + (y—y')? + (242" -24) )“
e + ¢ (A3)
(z—2' )2 +(y—y)* + (2—2")2)% ((:x:—:c’)2 +(y—y')? + (z242"—2d)2)*
Second, G, is solution of
[+ k2 Gy = —6(F — #) ' (A4)
with a Neumann boundary condition on the interface z = d and ground plane z =0
0G, -
0z | z=0,d =0 i \vlp (A5)

Keeping in mind the boundary condition (A5) and the symmetry of the Green function with
respect to z and z°, we can express G as a double cosine series:

X Nz nz’ P
Gy=Y, cos rE cos HE- gy (2,952, y) (A6)
m=0

Then, the wave equation (A4) becomes
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oo 2 ’
z k2 — Ld;i + Vf] cos md1rz cos m;z g2m = —b(z—2")6(y—y")6(z—2") (A7)

m=0

where V; is the transverse operator

.4 _ 8
V,=a,?;+a”'a—y'

It is a classical procedure to multiply both sides of (A7) by cos(nmz"/d) and then
integrate from O to d with respect to the variable z°. Then

2,2 .
d[VF = P + kg2 = — €:6(z—2")b(y—y) (A8)

where €, is the Neumann factor [61]:

Now (A8) is of the generic form

[V?+k2]A=—6(5—p) | (A9)
which has a well-known solution [60]:

A= -+ EKIG-5) (A10)

If we compare (A9) and (A10), it follows directly that

%

1€, 2x? - L,
92m = — —g- B (k2 —T57) 16— 47)) (A11)

where the branch of the square root is chosen so as to satisfy the radiation condition [62]:

_ m?n? %

(k? d2 ) = — i d? — k%) (A12)
Finally,

G = i & mnz mwz’ B ( (k2 ﬂ_zl‘f. *s )

2_—H26mcos 7 cos—g o ((K*— 42 ) 16 —¢7) (A13)

m=0
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APPENDIX B

In this appendix, we accurately approximate the four terms R,;, R)3, Ry and R, given
by (30)-(33). Theoretical comments regarding the justification of the approximations can be
found in two relevant mathematical papers [63], [64].

Term R,,

o —ikald = #]

=T ey

iweg ¥, . B A ey < s .
o 2 o V- a0

In order to approximate (B1), we simultaneously add and substract a carefully chosen term
to the integrand:

W VI B (nd L Lt T
Ry=-—7=[dn" § dI’ V(I')E,, <P dl Al +
11 27|- _{ n i ( ) 0 (n )al f; ()a‘ (lp-_p-on{2+d2);‘ 27r
%0 —skylp = #| —sky (|4 - By |2+ d2)*
dn” $ dl” V(I')Ega(n’) d” - € dl A()) 4, | oo — £ B2
AV E ) & SN G - ] @

where go"(n”=0,!") is the point on P corresponding to the point p’(n’,1") as shown in
Fig. B1. In splitting the kernel in this way, we have achieved two things. First, the kernel:

e—iko(lp - Byl + d2)*

(6 = po"? + d?)*

is independent of n’. Second, the difference kernel:

e""*ol‘-l” _ c"‘*.“ﬁ‘ﬁo"z*")‘

p =9 (16 — B0’ 12 + d2)%

decays very rapidly as source and observation points move apart, since it is of order
(d/1p — 4"12) and (kod /|§ — $°|) When |§ — §"| >>d and n’ = O (d).

Note that the parameter d introduced in the kernel, the actual height of the substrate,
is quite arbitrary at that point. Any small distance of order d, provided we remain con-
sistent from here on would do. However, this particular choice has both advantages of
simplifying the calculations and providing a good physical picture. Because of the quick
decay of the difference kernel, we can assume that the integrand is of significant magnitude
only when ig — °| is small, i.e.

G.l ~ .1'

(B3)

If we substitute (B3) into (B2) and rearrange, then
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Fig. Bl. Edge of the patch.

—£k°(|p -8yt + d2)%

(Iﬁ — po’|? + d?)*

Ry = “"€° fdn Eou(n 53 a v(i')a pdz A(l

‘EJ’ #| e—‘.ko“ﬁ - l’(|‘|z + d')‘
TEYdn (16 = Bo’|? + d2)*

(B4)

AL Tdn Eon(n 3541 V(') A() 5641[

The inner integral of the second term in the right-hand side of (B4) is evaluated in Appen-
dix C and thus we can write
e—sko(lﬁ — Py |t + d2)*

( |p — by |2 + d%)*

i(d(o ® ,
Ry = — [dn’ Equ(n 56 dl’ V(l ﬁd: A()a
0

_ io.:o .ofodn’ Eon(n')ln(nT’)ﬁ di” A(I) V(1) (B5)
0 P

.f)dl' V(") Eon(n’) 6;° .Sf,dlA( d; By ((k? - "‘:fz )*lﬁ -51) (B6)
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Because of the electrically thin substrate, only the dominant parallel-plate mode pro-
pagates without attenuation:

B < T d2
Therefore it is more convenient to write [65]:
) 2.2 0 9, 2.2 %
Hy'(—i (P ) 18 =51) = Ko((Pg=—#2) 16 —5)) (B7)

where K, is the modified Bessel function of the second kind of order 0. Since K; decays
exponentially as its real argument increases, we can use the approximations (B3). Then

. oo %
Ry = W;:;fr fd"'édl’ A(I) V(') Ega(n 2 ﬁ dl KO( "k2) 1P = ﬁ'I) (B8)
0

The infinite summation is evaluated in Appendix D. We finally have the result

Ry = _‘_““0.‘._ fdn Equ(n ')1n(1-e-"‘/d)£dl' A V() (B9)
TermRu
) e—ikolﬁ—#'l
Ru= — grigy [ & GE A S A A e V] e

Directly from the symmetry of the Green function with respect to source and observation
points:

V'Gl = - VGI (Bll)

We can split the kernel like in (B2). Then, we have

| peThle o n ;
dl A(l) =5 —
Bx 27rwp fd ﬁ dl’ HOz ﬁ d [ (16 — po’|% + d2)% 2wy

e_'koiﬂ—ﬁ | e—ika(lﬁ—ﬁo‘lz"'d’)*

6 =01 (1p—po|2 + d2)¥

fd gSau GV Hy,(n )8 dtA() & (B12)

where we have approximated d; =~ d,” in the second term on the right-hand side because of
the quickly decaying kernel. Also, in the same term, we can take the [’ derivative out of
the inner integral, and then integrate by parts on !’

oo L)V d e
dn’ H, ‘ dl’ di A —_
[ dn” Ho(w)$ ' § dl A [(|ﬁ—ﬁo'|2+42)*

—tko (18— 8’| + d2)*

-t
Ran = 27w fhg
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2 )
fdn Ho,(n")In(Z) jsdz Al )% (B13)

- Wd#o
Because of the rapidly decaying kernel, we have substituted A(l) for A(l"). We also have
recalled the result of Appendix C for the inner integral of the second term in the right-
hand side of (B13).

Term Ry,
i [o o]
R — d

min?

56d1 ’”’Ho, )f)dl/\(l)d, -V [Ko (( —k‘«’)*;p—p'l)] (B14)

Again because of the rapidly decaying kernel in the inner integral, we can use the approxi-
mation (B3). Then, we obtain

-t
Bo = 7ohond

78

o‘-,8

2 % :
7— — k%) 1p—p"]) (B15)

dn’ Ho(n 413, %—‘i—%-gdm(z)xo(('"

m=0

We can integrate the above expression by parts with respect to {”

3*v

o= - BT

jdn Hoy(n")In(1 — e=™*"/¢) § dI” A(1") (B16)
_ P

wuou, !

where we have called back the result for the inner integral developed in Appendix D.
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APPENDIX C ' -

In this appendix, we derive an accurate approximation for the integral

P |p — ¢ (16 — Py’ |2 + d?)*

(C1)

The integrand is rapidly decaying as | — p’| increases. Thus, we can justify the following
approximations (see fig. B1):

16 —p" | = (I 1) +n 2 (C2)
16 —po'| =1 =1 (C3)
Also because of this rapid decay of the kernel, we can safely extend the integration limits
from | = —o00 to | = oo. It follows that (C1) becomes
o —ikg((1 = U e k(= 1)+ a2y
I= [d[&— e (C4)

S (=T 42 (1= 1)+ d?)H

At this point, we recall an integral representation of the Hankel function of the first kind
of order zero [66]:

inHY ()= [ do Lo )
Therefore,
Far el T B (ko) = — in B (kon) 0

[ (1 =12 +n2)

—o0
We now use the result (C6) into the expression (C4):
I =in{ HY (kod) — Hy (ken’) } (C7)

Furthermore, since both kgd and kgn’ are small in the range where the integrand is
significant, we can use the small argument expansion for the Hankel function [67]:

HY(z) =1 -2 (£ +7) + O(z?Inz2)

and we finally have

I= —2!:1(%—) (Cs)



43

APPENDIX D

In this appendix, we derive an accurate approximation for the summation

s=$ fax (g -8 154 (D1)

Because of the exponential decay along the real axis as |§ — p’| increases, we can justify
the following approximation (see fig. B1):

16— F = (I 1)+ n"2)% (D2)

Also, with the same kind of approximation, we can extend the mtegratlon limits from
l=—-octol =

m2r?

S = le Ko((B7 - kz)“ (1 =) + n"2)%) (D3)

-i Mg

1
Recall the following result [68]:
[ dz Ko(a /22 + 2% ) = 2 =02 (D4)
-0

where we have used the identity [69]:

%
K_% (az) = [ 2221 e-az

The summation S can now be rewritten as follows

( m21r2 _ kg)Aﬁ n’

S=X_J 22 % (D5)

4 e” T = —dn(1- e (Ds)
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APPENDIX E

In this appendix, we will derive a small (kyd) approximation of the integral I);

e Lo N (e
I = { dz { dr’ coskz coskz (C==wDE (E1)
We first recall a well-known spectral representation of the kernel [70):
ko ((z=2) + a2)8 _ i de H (d (k2 — M\2)%) el - 2) (E2)
((:t:—-z')2+ d“’)v’ T2 .
with the branch of the square root defined as
Im[d(k§ —N2)¥] < 0 (E3)

The integration path in the complex A—plane is shown in Fig. E1. Note that the proper
sheet is defined by the condition (E3). Remark also that the logarithmic branch cut in the
(k¢ — N2)% —plane maps into the square root branch cuts in the A—plane, so that there is
no additional branch cut. (Fig. E2). Now introduce the spectral representation (E2) into
expression (E1) and interchange the integrals to obtain

I = —2i fd)\ Hm(d(k —\?) ) f dz coskz e '} fdz coskz’ e’ (E4)
0 0

We can easily calculate the z and z” integrals

L . —ix,
f dz coskz e~ = ’M},;_ i ) (E5)
0 k% — N2
Thus,
o A2 (1 + cosAl,
Iy = —i [d) HY(d(k§ —22)%) ((k _°‘;52 ) (E6)

Since, by hypothesis, (kgd)<<1, we can presumably use the small argument expansion of
the Hankel function [67]:

9
Hy' (d(k# —N?)%) = H — = In(k§ — N2)% + O( (kod)*In (kod )) (E7)
where we have defined the constant

H=1-2 (y4+1(d/2) (E8)

and ~ is Euler’s constant 0.57721... Therefore, we can split I}; into four terms:
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branch cut
Im [A]
Re Vk¢ -A? =0 A A - plane
Re Vk¢-22 <0 Re Vk& -2 >.0
”~ N\
> - '
- - ko R
—\\ P e [A]
Re Vkg -2 =0
Re VkE-22 >0 Rc‘jkoz-lzd)
Fig. E1. Situation in the A-plane.
In=—iH (s + 1) — £ (Ic +Ip) (E9)
where
Iy = | dX\
A _{o (F2— N )2 (E10)
*® Acos A

Ip= [ dr—22h (E11)



_ T 2 ey A

Ic = _{odx In (k¢ —22)% T
o Acos )\l

Ip = dhIn(k@ — N2)% ———=_

along the integration path shown in Fig. El1.

Integral I,

By direct application of the Residue Theorem [71]:

[+ o]
\? . A2 i
I, = dXT‘—'—=-—27l’ Res —_— = - —=
A _{o (k2_)\2)2 'xst [(k2_xz)2] oF
Integral I
We can rewrite [z as
I = Td)\ McosAl, j? A2 oM
B~ S (FEoR T (R

We also use the residue theorem, closing the contour in the upper half-plane,

—iki,

2,10 : -
X [4 ]= tTe (‘klz"'l)

Iy = 2mi Res | =

N (;‘-2 — )2 )2
Integral I,

)\2

Ic = fdkln(kgz — A2)% m

—00

46
(E12)

(E13)

(E14)

(E15)

(E16)

Again, we choose to use the Residue Theorem, closing the contour in the upper half-
plane. This time, we get both a residue and a branch cut contribution, as shown in Fig. E3.

In(kZ — A2)*% A2

Ic =27 Res — + I,
c g N [ (kz_)\z)z ] be
TR win (k§ —E2)%
- ;Wk~2 _ : ( 0~ ) +Ibc
2(kg — k%) 2k
where the branch cut integral is given by
-~k .
0 — k2 a2 i 0 kz —
Ibc=fds s(kg —8%)Ins fds s(ky — s

(E17)

2)lns

= +
i(s? —k )4(s? —ko? + %)

(lc.f - 82)“(82 —koz + ‘E!)z
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logarithmic branch cut
Im [k -2?]
A k¢ - A2 .- plane

Re Vk§ -1 <0 I
Re Vk¢-12 >0

Re [\/ko2 -]

/
Re Vk¢ -2 =0

Fig. E2. Situation in the (k¢ — M\2)% - plane.

+ }. ds 2 (kg —o?)Ins T —s (k§ — s*)Ins
o (k¢ —s?)H(s2—k§ +EP) k i(sP — kG )¥(s? —ke? +E?)

and s is a real parameter along the branch cut defined as
s = (k& — \2)% (E18)

To stay on the proper sheet, we require
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arg(s)= —7 ifs <0 (E19)

After some straightforward manipulations,

ko 2 2\% 0o 2 2
: s (kg —s?%) s (o2 — ko )*
I, =im | ds = +m | ds po E20
be { (82 — k¢ +E2)? ,‘fn (s? — k§ +¥£2%)? (E20)
These two integrals are computed in appendix F,
kg 2 2\%
) (ko — § ko 1 kK + ko
ds — = — — == In{= E21
f (82—k2 +k2)2 2(k2_kg) 4% k"ko) ( )
and,
s(s® — k02 )% Ll
ds -~ = —=
ko (sE—kE +EEE 4k (E22)
The branch cut contribution can now be written in closed form:
17k ir kE + kg
Ly =———5"— E23
T o(Ft—kE) 4 (k—ko (E23)
Adding the residue contribution, we write
1 ln(k02 —;2)% 1 ¥ +ko LT
I = - ﬂr— ~ 1 ~ + == l -~ "—:7
¢ 2 | T +k p 2F n(k-ko)+2k (E24)
On the proper sheet of the A—plane,
- T 1 -~
In(k§ —F2)% = -5 + 5 In(F? — k) (E25)
Thus, we finally have
L = — 1% | 1
¢ 2 k + ko s (E26)
Integral I
We can rewrite Ip as
o0 A2 A\ ) 2 ¥,
= [dNIn(kE =26 =i = [ dNIn(kf - 2% Xe (g
oo (% _)\2)2 oo (kz_)‘z)z

We close the contour in the upper half-plane, to obtain
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A - plane
ReVk¢-A2 50
ko k Re[A]
® '
branch cut
Fig. E3. Integration contour.
: . AZ M
Ip =2xi Res |In(k§ — N2)% ————1| + I,
> ln(kF —»?) (ﬂ—w] b
T I’e'i;‘= . ~9 2 —il-c-l, (i;lz — 1)
- - -k;;—-_-k—oz-+[t1r-ln(k - k)] e —5—=| + L (E28)
where
I —f’ d —slns (k§ — s?) e"("-k")w‘ + fq P slns (k§ — s?) ¢~k — L
= - s =
B e (P RE)H(sT—kE +E G (R —e?)%(s? — K +EO)
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k' slns (k¢ — s?) c°i(k‘. - )L o —slns (k& — s?) e kg el
+ f ds > e + f ds — > =3 (E29)
o (B8 —s2)%(s2—k§ +F2)  x  i(sP—kG)H(sP—k§ +E7)
with s defined as in (E18) and (E19). We find
kq k2 — s2)% ~i(k§ — #2)%1, oo 2 _ 2% ~(st — kJ )%,
Ibc=£1tfdss(° s); — +7rfdss(s o)fe (E30)
.0 (s2 — k¢ +%2%)? , (s? — k¢ +¥2)?
Again, these two integrals can be computed in closed form (appendix F).
}o P s (kg — 82)% e‘i("o’ — o)l ko e""‘o‘s
s p- = —
0 (s2 — k§ +¥2%)? 2(k% —k¢)
kl, — 1) _ik - a1
+ &—4—;‘_)— e vkl [El("‘iklz + tkol,) —El(—iklz)]
kL, +1) Gk - ~ :
+ i'——;;—“L—) e ke [ By (iRl + ikol,) — By (L)) (E31)
and,
) 2—k2 % "("‘h’)“g
f ds s (s o) 26 . _
k, (32 - ko +k )2
ik o~ ikl o~
_ Im[et b .E"l(lklzﬂ _ Iz Re[e’ * El(”‘lz)l (E32)
2k 2 .
Then the result comes in a straightforward way
M 3 PN PR P U
b 2k | B2 — kg 0 2
imkg et i .~ —ikl o~ ) o~
—_— + == (tkl; — : —tkl, + tkoly) — E(—tkl
+ 27— K2) Y (kl; —1)e [E1(—i%L, + ikol,) (=t z)]
+ ;;;"- (7L, + 1) e e [ By (4T + tkols) — Ey(iFL,)]
=~ - l = .
- 2Im [k By(iFL,)] — - Re[e™" By (i7L)] (E33)
Putting all the pieces together according to equation (E9), we eventually obtain
_';[‘ - I !;l’ E -‘k"l - -
= L xHe Cogp )4 m [ By (iFL) + 1, Re[e'*" E,(i%1,)]

2k 2k k
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1 T k T ~tki, —k ~tkyl,
+i(~1 +n(~+,o)+ e _ 0¢€
k + kg k k2 — k¢
_ _ C-ii:,
+ (iFl, = 1) [im — In(F% = k¢)) o=

— 1%l s - ~.
+ 112;;) e e [Ey(—iFl, + ikol,) — Ey(—ik1,)]
TN - -
- ﬂiml——l e [Ey(iFL, + ikol,) — By m,)]) (E34)

Recall that ¥ = /I, and that [72]

E\(im) = — Ci(m) +iSi(x) — A&

2

' (E35)
Ey(—im) = — Ci(m) — i Si(m) + 4~
where the sine integral and cosine integral functions are defined in [73]:
., sint

Si(z) = { dt == (E36)

f cost —1
Cz'(z)='7+ln:c+{dt-——-t—- (E37)

We therefore can write the result, exact in the limit (kod) — O,

] In(F2 — k2
Iy =1, Ci(m) — St,.(.” — = (v+In(d/2) - 7ln _ ¢ )
k 2k
+i[ 1 _z+koe“l’kol,+_Lln(‘l:+ko)]_(£+1r)E(ik1_in_)
‘E"i"ko ‘k.z-—kg 2; Z_ko 2‘; 1 0z
+£‘—:—7L)'E1(ikol +im) + S:(zr)-—yr/g — mCi(m) (E38)

k



APPENDIX F

In this appendix, we calculate four integrals needed in appendix E.

First Integral

ky 2 2 ko
k2 — g2)%

[as 2o o ) _ [y

0 (s — k¢ +k%)? 0

The last integral is known in closed form [74):

fdz z? _ z
(1 — 22)? 2(1 — z?)
Therefore,

ks s (k¢ — s%)% k

fds =

s (s2—kE +F2 2AR2-kE) 4k

Second Integral

[ as o (o2 — kg )* = [a
AR CLE 738 S

Recall another tabulated result [75]:

[ dz z? _ —z
(1+22)  2(1 +z%)

-+

Thus, we obtain the result:

T L Gl k§ )%  _ w
2 _ k2 4 %)% 4
ky (8 - kO + & ) 4k

Third Integral

k, s (kg _ 32)\6 e"'("o' —at)s)

d
[ ey

Integrate by parts to find

t2 1 bof ¥ z?
S S dr —%E—
(t2 -k & { -2
1 14z

—41n(1—z)
ok +k
0 —-l—ln(~+ o)
k — kg

t? 1 7 z?
—_— == | d
(2 +%2)2 % { T3k
-é—tan"‘z

k i

-fodz z2 e izl

. (22 — F2)?

52

(F1)

(F2)
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kg e~ f . e_'zl (1—::1) )
2(k —¥%) o —¥?)

We need two tabulated integrals {76]:

fdz —m- —2-% [e“ Ei(—a—iz) —e® El(a—iz)]

= 1.6 : . _
fd"' a::_zz = -7 [e Ey(—a—iz) + e El(a—zz)]

where the exponential integral | is defined by [77]:
El(z)zfdt-s— (larg 2| < m)

It is now an easy matter to get the result:

ky P A 8 (kg _ 32)% e“(k: - ot)%l _ kO e—"ko’:
f 8 2 12 . T2\2 T o(T2 _ 12
0 (s — kg +k7) 2(k*—k¢)
'k, —1) _ -~ , -
+ -(3—:";—) ik, [ Ey(—iFl, + ikol,) — By (—iFL,)]

+ (i;lz + 1) ei;I

= o [E\(iFL, + ikol,) — By (iFL,)] (F3)

Fourth Integral

Integrating by parts, we find

o 2 _ k2% —(s? - k§ )44, o 9 -zl o -zl _

fdss(s 20)2e —_ =fdz zze~22=fdz il ~:l)

%, (s2 — k¢ +%°) 0 (z% + k%) 0 2(z? + k%)
Recall two known integrals [78]:

1 : .
fdz —2-_;—5—5' = - Im[e"El(—z-}-m)]
a >0
z .

for ey = - eles e
Therefore, we have
o 2 _ g2 % (1 kL Im "E‘.E Tl iki, o~
fds s (s &) e _ _ _Imje ~1(: ,)] : I,Re[c 2E1(1kz,)] (F4)

i, (82 — k¢ +%%) 2k
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APPENDIX G ) ~

In this appendix, we will derive a numerically efficient simplification of a double integral
that appears frequently in this work:

fd (2 cop (22 (ika((z=2)t + 57)8
! z’ COS A cos A ((z—z')2+62)%

||
Gg.p

—iky((z -2 + 82)%

] ((z—z +52)

(G1)

]
NI’—

A A .
fdz fdz [cos—i—iil+ ”(z z’
0 0

The double integration and the situations when 6 is much smaller than A present
unnecessary numerical difficulties that are easy to remove. Let’s define two new variables,
p and p’ as follows

p=z—z
(G2)
p =z +1z
Thus,
.= pﬂ;p
. (G3)
2 = )4 2‘?

The integration domain is shown in Fig. G1. The Jacobian determinant of the transforma-
tion is given by [79]:

d(z,z")
Ip ,P')

Thus we can integrate with respect to the p” variable,

=1/2 (G4)

I =-;11—_f1 dp 2?:Pdp cos ‘Z’ e(::.(:;‘:)’: ' % f dp 22‘1'4? cos n;p\' e(::"f;::‘
+%jAdp 2?:”‘”;' cos.’l} i(:::_—;%;%- + % _fdp zz—Pdp' coslAE- e(;;t('_:—,é:z%t
+zdp(A—P)°°S£A£"(;%%6); - (G8)
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Fig. G1. Integration domain.

I= A T

dp [(;\—p)cas-’:Z -4 sinﬂ]

A

(ko + 1)

(pz + 62)%
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(Gs)

When 6 is much smaller than 2\, it is useful to substract the singular behavior at p =0

and to compute it separately. Thus,

A T

[(A —p)cos TE — A in %]c—“‘o(ﬂ’* M _ A

I={dp

ot

(pz + 62)%

+ Asinh~1(A/6)

The same technique yields the simpler but equally useful result

fd fd' e ~tko (g2t + 52 )%
0 : 0 j ((z—27)? + 62)%

A
=2 [dp(A
0

—iko(p? + 5)%

— )e_..____.
4 (p2+62)ﬁ

(G7)

(G8)
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APPENDIX H

In this appendix, we outline the calculations needed for the rectangular patch.

Method 1 (Method presented in this report)

1. Estimate the resonant frequency

_ 1
2lz(€0€r Bold, )y,

2. Calculate the "ideal" cavity wavenumber ko = 7 /I,
3. Calculate the free-space wavenumber kg = 27f (€opo)*

4. Calculate Iy, 113, Igg, 134, J1; and Jy3 from eqﬁations (63) or (64), (65) - (67), (72) and
3 ' |

5. Calculate the complex wavenumber ko from (75)

6. Calculate the resonant frequency

k1o ]

f = Re [ 2”((067”0”7)%

7.  Calculate the Q-factor from (57)

8. Repeat steps 3 to 7 with the better estimate of the resonant frequency given in
step 6.

Method 2 (Kuester, Johnk and Chang’s analysis [29])

1. Calculate 6, and 6, from equations (40) and (42).
Calculate @o(—6,) and Qq(6,) from equation (39)

Calculate the index of refraction n = (€, p,)%

bl

Calculate the effective refractive index

n,, =n —

lv;irn [202( Qo(—8)— Qo(8,)) + (1= n2) &, (In [:—Iil("z—l)"']+’7—l)]

5. Calculate the edge extension

_ i(ln(wd/nl,) +9 -
T €,

- +2Qy(~6) — In(2m))

Ah =



6.

7.

Calculate the resonant frequency

B 1
I = Zng (o & 25K) (coto)®

Calculate the Q-factor
_ ndi2
Q= Zng (I, + 24

Method 3 (Carver’s modal analysis [27])

1.

o oo W

10.

11.

Estimate an effective dielectric constant

€ +1 e, —1
€ = —5— + 3 [1+

dij_
1_?_.]%

Calculate the edge extension parameter

Al [ €, +03 ] [z, /d +0.262]

= =042 1 o958 ) L, /d v 0813

Estimate the free-space wavelength Ao = 2/; (¢,)%
Calculate the wall susceptance B = 0.01668 (Al ¢, 1) / (d))
Calculate the wall conductance G = 0.00836 1, / X\
Calculate the aspect factor

F =0.7747 + 05977 (I, /I, —1) — 0.1638(}, /1, — 1)?
Calculate the impedance parameter '

o 240im%d

= 2L (G +iB)FL

Calculate the eigenvalue shift factor with 4 iterations using 89 =0

A 2c(r — A,) A
PTG oA m—AZ—72 3

Calculate the complex wavenumber kjo = (7 — Ay) /1,

Calculate the resonant frequency
f = Re k1)
2m (€g€, 11o)*

Calculate the Q-factor from equation (57).

57
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APPENDIX I

In this appendix, we calculate three coupling integrals needed for the dominant mode
solution of the circular patch.

Integral I,

Ic = 52 dzf, di’ [d; - 6] V(1) V(I') Gg(1,I")

—sko(4R2sin?(¢—¢") /2 + d2)%

2x 2x
=[dR I, (j’m)]2 [ d¢ [ d¢’cos(¢ — ¢")cosd cosd’ £ (1)
0 0

(4R?sin?(¢—¢) /2 + d?)*
Let’s make the change of variable a = ¢" — ¢, thus,

, 2x 2x+¢ e—ik°(4R’oin’(a/2)+ dt)s
Ic =|dR J,(j" dé co da cosax cos(6+a
¢ [ 107 1’1)] { =¢ ‘[ ( ) (4R%sin?(a/2) + d2)%

The integration on the a variable is over a full period. We can thus shift the limits over
any period and, in particular, from 0 to 27. Expanding cos(¢ +a),

Ic = [dR 3, (5"))

2x 2r ) ) e—iko(4R’sin’(a/2) +dt)
. { d ¢ cosd { da cosa (cosa cos¢ —sinasing) (4stin2 @)+ dz)"' (I2)
The above result simplifies immediately to
x —a;,('uz! sin?(a/2) + d2)%
Ic =2 [dR J,(j,)]° .!;d“' cos’ex (4stin2(a/2).+ dz)¥ (13)

Since, by hypothesis, (kod) << 1, we need to isolate the singularity of the integrand for
small values of a. Therefore, we write

Ic = 2r[dR 3, (57,

2o e

da r cos
f * (4stin2(a/2) + dz)"‘l

[ x —iko (4R2sin?(a/2) + d2)% 1 }
| { (4stin2(a/2)+ dz)“ N

(I4)

The second integral, because of the smooth integrand, is easily integrated numerically. The
first integral, as shown below, can be computed in closed form. First, perform the change of
variable § = a/2. We obtain

x x/2

da =f
o (4R%sin?(a/2) + d*)* o (4R%sin®0 + d*)%

240 _ "f’ 2d0
0 (4R2coszl9 + dz)*
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_ 2 'j/” | de _ g K (2R
(4R? + d%)% (1- 4stin20)% (4R? + d2)% 4R? + d*
4R? + d?

(15)

where K is the complete elliptic integral of the first kind [57]. Finally,
()

4R? 4+ d° fda cos’a e

(4R? + d%)% o (4R%sin%(a/2) + d2)*

—ik, (4Rsin?(a/2) + d2)% _
Ic =2m [dR g (j’l,l)]z [ o 1 ]

Integral Jo
. 9V 8V .
=bdbd - <X G, (1,0)
2 2 ol dl
-a.(43=ain¢(¢-¢')/2 + d2)%
(4R?sin?(4—¢’ )/2 + d%)*

= d2J( (711) fd¢ sin ¢ quﬁ sin ¢’ (m

Let’s make the change of variable @ = ¢° — ¢. Thus,

27+¢ ¢ —iky (4R 2sin? (a/2) + dt)%

2x
= 2 127 1 d i
Jo =d* I (14) { d¢ siné { @ sin(é+a) (4R?sin2(e/2) + d2)*

(18)

e-:‘k,((R’lin’(a/Z) + d2)%
(4R%sin?(a/2) + d2)%
—iky (4R?sin? (a/2) + d2)*

(4R%sin?(a/2) + d2)*

2% 2x
=d?J}(5,,) [ d¢ sin? [ da cosa
0 0

x
=2md* 3} (5,) [ da cos (19)
0

We can take care of the singularity of the integrand in the same way as for the integral I,
above. Finally, we have

( R42de2) x —iky (¢R2sin? (a/2) + 42 )% 1
e = 2rdt 37 [ LD | fy, cosa —1] (o
’ (4R? + d¥)% (4R?sin?(a/2) + d?)*%
Integral Iy
Is= ds 72 = g2 j d¢ cos fdp Jf(’””) (111)

Sc

Recall the integral 80]:

[z 23 (a2) = —[(1 ).r1 (az) + ;% (az)] - (112)



It follows immediately that

R FRY. 2 y
[de o 3( 1113l )=£2_(1“ j'lz)le(Jl.l)
0 1,1

And therefore,

d*R? 1 .
Is = T 2 (1‘ j—llz)le(J 1,1)

60

(113)

(114)
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APPENDIX J

In this appendix, we outline the calculations needed for the circular.patch. Note that
the step 5 in Carver’s method has been corrected from the expressions found in (27 and
[55].

Method 1 (Method presented in this report)
1. Estimate the resonant frequency

_ I
27R (€o€, pott, )*

f

Calculate the "ideal” cavity wavenumber &; = J11/ R
Calculate the free-space wavenumber kg = 27f (€onto)*
Calculate I, Jo and Is from equations (87), (88) and (89)
Calculate the line integrals (90) and (91)

Calculate the complex wavenumber k;; from (81)

N o s o

Calculate the resonant frequency

k1 ]

f =Re [27‘-(60€r”0”r)%

- XK
- Y o

8. Calculate the Q-factor from equation (57)

9. Repeat steps 3 to 8 with the better estimate of the resonant frequency given in
step 7.

Method 2 (Carver’s modal analysis {27))

1. Estimate the free-space wavelength \g = 27R (¢,)*% / 5,
Calculate the wall susceptance B = 0.00834 mRe, / Ao
Calculate the wall conductance G = 0.01254 7R / )¢ NIV

Lol

Calculate the edge impedance parameter

120 swd .
a=—§§°”—(c+.3)

5. Calculate the eigenvalue shift factor with five iterations using Ay =0



6.
7.

8.

[1.8410969 -+ 4.0260952 AZ] (1 — aR) — 1.84118

Bp1 = 3.3263839(1 —aR) — 1

Calculate the complex wavenumber k;; = (1.84118 — As)/R

Calculate the resonant frequency

f Re[ku]

B 27 (€€, po)*

Calculate the Q-factor from (57).
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