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ABSTRACT
The aim of the current study is to characterize key multidimensional relationships between coherent structures in physical vs Fourier/scale
space representations of flame–turbulence interactions, as a basis for future analysis of the nonlinear couplings between key resolved scale
(RS) and subfilter scale (SFS) motions in large-eddy simulation (LES) of premixed turbulent combustion. However, applying the bounded
Fourier transform (FTF) in the nonperiodic flame-normal direction requires the removal of nonphysical Fourier content from the bound-
ary discontinuities. To this end, we have developed a broadly applicable “discontinuity pollution removal” procedure for application to
the FTF of multidimensional signals with a single nonperiodic direction. The procedure balances periodization of the signal near the
boundaries with minimization of signal modification away from the boundaries. We applied the procedure in a physical–Fourier space
analysis of the interactions between a flame and single-scale eddies modeled as the impact of a train of two-dimensional (2D) vortices
on an initially planar premixed flame. We find that a specific spectrally broad localized coherent structure in Fourier space connects RS
to SFS fluctuations in thermal energy and species concentration that, in physical space, are localized to the corrugations in the flame
front in response to eddy–flame interactions. Within the RS fluctuations of energy and species concentration, the flame corrugation struc-
ture in physical space is found to be localized to sub-volumes within the RS region of 2D Fourier space. This new understanding of
physical–Fourier space relationships categorizes classes of RS–SFS interactions relevant to SFS modeling in LES of premixed turbulent
combustion.
© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0050280

I. INTRODUCTION AND AIMS

The large-eddy simulation (LES) framework centers on decom-
position in scale; LES modeling centers on the interactions between
larger “resolved scale” (RS) and smaller “subfilter scale” (SFS) fluc-
tuations in all dependent variables. When applied to premixed tur-
bulent combustion, the reality of (practical) LES is that there nec-
essarily exists key SFS chemical kinetics and thermo-mechanical
dynamics that impact RS evolution but cannot be supported by
the grid. Thus, unlike LES of incompressible turbulence, where
only momentum dynamics are involved, LES modeling of strongly

density-varying turbulent flows in the presence of chemical reaction
and heat release must characterize key impacts of SFS fluctuations
on the evolution of RS momentum, thermal energy, and concentra-
tions of many chemically reacting species. In particular, SFS mod-
eling is required for advective and chemical nonlinearities that cou-
ple the unresolvable evolutions of SFS variables with the evolution
of RS variables supported by the effective grid. (“Effective” implies
the existence of additional coarsening of the geometric grid from
implicit filtering due to the dissipative content in the SFS models and
numerical algorithm.) The central aim of our current research pro-
gram is to ascertain the relationships between the coherent structure

AIP Advances 11, 045006 (2021); doi: 10.1063/5.0050280 11, 045006-1

© Author(s) 2021

https://scitation.org/journal/adv
https://doi.org/10.1063/5.0050280
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0050280
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0050280&domain=pdf&date_stamp=2021-April-2
https://doi.org/10.1063/5.0050280
http://orcid.org/0000-0002-7497-0742
http://orcid.org/0000-0002-3007-4276
http://orcid.org/0000-0001-9326-2197
http://orcid.org/0000-0002-8025-489X
mailto:brasseur@colorado.edu
https://doi.org/10.1063/5.0050280


AIP Advances ARTICLE scitation.org/journal/adv

in physical space and the coherent structure in Fourier space with
data from reduced physics simulations that are designed to incorpo-
rate key dynamics from flame–turbulence interactions, ubiquitous
in premixed turbulent combustion. As discussed in more detail in
Sec. III A, this knowledge will be later used in analyses of key non-
linear RS–SFS couplings central to the evolution of coherent features
of RS momentum, energy, and species concentration.

Our analysis centers on scale-based decomposition of the
key dynamic variables. Decompositions such as proper orthog-
onal decomposition (POD)1,2 and dynamic mode decomposition
(DMD)3 are therefore not useful for our needs. We choose the
multidimensional Fourier decomposition for two primary reasons.
First, the Fourier transform (FTF) is useful to decompose multi-
dimensional multiscale analytic functions into a scale-based series
of complex exponentials that are mathematically convenient for
scale-based analysis in elemental form. The wavelet transform, for
example, is a filtered version of the Fourier decomposition with
Fourier modes grouped according to the choice of wavelet fil-
ter.4 In multidimensional Fourier space, a Fourier mode is a com-
plex harmonic function that is quantified with precisely defined
scale (wavelength), direction (wavevector), amplitude, and phase
(Fourier coefficient). Fourier decomposition of a continuous mul-
tiscale signal is “elemental” in the sense that whereas a single
Fourier mode does not represent a physical space structure, collec-
tions of phase-correlated Fourier modes within localized volumes
in Fourier space characterize a scale-based coherent structure in
physical space, for example, through wavelet decomposition.4–6 Each
Fourier mode in the collection provides an elemental contribution
to scale, strength, direction, and structure, with coherence deter-
mined by the phase relationships among the collection of Fourier
modes.4

Multiscale nonlinear dynamical systems such as turbulence
generally describe characteristic “scales of motion” statistically.7
Local space–time analysis is required to relate spatial scales to coher-
ent structural elements, such as vortex tubes and sheets, and local
concentrations of turbulent kinetic energy, strain-rate, and vortic-
ity.8 However, once the local relationships of the scale-based tur-
bulence structure between Fourier and physical space are under-
stood, Fourier-based scale decomposition becomes a valuable tool to
analyze the scale-based coherent structure and nonlinear interscale
interactions in scale space in relationship to nonlinear interactions
between scale-dependent coherent structures in physical space.9

Future publications will apply knowledge from the current
kinematic study to analyze key dynamical nonlinearities in the
equations of motion.10 This direction for analysis creates the
second, more important, reason for our application of Fourier
scale decomposition: representation of a nonlinearity underlying
interscale dynamics at its most elemental level. The FTF of the
advective nonlinearities in the governing equations for momentum,
energy, and species concentration in turbulent combustion, for
example, appears as linear sums of elemental nonlinear “triadic”
interactions among three Fourier modes with wave-vectors that
form a closed triangle in multidimensional Fourier space.9,11,12 In
related studies,10,13,14 we make use of this Fourier-spectral property
to analyze the nonlinear interactions among scales of motion within
turbulent-reacting flows in context with LES, where the turbulence
structure is separated into RS and SFS spectral content. In the cur-
rent study, we focus on the kinematic Fourier–physical space

relationships that underlie the RS and SFS structure in
flame–turbulence interactions.

Alternative approaches to scale-based decomposition apply
basis functions that are mathematically more complex than the ele-
mental Fourier basis. Examples include wavelet15,16 and empirical
mode17 decomposition. The mathematical complexity of these basis
functions, however, produces complicated representations of non-
linear terms in the transformed equations that greatly increase ana-
lytical complexity and reduce generality. The mathematical repre-
sentation of nonlinear interactions among wavelet modes, for exam-
ple, is a great deal more complex than the representations of elemen-
tal interactions among individual Fourier modes.18,19 However, the
wavelet transform of nonlinearities can be equivalently represented
in Fourier space as sums of elemental nonlinear terms among filtered
groupings of Fourier modes in localized volumes within multidi-
mensional Fourier space. In that way, one can quantify the dynam-
ical couplings between regions kinematically associated with differ-
ent coherent features of the dynamical system. This is the approach
we take here.

However, to develop this analysis, one must recognize and
eliminate spurious spectral content that is introduced when the
FTF is applied to a signal that is nonperiodic over a bounded
domain. This is because the FTF of a bounded nonperiodic con-
tinuous analytic signal produces periodic extensions of the sig-
nal in physical space with discontinuities at the boundaries. As a
global basis, the corresponding Fourier coefficients include contri-
butions from these boundary discontinuities. In practice, signals
from experimental measurements and numerical simulations are
generally nonperiodic in at least one coordinate direction. Numer-
ical simulations of flame–turbulence interactions in premixed tur-
bulence combustion, for example, typically apply periodic boundary
conditions in directions transverse to the mean flow, representing
turbulence as statistically homogeneous in those directions; bound-
ary discontinuities, therefore, do not exist in those directions. In
contrast, in the flame-normal direction, the turbulence is statistically
inhomogeneous and nonperiodic inflow/outflow boundary condi-
tions are typically applied, creating boundary discontinuities in the
periodically extended signal. However, computational and experi-
mental signals are discretized, requiring the application of the dis-
crete Fourier transform (DFT). The boundary “discontinuity” then
becomes a large gradient with magnitude given by the jump in the
signal between the inflow and outflow boundaries divided by the
discretization scale. We shall continue to use the term “boundary
discontinuity” to refer to the boundary gradients in discretized sig-
nals that characterize mathematical discontinuities in the corre-
sponding continuous signal.

Nonperiodicity introduces an undesirable artifact in the
Fourier transform that complicates scale-based analysis: Each
boundary discontinuity creates Fourier coefficients with power-
law decay extending from the lowest to highest wavenumber in
the direction of the discontinuity. Consequently, when the high-
est physical gradients are resolved by the grid, the power-law arti-
fact from the boundary discontinuity dominates the energy content
of the physical signal at high wavenumbers. In the image process-
ing literature,20 the FTF of two-dimensional (2D) signals creates
two power-law signatures referred to as “cross structure.” Several
methods have been proposed to overcome or minimize the impacts
of this unwanted spectral content (pollution) from boundary
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discontinuities, which overlaps the signal of interest in Fourier
space (see Sec. II A). These methods are typically described as
“periodization” procedures.

Classical methods to periodize signals include the application
of smooth physical space filters at the non-periodic boundaries21

and the antisymmetric signal extension22 of the signal. Foucaut
et al.23 developed a method to remove the boundary discontinuities
of experimental Particle Image Velocimetry (PIV) data by remov-
ing a straight line connecting first and last sample points of the
signal and imposing anti-symmetry around the last sample point.
Bruno et al.24 developed a “Fourier continuation” method to peri-
odize a signal within the Fourier framework by creating Fourier
series within domains larger than the domain of the signal. Moisan25

proposed a signal decomposition into a periodic component that
resembles the original signal and a smooth component that cap-
tures the boundary discontinuities with linear functions within the
domain, a step related to Foucaut et al.23 as well as to the approach
presented in Sec. II.

Whereas the methods described above retain spectral accu-
racy while removing spurious scale content by fully periodizing the
signal, they also introduce new nonphysical Fourier content that
overlaps with that of the original signal, making these approaches
unsuitable for our applications. In particular, smooth filters at the
non-periodic boundaries introduce new spectral content associated
with the widowing filter. As we shall show (Secs. II B and II C), while
the approaches from the work of Foucaut et al.23 and Moisan25 fully
periodize the signal, they also modify the signal within the domain
of interest at levels that are unacceptable for our application. Fur-
thermore, whereas the antisymmetric signal extension removes C0

discontinuities at the boundaries, it also introduces C1 boundary dis-
continuities and makes the Fourier coefficients real-valued, mask-
ing phase information contained in the Fourier coefficients of the
original signal and creating overlaps that cannot be removed. The
“Fourier continuation” method introduces nonphysical large-scale
Fourier content associated with the extension of the signal beyond its
original domain, which overlaps with scales of interest in the original
signal.

To overcome inadequacies of existing periodization meth-
ods for our application, we have developed a “pollution removal”
methodology that specifically treats the tradeoff between full peri-
odization and alteration of the signal in regions of interest (in Sec. II,
we present a semi-empirical approach that removes pollution from
boundary discontinuities without creating additional spurious con-
tent that overlaps the signal in regions of interest in both Fourier and
physical space. This is done through user-based empiricism intro-
duced to balance between the need to modify the signal near the
boundaries for periodization with the extent to which the signal
is modified away from the boundaries. We extend our method to
higher order discontinuities in Appendix A and to multidimensional
signals in Appendix B.

The current study aims to identify key Fourier–physical
space relationships between coherent features in canonical
flame–turbulence interactions. As discussed in Sec. III A, after
applying the discontinuity pollution approach described here, we
analyze the relationships between coherent structures in physical vs
Fourier space using a reduced physics simulation that is designed
to characterize key dynamical interactions between a chemically
reacting flame and trains of single-scale eddies represented as 2D

vortices. The specific objectives of the current paper are (1) to
identify the spurious Fourier content created from nonphysical
boundary discontinuities when the FTF is taken of nonperiodic
variables on a bounded domain and develop a procedure to
systematically remove the spurious content (pollution) from the
boundary discontinuities without significantly altering the signal
away from the boundaries, (2) to develop a reduced physics
simulation of the interaction between an initially unstretched flame
and a train of vortices and apply the simulation to validate the
discontinuity-pollution-removal method, and (3) to analyze the
2D flame–vortex interaction model concurrently in Fourier and
physical space to characterize the kinematic relationships between
the localized coherent structure in physical space and the localized
coherent structure in Fourier space within the LES framework.

The paper is organized as follows: Sec. II presents the
mathematical representation underlying the Fourier description
of nonperiodic signals over finite domains and the proposed
“discontinuity pollution removal” procedure for one-dimensional
(1D) signals. The procedure is extended to multidimensional sig-
nals in Appendixes B and C validated using reduced-physics simula-
tions of 2D flame–vortex–train interactions (referred to henceforth
as flame–vortex interactions). In Sec. III A, we present the concepts
underlying the applicability of the flame–vortex interaction model to
flame–turbulence interactions before describing the reduced physics
model in Sec. III B. This is followed in Sec. III C with an analysis
of the coherent structure of flame–vortex interactions in physical
space. The Fourier space counterpart of coherent structure analysis
is presented in Sec. IV using systematic spectral filtering. The relative
contributions of distinct physical–Fourier space coherent structures
to the energy content of distinct signals in context with the LES
framework are analyzed in Sec. IV D. The key findings are discussed
in Sec. V.

II. REMOVAL OF POLLUTION IN THE FOURIER
TRANSFORM OF NONPERIODIC SIGNALS OVER
FINITE DOMAINS

In this section, we make use of Fourier theory to provide a
better understanding of issues and implications of Fourier decom-
position of nonperiodic signals over a finite domain. This analysis
provides the foundation for the proposed “discontinuity pollution
removal” procedure.

A. The issues with Fourier decomposition
of nonperiodic signals

As discussed in Sec. I, because the Fourier basis is unbounded,
the FTF of a continuous function on a bounded domain includes
periodic extensions of the function to infinity in all coordinate direc-
tions. In directions where the signal is not periodic, therefore, the
periodically extended signal includes discontinuities at the bound-
aries that are reflected in the complete set of discrete Fourier coeffi-
cients. When the discrete FTF is applied to discretized nonperiodic
functions, the infinite derivatives at the boundary discontinuities are
now large-but-finite derivatives that are determined by the extent
of jump together with grid resolution at the boundaries. The dis-
continuities at the boundaries between the function and its peri-
odic extension may appear at the function level (C0) but also in
higher order derivatives f (m)

(x) = dm f /dxm with m ≥ 1, where the
superscript (m) indicates the derivative.
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To illustrate, consider the 1D bounded function f (x) shown
in Fig. 1, constructed by combining a cosine function with char-
acteristic length scale ℓ with a Gaussian function with length scale
η. With this function, we create three 1D signals defined over finite
domains L1 = 6ℓ, L2 = 4.998ℓ, and L3 = 5.598ℓ, which are indicated
as f 1, f 2, and f 3, respectively. η = L1/36 and ξ = L1/3 for all three
signals. Figures 1(a)–1(c) show periodic extensions of f 1, f 2, and f 3,
where the solid black vertical lines indicate the periodically extended
domain boundaries. By construction, the three signals have the same
characteristic length scales but different finite domain sizes.

The three signals in Fig. 1 are designed to characterize three
different levels of discontinuity: (a) is a periodic signal that is con-
tinuous in the function at all its derivatives at the boundaries, (b) is
a nonperiodic signal with only a C0 discontinuity at the boundaries,
and (c) is a nonperiodic signal with C0 and C1 boundary discontinu-
ities. The jumps in boundary values (discontinuities) in the periodic
extension of nonperiodic signals f 2 and f 3 are indicated by the verti-
cal dashed lines at the boundaries in Figs. 1(b) and 1(c), respectively.
These represent the boundary discontinuities at the function level
C0. f 3 discontinuities have both C0 and C1 with jumps in boundary
values of f and its derivative f (1)

(x) = df /dx.

FIG. 1. Periodic extension of (a) f 1, (b) f 2, and (c) f 3, where f(x) = cos(πx/ℓ) +
2e−((x−ξ)/η)2

, L1 = 6ℓ, L2 = 4.998ℓ, L3 = 5.598ℓ, η = ℓ/6 = L1/36, and
ξ = 2ℓ = L1/3. The dashed red lines in (b) indicate the C0 discontinuity func-
tion given by Eq. (3). The dashed magenta curve in (c) indicates the C0 and C1

boundary discontinuities derived in Appendix A.

The Fourier space spectrum of f 1, f 2, and f 3 in Figs. 1(a)–1(c)
is shown in Fig. 2 where the wavenumber axis (kx) is nondimen-
sionalized with the cosine length scale ℓ. The Fourier transform of
the periodic signal (the blue curve in Fig. 2) has a spectral peak at
kxℓ/π = 1 and an exponential drop above the scale η of the Gaussian
function (kxℓ/π = ℓ/η = 6). In contrast, the Fourier content of sig-
nals f 2 and f 3 with nonperiodic boundary values (green and yellow
curves in Fig. 2, respectively) has clear power-law decay of squared
Fourier coefficients toward high wavenumbers with non-monotonic
behavior surrounding a broad peak around kxℓ/π = 1. We shall find
that the difference between f̂2

2 and f̂3
2 at low wavenumbers (kxℓ/π

≲ 4) reflects the existence of the C1 boundary discontinuity in f 3.
As shown in what follows, the boundary discontinuities pre-

sented in Figs. 1(b) and 1(c) have a broadband power-law Fourier
energy content that overwhelms and pollutes the Fourier content
of the original signal at scales of interest. In Fig. 2, for example,
the power-law contribution from the C0 boundary discontinuity in
f 2 completely obscures the true signal f 1 at scales below the scale
of the Gaussian function (i.e., kxℓ/π ≳ 6) and pollutes the true sig-
nal at lower wavenumbers. Note that the discretization of the signal
required to apply the FFT was chosen so that the cutoff in the power-
law behavior at the discretization scale occurred at kx outside the
range plotted in Fig. 2. Our aim is to remove the boundary-generated
pollution shown in Fig. 2 without significantly interfering with the
underlying signal of interest (blue curve) that we aim to recover in
the pollution removal process.

To advance this aim, we quantify the Fourier coefficients of
the boundary discontinuity from a nonperiodic signal. Consider an
arbitrary smooth continuous 1D signal f (x) over a finite domain
0 ≤ x ≤ L with boundary values f (0) and f (L). The periodic exten-
sion of f (x) has a C0 boundary discontinuity with boundary jump
Δ f = f (L) − f (0). The bounded FTF of f (x) is

f̂ (kx ≠ 0) =
1
L∫

L

0
f (x)e−ikxxdx = −

i
kx

f̂ ′(kx) +
i

kx

Δ f
L

, (1)

where f̂ (kx) are the Fourier coefficients of f (x) and f̂ ′(kx) are the
Fourier coefficients of f ′ = df /dx, each a function of the infinite set
of discrete wavenumbers, kx = kn = 2πn/L, n = ±1, . . ., ±∞. kx = 0 is

FIG. 2. Squared Fourier coefficients f̂12 and f̂22 over the wavenumber axis kx

nondimensionalized by the scale ℓ of the cosine function (see Fig. 1). The dashed
red line indicates the C0 boundary discontinuity given by Eq. (2).
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the average of f (x) over the finite domain. The RHS of Eq. (1) was
obtained using integration by parts and e−ikxL

= e−i2πn
= 1.

The second term on the RHS of Eq. (1) isolates the Fourier
content associated with the C0 discontinuity in the periodic exten-
sion of f (x). For periodic signals (Δ f = 0), the second term does
not contribute to the derivative of f (x). For nonperiodic signals, the
magnitude of this term follows a k−1

x power-law with amplitude pro-
portional to Δ f . Thus, the fundamental C0 discontinuity function in
Fourier space is described by

d̂(kx) =
i

kx

Δ f
L

, f or kx ≠ 0. (2)

d̂(0) = 0 so that the discontinuity function does not contribute to
the mean. The inverse FTF of d̂(kx) within the finite domain is

d(x) =
Δ f
L
(x −

L
2
), (3)

where 0 ≤ x ≤ L. The physical space counterpart of Eq. (2) captures
the fundamental C0 discontinuity in f (x) at the domain boundaries
(Δd = Δ f ) with a linear sawtooth function extended periodically to
infinity. The discontinuity function in physical and Fourier space
is indicated by dashed red lines in Figs. 1(b) and 2 [with the mean
included in d(x) for better comparison with f (x)].

The linear sawtooth function in Eq. (3) captures only the C0

boundary discontinuity in f (x). In Appendix A, Eqs. (1)–(3) are
generalized to Cn discontinuities in the higher order derivatives
f (n)
(x) = dn f /dxn with n = 0, 1, . . . , N. Like the discontinuity func-

tion for f (x) given by Eq. (1), the discontinuity in the highest order
derivative f (N) is represented in physical space by a linear disconti-
nuity function d(N)N (x) given by Eq. (A1). This function is sequen-
tially integrated back to the 0th derivative level (n = 0) to produce
an Nth-order polynomial d(0)N (x) that includes all discontinuities
in f (n)

(x) from the function level n = 0 up to the derivative level
n = N. For example, a boundary discontinuity in f (1)

(x) = df /dx
is described by the linear discontinuity function d(1)1 (x) given by
Eq. (A4) that when integrated to the function level produces the dis-
continuity function d(0)1 (x) given by Eq. (A6), the sum of parabolic
plus linear functions.

In Fourier space, the sequential integration of d(N)N (x) back to
the n = 0 derivative level produces Fourier coefficients for d(0)N (x)
that follow a sum of power-laws ∼ k−(n+1)

x with n = 0, 1, . . . , N, given
by Eq. (A12). The amplitude of each power-law is proportional to the
magnitude of the boundary jump Δ f (n)

≡ f (n)
(L) − f (n)

(0) at each
derivative level, n. For example, the Fourier description of a function
f (x) with boundary discontinuities up to the first derivative level is
given by [see Eq. (A12)]

d̂(0)1 (kx ≠ 0) =
Δ f (0)

L
(

i
kx
) +

Δ f (1)

L
(

i
kx
)

2
, (4)

where Δ f (0)
= Δ f .

As an example, Fig. 3 shows the physical and Fourier space
views of the C0 and C1 discontinuity functions of f 3 shown in
Figs. 1(c) and 2. The boundary discontinuities are represented by
mathematical expressions for d(0)0 (x) and d(0)1 (x) from boundary

FIG. 3. (a) The physical space function and (b) the Fourier space spectral content
of d(0)

0 (x) and d(0)
1 (x) derived in Appendix A to capture the C0 and C0

+ C1

boundary discontinuities for f 3(x) shown in Fig. 1(c) having Δ f (0)
= −0.69 and

Δ f (1)L3 = 17.23.

discontinuities in both the function f (x) and its first derivative
f (1)
(x) (see Appendix A), that is, for both C0 [Eqs. (2) and (3)] and

C0
+ C1 [Eqs. (4) and (A6)] boundary discontinuities in f (x). In

Fourier space [Fig. 3(b)], the squared Fourier coefficients of d(0)1 (x)
follow a power-law ∼ k−2

x in the high wavenumber limit and a differ-
ent power-law ∼ k−4

x in the low wavenumber limit, each associated
with the Fourier representations of C0 and C1 discontinuity func-
tions, respectively. In physical space [Fig. 3(a)], the parabolic func-
tion d(0)1 (x) captures the fundamental boundary discontinuities C0

and C1. Higher order boundary discontinuities do not exist since
the function is smooth in derivatives above one. The linear function
d(0)0 (x) captures only the fundamental boundary discontinuity C0.
The polynomials d(0)N are constructed to capture the fundamental
boundary discontinuity only up to CN .

The fact that the higher order boundary discontinuities contain
higher power-law exponents in 1/kx will turn out to be important in
the application of the discontinuity pollution removal procedure dis-
cussed in Secs. II B and II C, where the discontinuity removal func-
tion d(0)N (x) will be used to remove pollution in Fourier space asso-
ciated with the boundary discontinuities in the function. As shown
in Fig. 3(b), for example, the variance of the discontinuity removal
function for a function with discontinuity in the function and its
first derivative is dominated by the C1 discontinuity at wavenum-
bers below 4 and the C0 discontinuity at high wavenumbers. We
shall show that discontinuity removal should be limited to higher
wavenumbers where the d(0)0 discontinuity dominates by orders
of magnitude over higher-order singularities. Thus, in practice,
the pollution removal procedure generally needs only be applied to
the C0 boundary discontinuity. This is the case in the current study.
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B. Pollution in the Fourier representation of a physical
nonperiodic signal

In Fig. 4, we illustrate the spectral pollution with a physi-
cally relevant 1D signal obtained from a 2D simulation described
in Sec. III B of the interaction between a laminar flame and a train of
counter-rotating 2D vortices. Inflow/outflow boundary conditions
are applied across a domain length of 16D, where D is the diameter
of the individual vortices within the train. The blue curve in Fig. 4(a)
is the streamwise momentum component along a pencil between the
inflow and outflow boundaries. The flame, identified by the peak at
x/D = 4, produces the largest physical gradient at the smallest physi-
cal scale, the flame scale, δ f . In Fig. 4(b), we plot, with the blue curve,
the Fourier spectral content of the bounded 1D signal in Fig. 4(a)
(blue curve).

As discussed above, Fig. 4 demonstrates that the bounded
FTF of a continuous nonperiodic signal produces C0 boundary dis-
continuities in physical space with the corresponding k−2 broad-
band spectral energy content from the first wavenumber to kmax ≈

π/Δx [Eq. (2)]. The Direct Numerical Simulation (DNS) of turbu-
lence requires that Δx resolves well the smallest dynamically rele-
vant viscous scale so that the physical signal has a viscous spectral

FIG. 4. (a) Physical and (b) Fourier space views of 1D signal extracted from 2D
flame–vortex simulations described in IIIB. The blue curves show the original sig-
nal, the dashed red curves indicate the expressions that capture the fundamental
C0 boundary discontinuities [Eqs. (3) and (2)], and the dark green curves show
the “periodized” signal after removing the later from the former. The mean f(x)
is added to d(x) for better comparison. The dashed green curve in (a) indicates
the post-processed signal discussed in Sec. II C using the filter cutoff wavenumber
kcut indicated by a vertical green line in (b).

roll-off that initiates at a scale an order of magnitude larger than
the grid scale. As shown by the blue curve in Fig. 4(b), this roll-
off is masked by the power-law content of the C0 boundary dis-
continuity that overwhelms the frictional scale content at higher
wavenumbers and that competes with physically relevant content
at lower wavenumbers. The aim is to remove this pollution and
uncover the small-scale content masked by the C0 power-law at high
wavenumbers.

If one simply removed d̂(kx) given by Eq. (2) from the dis-
crete FTF of the original nonperiodic signal f (x), the inverse trans-
form f̂ (kx) − d̂(kx) would produce a periodized form of the blue
signal in Fig. 4 with the fundamental C0 boundary discontinuity
removed. This fully periodized signal is shown in physical space by
the solid green curve in Fig. 4(a) and the original blue curve with
the sawtooth function in Fig. 4(a) subtracted (after shifting to zero
mean). Because the sawtooth function includes the C0 boundary
discontinuity, the full removal of pollution from the boundary dis-
continuity is equivalent to full periodization, as noted in Refs. 23
and 25.

The squared Fourier coefficients of the periodized signal are
shown in Fig. 4(b) with the solid green curve. Note that the curve
has an exponential drop off beginning near the wavenumber cor-
responding to the flame length scale, indicating that the pollution
at high wavenumbers corresponding to the discontinuity has been
removed. This is particularly obvious at wavenumbers kxδ f /π ≳ 1,
where the k−2 reduction in f̂ 2

(kx) dominates and fully masks the
true signal. At wavenumbers below kxδ f /π ≈ 1, the Fourier coeffi-
cients associated with the signal dominate the coefficients associated
with the discontinuity so that the signal is modified relatively lit-
tle there. However, at wavenumbers kxδ f /π ≲ 0.05, the lowest four
wavenumbers, the Fourier coefficients within the power-law drop
contain variance that overlaps with the true signal. This modification
at the lowest few wavenumbers results from subtracting the “ramp”
part of the sawtooth function, the largest scale feature of the inverse
transform of the discontinuity term d̂(kx) in Eq. (2). This content
interferes with the true signal and modifies the overall shape of the
function, as shown by comparing the blue and dark green curves in
Fig. 4(a).

We find that in order to remove the C0 boundary discontinu-
ity from the signal f (x) using the same C0 discontinuity embed-
ded in the sawtooth function d(x), it was necessary to also change
the signal globally over the domain. We further find from Fig. 4
that the extent of signal modification that is required to periodize
the signal depends on the relative variance content of the signal
vs sawtooth function at the lowest wavenumbers since the magni-
tude of the Fourier coefficients increases like k−2

x . The lowest kx
content that defines the overall shape of the largest-scale varia-
tions in the signal. In effect, by removing pollution at the highest
wavenumbers that results from the C0 boundary discontinuity from
non-periodicity in f (x), pollution is added at the lowest wavenum-
bers to account for the signal content in d(x) between the bound-
aries at the very largest Fourier scales. In Sec. II C, we introduce
a procedure for removing spurious signal content at the highest
wavenumbers arising from the boundary discontinuity within d(x)
while minimizing modification of the signal of interest at the lowest
wavenumbers. To do so, it requires a tradeoff that must be handled
empirically.
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C. A proposed pollution removal procedure that
balances periodicity with signal modification

Since the boundary discontinuity is associated with the high-
est wavenumbers, consider a high-pass-filtered version of the
discontinuity function,

d̂m(kx; kcut) = m(kx; kcut)d̂(kx), (5)

where

m(kx; kcut) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if ∣kx∣ ≥ kcut ,

0 if ∣kx∣ < kcut .
(6)

The inverse transform of d̂m(kx), dm(x; kcut), is given in Fig. 5(a) for
the three filter scales kcut shown in Fig. 5(b). The red dashed curve
in Fig. 5(a) includes all Fourier coefficients (kcut = 0). As kcut is sys-
tematically moved toward higher wavenumbers, dm(x; kcut) system-
atically localizes around the discontinuity at the domain boundaries
the contribution from the center of the domain.

The concept is to modulate f (x) by subtracting dm(x; kcut)

rather than d(x) to create the modulated function f m(x; kcut)

= f (x) − dm(x; kcut). As just discussed, when kcut = 0, all Fourier
modes of f (x) are modulated [dm(x; kcut) = d(x)], the bound-
ary discontinuity is fully removed, and the signal is fully peri-
odized; however, the modulated version f (x) − d(x) has been mod-
ulated globally. In contrast, when kcut = kmax, f (x) is left unchanged
[dm(x; kcut) = 0] and the signal remains fully nonperiodic. It is
therefore not surprising to find that the jump in the modulated
signal f m(x; kcut) depends on kcut . This is shown in the inset of

FIG. 5. (a) Physical and (b) Fourier space representation of modulated discon-
tinuity dm(x; kcut) and d̂m(kx ; kcut), respectively, for three cutoff wavenumbers
kcut > 0 within the power-law spectrum of d̂2

(kx). The mean f(x) is added to
dm(x; kcut) for better comparison with Fig. 4. The inset of Fig. 5(a) shows boundary
values for each dm(x; kcut).

Fig. 5(a), where the degree of reduction in the boundary discontinu-
ity dm(x; kcut) is shown to decrease with increasing kcut . We note that
the reduction is minimal when kcutδ f /π = 0.5, just below the roll-off
in the signal which, as shown in Fig. 4(b), occurs at kxδ f /π ≈ 1. We
conclude that there is a tradeoff between the degree of reduction in
the boundary discontinuity and periodization of the signal (pushing
kcut to smaller values) and the minimization of signal modification
away from the boundaries (pushing kcut to higher values).

In order to quantify the interplay between the degree of peri-
odization vs the degree of modification of the original signal after
removing dm(x; kcut) from f (x), we define two parameters to quan-
tify these two modulations. We then apply these two parameters
within a “partial periodization” procedure that balances signal mod-
ulation with discontinuity removal. The first parameter is the ratio of
content in the modulation function, dm(x; kcut), to the content in the
original signal, f (x), where “content” is defined with the L2 norm,

ε(kcut) =
∥dm(x; kcut)∥V

∥ f (x)∥V
. (7)

The volume of interest, V , may be chosen as the entire domain or
a subset of the domain, for example, to exclude boundary regions.
ε(kcut) quantifies the relative variance content removed from the
original signal. In principle, the aim is to minimize this parame-
ter. The second parameter quantifies the level of residual gradient
at the boundary relative to the maximum physical gradient within
the volume of interest,

Δr(kcut) =
∣Δ f m(kcut)∣/Δx

∣maxx(∂ f (x)/∂x)V ∣
, (8)

where

Δ f m(kcut) = f m(L, kcut) − f m(0, kcut) = Δ f − Δdm(kcut). (9)

Δ f m(kcut) is the residual boundary jump in the modified signal, and
Δ f and Δdm(kcut) are the boundary jumps in the original signal and
modified discontinuity function, respectively. Like ε(kcut), the aim is
to minimize Δr(kcut).

Consider Fig. 6, where the signal modification parameter
ε(kcut) and the residual jump parameter Δr(kcut) are plotted against
nondimensional kcut for the physical signal shown in Fig. 4. The

FIG. 6. Signal modification ε(kcut) and residual discontinuity Δr(kcut) as a
function of cutoff wavenumber kcut for the physical signal shown in Fig. 4.
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dashed vertical lines indicate kcut associated with each dm(x; kcut)

shown in Fig. 5, and the symbols indicate their respective ε(kcut) and
Δr(kcut) values. Both curves display approximate power-law depen-
dencies that show the quantitative tradeoff between the minimiza-
tion of the boundary discontinuity (smaller kcut) and the minimiza-
tion of signal modification (larger kcut).

The fact that Δr(kcut), the red curve in Fig. 6, exceeds 1 at the
highest values of kcut shows that the spurious gradient in f (x) at the
domain boundary exceeds the maximum physical gradient in f (x)
within the domain, reflecting major pollution in Fourier space at
high wavenumbers, where in Fig. 4(b) the blue curve greatly exceeds
the green curve. At these values of kcut , the modified signal retains
strong non-periodicity. In contrast, at the lowest value of kcut in
Fig. 6, the red curve shows that the boundary discontinuity has been
nearly entirely removed (Δr ≈ 0.001) and the modified signal is close
to fully periodic; however, the blue curve shows major modifications
to the original signal (ε ≈ 0.45). However, at the crossover of the two
curves, both the level of modification to the original function and
the residual level of boundary discontinuity are reasonable, around
3%, suggesting that reasonable tradeoffs exist that can minimize both
the pollution due to nonperiodicity and the degree of modification
of the signal away from the boundaries, albeit with small residual
levels of both remaining. This observation provides the basis for our
proposed discontinuity pollution removal procedure.

The fundamental boundary discontinuity Δ f = f (L) − f (0) is
represented in physical space by Eq. (3) and Fourier space by
Eq. (2), a sawtooth function with zero mean and boundary dis-
continuities Δd = d(L) − d(0) matching that of the function f (x).
The procedure to remove the discontinuity from the Fourier trans-
form of f (x) centers on the removal of Fourier content d̂m(kx; kcut)

= m(kx; kcut)d̂(kx) from the original signal f̂ (kx), where m(kx; kcut)

is a high-pass filter over kx ≥ kcut . Since the aim is to signifi-
cantly modulate the signal only near the boundary discontinu-
ity, m(kx; kcut) is designed to modify the signal over a to-be-
determined range of high wavenumbers, which localizes to the
boundary discontinuity to create f m(x; kcut)↔ f̂m(kx; kcut)) = f̂ (kx)

−m(kx; kcut)d̂(kx).
The aim is to remove the spectral content associated with the

boundary discontinuity without significant modification of the sig-
nal away from the boundaries. To identify an optimal filter cutoff
wavenumber kopt

cut that provides the best tradeoff between the min-
imization of signal modification, ε, and minimization of the resid-
ual boundary discontinuity, Δr , we define the following weighted
variable:

ϕ(kcut ; α) = αε(kcut) + (1 − α)Δr(kcut), (10)

where 0 < α < 1. α is a user-specific parameter that weights the rela-
tive contribution of ε vs Δr . The “optimal” filter cutoff wavenumber
kopt

cut is defined as the minimum in ϕ(kcut ; α) as a function of kcut for
specified fixed α,

ϕ(kopt
cut ; α) = minkcut [ϕ(kcut ; α)]. (11)

The choice of α depends on the characteristics of the original nonpe-
riodic signal and the aims of the user. Large α favors the minimiza-
tion of changes in the signal, while small α favors the minimization
of the residual boundary discontinuity and the retained level of peri-
odicity. Note that ε and Δr [Eqs. (7) and (8)] involve integrals over

FIG. 7. ε (magenta), Δr (blue), and kopt
cut (red) curves as a function of α for the 1D

signal in Fig. 4 extracted from 2D flame–vortex interactions shown. The vertical
dashed line is the value α = 0.7 shown by the orange curve in Fig. 6.

a user-specified volume, V , allowing the user to decide the region of
the signal where modulation should be minimized. In this section,
we use the entire domain for V .

To illustrate the tradeoffs in the selection of α, Fig. 7 shows
the dependence of ε, Δr , and kopt

cut for different choices of α using
the 1D signal in Fig. 4. Figure 4 shows that for each α there is a
corresponding kopt

cut from the minimization of ϕ(kcut ; α), which is
used to evaluate the tradeoffs between ε and Δr . For this signal if
α were chosen as 0.7, for example (dashed line in Fig. 7), the signal
modification would be limited to 2%, while the residual jump in the
post-processed signal remains below 5%. The resulting weighted cri-
terion curve ϕ(kcut ; α = 0.7) is shown in Fig. 6 by the orange curve,
and the corresponding post-processed 1D signal using kopt

cut δ f /π
= 0.1 is indicated in Fig. 4(a) by the dashed green curve, f m(x).

In Appendix B, the discontinuity pollution removal procedure
is extended to three-dimensional (3D) signals with one nonperiodic
direction, and in Appendix C, a sensitivity analysis of α is performed
to exemplify the identification of α in practical applications.

III. COHERENT STRUCTURE IN FLAME–VORTEX
INTERACTIONS AS A REDUCED PHYSICS MODEL
OF FLAME–TURBULENCE INTERACTION
A. Underlying concepts

Having developed a viable discontinuity pollution removal
method, we are in a position to study scale-dependent coherent
structure simultaneously in physical space and Fourier scale space.
A central aim of the current study is to determine the relationships
among key coherent elements in momentum, thermal energy, and
species concentration from turbulence–flame interactions in terms
of the characteristic scales of the coherent elements and their spa-
tial inter-relationships concurrently in physical space and Fourier
space. As discussed in Sec. I, we apply the Fourier spectral decom-
position in part because the harmonic basis is explicitly scale-based,
but specifically because the Fourier transform produces the most
elemental description of the advective and chemical nonlineari-
ties in the equations of motion as linear sums of nonlinear terms,
each of which represents an elemental interaction among a few
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Fourier modes. As will be described in future manuscripts,10 these
mathematically elegant elemental forms within the Fourier spec-
tral description of nonlinear interscale interactions may be rear-
ranged in order to down-select a small percentage of the most dom-
inant nonlinear interscale couplings that contribute to the evolution
of resolved scale momentum, thermal energy, and species concen-
tration predicted in LES of flame–turbulence interactions. These
are the dominant dynamical interactions that underlie the mod-
eled terms in LES of premixed turbulent combustion. The current
study of the relationship between coherent structure in physical
and Fourier space provides the understanding of SFS vs RS coher-
ent structure in relationship to the effective LES filter cutoff within
the Fourier description of scale, as determined by effective grid.
This understanding will inform future analyses and a new model-
ing strategy for the RS–SFS contributions to the nonlinear terms in
LES of flame–turbulence interactions centered on the development
physically meaningful mathematical forms for scale-dependent SFS
variables.

However, the three-dimensional chaotic forcings of a thin
flame by the full range of turbulence eddy scales create highly
complex multiscale flame distortions in response to the wide
ranges of eddy scales and strengths relative to the flame scale and
flame strength local to a flame–eddy interaction. Spatial coher-
ence resulting from these interactions is correspondingly highly
complex with the coherent structure created over wide ranges of
scale by the dynamics associated with the distorting flame. This
complexity in multi-scale response makes it difficult to dissect the
Fourier–physical space relationships created by groupings of eddies
at similar scale and strength. To reduce the levels of complexity
from the impacts of a full range of 3D turbulence eddying motions
on flame dynamics, and to more clearly describe coherent structure
physical–Fourier space relationships in context with flame topog-
raphy, we have created a “reduced-physics” model that captures a
key underlying element in turbulence–flame dynamics: the distor-
tion of a flame in response to repetitive forcing by single-scale eddies
of controlled scale and strength relative to a well-defined flame
sheet. Specifically, we design controllable non-chaotic interactions
between an initially unstretched planar flame sheet and topologically
well-defined eddies modeled as trains of two-dimensional single-
scale vortices with controlled scale and strength relative to that of the
flame. We argue that this flame–vortex interaction model captures
essential deformations of a flame sheet in response to single-scale
eddy motion. The reduction in dimensional and physical complex-
ity produces well-defined Fourier–physical space relationships in
the coherent structure while retaining sufficient levels of complex-
ity to apply the results extracts the key elements of turbulence–flame
interactions that are local to flame–eddy interactions in premixed
turbulent combustion.

With the reduced-physics flame–vortex interaction model, we
are able to choose the relationships between the flame scale/strength
and eddy scale/strength in relationship to the interactions between
a subset of eddies within the full range of turbulence–flame inter-
actions that are ubiquitous in premixed turbulent combustion. As
discussed in Sec. III B, the current study focuses on eddies with a
single length scale an order of magnitude larger than the character-
istic flame scale. This ratio of vortex to flame scale is chosen because
turbulence eddies of order the flame scale tend not to strongly
impact flame distortion,26 while the response to eddies larger in

scale may be deduced from the current results. We argue that the
current flame–eddy model characterizes local deformations of the
flame sheet at the defined eddy scale with the degree of response
determined by the strength of the defined single-scale eddies rel-
ative to the strength of the flame. In the complete series of stud-
ies underlying the current paper, relative eddy strengths are cho-
sen to create “weak,” “moderate,” and “strong” response in flame
deformation. In the current paper, we discuss in detail the “weak”
response case, designed to create large repetitive distortions of the
flame without pinching or the creation of pockets. The higher
strength of the “moderate” case vortices was chosen to produce
pinching (but no pockets), while the “strong” vortex case was
designed to create repetitive pocket formation. Because the primary
conclusions from this series of studies can be presented in context
with “weak” case, we present detailed results for this case in the
current paper. The “moderate” and “strong” cases are discussed in
Sec. V in context with discussion of the application of the current
analysis to 3D turbulence–flame interactions.

To apply the 2D Fourier description, the nonphysical spectral
content from boundary discontinuities at boundaries is removed
with the discontinuity pollution removal procedure described in
Sec. II generalized to 3D signals (Appendixes B and C). With 2D
spectral filtering, we identify the relationship between character-
istic coherent features in physical and Fourier space associated
with specific flame responses and we quantify the relative con-
tributions of these features to the total variance content of key
variables.

B. Overview of numerical simulation
In turbulent premixed flames, stiff nonlinear chemical reac-

tions involving many reacting scalars introduce broad ranges of
length and time scales that overlap with the characteristic scales of
turbulence motions, resulting in strong two-way couplings between
turbulence and combustion.27–29 These scales are typically organized
in the form of key non-dimensional parameters within a parameter
space that demarcates regimes of turbulent premixed combustion
(Borghi,27 Peters,28 and Williams29).

The Karlovitz number is a key non-dimensional parameter that
characterizes these regimes,

Ka ≡ τF/τη ∼ γ(uη/sL)
2
∼ γ−1

(δ f /η)
2, (12)

where τF = δ f /sL is the characteristic flame time scale (sL and δ f
are the laminar flame speed and thickness, respectively), τη = η/uη

= η2
/ν is the Kolmogorov time scale (uη and η are the Kolmogorov

velocity and length scales, respectively), and ν is the kinematic vis-
cosity. In Eq. (12), γ ≡ sLδ f /α ≈ sLδ f /ν, where α is the thermal diffu-
sivity. α ≈ ν in air, even at high temperature and pressure. Assuming
air, then, γ ∼ O(1) in the diffusion-dominated reaction zone. [In
the inflow, where the temperature and kinematic viscosity are an
order of magnitude lower, γ ∼ O(10) or higher.] Ka≪ 1 is tradi-
tionally described as the “flamelet” regime, while 1 ≲ Ka ≲ 102 and
Ka ≳ 102 are described as “thin,” and “broken” or “distributed” reac-
tion zone regimes, respectively.27–29 Recent studies26,30 suggest that
the distributed combustion regime may be associated with higher
Ka ≳ O(104

).
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Some key fundamental dynamics of flame–turbulence inter-
actions under distinct regimes may be conceptualized by reduced-
physics systems that characterize local interactions between a pre-
mixed flame and single-scale turbulence eddies from within the iner-
tial eddies within high Reynolds number turbulent reacting flow,31

as illustrated experimentally in Filatyev et al.32 Using this frame-
work, we represent the interaction between a laminar flame and
single-scale inertial eddies of length scale r and velocity scale ur
with a train of 2D vortices with vortex scale lv ∼ r and velocity scale
uv ∼ ur . To estimate the Karlovitz number with vortex scales, we
apply the classical Kolmogorov 1941 scaling (ε ∼ u3

v/lv) to Eq. (12)
to obtain

Ka ∼ (lv/δ f )
−1
(uv/SL)(Rev)

1/2, (13)

where Rev = uvlv/ν is the vortex Reynolds number in the unburnt
mixture, and we model the vortices as characteristic inertial-range
turbulence eddies.

In the numerical model, a vortex train was designed to charac-
terize inertial-range eddies on the reactant side of high Ka turbulent
premixed flames in the thin reaction zone regime30 with an integral
scale Reynolds number of ∼ 104 and an Karlovitz number of ∼ 1,
respectively. The vortex length scale was purposefully chosen to be
an order of magnitude larger than the flame length scale (lv/δ f ≈ 10)
to characterize the impacts of larger inertial range eddies and to
better elucidate characteristics at disparate vortex and flame scales
in Fourier space. The square of the vortex to flame velocity ratio,
(uv/sL)

2, characterizes the ratio of vortex to flame strength. For the
“weak” vortex case discussed in the current paper, uv/sL ≈ 0.5.

As discussed in Sec. III A, whereas we discuss the key results
in context with the weak case simulation, we also developed
“moderate” and “strong” vortex simulations with uv/sL ≈ 2 and 5,
respectively. Whereas the weak case was designed to create strong
repetitive distortions of the flame sheet, the moderate case was
designed to create “pinching” distortions, while the strong case was
designed to create repetitive pinching and pocket formation. Most of
the new knowledge from these studies was obtained with the weak
case. As will be discussed in Sec. V, the strong case adds insight
relevant to the application of these analysis to turbulence–flame
interactions.

Table I summarizes relevant simulation parameters with the
vortices at the location of the flame front in a corresponding cold-
flow simulation. δ f is defined as the distance between the iso-levels
of 5% and 85% of the progress variable C = (T − Tu)/(Tb − Tu),

TABLE I. Important parameters for the flame–vortex interaction simulation.

Pressure p 1 bar
Unburnt temperature Tu 300 K
Unburnt equivalence ratio ϕu 1
Laminar flame thickness δ f 0.5 mm
Laminar flame burning speed SL 39 cm/s
Vortex diameter D 7.9 mm
Vortex length scale lv 5 mm
Vortex velocity scale uv 19 cm/s
Length scale ratio lv/δ f 10
Velocity scale ratio uv/sL 0.5
Vortex Reynolds number Rev 250
Karlovitz number Ka 2.5

where Tu and Tb are the temperatures in the unburnt and burnt mix-
tures, respectively. The thermochemical conditions in the unburnt
mixture (subscript u) shown in Table I are selected according to
those used in the experiments of moderate Ka turbulent premixed
flames by Skiba et al.30

The 2D numerical simulation was performed within the rect-
angular domain illustrated in Fig. 8, with domain lengths Ly = 4D
and Lx = 16D in the cross-stream and streamwise directions, respec-
tively, where D is the vortex diameter. At the initiation of the simula-
tion, a pre-computed planar n-heptane/air laminar premixed flame
was placed four vortex diameters downstream of the inflow bound-
ary. An inflow of unburnt n-heptane/air mixture is injected into the
domain in the streamwise direction x, and the burnt products exit
through the outflow plane. Periodic boundary conditions are applied
in the cross-stream direction. An array of counter-rotating vortex
pairs is continuously injected, with specified mean inflow veloc-
ity, in the inflow boundary using time-varying Dirichlet boundary
conditions for the velocity components. The convective outflow33 is
enforced in the outflow boundary.

The array of vortices is kinematically constructed from a com-
bination of two Fourier modes (and their complex conjugates) as
shown in 2D Fourier space in Fig. 9(b). The vector Fourier coef-
ficients, perpendicular to the two primary wavevectors shown in
Fig. 9(b) to satisfy incompressibility, are aligned in opposite direc-
tions. This combination produces an spatial array of single-scale
counter-rotating vortices with circulation in opposite directions and
with zero average linear or swirl velocity, as described in the work of
Brasseur and Wang.5 Figure 9(a) shows a 2D isocontour of a normal-
ized velocity component kinematically constructed using the combi-
nation of sine waves. A streamwise injection velocity U in is added to
the kinematic velocity field, where U in = 54 cm/s to match the sta-
tistically averaged flame burning speed predicted in the simulation.
In this way, the flame does not move, on average, in the statistically
stationary limit. The flow is initialized with space-filling vortices on
the reactants’ side of the computational domain (x ≤ 4D).

The vortex length scale lv characterizes the concentration of
vorticity in each vortex core. We define lv as the diameter of an
equivalent circle with area equal to the area within the vortex that
is bounded by the vorticity isocontour 0.3ωpeak, where ωpeak is the
peak vorticity in the core. This area within the core captures more
than 90% of the total vortex circulation. For the vortices of diame-
ter D defined above, it turns out that lv = 0.63D. The vortex velocity
scale uv, characterizing the strength of the vortex core, is defined as

FIG. 8. Schematic of the computational domain for the reduced physics 2D
simulation of the interactions between a flame and an array of counter-rotating
vortices.
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FIG. 9. Schematic of kinematically constructed velocity components for array of
vortices injected in the inflow boundary. (a) Physical and (b) Fourier space view.

the circulation contained within the same vorticity iso-level divided
by its perimeter.

The 2D flame–vortex interaction simulation was per-
formed using the NGA code,33 where the unsteady compressible
Navier–Stokes equations under the low Mach number and ideal gas
approximations and the transport equations for temperature and
mass fractions of 35 species are solved with boundary conditions.
The scalar equations are discretized using the BQUICK scheme,
which ensures that the physical bounds of species mass fractions are
numerically preserved with minimal artificial diffusion.34 A recently
developed computationally efficient, semi-implicit, iterative method
is used for time-integration of the chemical source terms within the
(gas-phase) species equations.35 This method has been shown to be
as computationally efficient as an explicit time-integration per time
step and allows for stable simulations with larger time steps than a
corresponding explicit scheme.36

A semi-detailed chemical kinetics model containing 35 species
and 217 reactions (forward and backward reaction counted sepa-
rately) is used,37 a mechanism reduced from the original 149 species
and 1651 reactions38 to reduce the computational cost of moderate
Ka turbulent premixed flame simulations.37 Complete details with
chemical model validation are given in Refs. 37 and 39.

The computational mesh is non-uniform in the streamwise
direction and uniform in the cross-stream direction. The grid is
highly refined in the vortex-dominated reaction region and, espe-
cially, in the flame region in the streamwise direction and is stretched
toward the outflow boundary. At least 80 grid points are used to
resolve the vortex length scale in the reactants’ side and 20 grid
points within the flame front thickness. A grid convergence study

was carried out where we confirmed that the same results are
obtained with twice as many grid points in both directions. The time
step size is 1 μs to accurately resolve the chemical time scales.

C. Coherent structure of flame–vortex interactions
in physical space

The numerical simulation is analyzed selecting four primary
variables associated with key features of the 2D flame–vortex inter-
actions: the streamwise components of momentum vector (ρu and
ρv) as representative of momentum impacts, the mixture enthalpy
(ρh) containing thermal energy, and the formyl radical mass per unit
volume (ρYHCO) representing an intermediate species that identifies
the heat release rate by combustion.40 A single time instant within
the statistically stationary state of the flame–vortex interactions is
selected for analysis, when the flame is most “corrugated” as quanti-
fied by the maximum difference between the two extreme locations
of the progress variable iso-level, C = 0.5. The statistically stationary
state is observed after a transient period from the initial condition at
∼4 vortex advection time scales, D/U in.

Figure 10 shows the 2D instantaneous isocontours of primary
variables, ρu, ρv, ρh, and ρYHCO, over the region of 2 ≤ x/D ≤ 8.
Taken together and as a movie, Figs. 10(a)–10(d) show the inter-
action between the train of vortices and laminar flame at stationary
state at peak corrugation. Note from Figs. 10(a) and 10(b) that the
vortices in the reactants that distort the flame are apparent in the
momentum field but not in the energy or species. The interaction
with the flame and baroclinic generation of vorticity at the flame
leads to the development of elongated structures in the streamwise
direction within the region downstream of the flame, impacted by
flow acceleration and volumetric expansion within the flame front.
As a consequence of baroclinic flame-generated vorticity,41,42 the
vorticity within the elongated structures is of opposite sign to the
vortices on the reactants’ side of the flame. It is for this reason that
ρv changes sign across the flame [Fig. 10(b)].

As vortices are continuously injected into the domain from the
inflow boundary, the flame is perturbed periodically in time (not
shown here) and symmetrically in y. The train of vortices causes
the formation of flame cusps when the induced velocity of two
adjacent counter-rotating vortices locally advects the flame sheet
into the burnt products between the vortices (at y/D = 1 and 3 in
Fig. 10). The strength of the vortices relative to the flame sheet deter-
mines the extent to which the cusp regions extend into the prod-
ucts. In contrast with momentum components, ρh and ρYHCO in
Fig. 10 are approximately spatially uniform on the reactants’ and
products’ sides of the flame with large gradients localized to the
thin flame. ρh has a jump from reactants to products with local
scale on order the laminar flame thickness, δ f . ρYHCO, by con-
trast, is a combustion intermediate that is highly localized with a
strong peak within the reaction zone internal to the flame at a scale
roughly three times smaller than the laminar flame thickness, δ f .
The intermediate species generated and destroyed within the reac-
tion zone and that contribute strongly to heat release are of this
type.

From Fig. 10, four distinct coherent structural features may
be identified in physical space in the primary variables: (1) vor-
tices in momentum on the reactants’ side, (2) elongated struc-
tures in momentum on the products’ side (we shall refer to these
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FIG. 10. Isocontours of primary variables in physical space for the flame–vortex
interaction simulation. (a) ρu in kg/m2s, (b) ρv in kg/m2s, (c) ρh in J/m3, and (d)
ρYHCO in kg/m3.

as “streaks”), (3) a corrugated flame front with locally large gra-
dients in all variables, particularly in thermal energy and species
concentration, and (4) strong streamwise jumps in energy, tem-
perature, and some species such as fuel and oxidant (not shown)
between reactants and products. In Secs. IV and V, these key phys-
ical space coherent structural features are identified with coher-
ent features in Fourier space and are discussed in relationship to
scale-decomposition within the classical LES framework.

To apply the multidimensional Fourier description to the 2D
nonperiodic signals described, the nonphysical spectral content that
arises from discontinuities at the boundaries in x must be removed
using the “discontinuity pollution removal” procedure described in
Sec. II C for 1D signals but extended to 2D. In Appendix B, we
describe the extension to 3D signals with one nonperiodic direction;
we apply this method reduced to 2D. In Appendix C, the multidi-
mensional procedure was validated with α = 0.85, which ensures that
the maximum signal modification remains below 5%. As a result, the
vortices in the reactants (x/D < 4), elongated streaks in the prod-
ucts (x/D > 4), and large gradients within the flame front (x/D ≈ 4)
observed in Fig. 10 are virtually unchanged in the pollution removal
periodization process (see Fig. 25 in Appendix C).

IV. FOURIER–PHYSICAL SPACE COHERENT
STRUCTURE OF FLAME–VORTEX INTERACTIONS

Figure 11 presents the concurrent Fourier space view of the
physical space signals shown in Fig. 10 described in Sec. III C. In
Fig. 11, we plot isocontours of the logarithmic squared Fourier coef-
ficients for ρu, ρh, and ρYHCO. The wavenumber axes are normalized
using the laminar flame thickness, the scale defined by the bound-
aries of the domain in Fig. 11. The pink box identifies the vor-
tex scale (kx,yδ f /π = ±δ f /D = 0.06) and is associated with the four
Fourier modes used to construct the train of vortices that enter the
computational domain (Fig. 9).

In Fourier space, the squared Fourier coefficients are symmet-
ric due to the reality condition. An additional symmetry arises in
ky because the array of symmetrical vortices creates a symmetrical
response in this laminar flow. Thus, ϕ̂2

(kx, ky) ≈ ϕ̂2
(kx,−ky). The

forced even spanwise symmetry in y leads to negligible Fourier con-
tent in Fourier modes with wavenumber ky/Δky = ±1,±3, . . .. To
visualize better the structure, the odd ky modes are removed from all
isocontour plots. We refer to “Fourier energy content” as the squared
Fourier coefficients, which represent wavenumber-specific contri-
butions to variance. To better understand how coherent structure
(described in Sec. III C) is characterized in Fourier space, systematic
spectral filtering is applied.

A. Analysis of small-scale structure
For the primary variables shown in Fig. 11, the highest mag-

nitude Fourier energy content is found to be organized within a
star-like pattern toward high wavenumbers (i.e., small scales) that
extend from the vortex to flame scale. The ρYHCO energetic Fourier
content extends to kx,yδ f /π ≈ ±3 (not shown here), the reaction zone
scale within the premixed flame.
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FIG. 11. Isocontours of the logarithmic squared Fourier coefficients of the same
primary variables at the same time instant in the flame–vortex interaction as
Fig. 10. The pink box identifies the vortex scale (kx,y δ f /π = ±δ f /D = 0.06). (a)
log10(ρ̂u2

), (b) log10(ρ̂h2
), and (c) log10(

ˆρYHCO
2
).

To identify the physical space content associated with the corre-
lated collections of Fourier modes within the legs of the star-like pat-
tern in the 2D spectral content in Fig. 11, we designed localized ellip-
tical filters (conceptually bandpass-like) that we optimally aligned
with the legs of the star patterns and their symmetric counterpart.
The two characteristic scales of the ellipse in 2D Fourier space were
estimated qualitatively. In Fig. 12, we show the filtered signals above
and the unfiltered signals below for momentum, energy, and species
concentraion variables shown in Figs. 10 and 11. Whereas the fil-
ter is designed to capture the four dominant legs in the star-like
pattern, the wavenumbers within the vortex-scale box (∣kx,y∣δ f /π ≤
0.06) are not captured by the filter. Indeed, the legs of the star-like
pattern extend from the vortex scale box to, and beyond, the flame
scale box.

Figure 13 shows in physical space the filtered and original sig-
nals in the top and bottom halves of each isocontour, respectively.
The mean value of the variable was removed by the filter, so the
mean values are added to the filtered signals in Fig. 13 for direct
comparison with the original physical space signals. We observe that
the star-like region of Fourier space corresponds to physical space
structures that surround and define the corrugated flame front. The
smaller scale features of the flame front in the insets of Fig. 10 are
captured by the coherent star-like regions of Fourier space identified
in the insets of Fig. 13. In particular, these regions of Fourier space
appear to recover most of the flame cusps in ρu. However, not all
the corrugations of the flame are recovered, as observed by the sharp
angles between segments of filtered ρYHCO in Fig. 13(c) compared
with the smooth large-scale segments in the original signal.

As discussed in Sec. II, the Fourier variance content of a dis-
continuity has power-law decay to the grid cutoff scale. The star-like
patterns in Fourier space are, in reality, power-law decays arising
from near-discontinuities at the flame front. Given the finite thick-
ness of the flame front and the sharp, but smooth, variation across
the front, the Fourier energy content exhibits power-law decay down
to the flame front scale. At the flame thickness, the Fourier variance
transitions to exponential decay (to the grid cutoff scale). The direc-
tions of the “star legs” are normal to the corresponding sections of
flame front that generates the power-law decay.

To better understand the connection between the star-like pat-
tern in Fourier space and the corrugated flame front in physi-
cal space, we compute the flame-normal gradient of primary vari-
ables along the flame centerline (progress variable iso-level, C = 0.5).
The unit normal vector direction is defined as n⃗ = −∇T/∣∇T∣ and
indicated as n⃗ f at the flame centerline.

Figure 14 shows the position of the flame centerline iso-level
in the (x, y) plane colored according to the magnitude of the local
flame-normal gradient of each variable multiplied by the laminar
flame thickness, which provides an estimate of the local “jump”
across the flame. We note that the normal gradients are highly local-
ized to the flame sheet and that whereas the magnitude of the local
normal gradient is relatively uniform along the sheet with ρh and
ρYHCO concentration, this is not the case with momentum, which
shows large variability along the sheet.

Figure 15 shows the Probability Density Function (PDF) of
the angle θ f between the flame centerline direction n⃗ f and the
streamwise direction, x (counterclockwise direction). This PDF is
approximately symmetric, as the flame corrugations are caused by a
symmetric array of vortices along the cross-stream direction. Four
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FIG. 12. Isocontours of the logarithmic squared Fourier coefficients of primary vari-
ables shown in Fig. 11. The filtered and original signals are shown in the top and
bottom halves of each figure, respectively. As discussed in the text, the filter is
constructed to extract Fourier content within the star-like pattern in Fourier space
and the pink box identifies the vortex scale (kx,y δ f /π = ±0.06). (a) log10(ρ̂u2

),

(b) log10(ρ̂h2
), and (c) log10(

ˆρYHCO
2
).

FIG. 13. Isocontours of primary variables in physical space shown in Fig. 10. The
filtered and original signals are shown in the top and bottom halves of each iso-
contour, respectively. As discussed in text, a filter is constructed to extract Fourier
content within the star-like pattern in Fig. 12. The insets show the filtered signal at
the flame cusps. (a) ρu, (b) ρh, and (c) ρYHCO.

dominant peaks around ±45○ and ±75○ may be identified, which
match the angles of dominant legs in the star-like pattern observed in
Fig. 12. The dominant peaks in the PDF at θ f ≈ ±75○ are associated
with the more pinched flame cusps (y/D = 1 and 3 in Fig. 13), which
cover a large segment of the flame centerline, and the secondary
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FIG. 14. Magnitudes of flame-normal
gradients (a) δ f ∣⃗n f ⋅ ∇(ρu)∣ (kg/m2s),
(b) δ f ∣⃗n f ⋅ ∇(dρh)∣ (J/m3), and (c)
δ f ∣⃗n f ⋅ ∇(ρYHCO)∣ (kg/m3) over the
flame centerline defined by the progress
variable iso-level, C = 0.5.

peaks at θ f ≈ ±45○ represent the smaller flame cusps (y/D = 0, 2, and
4 in Fig. 13).

The larger magnitude of the flame-normal jump of ρu over the
more pinched flame cusps [Fig. 14(a)] produces the Fourier content
dominantly along the legs oriented at ±75○ [Fig. 12(a)]. In contrast,
both thermochemical variables are shown to have approximately
uniform flame-normal jump over the flame centerline [Figs. 14(b)
and 14(c)], as the internal flame structure is preserved during the
relatively weak (uv/sL ≈ 0.5) flame–vortex interactions.

The variability in the magnitude of the flame-normal jump
along the flame centerline is quantified by its intensity (standard
deviation divided by mean). The intensities of ρu, ρh, and ρYHCO are
84%, 6.8%, and 9.1%, respectively. Thus, the star-like pattern of ρh
and ρYHCO is approximately insensitive to the magnitude of flame-
normal jump and is dictated by the PDF of θ f . Therefore, dominant
legs in the star-like pattern of ρh and ρYHCO are observed at ±75○,
secondary legs are observed at ±45○, and non-negligible content is
observed over a broad range of angles [Figs. 11(b) and 11(c)].

The analysis of this section indicates that physical space coher-
ent structure associated with the corrugated flame front creates orga-
nization (coherence) in Fourier space, which, at the smaller scales,
corresponds to a star-like pattern with significant Fourier energy
content extending from the vortex scale box to the flame scale and
smaller (Figs. 12 and 13). From the perspective of typical LES scale
decomposition, this physical–Fourier space duality in the coherent

FIG. 15. PDF of the local flame centerline angle θ f between the flame centerline
direction n⃗ f and the streamwise direction (counterclockwise direction).

structure would be partially resolved by the grid and dynamics and
partially subfilter scale. The understanding of dynamically coherent
structure could be impactful to dynamically relevant SFS modeling.
In Sec. IV B, we define RS consistent with the LES framework to
facilitate identification and quantification of coherent structure in
the physical–Fourier space duality at the RS and SFS consistent with
classical LES.

B. Defining resolved vs subfilter scales
consistent with LES

In the classical LES framework, resolved fluctuations defined
by the effective grid are carried forward in time in the numerical
simulation, where “effective” implies the additional coarsening of
the geometric grid due to the impacts of the numerical and model
dissipation. A geometric grid properly designed for LES is the one
in which the corresponding effective grid resolves a large percent-
age of variance of fluctuations in momentum and energy where
“large” implies capturing covariances at the 80%–90% level. As dis-
cussed below, here we require at least 85% of the resolved vari-
ance of momentum (ρu⃗) and enthalpy (ρh) per unit volume. The
variance is calculated after removing two-dimensional averaged val-
ues, equivalent to the sum of squared Fourier coefficients excluding
k⃗ = 0.

We define “resolved scales” using a 2D sharp low-pass rectan-
gular “effective grid” filter in Fourier space with wavenumber cutoffs
kG,x and kG,y. We define the single characteristic filter wavenumber
scale as kG ≡

√
kG,xkG,y. The optimal wavenumber cutoffs (kG,x, kG,y)

that define the RS wavenumber cutoffs are obtained performing
parametric variations to minimize kG with specified fixed percent-
age of total captured variance over the statistically stationary regime
of the simulation. Figure 16 presents 2D isocontours of kG over
the kG,x − kG,y parameter space nondimensionalized by the laminar
flame thickness. The colored iso-lines in Fig. 16 indicate wavenum-
ber cutoffs (kG,x, kG,y) that capture at least 70%, 80%, 85%, and 90%
of the total variance for ρu, ρv, and ρh. The solid circles identify the
corresponding optimal wavenumber cutoffs based on minimum kG
for each iso-line, which provides the respective wavenumbers kRS,x
and kRS,y that define the rectangular RS region in 2D Fourier space.

Figure 16 indicates that the RS wavenumber cutoffs are sys-
tematically asymmetric kRS,y > kRS,x. This is due to the cross-stream
corrugations of the flame front with content at higher ky. The obser-
vation that the colored iso-lines in Fig. 16 become approximately
vertical and horizontal at higher kG,y and kG,x reflects the rapid drop
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FIG. 16. Isocontours of nondimensional filter wavenumber cutoff kGδ f /π over the
kG,x − kG,y parameter space. The colored iso-lines indicate the percentage vari-
ance content captured by the filter relative to the energy content of the original
signal. The solid circles indicate the minimum kG at the given percentage variance
content level.

in variance that occurs as the filter cutoff crosses the wavenumbers
associated with the vortices, kG,(x,y)δ f /π = 0.06, which contain a large
percent of momentum variance. The ρh variance is largely contained
in first few wavenumbers in 2D Fourier space [Fig. 11(b)], so the
colored iso-lines shown in Fig. 16 solely depend on the captured
momentum variance. The conclusions from this study were found
to be qualitatively insensitive to the choice for percentage variance in
RS fluctuations between ∼80% and 90%. We therefore chose at least
85% variance in momentum and enthalpy per unit volume to define
“resolved scales.” The resulting wavenumber cutoffs are kRS,xδ f /π
= 0.1 and kRS,yδ f /π = 0.26 (yellow symbol in Fig. 16). This corre-
sponds to the smallest resolved lengths scale in the streamwise and
cross-stream directions ℓRS,x = π/kRS,x = 0.62D and ℓRS,y = π/kRS,y =

0.24D, respectively.
The procedure described above does not include the variance

content of ρYHCO, which as previously discussed characterizes heat
release in the reaction zone that is generally unresolved in prac-
tical LES. In the current analysis, for example, the wavenumber
cutoffs would increase to kG,xδ f /π = kG,yδ f /π = 3 to capture 85%
of the variance of ρYHCO, which would result in ρu and ρh being
nearly fully resolved by the effective grid. In this case, the simulation
would be close to a DNS. We conclude that not all dynamical equa-
tions for turbulent reacting flows can be treated within the classical
LES framework and SFS modeling strategies. This is because key
chemistry-related dynamics necessarily takes place at scales associ-
ated with molecular diffusion, which is not resolvable in practical
LES, invalidating the key LES assumption that all dominant dynam-
ics is captured by the effective grid and that the models for SFS terms
must primarily capture forward-cascade dynamics.

C. Analysis of resolved-scale structure
We continue our analysis within the LES framework using

the effective grid filter described in Sec. IV B. Figure 17 shows in
physical space the RS and original signals in the top and bottom
halves of each isocontour plot, respectively. In Fig. 17, we show
the RS flame front with boundaries defined by isocontour levels
0.05 and 0.85 of the resolved temperature-based progress variable
Cr
= (Tr

− Tr
u)/(Tr

b − Tr
u), where the superscript r indicates the RS

FIG. 17. Isocontours of primary variables in physical space. The resolved and
original signals are shown in the top and bottom halves of each isocontour plot,
respectively. (a) ρu in kg/m2s, (b) ρh in J/m3, and (c) ρYHCO in kg/m3.

variable. Figure 17 indicates that the large-scale structural features
of key variables are readily identified in the full field (bottom halves
of each isocontour). These include the vortices in the reactants’ side
and the elongated streaks on the products’ side for ρu [Fig. 17(a)].
The RS corrugated flame front is less corrugated and thicker, with
corresponding lower flame-normal gradients within the front, than
the full field, which contains the small-scale features that exist within
the SFS motions.
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Figures 12 and 13 describe coherent Fourier and physical space
features at the flame front, which are associated with the star-
like pattern that extends from the low wavenumber vortex scales
(magenta box in Figs. 12 and 13) to the high wavenumbers at the
flame and reaction zone scales (beyond the domain boundaries in
Figs. 12 and 13). However, accurate LES requires accurate predic-
tion of RS dynamics. Thus, the relationships between RS coher-
ent structures in Fourier vs physical space are of primary interest.
Figure 18 presents the concurrent view in Fourier space of the RS
signals shown in the top halves of Fig. 17, where isocontours of the
logarithmic squared Fourier coefficients for each primary variable
are shown within the Fourier space rectangle defined by our deter-
mined RS wavenumber cutoffs (∣kx∣δ f /π ≤ 0.1 and ∣ky∣δ f /π ≤ 0.26).
The color bars of Fig. 18 span the same range as in Fig. 12, and
the magenta lines correspondingly indicate the vortex-scale box
(kx,yδ f /π = ±δ f /D = ±0.06). SFS modes are identified by the white
regions in Fig. 18. In contrast to the star-like pattern discussed in
Sec. IV A, which covers a wide broadband range of mostly SFS
fluctuations, the Fourier content toward low wavenumbers (i.e.,
larger RS motions) is shown to be localized over a reduced number
of Fourier modes, such as the four corners of the vortex scale box in
ρu in Fig. 18(a).

By systematically filtering such spectral regions of interest
within the RS rectangle in Fig. 18 using localized rectangular sharp
filters, we have identified four distinct regions in Fourier space in
Fig. 19 that characterize distinct features of the resolved scales. We
systematically compute the inverse Fourier transform of the filtered
Fourier coefficients within the four sub-regions identified in Fig. 19
and analyze the corresponding physical space structure. The distinct
colored subregions in Fig. 19 represent the 2D sharp Fourier space
filters employed to decompose the resolved scales.

1. Vortices
Figure 18(a) shows the high magnitude Fourier content at and

near the corners of the vortex-scale box for ρu. The four corners
are, by construction, the modes used to generate the single-scale
vortices injected into the flow through the Dirichlet boundary con-
ditions at the inflow boundary (Fig. 9). The Fourier coefficients
surrounding these forcing modes are isolated using the 2D sharp
Fourier space filter identified by the blue regions of Fig. 19, which
filters Fourier modes in the spectral areas ∣ky∣δ f /π = 0.06 and 0.05
< ∣kx∣δ f /π ≤ kRS,xδ f /π. Figure 20 shows the physical space view
of the sub-filtered field associated with RS vortices above in
comparison with the complete RS field below. The filtered ρu field
characterizes the vortices on the reactants’ side of the mixture, effec-
tively matching the complete RS signal up to x ≲ 3.5D. If only the
four Fourier coefficients associated with the corners of the vortex-
scale box were extracted, the filtered physical space signal would
describe vortices spread uniformly over the entire computational
domain. The additional Fourier modes and their phase relationships
suppress the signal associated with the vortices on the products’ side
of the flame, localizing the vortices in the flame–vortex interactions
to the reactants’ side of the mixture.

2. Elongated streaks
The high magnitude RS Fourier content observed for ρu in

Fig. 18(a) and identified by the green regions in Fig. 19 at kx sur-
rounding zero and kyδ f /π = ±0.06 is associated with the physical

FIG. 18. Isocontours of the logarithmic squared Fourier coefficients of primary vari-
ables at the resolved scales. SFS modes are in the white. (a) log10(ρ̂u2

), (b)

log10(ρ̂h2
), and (c) log10(

ˆρYHCO
2
).

space structure that has characteristic length scales in the streamwise
direction x, which are larger than the vortex scales in y where kyδ f /π
is that for vortices created to force the flame. The Fourier coefficients
isolated using the 2D sharp Fourier space filter over the green region
in Fig. 19 are located at ∣ky∣δ f /π = 0.06 and within ∣kx∣δ f /π ≤ 0.05.
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FIG. 19. Four distinct color-coded RS sub-regions in Fourier space.

Figure 21 compares the inverse FTF of the sub-filtered ρu field above
with the complete RS field below. The sub-filtered RS field char-
acterizes the elongated streaks in the burned products’ side of the
mixture. The degree of localization of the filtered physical space
signal toward the burnt products’ side is a result of the phase corre-
lations among the Fourier coefficients within the green sub-filtered
region in Fig. 19. The relationship between the Fourier coefficients
associated with vortices and elongated streaks is controlled by the
dynamical interaction between the vortices and flame kinetics to cre-
ate elongated streaks due to volumetric expansion as the vortices
interact with the flame front.

3. Corrugated flame front
As discussed in Sec. IV A, the physical space coherent structure

associated with the highest gradients associated with the reaction
zone in the corrugated flame front is organized in Fourier space
within a star-like pattern that extends from the vortex scale box
to beyond the flame scale box (Fig. 12), which is from the small-
est SFS motions to within the RS motions. Thus, in an LES, the
physical space structure associated with these Fourier coefficients
are partially resolved scale and partially subfilter scale. The RS con-
tent of the corrugated flame is characterized by the Fourier modes
within the red spectral “flame front” region in Fig. 19, the region
0.06 ≤ ∣ky∣δ f /π ≤ kRS,yδ f /π and ∣kx∣ ≤ kRS,x. The sub-filtered physical
space counterpart of these sub-filtered Fourier coefficients is pre-
sented in Fig. 22 for primary variables of interest in the upper half of

FIG. 20. We show the physical space view of the sub-filtered field associated with
the RS vortices (blue subregions of Fig. 19) in comparison with the complete RS
field shown below for ρu (kg/m2s).

FIG. 21. We show the physical space view of the sub-filtered field associated with
the RS elongated streaks (green subregions of Fig. 19) in comparison with the
complete RS field shown below for ρu (kg/m2s).

each figure for comparison with their respective complete RS signals
in the lower half of each figure. Figure 22 shows that the sub-filtered
signals characterize, in physical space, the RS flame cusp associated
with the RS flame front corrugations in the cross-stream direction.
The black lines in Fig. 22 indicate progress variable values 0.05 and
0.85 in the RS temperature field. The variance associated with these
Fourier coefficients makes the RS wavenumber cutoffs systemati-
cally non-isotropic (kRS,y > kRS,x, in Sec. IV B), consistent with the RS
structure of the large-scale cross-stream corrugations in the flame
front. Therefore, the largest scale content of the star-like pattern
described in Sec. IV A (Fig. 12) is resolved by the LES effective grid,
with the higher gradient small-scale features of the corrugated flame
mostly subfilter scale.

4. Streamwise front
The final physical/Fourier space coherent structure identified

is associated with the cross-stream averaged gradients in the corru-
gated flame front, referred to as “streamwise front” in Fig. 19, charac-
terized by the Fourier modes within the yellow spectral sub-region,
the region ky = 0 and ∣kx∣ ≤ kRS,x. Figure 23 shows the physical space
view of the sub-filtered field associated with streamwise gradients in
the flame front in comparison with the complete RS field (below).
In particular, the streamwise flame front reflects the jump of ρh
from reactants to products and the localized concentration of ρYHCO
within the flame front, as described in Sec. III C.

D. Energy content in distinct structures
The systematic filtering operations described in Sec. IV C relate

the coherent structure in physical space to the coherent structure
in Fourier space in context with LES of premixed turbulent com-
bustion. To quantify the relative variance content of the distinct
physical/Fourier space coherent structures for primary variables of
interest, we compute the filtered variance content of each coher-
ent structure as the sum of squared Fourier coefficients over the
sub-regions in RS Fourier space shown in Fig. 19. We have found
that these characterize distinct structural features in physical space.
Figure 24 presents for each variable the percentage of variance con-
tained in each coherent structure relative to the energy contained in
the total original signal.
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FIG. 22. We show the physical space view of the sub-filtered field associated with
the RS corrugated flame front (red subregions of Fig. 19) in comparison with the
complete RS field shown below for (a) ρu (kg/m2s), (b) ρh (J/m3), and (c) ρYHCO

(kg/m3).

The sum of the color bars in Fig. 24 gives the total % vari-
ance resolved by the effective grid. We note that the momentum and
enthalpy are resolved, by construction, at least at the 85% level. The
variance of ρYHCO, on the other hand, is only 8% resolved. Created
and destroyed in the reaction zone, HCO as of several important
species with dynamics underlying heat release largely unresolved

FIG. 23. We show the physical space view of the sub-filtered field associated with
the RS streamwise front (yellow subregions of Fig. 19) in comparison with the
complete RS field shown below for (a) ρh (J/m3) and (b) ρYHCO (kg/m3).

by practical LES. As discussed in Sec. IV A, the star-like pattern is
associated with reaction zone kinetics. This narrow frontal structure
exists within the corrugated RS flame front described in Sec. IV C
and is the dominant SFS coherent structure.

FIG. 24. Percent variance content in ρu, ρh, and ρYHCO in the RS flame front (red),
RS streamwise front (yellow), RS elongated streaks (green), RS vortices (blue),
and SFS motions (gray) for the flame–vortex interaction simulation. The percent
variance is relative to the total variance of the complete (RS and SFS) signal.
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Figure 24 indicates that the RS variance of ρu is dominated by
the vortices, elongated streaks, and RS corrugated flame with rel-
atively small contribution from the streamwise front. In contrast,
the RS variance of ρh is fully dominated by the streamwise front
and the dominantly SFS variance of the species ρYHCO is associated
with the internal reaction zone where heat release is highly localized.
These results suggest that in a turbulent premixed flame RS momen-
tum evolution contains a major contribution from the RS flame
front. Since in Fourier space the corrugated flame front is a coherent
structure that resides in both the resolved and subfilter scales, dom-
inant inter-scale couplings in the evolution of RS momentum occur
within the multiscale coherent structure associated with the flame
front.

The modeling of inter-scale couplings is more critical for the
combustion intermediates that are directly involved in heat release,
such as ρYHCO, where the variance content is largely at the subfilter
scales. The turbulent combustion dynamical system therefore makes
it difficult to maintain the classical LES framework in which the geo-
metrical and effective grids are designed to resolve a large percentage
of the variance of all dynamically relevant variables with the impacts
of RS–SFS interaction on RS evolution well approximated by mod-
els that characterize statistically a dominantly forward-cascading
interscale dynamics.

V. DISCUSSION AND CONCLUSIONS
The current study has two interrelated motivations: (1) the

development of a “discontinuity pollution removal” procedure that
removes nonphysical Fourier content arising from boundary dis-
continuities when the FTF of a bounded analytic signal is taken in
a nonperiodic direction, without significantly modifying the signal
away from the boundaries (Sec. II and Appendix B) and (2) analysis
of the relationship between the same coherent structure in phys-
ical space and in Fourier space with data from a reduced physics
simulation designed to have key characteristics of flame–turbulence
interactions that are characteristic of flame–turbulence interactions
in premixed turbulent combustion (Sec. IV). Because discontinuity
pollution removal is required preceding our analysis of the coherent
structure in Fourier space, we use this simulation also to validate the
pollution-removal method (Appendix C).

Our discontinuity pollution removal procedure has potential
applications that extend well beyond multidimensional Fourier anal-
ysis of premixed turbulent combustion DNS, where “discontinuity”
is, in reality, a large gradient with magnitude determined by the fixed
boundary jump and the resolution of the grid. Based on the mathe-
matical identification of the specific Fourier content associated with
the nonperiodicity of the signal (Sec. II B), it is both a “pollution
removal” and a (partial) signal periodization procedure. “Partial”
periodization arises from the tradeoff between (i) the removal of
spectral content associated with the nonphysical discontinuity that
is created at the boundaries by the bounded Fourier transform of
nonperiodic signals and (ii) the degree of alteration of the original
signal away from the boundaries. Fully periodizing a signal with
our approach requires the subtraction from the original signal of
all spectral content of a “discontinuity function” that contains the
same boundary discontinuity as in the original signal as well as a
linear ramp between the boundaries, which impacts the signal every-
where.23,25 To avoid this problem, discontinuity removal is confined

to high wavenumbers above a user-determined high-pass filter cutoff
that localizes the modification of the signal to the boundary dis-
continuity, thus minimizing changes to the signal away from the
boundary. However, application of the high-pass filter leaves behind
a residual level of boundary discontinuity with the associated resid-
ual level of nonperiodicity. We designed a procedure that determines
an optimal high-pass filter cutoff as a function of a user-chosen
parameter that decides the degree of residual boundary discontinu-
ity (and nonperiodization) vs the level of modification of the original
signal away from the boundaries (Sec. II C). Whereas in Sec. II the
discontinuity pollution removal procedure is developed for analytic
1D signals, the approach is extended to 3D signals with one non-
periodic direction in Appendix B. Our approach is useful to other
applications where the spectral analysis of nonperiodic computa-
tional or experimental signals is required, and we expect that our
approach can be generalized and improved.

We developed a detailed analysis to study and validate our
approach using 2D data from a flame–vortex–train interaction sim-
ulation in Appendix C. In the course of the validation analysis, we
learn that the optimization process to determine the filter cutoff
wavenumber, together with the choice of the user-defined param-
eter α, retains the large-scale unadulterated content while removing
the polluting influence of the boundary discontinuity. This process
uncovers the true diffusion-induced exponential spectral drop-off
at higher wavenumbers, which was fully masked by the power-law
content of Fourier modes created by the unphysical boundary dis-
continuity. It now becomes possible to analyze the true multidi-
mensional spectral content of nonperiodic signals. This is necessary
for our application to the calculation of the nonlinear triadic (and
quadratic) interactions underlying essential nonlinearities, the sub-
ject of a future submittal (briefly summarized in the work of Paes
et al.10).

Having removed signal pollution in the nonperiodic direction,
we analyzed the relationships between coherent structures in phys-
ical and Fourier space through the application of systematic local-
ized filtering in Fourier space in context with the multidimensional
Fourier representation of scale content (Sec. IV). Collections of
Fourier coefficients are shown to be connected to localized coherent
structures in physical space, where “coherence” is embedded in the
phase correlations that exist among individual Fourier coefficients
at different scales in different directions (i.e., positions in Fourier
space) underlying the physical space representation of the coherent
structure.

In particular, a small-scale coherent structure is organized
within a coherent broadband “star-like” pattern in Fourier space
that extends from the vortex to the flame scales (Sec. IV A). The
magnitudes and directional dependences of the Fourier coefficients
within the legs of the star are shown to be closely connected with
the direction and magnitude of flame-normal gradients of key vari-
ables within the corrugated flame front. This observation suggests
that the Fourier content of flame–turbulence interactions would also
be organized in the coherent broadband star-like pattern over a
wide range of angles due to the wide range of flame corrugations
caused by turbulence. The current study shows that, in more com-
plex multiscale turbulence–flame interactions, collections of flame
segments with similar flame-normal orientation may be isolated by
the systematic application of specific filtering operations in Fourier
space developed in the current study. With this understanding, it is
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possible to analyze DNS studies to relate embedded coherence
in multidimensional scale space to specific nonlinear interactions
underling evolution in physical space.10

For a consistent interpretation of our reduced-physics simu-
lations in relationship to LES, we defined resolved scales with a
2D Fourier space filter that decomposes the scale-based content of
fluctuations in key variables into “resolved” vs“subfilter” scales (RS
vs SFS) based on the key criterion underlying LES that the spec-
tral content of the variances of key variables is captured by the
effective grid to the 80%–90% level (Sec. IV B). The LES frame-
work includes the requirement that, statistically, nonlinear interscale
interactions transfer information from the larger resolved scales to
the smaller, and much less energetic, subfilter scales. In this way, RS
evolution is impacted only indirectly by SFS fluctuations. Both of
these requirements are necessarily violated in LES of premixed tur-
bulent combustion due to the critical existence of key kinetics that
lead to heat release at scales unresolvable by the grid. Consequently,
the range of resolved scales is defined based on the relative RS vari-
ance of momentum and thermal energy fluctuations, but not on
species concentrations.

Interestingly, our analysis shows the direct correspondence
between localized regions of RS Fourier space and coherent struc-
tural features in physical space at the resolved scales, implying that
it is now possible to isolate the interscale couplings underlying the
evolution of specific structural features. Most importantly, we have
identified the localized regions in 2D Fourier space, which corre-
spond to the corrugations in the flame front in the transverse direc-
tion in response to forcing by the vortex train, as well as axial gra-
dients associated with the overall planar structure of the flame. In
addition, we have shown that the elongated structures within the
products that are created as eddies pass through the flame are local-
ized in Fourier space to axial wavenumbers near kx = 0 and spanwise
wavenumbers that match the dominant spanwise wavenumbers ky
of the forcing eddies. We anticipate that these general groupings
of Fourier modes exist in fully turbulent flame–turbulence inter-
actions with details dependent on the scales and strengths of the
turbulence eddies that distort the flame front, making it possible
to study nonlinear scale interactions associated with specific fea-
tures underlying flame–turbulence dynamics in premixed turbu-
lent combustion. The relative variance content of different coherent
structures provides the kinematic significance of distinct structural
features for the key variables and their relative RS vs SFS content
in LES (Sec. IV D). Whereas over 90% of the variance of HCO
is subfilter scale, momentum fluctuations are mostly resolved by
the effective grid. Although major fluctuations in momentum may
be found in the vortices on the reactants’ side and streaks on the
products’ side of the flame (i.e., the turbulence eddies), significant
variance content also exists in the deformations of the flame front
(Fig. 24).

In Sec. IV A, we explained that two additional computational
models have been analyzed with “moderate” and “strong” vortices,
where the moderate vortices generated long neck distortions of the
flame sheet and strong vortices produce pinching of necks into pock-
ets that continue to burn within the burnt products. As discussed
in Paes,13 there were few findings that add significantly to what has
been discussed here. Primarily, it was found that the stronger-vortex
cases emphasize the kinematic Fourier–physical space relationships
associated with strongly corrugated flame sheets. Specifically, the

variance content of flame corrugations (red spectral regions in
Fig. 19) increases relative to the vortices. In addition, the star-like
pattern becomes buried within frontal contributions induced by dis-
continuities at the surfaces of the pockets, which radiate in all direc-
tions and obscure the directions of larger-area flat portions of the
primary flame sheet. Extrapolating to fully developed turbulence,
one anticipates that the star-like pattern observed distinctly (Figs. 11
and 12) becomes a roughly isotropic distribution of star-like pat-
terns. In the current study, we learn that individual kinematic con-
tributions to the Fourier space structure from the frontal content in
the presence of the full range of turbulence scales can be extracted
with the application of elliptical filters extended to 3D Fourier space
similar to the application of three-dimensional wavelet filtering with
physically modeled wavelet scales (see the work of Brasseur and
Wang,5 for example).

The current analysis provides a deeper understanding of key
SFS modeling dynamics in LES of turbulent reacting flows, where
the RS response to the injection of thermal energy well below grid
scale cannot be directly predicted and cannot be modeled assuming
classical forward-cascade-dominant dynamics where SFS impacts on
RS evolution are largely diffusive. Section IV in the current study
provides a deeper understanding of the interscale coupling issues
that must be considered in advanced closure strategies. We show,
for example, that the SFS variance of all variables analyzed is asso-
ciated with the SFS content of the corrugated flame front. In 2D
Fourier space, the flame front lies within the spectral star-like coher-
ent structure, a structure that resides partially in the resolved scales
and partially in the subfilter scales. One might therefore anticipate
potentially important RS–SFS couplings among the Fourier modes
associated with this multiscale coherent structure. We aim to follow
the current report with an equally extensive report of the nonlin-
ear couplings associated with the physical–Fourier space coherent
structures described in the current study.
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APPENDIX A: REPRESENTATION IN PHYSICAL
AND FOURIER SPACE OF HIGHER-ORDER BOUNDARY
DISCONTINUITIES OF NONPERIODIC SIGNALS
IN FINITE DOMAINS

Consider an arbitrary smooth and continuous 1D signal f (x)
over a finite domain 0 ≤ x ≤ L with boundary values f (0) and f (L).
As discussed in Sec. II, if f (L) ≠ f (0), the periodic extension of
f (x) has a C0 discontinuity at its boundaries with a finite jump
Δ f = f (L) − f (0). As shown in Eq. (3), the C0 discontinuity is
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characterized by a linear “discontinuity function” d(x) with Fourier
coefficients d̂(kx) that have power-law dependence as kx [Eq. (2)].
This description may be generalized to higher order boundary dis-
continuities CN with jumps in the nth derivative f (n)

(x) ≡ dn f /dxn

at the boundary given by Δ f (n)
= f (n)

(L) − f (n)
(0). These higher

order discontinuities are represented in physical space by linear dis-
continuity functions at the (n) derivative level of f (x), which, when
integrated back to the (0) derivative level of f (x), result in nth order
polynomials.

Similarly to the C0 discontinuity function given by Eqs. (3) and
(2), we define the CN discontinuity function at the derivative level
(n) as d(n)N (x). By construction, the CN discontinuity function at its
highest derivative level (n = N) contains the same discontinuity as
f (N)
(x) separated by a linear function as per Eq. (3) at the functional

level,

d(N)N (x) =
Δ f (N)

L
x +C(N)N . (A1)

To construct the CN discontinuity function at the function level
d(0)N (x) (n = 0), d(N)N (x) is integrated sequentially from d(N)N (x) to
d(N−1)

N (x) and then to d(N−2)
N (x), d(N−3)

N (x), . . .d(n)N (x), . . ., end-
ing at the function level d(0)N (x). At each integration level, a new
constant of integration is introduced. These are found with three
requirements. First, the discontinuity in the integrated discontinu-
ity function at level d(n)N (x) must equal the discontinuity in the nth
derivative in the function f (x) at the nth level,

Δd(n)N ≡ d(n)N (L) − d(n)N (0) = Δ f (n). (A2)

Second, at the functional (n = 0) level, all discontinuity functions
must have the same boundary values so that at x = 0, d(0)N (0)
= d(0)N−1(0) = d(0)N−2(0) = d(0)0 (0). Finally, as discussed in context with
Eq. (2), the discontinuity function at the functional level has zero

mean so that d̂(0)N (kx = 0) = 0. The result is a collection of poly-
nomial functions d(0)N (x) that contain CM≤N discontinuities at the
boundaries, M = 0, . . . , N.

Using the approach just described, the C0 discontinuity is
represented by a linear function at its n = N = 0 derivative level,

d(0)0 (x) =
Δ f (0)

L
x +C(0)0 =

Δ f (0)

L
(x −

L
2
), (A3)

where the constant is C(0)0 = −
Δ f (0)

2 so that d(0)0 (x) has zero mean
(Sec. II A).

Similarly, the C1 discontinuity is represented by a linear func-
tion at the n = N = 1 derivative level,

d(1)1 (x) =
Δ f (1)

L
x +C(1)1 , (A4)

which when integrated results in

d(0)1 (x) = ∫ d(1)1 dx +C(0)1 =
Δ f (1)

L
x2

2
+C(1)1 x +C(0)1 , (A5)

where C(0)1 = C(0)0 = −
Δ f (0)

2 is obtained by requiring that d(0)1

(0) = d(0)0 (0). The constant C(1)1 is found by requiring that Δd(0)1 =

Δ f (1) in Eq. (A5) so that C(1)1 =
Δ f (0)

L −
Δ f (1)

2 . Thus, the C0 and C1

boundary discontinuities in f (x) are represented by a combination
of parabolic and linear functions,

d(0)1 (x) =
Δ f (1)

L
x(

x − L
2
) + d(0)0 (x). (A6)

We now represent the C2 discontinuity by a linear function at
the n = N = 2 derivative level,

d(2)2 (x) =
Δ f (2)

L
x +C(2)2 . (A7)

When integrated twice, this produces

d(1)2 (x) = ∫ d(2)2 dx +C(1)2 =
Δ f (2)

L
x2

2
+C(2)2 x +C(1)2 (A8)

and

d(0)2 (x) = ∫ d(1)2 dx +C(0)2 =
Δ f (2)

L
x3

6
+C(2)2

x2

2
+C(1)2 x +C(0)2 ,

(A9)

where C(0)2 = C(0)1 = C(0)0 = −
Δ f (0)

2 by setting d(0)2 (0) = d(0)1 (0)
= d(0)0 (0).

The constant C(2)2 is found by requiring that Δd(1)2 = Δ f (1)

in Eq. (A8) so that C(2)2 =
Δ f (1)

L −
Δ f (2)

2 . Similarly, C(1)2 is found

by requiring that Δd(0)2 = Δ f (0) in Eq. (A9) so that C(1)2 =
Δ f (0)

L

−
Δ f (1)

2 + Δ f (2) L
12 . Thus, the C0, C1, and C2 boundary disconti-

nuities in f (x) are represented by a combination of polynomial
discontinuity functions,

d(0)2 (x) =
Δ f (2)

L
x(

x2

6
−

xL
4
+

L2

12
) + d(0)1 (x). (A10)

The procedure to represent the fundamental discontinuities at
the boundaries in physical space may be extended to arbitrary order
discontinuities C1≤M≤N as previously discussed. First, the CN dis-
continuity is represented by a linear function d(N)N (x) at the n =
N derivative level as per Eq. (A1), which introduces an arbitrary
constant C(N)N . This linear function is incrementally integrated N
times to recover the polynomial d(0)N (x) at the (0) derivative level,
which introduces N arbitrary constants C(M)N associated with the
integrated functions d(M)N for M = N − 1, . . . , 0, respectively. The
constant C(0)N = C(0)0 = −

Δ f (0)

2 is obtained by requiring that d(0)N (0)
= d(0)0 (0). Starting at the highest M level of Δd(M)N , each unknown
constant C(M)N is found by requiring that Δd(M)N = Δ f (M) in the
respective integrated level of d(N)N (x) as per Eq. (A2).

In Fourier space, Eq. (1) may be generalized to f (n)
(x),

f̂ (n)(kx ≠ 0) =
1
L∫

L

0
f (n)(x)e−ikxxdx

= −
i

kx

ˆf (n+1)(kx) +
i

kx

Δ f (n)

L
. (A11)
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The fundamental CM≤N discontinuities at the boundaries are there-
fore represented in Fourier space as

d̂(0)N (kx ≠ 0) =
N

∑
n=0

Δ f (n)

L
(

i
kx
)

n+1
, N ≥ 0, (A12)

where d̂(0)N (0) = 0.

APPENDIX B: EXTENSION OF “DISCONTINUITY
POLLUTION REMOVAL” PROCEDURE
TO MULTIDIMENSIONAL SIGNAL
1. Basic strategy

To apply the multidimensional Fourier description to the non-
periodic signals described in Sec. III C, the nonphysical spectral
content that arises from discontinuities at the boundaries in x must
be removed using the “discontinuity pollution removal” procedure
described in Sec. II C. Here, we extend the procedure to multidi-
mensional signals with only one nonperiodic direction. Whereas we
develop the generalization to 3D signals, the application to 2D is
straightforward.

Consider an analytic 3D signal f (x, y, z) bounded between
(0, 0, 0) and (Lx, Ly, Lz). The signal is periodic in y and z and
nonperiodic in x so that the boundary discontinuity Δ f (y, z)
= f (Lx, y, z) − f (0, y, z) can vary with (y, z). There are two ways
that the discontinuity removal process in x described in Sec. II C
might be applied. In the first, the 1D procedure developed there is
applied independently along x pencils at discretized (y, z) locations
on the transverse plane. This, however, leads to discontinuities in
the modified signal over the (y, z) plane that we would like to avoid.
We therefore apply the second method, whereby the 1D procedure
described in Sec. II C is developed for the two-dimensional bounded
FTF of f (x, y, z) in y and z,

f̂ y,z
(x; ky, kz) ≡ FTFy,z{ f (x, y, z)}, (B1)

where we use the hat with adjacent coordinates to indicate the
taking of a Fourier transform in the (y, z) coordinate directions.
The Fourier coefficients are complex functions defined at discrete
transverse wavevectors with discrete components (ky, kz) that con-
tain the boundary jumps in x reflecting nonperiodicity as a func-
tion of (ky, kz). In this way, the discontinuity removal process is
decomposed in terms of spatial scale globally over the transverse
plane.

Following the procedure in Sec. II A, integration by parts of the
Fourier transform of Eq. (B1) in the nonperiodic direction x is

ˆ̂f y,zx

(kx; ky, kz) =
1
Lx
∫

Lx

0
f̂ y,z
(x; ky, kz)e−ikxxdx

= −
i

kx

∂̂ f̂
y,z

∂x

x

(kx; ky, kz) +
i

kx

Δf̂ y,z
(ky, kz)

Lx
(B2)

for kx ≠ 0, where we use the second hat with adjacent coordinate x to
indicate the Fourier transform is in x. The “discontinuity function”
is therefore

ˆ̂d y,zx

(kx; ky, kz) =
i

kx

Δf̂ y,z
(ky, kz)

Lx
for kx ≠ 0, (B3)

with
ˆ̂d y,zx
(0; ky, kz) = 0 (zero mean in x). This has the following

inverse transform in x:

d̂y,z
(x; ky, kz) =

Δf̂ y,z
(ky, kz)

Lx
(x −

L
2
). (B4)

Thus, the discontinuity function in Fourier space,
ˆ̂d y,zx
(kx; ky, kz),

is represented in physical space by a sawtooth function with zero
mean. However, unlike the treatment for real 1D functions in Sec. II,
here the discontinuity function is complex similar to the 2D Fourier
transform of f (x, y, z).

Following the developments in Sec. II C, to localize near the
discontinuities at the boundaries, d̂y,z

(x; ky, kz) is high-pass filtered
to produce a modified discontinuity function with suppressed low-
wavenumber contributions from the linear ramp in the discontinu-
ity function between the two boundaries,

ˆ̂dm
y,zx

(kx; ky, kz , kcut) = m(kx; kcut)
ˆ̂d y,zx

(kx; ky, kz), (B5)

where m(kx; kcut) is the high-pass filter, equal to one when kx ≥ kcut
and zero when kx < kcut . Note that kcut = kcut(ky, kz), so kcut is deter-
mined for each discrete wavevector (ky, kz) on the plane perpen-
dicular to the nonperiodic direction. The inverse transform in x of
Eq. (B5) returns the function to physical space variations in x,

d̂m
y,z
(x; ky, kz , kcut) = FTF−1

x {
ˆ̂dm

y,zx

(kx; ky, kz , kcut)}. (B6)

d̂m
y,z
(x; ky, kz , kcut) is a modified version of the discontinuity func-

tion that localizes to the discontinuities and suppresses the linear
ramp of the sawtooth.

Once a useful optimization algorithm is developed to deter-
mine kcut(ky, kz) (below), the FTF of the original signal f (x, y, z) is
modified to remove the spectral content arising from the x boundary
discontinuities within f ,

ˆ̂fm
y,zx

(kx; ky, kz , kcut) =
ˆ̂f y,zx

(kx; ky, kz)

−
ˆ̂dm

y,zx

(kx; ky, kz , kcut). (B7)

In physical space, the modified signal has the form

f m(x, y, z, kcut) = f (x, y, z) − dm(x, y, z, kcut), (B8)

where each term in Eq. (B8) is the 3D inverse Fourier transform
of the corresponding Fourier coefficients in Eq. (B7). The residual
boundary jump in x in the modified signal is therefore given by

Δ f m(y, z, kcut) = f m(Lx, y, z, kcut) − f m(0, y, z, kcut)

= Δ f (y, z) − Δdm(y, z, kcut), (B9)

where Δ f (y, z) and Δdm(y, z, kcut) are the boundary jumps in the
original signal and modified discontinuity function, respectively.

Ultimately, we analyze
ˆ̂fm

y,zx
(kx; ky, kz , kcut) in Fourier space and

f m(x, y, z, kcut) in physical space.
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2. Algorithm to determine the filter cutoffs
To complete the discontinuity removal process, it is necessary

to develop an algorithm to determine the filter cutoff kcut(ky, kz)

for each discrete wavevector (ky, kz). In doing so, one recognizes
that because all functions are real in physical space, the reality
condition, ĥ(−k+y ,−k+z ) = ĥ∗(k+y , k+z ), must be maintained for all
functions h(y, z). Thus, for every “positive” wavevector (k+y , k+z ),
there exists a “negative” wavevector (−k+y ,−k+z ) with a Fourier
coefficient determined by the Fourier coefficient of the “positive”
wavevector (k+y , k+z ) and kcut(−k+y ,−k+z ) = kcut(k+y , k+z ). How one
separates the set of wavevectors (ky, kz) into the sets (k+y , k+z ) and
(−k+y ,−k+z ) is, in principle, arbitrary. The algorithm to determine
kcut(ky, kz) for each (k+y , k+z ) pencil is developed in physical space by

extracting the Fourier coefficients in kx of
ˆ̂dm

y,zx
(kx; ky, kz , kcut) andˆ̂fm

y,zx
(kx; ky, kz , kcut) for each pair of pencils emanating in x from the

positive and negative wavevectors, (k+y , k+z ) and (−k+y ,−k+z ),

h̃(x; y, z) = FTF−1
x,y,z{δ(∣ky∣ − k+y , ∣kz ∣ − k+z )

ˆ̂h y,zx

(kx; ky, kz)}. (B10)

The tilde (∼) implies that the dependence of h̃(x; y, z) on y and z
comes from a single harmonic Fourier mode selected by the Dirac
delta function that defines a sine wave on the y–z plane with the
wavelength and direction determined by the magnitude and direc-
tion of positive/negative wavevector pair associated with the Fourier
mode. The x-dependence, on the other hand, comes from the x-
dependence in the nonperiodic direction of the original signal and

in
ˆ̂h y,zx
(kx; ky, kz) ∼

ˆ̂f y,zx
,
ˆ̂dm

y,zx
, and

ˆ̂fm
y,zx

in Eq. (B10), including the

residual boundary jump in
ˆ̂fm

y,zx
along scale-based pencils in x at

(k+y , k+z ) and (−k+y ,−k+z ).
The aim is to minimize the residual boundary jump in f m

[Eq. (B9)] without significantly altering the signal away from the
x boundaries. To this end, we follow the approach described in
Sec. II C, whereby a weighting parameter α [Eq. (10)] is used to bal-
ance two parameters: one designed to quantify the relative change
made in the signal away from the boundary [ε, Eq. (7)] and the other
designed to quantify the level of residual boundary discontinuity and
non-periodicity in x [Δr , Eq. (8)] retained in the modified signal, f m.
In the multidimensional application, however, these parameters are
formed using the form of the function h̃ in Eq. (B10) that select a sin-
gle pair of Fourier modes on the y–z plane defined by the “positive”
mode, (k+y , k+z ),

ε(k+y , k+z ; kcut) =
∥d̃m(x, y, z; kcut)∥V

∥̃f (x, y, z)∥V
, (B11)

Δr(k+y , k+z ; kcut) = maxy,z

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∣Δf̃m(y, z; kcut)∣

∣maxx(∂ f̃ (x, y, z)/∂x)∣Δx

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

, (B12)

where kcut = kcut(k+y , k+z ). Both parameters are defined for pencils at
(k+y , k+z ) with their conjugate locations (−k+y ,−k+z ). In Eq. (B11),
∥ ⋅ ⋅ ⋅ ∥V is the L2 norm over volume V within the computational
domain, allowing the user to select, if desired, the region that is most
critical to minimize deviation in the original signal. In Eq. (B12),

Δf̃m(y, z, kcut) = f̃m(Lx, y, z, kcut) − f̃m(0, y, z, kcut), defined by insert-

ing
ˆ̂f y,zx

into Eq. (B9) for
ˆ̂h y,zx
(kx; ky, kz), is a function of (y, z). The

denominator selects the largest physical x gradient in f̃ in x away
from the boundaries, where f̃ is defined along (ky, kz) pencils. Both
the numerator and denominator of the ratio in Eq. (B12) depend
on (y, z), and Δr is defined as the maximum value of the ratio in
Eq. (B12) over the y–z plane.

ε(k+y , k+z ; kcut) and Δr(k+y , k+z ; kcut) are both functions of kcut ,
which is itself a function of (k+y , k+z ). As per Sec. II C, we select the
optimal value for kcut at each (k+y , k+z ) by identifying the minimum
in the following function with a specified weighting parameter, α:

ϕ(kcut ; α) = αε(k+y , k+z ; kcut) + (1 − α)Δr(k+y , k+z ; kcut). (B13)

The optimal choice for kcut is found at the minimum in ϕ as a
function of kcut for specified fixed α,

ϕ(kopt
cut ; α) = minkcut [ϕ(kcut ; α)]. (B14)

As described in Sec. II C, α is chosen by the user to balance the
degree of reduction of the polluting consequences of the unphysi-
cal boundary discontinuity induced by the Fourier transform in the
nonperiodic direction with the level of modification to the signal
away from the boundary.

The result of applying Eq. (B14) with user-defined α is an opti-
mal value of kcut for each value of (ky, kz) as needed to complete
the discontinuity removal process extended to multidimensional
signals, as described above in Appendix B 1.

APPENDIX C: VALIDATION AND PARAMETERIZATION
OF THE DISCONTINUITY POLLUTION REMOVAL
PROCEDURE

The discontinuity removal procedure introduced in Sec. II
and formalized for multidimensional signals in Appendix B is vali-
dated using the 2D flame–vortex interaction simulation described in
Sec. III C. To illustrate the outcome of the procedure, Fig. 25 presents
the original ( f ) and modified ( f m = f − dm) signals of ρu along
with its associated modulated discontinuity function, dm, in phys-
ical space. The signals are shown over the computational domain
(0 ≤ x/D ≤ 16) at the time instant of largest boundary discontinu-
ity in x (Δ f ) in ρu, which occurs with the vortices at the inflow and
elongated streaks in the products (Sec. III C). Note that in Secs. III C
and IV, the signals are analyzed at the time instant when the flame is
most “corrugated.”

The Fourier space counterparts of the original, post-processed,
and modulated discontinuity signals associated with ρu are pre-
sented in Fig. 26. We plot isocontours of the logarithms of squared
Fourier coefficients of ρu with the color bars spanning five orders
of magnitude of log(ρu)2. The wavenumber axes are normalized
using the planar laminar flame thickness. Figure 26 shows 2D
Fourier space down to the flame scale, which are the values kx,yδ f /π
= ±1. The pink box identifies the vortex scale defined by kx,yδ f /π
= ±δ f /D = 0.06, where kv ≡ π/D is the vortex-scale wavenumber
[see Fig. 9(b)], the four Fourier modes used to construct the train
of vortices at inflow. As explained in Sec. IV, the spanwise symmetry
of the inflow vortices leads to negligible Fourier content in Fourier
modes odd in ky (i.e., at ky/Δky = ±1,±3, . . .). These odd ky modes
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FIG. 25. Isocontours of (a) the original signal f(x, y) and (b) the modified signal
f m(x, y) in physical space of ρu for the 2D flame–vortex interaction simulation.
The associated modulated discontinuity function dm is shown in (c).

have been removed from all spectral isocontour plots to improve the
visualization.

The highest magnitude Fourier energy content in Fig. 26(a)
includes a “star-like” pattern that extends to the highest wavenum-
bers, extending from the vortex scale box to the flame scale box
aligned at ±42○ from the kx-axis. In Sec. II A, we showed that dis-
continuities create power-laws in Fourier space that extend from the
lowest wavenumbers to the grid scale, where a discretized disconti-
nuity becomes a large gradient. The star-like pattern in Fig. 26 arises
from power-law drops in variance arising from the large physical
gradients at the flame front, as described in Sec. IV. While the star-
like pattern is associated with physically relevant frontal structures of
the signals [i.e., the corrugated flame fronts in Fig. 10(a)], unphysical
power-law variations associated with boundary discontinuities are
observed in Fig. 26(b) as bands over kx with large Fourier content at
∣ky∣δ f /π ≤ 0.06 (i.e., at wavenumbers ky/Δky = 0,±2). These scales
are associated with the cross-stream averaged mean (kyδ f /π = 0)
and the transverse scale of the vortices (kyδ f /π = ±δ f /D), which
introduce boundary discontinuities between the inflow and outflow
[Fig. 25(a)].

To effectively remove this pollution, the discontinuity removal
procedure described in Appendix B was applied with α = 0.85,
which ensures that the maximum signal modification at the polluted
wavenumbers [Eq. (B11)] remains smaller than 5%. The fundamen-
tal discontinuity function d(x, y) is constructed considering only the

FIG. 26. Isocontours of the (a) original f̂(kx ; ky , kz) signal and (b) modified
f̂m(kx ; ky , kz , kcut) signal in Fourier space of log(ρ̂u2

) for the 2D flame–vortex
interaction simulation. The associated modulated discontinuity is shown in (c).

C0 discontinuity [Eq. (B3)], and the volume of interest in Eqs. (B11)
and (B12) is the region 2 ≤ x/D ≤ 8.

Figures 25(b), 25(c), 26(b), and 26(c) show in physical and
Fourier space, respectively, the 2D instantaneous isocontours of the
modulated discontinuity function (dm) and the post-processed sig-
nal ( f m = f − dm). The modulated discontinuity function in physical
space [Fig. 25(c)] minimizes the modification in the signal within
the domain and localizes the harmonic functions toward the dis-
continuities at the boundaries in x with variations at the vortex
scale in y. Thus, the final signal in physical space [Fig. 25(b)] pre-
serves the original signal [Fig. 25(a)] away from the boundaries.
In Fourier space, the modulated discontinuity function [Fig. 26(c)]
captures the power-law pollution in kx at kyδ f /π = 0 and ±0.06
with negligible contribution at unpolluted wavenumbers. The opti-
mal cutoff wavenumbers kopt

cut(ky) that modulate the power-laws in
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FIG. 27. [(a) and (b)] Computed ϕ, ε,
and Δr as functions of kcut for α = 0.85
and V in the range 2 ≤ x/D ≤ 8 and [(c)
and (d)] squared Fourier coefficients f̂ 2,
d̂m

2, and f̂m2 as functions of kx , where
the dashed red line indicates unmodu-
lated d̂2. Signals at k+y δ f /π = 0 [left: (a)
and (c)] and 0.06 [right: (b) and (d)]. The
vertical dotted line indicates optimal kcut .

Fig. 26(c) are higher than the kx vortex-scale wavenumbers so that
the power-law pollution is removed at scales smaller than the vor-
tex scales (∣kx∣δ f /π > 0.06). Consequently, while power-law pollu-
tion from the boundary discontinuity is removed in the modulated
signal in Figs. 26(b) and 25(b), the large-scale vortex structures and
the star-like pattern associated with the corrugated flame front are
unaffected.

To access the tradeoff between the signal modification and
the residual boundary discontinuity in the selection of the opti-
mal wavenumber cutoffs kopt

cut(k
+

y ), we analyze the filtered signals
at each k+y separately [Eq. (B10)]. Figures 27(a) and 27(b) show at
fixed k+y δ f /π = 0 and 0.06, respectively, the computed ϕ, ε, and Δr

as functions of kcut , where the optimal wavenumber cutoff kopt
cut(k

+

y )

is indicated by the vertical dotted black lines. Figures 27(c), 27(d),
28(a), and b28(b) show, in Fourier and physical space (y/D = 1),
respectively, the filtered signals associated with f , dm, and f m for
k+y δ f /π = 0 and 0.06.

In Fourier space, the original signal shows a clear power-
law pollution at the highest wavenumbers starting at kxδ f /π ≈ 1
for k+y δ f /π = 0 [Fig. 27(c)] and at kxδ f /π ≈ 0.2 for k+y δ f /π = 0.06
[Fig. 27(d)]. Above these polluted wavenumbers, Δr crosses 1 in
Figs. 27(a) and 27(b) and the Fourier coefficients are modified by
the procedure without significant modification of the original signal,
as indicated by the values of ε < 2%. (Note that ε is as high as 40% at
the smallest kcut .) The optimal wavenumber cutoffs kopt

cut with α = 0.85
(vertical black dotted lines in Fig. 27) favor the minimization of sig-
nal modification so that ε(kopt

cut) ∼ 1 − 2% and Δr(kopt
cut) ∼ 9 − 15% for

k+y δ f /π = 0 and 0.06. As a result, the Fourier energy of the modi-
fied signal in Figs. 27(c) and 27(d) transitions to exponential decay
around the flame front thickness (kxδ f /π ≈ 1) with approximate
power decay exponents of −8.60 and −7.52, respectively. Thus, the
discontinuity removal process has recovered the signal associated
with the flame front. As importantly, the Fourier content associated

with the vortex scales [the peak in the spectrum of f in Fig. 27(d) at
k+y δ f /π = 0.06] is preserved.

In Fig. 28, we plot two examples of physical space functions
f̃ (x, y), d̃m(x, y), and f̃m(x, y), filtered as per Eq. (B10) for pencils
in x at k+y δ f /π = 0 and 0.06, shown as functions of x/D at y/D = 1.
Variations in x/D are plotted at y/D = 1. The modified signal f m is

FIG. 28.̃f , d̃m, and ̃fm, filtered as per Eq. (B10) at (a) k+y δ f /π = 0 and (b) 0.06,
shown as functions of x/D at y/D = 1.
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FIG. 29. Maximum over k+y of ε (solid curves) and Δr (dashed curves) as a func-
tion of α for different variables in the 2D flame–vortex interaction simulation. The
vertical lines are at α = 0.85.

shown to preserve the original signal away from the boundaries with
modification toward the domain boundaries [d̃m(x; k+y ) in Fig. 28].
The “ripples” result from the sharp filter m(kx; kcut) [Eq. (6)]
employed to modulate d̂(kx). This kinematic ringing effect can be
removed with the use of smooth Fourier space filters (not shown).
Note from Fig. 28 that the vortices in the reactants (x/D < 4), elon-
gated streaks in the products (x/D > 4), and large gradients within
the flame front (x/D ≈ 4) are all preserved in the modified signal.

Figure 29 shows the sensitivity of the maximum ε(k+y ) (solid
curves) and Δr(k+y ) (dashed curves) as a function of α for the pol-
lution removal procedure applied to ρu, ρv, u, and ρh from the
2D flame–vortex interaction simulation. Because ρYHCO is highly
localized within the flame Δ f = 0. Therefore, d = 0 zero and the
signal is unaffected. The procedure is shown to be robust for dis-
tinct variables, and the choice of α = 0.85 ensures that the maximum
signal modification and residual jump in the post-processed signal
for all variables remains smaller than 5% and 30%, respectively, as
indicated by the horizontal lines in Fig. 29.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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