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Abstract. In this study we introduce a hybrid ensemble con-
sisting of air quality models operating at both the global and
regional scale. The work is motivated by the fact that these
different types of models treat specific portions of the at-
mospheric spectrum with different levels of detail, and it is
hypothesized that their combination can generate an ensem-
ble that performs better than mono-scale ensembles. A de-
tailed analysis of the hybrid ensemble is carried out in the
attempt to investigate this hypothesis and determine the real
benefit it produces compared to ensembles constructed from
only global-scale or only regional-scale models. The study
utilizes 13 regional and 7 global models participating in the
Hemispheric Transport of Air Pollutants phase 2 (HTAP2)–
Air Quality Model Evaluation International Initiative phase
3 (AQMEII3) activity and focuses on surface ozone concen-
trations over Europe for the year 2010. Observations from
405 monitoring rural stations are used for the evaluation of
the ensemble performance. The analysis first compares the
modelled and measured power spectra of all models and then
assesses the properties of the mono-scale ensembles, partic-
ularly their level of redundancy, in order to inform the pro-
cess of constructing the hybrid ensemble. This study has been
conducted in the attempt to identify that the improvements
obtained by the hybrid ensemble relative to the mono-scale
ensembles can be attributed to its hybrid nature. The im-
provements are visible in a slight increase of the diversity
(4 % for the hourly time series, 10 % for the daily maximum
time series) and a smaller improvement of the accuracy com-
pared to diversity. Root mean square error (RMSE) improved
by 13–16 % compared to G and by 2–3 % compared to R.
Probability of detection (POD) and false-alarm rate (FAR)
show a remarkable improvement, with a steep increase in the
largest POD values and smallest values of FAR across the
concentration ranges. The results show that the optimal set
is constructed from an equal number of global and regional
models at only 15 % of the stations. This implies that for the
majority of the cases the regional-scale set of models governs
the ensemble. However given the high degree of redundancy
that characterizes the regional-scale models, no further im-
provement could be expected in the ensemble performance
by adding yet more regional models to it. Therefore the im-
provement obtained with the hybrid set can confidently be
attributed to the different nature of the global models. The
study strongly reaffirms the importance of an in-depth in-
spection of any ensemble of opportunity in order to extract
the maximum amount of information and to have full control
over the data used in the construction of the ensemble.

1 Introduction

It has been widely demonstrated (e.g. Potempsky and Gal-
marini, 2009) that, when multiple model results are distilled
to retain only original and independent contributions (So-
lazzo et al., 2012a, b) and thereafter statistically combined in
what is usually called an ensemble, one obtains results that
are systematically superior to the performance of the indi-
vidual models and therefore can provide more accurate and
robust assessments or predictions.

An additional advantage of using an ensemble treatment
resides in the fact that the multiplicity of the results also
quantifies the spread of the model solutions, which provides
useful information for the subsequent use of the model pre-
dictions for planning purposes or more generically decision-
making as it is a measure of the variability of the options,
scenarios or simply predictions.

When using ensembles in the realm of air quality mod-
elling and atmospheric dispersion, the general tendency is
to combine results of models that belong to the same cat-
egory. Especially when referring to ensembles of opportu-
nity (e.g. Galmarini et al., 2004; Tebaldi and Knutti, 2007;
Potempsky and Galmarini, 2009; Solazzo et al., 2012a, b;
Solazzo and Galmarini, 2015), which combine results from
different models applied to the same case study, it is cus-
tomary to consider as members those obtained from a homo-
geneous group of models. In particular, the scale at which
models operate seems to be a discriminant in all such studies
that have been performed to date. Therefore, meso-, regional-
and global-scale model results are grouped in ensembles ac-
cording to their scale of pertinence. In air quality studies,
this has been the case for example in Fiore et al. (2009), So-
lazzo et al. (2012a, b), Kioutsioukis and Galmarini (2014),
and Kioutsioukis et al. (2016). Colette et al. (2012) analysed,
as part of an analysis of the exposure in Europe, results from
an ensemble of opportunity of a total of six models, three
of which were global and three regional. The focus however
was not the analysis of the contribution of either the hybrid
character of the group to the ensemble result or the role of
redundancy and reducibility of the set, but rather obtaining a
robust assessment of the 2030 air quality in Europe. A poten-
tial benefit of the mixed ensemble was spelled out there but
never verified in line with the opportunity character of the
grouping. Therefore there is no record in the literature of a
study of an ensemble of models working at different scales.

When developing a model, the scale selection is deeply
rooted in the approach to atmospheric modelling, and it
finds a theoretical justification in the alleged scale separation
shown in the energy spectrum of dynamic variables such as
horizontal or vertical wind velocities (Van der Hoven, 1957).
Although it is now well accepted that the assumed scale sep-
aration does not have general validity (e.g. Galmarini et al.,
1999; Pielke, 2013), especially not for scalars (e.g. Galmarini
and Thunis, 2000; Galmarini et al., 1999; Jonker et al., 1999,
2004), it has become a convenient theoretical justification for
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the development of numerical models at specific scales and to
address the challenge that the computational solution of the
fundamental equation is imposing. Numerical constraints, in
fact, oblige us to identify the portion of the energy spectrum
to be explicitly resolved by the model. Larger domains imply
larger grid spacing for practical constraints on the number of
grid points where the equations are to be solved. Larger do-
mains on the one hand allow us to move the resolved scales
up in the atmospheric spectrum, but at the same time the
coarser resolution leads to the loss of detail in the treatment
of sub-grid processes which are represented by parameteri-
zations. Thus, for example, a model that has the entire globe
as simulation domain will have to use a horizontal grid spac-
ing of 25 to 100 km and therefore approximate (parameter-
ize) the large number of important processes occurring below
those grid sizes. Conversely and under normal conditions, a
regional-scale model that works with a horizontal grid spac-
ing of approximately 12–15 km will resolve explicitly the dy-
namics and transport that occurs at scales larger than that
distance but will not be able to extend the computational do-
main to the hemispheric or the global scale. The scale separa-
tion hypothesis states that the energy peak of boundary layer
processes is isolated from the rest of the spectrum, thus jus-
tifying their parameterization in a global model. The same
principle holds for a regional-scale model. However, in the
case of a regional-scale model, all the processes with scales
falling between 12 and 15 km and a global-scale model grid
spacing (25–100 km) are resolved explicitly.

Although models are developed according to specific
scales, nothing prevents us from combining them in a cross-
scale ensemble. What may appear to be just another attempt
to combine model results for the sake of further and diversely
populating an ensemble has in fact a more rigorous motiva-
tion. Models working at different scales represent with dif-
ferent degrees of accuracy and precision different portions of
the atmospheric spectrum and therefore processes. Our work-
ing hypothesis is therefore that, if global- and regional-scale
models are combined into an ensemble, there is a high proba-
bility that they will complement each other across scales and
consequently provide an improved ensemble performance
compared to single-scale ensembles.

Since in this study we are dealing with chemical trans-
port models (CTMs), we should also consider that chem-
ical mechanisms span across a wide range of timescales.
This could also constitute an element of diversity for these
two groups of the models, although the time resolutions for
regional- and global-scale models are comparable. One could
argue that, in regional domains in particular, regional models
essentially represent in detail the chemistry over a timescale
of 10 days, which then gets advected out and “reset”. For ex-
ample, differing representations of organic nitrate lifetimes
and how long they sequester NOx in the system impact large-
scale O3. Thus the difference in chemical mechanisms re-
lated to longer-lived species and multi-day chemistry could

also introduce diversity and be another reason for exploring
such a “cross-scale ensemble”.

Apparent ancillary elements that could also improve the
ensemble results are for example the differences in emis-
sion inventories or in general sources of primary information
whose accuracy and precision cannot be guaranteed a priori
or evaluated and that could contribute to the development of
additional probable solutions.

As presented in the past, the diversity of modelling ap-
proaches is the element that favours a better ensemble prod-
uct (Kioutsioukis and Galmarini, 2014; Kioutsioukis et al.,
2016). In this sense the combination of model results that fo-
cus on different scales and that account in a different form
for the chemical mechanism has the potential to increase the
value of an ensemble to which we will refer from now on as
the hybrid ensemble.

The focus in this paper will therefore be on the analysis
of the behaviour of a hybrid ensemble. The variable con-
sidered is the ozone concentration measured and modelled
for the year 2010 over the European continent. The analy-
sis takes advantage of the unique opportunity offered by the
HTAP2–AQMEII3 activity, which brought together global-
and regional-scale models to work on the same case study
with a high level of coordination (Galmarini et al., 2017) as
far as the input data are concerned.

In Sect. 2, the observations and model results used in the
analysis are presented in detail. In Sect. 3 the model re-
sults are characterized in the phase space to clearly estab-
lish whether the two scale groups do indeed account for dif-
ferent portions of the energy spectrum in a distinctly differ-
ent way. Prior to analysing the performance of the different
ensembles, we also evaluate the individual models against
the measurements using conventional statistics as well as the
newly developed error apportionment analysis presented by
Solazzo and Galmarini (2015). Section 4 is dedicated to the
analysis of the individual scale ensembles and the hybrid en-
semble. Section 4 is also dedicated to the comparison of hy-
brid ensemble and single-scale ensemble performance. The
conclusions are discussed in Sect. 5.

2 The models used and the case study

The set of model results considered and analysed in this work
are those that contributed to the HTAP2 and AQMEII3 mod-
elling initiatives described in Galmarini et al. (2017).

HTAP2 is the second phase of the modelling activities
of the Task Force on Hemispheric Transport of Air Pollu-
tants (TF-HTAP), during which a community of global-scale
CTMs performed a large number of simulations with the
primary goal of investigating the transcontinental exchange
of atmospheric pollutants (Dentener et al., 2010; Fiore et
al., 2009). AQMEII3 is the third phase of the Air Quality
Model Evaluation International Initiative (AQMEII; Rao et
al., 2011), which brings together a community of European
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Table 1. Participating regional modelling systems and key features.

Operated by Modelling
system

Horizontal grid Vertical grid Global meteo
data provider

Gaseous chem-
istry module

Finnish Meteorological
Institute (working with
2 versions)

ECMWF-
SILAM_H,
SILAM_M

0.25× 0.25◦

(Lat×Lon)
12 uneven layers up
to 13 km. First layer
∼ 30 m.

ECMWF (nudging
within the PBL)

CBM-IV

Netherlands Organisa-
tion for Applied Scien-
tific Research

ECMWF-L.-
EUROS

0.5× 0.25◦

(lat× lon)
Surface layer (∼ 25 m
depth), mixing layer,
2 reservoir layers up to
3.5 km.

Direct interpolation
from ECMWF

CBM-IV

University of L’Aquila WRF-
WRF/Chem1

23 km 33 levels up to 50 hPa.
12 layers below 1 km.
First layer ∼ 12 m.

ECMWF (nudging
above the PBL)

RACM-ESRL

University of Murcia WRF-
WRF/Chem2

23× 23 km2 33 levels, from ∼ 24 m
to 50 hPa.

ECMWF (nudging
above the PBL)

RADM2

Ricerca Sistema Ener-
getico

WRF-CAMx 23× 23 km2 14 layers up to 8 km.
First layer ∼ 25 m.

ECMWF (nudging
within the PBL)

CB05

University of Aarhus WRF-DEHM 50× 50 km2 29 layers up to 100 hPa. ECMWF (no nudg-
ing within the PBL)

Brandt et al.
(2012)

Istanbul Technical Uni-
versity

WRF-CMAQ1 30× 30 km2 24 layers up to 10 hPa. NCEP (nudging
within PBL)

CB05

Kings College WRF-CMAQ4 15× 15 km2 23 layers up to 100 hPa,
7 layer below 1 km.
First layer ∼ 14 m.

NCEP (Nudging
within the PBL)

CB05

Ricardo E&E WRF-CMAQ2 30× 30 km2 23 VL up to 100 hPa,
7 layers < 1 km. 1st @
∼ 15 m.

NCEP (nudging
above the PBL)

CB05-TUCL

Helmholtz-Zentrum
Geesthacht

CCLM-CMAQ 24× 24 km2 30 VL from ∼ 40 m to
50 hPa.

NCEP (spectral
nudging above f.
troposhere)

CB05-TUCL

University of Hertford-
shire

WRF-CMAQ3 18× 18 km2 35 VL from ∼ 20 m to
∼ 16 km.

ECMWF (nudging
above PBL)

CB05-TUCL

INERIS/CIEMAT ECMWF-
Chimere_H
Chimere_M

0.25× 0.25◦ 9 VL up to 500 hPa. 1st
L @ ∼ 20 m.

Direct interpolation
from ECMWF

MELCHIOR2

(EU) and North American (NA) regional-scale modellers to
work on coordinated case studies over EU and NA. For this
third phase, the regional-scale air quality modelling activity
has been performed within the HTAP2 framework. The coor-
dination between HTAP2 and AQMEII3, as detailed in Gal-
marini et al. (2017), relates to the use of HTAP2 global model
results as boundary conditions to the regional-scale mod-
els and the use of the same anthropogenic emission inven-
tory (Janssens-Maenhout et al., 2015) by both communities.
The list of regional- and global-scale models analysed in this
work is presented in Tables 1 and 2 respectively. The simu-
lations are for the year 2010, and the regional-scale models

were all initiated and received boundary conditions from the
same global chemistry transport model, Chemical-Integrated
Forecasting System (C-IFS; Flemming et al., 2015). C-IFS
is also one of the global models that are part of the global
model ensemble. Different meteorological drivers are used
by the models as presented in the table, thus adding an addi-
tional level of diversity to the groups, which is beneficial for
any ensemble treatment. The two sets of models have been
extensively evaluated (Solazzo et al., 2017; Solazzo and Gal-
marini, 2015; Jonson et al., 2018).

The analysis presented here focuses exclusively on ozone
over the EU continent for which the largest abundance of
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Table 2. Participating global modelling systems and key features.

Operated by Modelling
system

Horizontal grid
(km× km or
◦ lat× ◦ lon)

Vertical grid Global meteo
data provider

Gaseous
chemistry
module

References

NAGOYA,
JAMSTEC,
NIES

CHASER_re1 2.8◦× 2.8◦ 32 VL up to 40 km. ECMWF
(nudging
above PBL)

Sudo et al.
(2002)

Sudo et al. (2002),
Watanabe et al. (2011)

NAGOYA,
JAMSTEC,
NIES

CHASER_t106 1.1◦× 1.1◦ 32 VL up to 40 km. ECMWF
(nudging
above PBL)

Sudo et al.
(2002)

Sudo et al. (2002),
Watanabe et al. (2011)

ECMWF C-IFS Ca. 80 km 60 VL from surface
to 0.1 hPa – lowest
level 15 m.

IFS CB05 Flemming et al. (2015)

MetNo EMEP_rv4.8 0.5◦× 0.5◦ 20 uneven layers
up to 100 hpa. First
layer ∼ 90 m.

ECMWF IFS
dedicated
model run

EMEP Simpson et al. (2012),
http://emep.int/mscw/
mscw_publications.
html, last access:
18 June 2018

Univ.
Tennesee

H-CMAQ 108 km× 108 km 44 layers up to
50 hPa.

WRF CB05 Xing et al. (2015)

Univ. Col.
Boulder

GEOSCHEM-
ADJOINT

2◦× 2.5◦ 47 levels up to
0.066 hPa (bottom
of the last grid).

GEOS-5 GEOS-
Chem

Henze et al. (2007)

US-EPA H.-CMAQ∗ 108 km× 108 km 44 lev to 50 hPa. WRF nuged
with
NCEP/NCAR

CB05TUCL Mathur et al. (2017)

∗ H-CMAQ is strictly a hemispheric model but for the purposes of this analysis is expected to behave the same as global models over the EU domain; therefore, for the rest of the
paper we will refer to it as “global models”.

models for the two groups is available and for which case we
can take advantage of the fact that the models’ performance
has been analysed with respect to other species elsewhere (Im
et al., 2018). In the figures and tables resulting from our anal-
ysis, we shall not identify the individual models used since
our goal is the identification of possible advantages in using
hybrid ensembles rather than evaluating individual model re-
sults.

Hourly modelled concentrations of ozone were extracted
by the modelling groups at European routine and non-
routine sampling locations presented in Fig. S1 of the Sup-
plement. Details on the networks used can be found in So-
lazzo et al. (2012a, b), Im et al. (2015) and Solazzo et
al. (2017). Surface data were provided by the European
Monitoring and Evaluation Programme (EMEP; http://www.
emep.int/, last access: 18 June 2018) and the European
Air Quality Database (AirBase; http://acm.eionet.europa.eu/
databases/airbase, last access: 18 June 2018). For the pur-
poses of comparing the ensemble performance with observa-
tions, only rural stations with data completeness greater than
75 % for the entire year and elevation above ground lower
than 1000 m have been included in the analysis. The total

number of valid time series used is 405. Only rural stations
have been selected as they capture more background signal
than local effects. Including urban and suburban stations in
the analysis would penalize global models, which will not be
able to capture local effects on ozone.

3 Preliminary analysis of the two groups of models

3.1 Spectral analysis of the global and regional model
time series of ozone concentrations

One year of 1 h resolution ozone data allows us to produce
detailed spectra from the two groups of models and the mea-
sured concentrations. In Fig. 1, the individual power spec-
tra of ozone (plotted against the period in days for easier in-
terpretation) from global and regional models are compared
with the spectrum of the measured ozone. The time series
of the rural monitoring stations have been averaged prior to
producing the spectra. In almost all subsequent results, the
measured time series should be interpreted as ensemble av-
erages of all available rural monitoring stations with 1h tem-
poral resolution. The analysis was not performed with spa-

www.atmos-chem-phys.net/18/8727/2018/ Atmos. Chem. Phys., 18, 8727–8744, 2018
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Figure 1. Power spectrum of observed ozone (thick line) obtained from the average 1-year time series across all measuring locations and of
global models and regional models.

tially aggregated time series only in Figs. 7, 9 and 11, while
a subset of the annual hourly time series was used in Fig. 8
(June–August).

Since ozone is a scalar quantity, its spectrum grows mono-
tonically in log–log scale as expected (e.g. Galmarini and
Thunis, 2000), showing a distinct peak around a period of
24 h, corresponding to the daily boundary layer evolution and
photochemical production of ozone. This peak is captured
well by the two groups of models. The global set tends to
slightly underestimate the energy associated with this period,
with only a single model that overestimates it. The regional-
scale models are evenly distributed around the spectrum of
the measured time series. The two groups behave remarkably
similarly at scales smaller than the daily peak. The majority
of the models overestimate the energy but capture the slope
of the measured spectrum. As expected, the spectra of the
global models are more scattered but yet very well behaved.
A weak second peak is visible between 30 and 50 days,
which could be easily attributed to the synoptic variability.
Solazzo and Galmarini (2015) demonstrated that it could in-
deed be connected to meteorology and/or removal by dry de-
position. Moving up the period scale, after the daily peak, all
regional-scale model spectra are below the observed spectra,
a behaviour that continues apart from a few exceptions up
until the 60–70 day-period range. Out of seven global mod-
els however, only three under- or overestimate the energy in
this period range, while the rest matches the observed spec-
trum. At 70–80 days a new peak appears in the observed time
series, corresponding to the seasonal variability. Only one
global model captures the observed time series; three mod-
els seem to anticipate it at smaller periods, and even in the
regional-scale group there are a variety of behaviours includ-
ing a monotonic increase of the energy throughout this period
range. Beyond the 100-day period the ozone energy spec-
trum grows monotonically. The global model group matches

the power line in trend and value very closely, whereas the
regional scale group shows a more erratic behaviour.

This first test is important to assess the fundamental dif-
ferences between the two sets of models with respect to the
characteristics of the signal, the periodicities present in the
latter and the ability to reproduce the power or the variance
of the measured signal at the various frequencies (periods).
In addition, it can give us an idea of the level of complemen-
tarity that exists between the two groups of models in the
representation of the measured power spectrum. As clearly
evident from Fig. 1, both groups of models show an inter-
nal coherence in the representation of the power spectra. A
remarkable result is the capacity of global models to repre-
sent the high-frequency part of the ozone spectrum with an
accuracy that is comparable with regional models. We can
expect a complementarity in the behaviour of the two groups
in the large-scale energy range, which should be regulating
the long-range transport and background values. The global
models have a better representation of that portion of the
spectrum than the regional one.

3.2 Group performance and error apportionment

A characterization of model performance for the individual
members of the two groups beyond the information provided
in Solazzo et al. (2017) and Solazzo Galmarini (2015) is also
appropriate at this stage.

The Taylor diagrams presented in Fig. 2 provide an
overview of the individual model performance across the
year of reference. All model results underwent un-biasing
(subtract the annual mean bias from the predicted hourly val-
ues, which produces a shift of the annual time series up or
down by mean bias). We notice that the global models show
a more scattered behaviour compared to the regional-scale
models, with performance distributed across a wider range
of standard deviation values. Among the global-scale mod-
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Figure 2. Taylor diagram of global models and regional models.

Figure 3. Cumulated probability of detection (POD) and false-alarm rate (FAR) for global and regional models at various ozone concentration
threshold.

els we find a clear outlier (model 5), whereas the rest tend
to group in a rather narrow range of standard deviation val-
ues and correlations. Among the regional-scale models we
can also identify an outlier, specifically model 9. The aver-
age root mean square error (RMSE) values over all stations
ranges from 22.4 to 25.9 µg m−3 for the global models and
21 to 24.7 µg m−3 for the regional models and are thus com-
parable. Global models overestimate the observed standard
deviation, while regional-scale models with the exception of
model 9 are evenly distributed across the observed values.
The correlation coefficient is comparable for the two groups
of models.

Figure 3 presents two classical skill scores for categorical
events also applied by Kioutsioukis et al. (2016), namely the
probability of detection (POD) and false-alarm rate (FAR).
The former represents the proportion of occurrences (e.g.
events exceeding a threshold value) that were correctly iden-

tified, whereas FAR is the proportion of non-occurrences
that were incorrectly identified. In other words they mea-
sure true and false positives. In this case the scores are cal-
culated on the basis of the individual model performances
at each station. POD and FAR plots are presented as prob-
abilities above breakdowns for different threshold values,
where the abundance of the observed data per concentra-
tion range is also given as a histogram. A binned analysis of
the RMSE (Fig. S2) demonstrates that global models achieve
lower RMSE at concentrations above 100 µg m−3; the oppo-
site is true for concentrations below this threshold. This par-
tially explains the facts of Fig. 3.

At the same time the global models also have a higher per-
centage of false positives as can be gleaned from the FAR
index. This analysis is important to establish the capacity of
the models to simulate extreme values.
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Figure 4. Distribution of the mean square error (MSE) across the
models of the two communities and the scales on which the signal
has been decomposed (LT, long term; SY, synoptic; DU, diurnal;
ID, inter-diurnal; see text for definition).

Using the methodology proposed by Galmarini et
al. (2013), in Fig. 4 we present the decomposition of the
model errors according to specific timescales. In this fig-
ure, the individual model errors are shown as decomposed
in the diurnal (< 6 h), inter-diurnal (6 h–1 day), synoptic (1–
10 days) and long-term (> 10 days) timescales and the resid-
ual. The decomposition is performed using a Kolmogorov–
Zurbenko filter (Rao et al., 1997) applied to the mean squared
error (MSE) calculated from each model and the observed
ozone time series. Such analysis can be very revealing as
it identifies the scale and therefore the processes that are
mainly responsible for the deviation of the model results
from the measurements as well as possible persistence of er-
rors at specific scales.

The figure reveals that most of the error is contained in the
long-term and diurnal timescales. For regional-scale mod-
els, this is in agreement with the findings of Galmarini et
al. (2013), Solazzo and Galmarini (2015) and Solazzo et
al. (2017). The same behaviour is also found in the group of
global models. What is remarkable is the similarity of the er-
ror values at the diurnal timescale across the two groups. This
suggests that the difference in spatial resolution between the
two sets of models does not seem to influence the error at
the scale at which atmospheric boundary layer dynamics and
daily emissions of ozone precursors are the dominant pro-
cesses. Apart from a few exceptions (models 13 and 17 in
the regional-scale group and models 1 and 5 in the global-
scale group), all other models have very comparable errors at
that scale. A comparable error across the two groups is found
at the synoptic scale, although this is less surprising because
this scale is explicitly resolved by the models in both groups
and strongly depends on the quality of the meteorological

driver used. Since both global and regional models employ
assimilation of meteorological observations, they are able to
represent the synoptic scale comparably and are less depen-
dent on parameterizations employed. The long-term compo-
nents have the largest error and also show the most vari-
ability across models. Remarkably, the regional-scale models
seem to show smaller long-term error values than the global
models, although the former show highly variable model-to-
model errors. The strong dependence of the long-term error
on boundary conditions (specifically lateral boundary condi-
tions for regional-scale models and long-range transport in
the case of a global model, upper-stratospheric air intrusions
and surface emission of ozone precursors and direct ozone
deposition) appears to influence the global-scale group con-
centrations more than the regional scale, though one should
consider that almost all regional-scale models used boundary
conditions from the same global model, which nevertheless
does not have the smallest long-term error component.

A useful pre-characterization of an ensemble can be ob-
tained by the construction of the Talagrand diagram (Tala-
grand et al., 1999). It is achieved by binning the range from
the minimum to the maximum modelled concentrations with
as many bins as the number of ensemble members plus 1. The
bins are then filled with observed values accordingly. For ex-
ample, if an observed value is lower than the lowest model
value, it is assigned to the first bin; if it falls between the
lowest and second-lowest model value, it is assigned to the
second bin; and so on. If it exceeds the highest model value,
it is assigned to the last bin. Figure 5 shows the Talagrand di-
agrams for the global and regional and the regional+global
set of models. The figures reveal the tendency of the global
model ensemble to be overdispersed as indicated by the accu-
mulation of most of the observed data at the centre of the his-
togram and relatively few observations falling into the more
extreme modelled bins. The regional-scale model ensemble
shows a flat diagram, which is an indication of good group
performance. A flat Talagrand diagram is an indication of the
fact that the group members equally cover (by proportion) all
the observed range of values, and the group variability does
not show an excess or deficiency in the number of predictions
in a specific range of observed values.

The first result obtained for a combined set of model re-
sults is shown in the third panel of Fig. 5, which presents the
Talagrand diagram for the combination of the two groups of
models. Note that the number of bins (x axis) has increased,
corresponding to the new total number of models considered
plus 1 (i.e. 7 global models plus 13 regional models plus 1).
The diagram for the combined group of models qualitatively
constitutes an improvement compared to those of the indi-
vidual group ensembles. The combination of the bell-shaped
diagram of the global set with the relatively flat shape of the
regional set produces a new distribution within the range of
modelled values of the observation, showing a flat region be-
tween bins 5 and 18 and an under-prediction region between
bins 1 and 5 and bins 19 and 21, which now account for lower
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Figure 5. Talagrand diagrams of global models, regional models
and the global+regional set of model results.

and higher values respectively compared to the same bins of
the global and regional sets.

4 Analysis of the ensembles and building the hybrid
one

4.1 Ensemble analysis per scale group

Prior to analysing the performance of the hybrid multi-model
ensemble (mme_GR), let us concentrate on the individual
ensembles (mme_R and mme_G) of the two groups for the
sake of having an extra term of comparison beyond the mea-
sured concentrations against which to compare mme_GR. In
this study, we would also like to build upon the research per-
formed in other multi-model ensembles over the years; rather
than calculating only the classical model average or median
ensemble (mme), we shall also calculate three ensembles
based on the findings of Potempski and Galmarini (2009),
Riccio et al. (2012), Solazzo et al. (2012a, b, 2013), Gal-
marini et al. (2013), and Kioutsioukis and Galmarini (2014).
We shall therefore refer to the ensemble made by the op-
timal subset of models that produce the minimum RMSE
as mmeS (Solazzo et al., 2012a, b); the ensemble produced
by filtering measurements and all model results using the
Kolmogorov–Zurbenko decomposition presented earlier and
recombining the four components that best compare with the
observed components into a new model set as kzFO (Gal-
marini et al., 2013); and the optimally weighted combination
as mmeW (Potempski and Galmarini, 2009; Kioutsioukis
and Galmarini, 2014; Kioutsioukis et al., 2016).

Figure 6 shows the effect of the various ensemble treat-
ments for the two groups of models separately and presented
as a Taylor diagram. The correlation has increased and nar-
rowed between 0.90 and 0.95 for both groups. As expected,
the best ensemble treatment of the two individual groups is
mmeW, which in the case of the global models is compara-

Figure 6. Taylor diagram of the four ensemble treatments consid-
ered in the text obtained from the global and regional models.

ble to mmeS and in the case of the regional-scale models is
farther apart from mmeS. The fact that the optimal partition
of the error in terms of accuracy and diversity in an equally
weighted sub-ensemble (mmeS) and the analytical optimiza-
tion of the error in a weighted full-ensemble (mmeW) are
comparable for the global models implies that this group bet-
ter replicates the behaviour of an independent and identically
distributed (i.i.d., represented by the square in all panels) en-
semble around the true state set (on average). The range of
improvement of the RMSE is comparable for the two groups
of models.

Of the entire set of ensemble treatments proposed, mmeS
is the only one that works with an identified subset of el-
ements. The elements chosen in this context are those that
minimize a specific metric (e.g. RMSE). The combination of
all possible permutations of a pre-defined subset and for all

www.atmos-chem-phys.net/18/8727/2018/ Atmos. Chem. Phys., 18, 8727–8744, 2018



8736 S. Galmarini et al.: Two-scale multi-model ensemble

Figure 7. Effective number (Neff) of models calculated according to Bretherton et al. (1999) for the two groups of models, and frequency of
contribution of each model to the mmeS.

possible subsets allows us to identify the subgroup of mod-
els that performs best (Solazzo et al., 2012a, b). This group
is the one that best reduces the redundancies and optimizes
the complementarity of the model results (Kioutsioukis and
Galmarini, 2014). Other methods have been devised to deter-
mine the optimal number of models (Bretherton et al., 1999;
Riccio et al., 2012) that are equally effective as the one used
here, though they do not allow identifying the members of the
subset. Beyond the use of the mmeS for the current analysis,
given the diversity in the number of models comprising the
two ensembles we have calculated the effective numbers of
models (Bretherton et al., 1999) for the regional and global
sets in the attempt to verify whether the effective numbers
were close for the two sets. Figure 7 shows the Neff obtained
for the global set and the regional set. At over two-thirds of
the stations, the mmeS used three to four global models and
three to five regional models. In other words, roughly half
of the global models (3–4 out of 7) produce the best result
when constructing the mmeS globally, while in the case of
the regional-scale models less than half (3–5 out of 13) of
all models are required. Figure 7 also provides the frequency
of contribution of the individual models to the mmeS, thus
confirming the dominance of three global and four regional
models determined with the Neff analysis. What is presented
in Fig. 7 is the analysis for the aggregated set of model re-
sults at all available monitoring points. We also would like to
determine the spatial variability of this result, i.e. to answer
the question of whether Neff is uniform throughout the do-
main or whether there are sub-regions that require more or
fewer models to construct mmeS.

In order to have a more objective assessment of the re-
sult presented in Fig. 7, we introduce a metric which samples
only the diversity of the model results (see Sect. 4.3). Follow-
ing Pennel and Reichler (2011) and Solazzo et al. (2013) we
introduce the metric dm, defined for M models at location i
as

dm,i = e
∗

m,i −Rm,mmemme∗i , (1)

where

mmei =
1
M

M∑
m=1

em,i, (2)

em,i =
modm,i − obsi

σobs
(3)

and the ∗ version of em,i and mmei is obtained by normaliz-
ing them with σe and σmmei respectively. Rm,mme is the cor-
relation between the individual and average model results.
Therefore only the uncorrelated portion of the individual re-
sult is retained in dm as a measure of the diversity, whereas
the correlated portion is filtered out. Applying this metric,
the model results have been decomposed by means of the
Kolmogorov–Zurbenko filter described earlier, and Neff has
been calculated across the domain for the most relevant com-
ponents – long term (> 4 days, LT), synoptic (< 4 days, SY)
and diurnal (< 1 day, DU) – according to the definitions pre-
sented by Solazzo et al. (2017) and references therein. Fig-
ure S3 presents the results for the two groups of models.
For the long-term component, Neff results shown in Fig. 7
are largely confirmed with an overall spatial homogeneity of
Neff. The global model set appears to require a larger num-
ber of models than the average in critical areas like northern
Italy, where the resolution would be insufficient to capture
the inhomogeneity of the concentration field due to the com-
plex terrain in that region (similarly in the western part of the
domain). At the synoptic scale, the regional-scale models re-
quire slightly more models on average than the numbers pre-
sented in Fig. 7, and in some portions of the domain almost
all available models are required. The number of required
models increases even further at the diurnal scale. In the case
of the global set, the average Neff is the same across these
two scales, and more models are required in the Po valley
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(Italy) at the synoptic scale and western Poland at the diurnal
scale.

4.2 Building the hybrid ensemble

Given the fact that there is redundancy in the two groups of
models and a disparity exists in the overall and effective num-
ber of models in the two groups, a strategy has to be devised
so that no pre-determined weight is assigned to one of the
two groups, thus masking the potential outcome of this study
or creating false results. This goal is accomplished by apply-
ing the following strategy.

We want to compare three equally populated ensembles of
just global, just regional, and mixed global and regional mod-
els. We will therefore reduce the ensemble of regional-scale
models and include extra models in the ensemble of global
models beyond the effective number calculated in Figs. 7 and
S3 so that the joint ensemble will not be too small. In order
to accomplish this, we select the global models contributing
most to the global ensemble beyond those identified by Neff.
We begin by assuming that six models comprise a reasonably
abundant ensemble (as also indicated by the effective num-
ber of regional-scale models), and as such the single-scale
ensembles will be based on six members. Taking advantage
of the various techniques developed to build an ensemble pre-
sented earlier, we define the following sets:

– (mme_GR) hybrid ensemble of rank 6 (ensemble of six
members) composed of the three best global models and
the three best regional models

– (mme_G) global ensemble of six best global models

– (mme_R) regional ensemble of six best regional models

– (mmeS_GR) optimally generated hybrid ensemble of
rank 6 from the pool of the six best global models and
the six best regional models

– (mmeS_G) optimal global ensemble of rank 6

– (mmeS_R) optimal regional ensemble of rank 6

– (mmeW_GR) weighted hybrid ensemble composed of
the three best global models and the three best regional
models

– (mmeW_G) weighted global ensemble of six best
global models

– (mmeW_R) weighted regional ensemble of six best re-
gional models

Among them, the mmeS_GR is the only ensemble prod-
uct that allows unbalanced contributions from global and re-
gional models.

4.3 Comparing the single-scale multi-model ensembles
with the hybrid one

The comparison of the ensemble performances will be re-
stricted to the months of June–August, when the photochem-
ical production of ozone is at its maximum and the number
of exceedances is expected to peak throughout the continent.
The results of the comparison of the mme, mmeS and mmeW
for the regional (_R), global (_G) and hybrid cases (_GR) are
shown in Fig. 8. The elements common to the three panels
are as follows:

– The hybrid ensemble of rank 6 composed of the three
best global models and the three best regional models
(mme_GR) when compared to mme_G (best six global
models) and mme_R (best six regional models) does not
show improved performance; rather its skill is inferior
to both mme_G and mme_R.

– For the other two kinds of ensemble treatments (mmeS
and mmeW), the combination of global and regional
models produces some improvement compared to just
the global or regional ensembles in terms of correlation
coefficients, standard deviations and RMSE.

The partition of global and regional models in mmeS
(Fig. 9) shows that the contribution of regional models is
more frequent. Specifically, at two-thirds of the stations, the
optimum hybrid ensemble of rank 6 consists of one or two
global models and five or four regional models respectively.
At only 15 % of the stations, mmeS consists of an equal num-
ber of global and regional models. The maximum number of
global models in the mmeS_GR ensemble is four, achieved
at roughly 1 % of the stations. Conversely, at around 10 % of
the stations the hybrid ensemble utilized only regional mod-
els. The second panel of Fig. 9 also gives the spatial distri-
bution of the number of global models contributing to the
hybrid ensemble, clearly indicating a preference for regional
models in the northeastern part of the domain. This “spatial”
preference is not observed in the JJA hourly time series or
the annual daily maximum time series (Fig. S4), both being
high-ozone datasets. This is in line with the relatively higher
RMSE of the global models at low concentrations (Fig. S2).

In Fig. 10, POD and FAR show a net improvement over the
mmeW_G results when the hybrid ensemble is considered,
with a minimum in false positives and a maximum in true
positives that closely match the mmeW_R results.

The real improvement of the hybrid ensemble with respect
to the single-scale model ensembles becomes evident when
analysing Fig. 11. The panels in the figure are the collec-
tive representation of three of the most important character-
istics of an ensemble as proposed by Kioutsioukis and Gal-
marini (2014), i.e. diversity, accuracy and error. On the x
and y axes respectively “diversity” and “accuracy” are pre-
sented. The former represents the average square deviation
of the single models from the mean of the models, whereas
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Figure 8. Comparison of the performance of three ensemble treat-
ments (mme, mmeS and mmeW) for three groupings of models (re-
gional – R; global – G; and mixed global and regional – GR).

the latter is the square of the average deviation of the indi-
vidual model results from the observed value. As presented
by Krogh and Vedelsby (1995), the difference of the diver-
sity and accuracy defines the quadratic deviation of the en-
semble average from the observed value. From the definition
it follows that, in order for the ensemble result to be closer
to the observed value, one has to find the right trade-off be-
tween accuracy and diversity (A–D). A mere increase in di-
versity does not guarantee a minimization of the ensemble er-
ror since it might produce a reduction in the accuracy. What
one hopes to obtain is the right combination of models that
provides the maximum accuracy and maximum diversity. In
the plots of Fig. 11, the optimal condition is achieved when
the model results are concentrated in the upper left quadrant
of the plot toward the (x = 100/(number of models), y = 1)
point. In the plot, the accuracy parameter is presented as a
deviation from the best model performance. The dots rep-
resent the estimate of the two parameters at every location
where measurements are available. The colour scale is based
on the RMSE. The two upper panels give the A–D mapping
for the mme_R and mme_G ensembles; the lower two pan-
els give the map for the hybrid ensembles, i.e. mme_GR and
mmeS_GR. The difference in nature of the two ensembles is
clear from the two panels. Ensemble mme_G is less diverse
and more accurate than mme_R (x values: 69 in G and 66
in R; y: 0.75 in G and 0.66 in R). The combination of the
two ensembles produces an improvement only in diversity
(mme_GR). However, if the models are selected as in mmeS,
both accuracy and diversity increase (mmeS_GR). The real
advantage of the combination is visible in a slight increase
of the diversity as compared to mme_GR and a marked im-
provement of the accuracy from 0.70 to 0.81. The error de-
creases from a median value of 17.9 to 15.6 and from an
interquartile range of 5.1 to 3.8.

To answer the question of whether the multi-scale ensem-
ble is more skillful, we consider the two optimal single-scale
ensembles of rank 6, namely the global (mmeS-G) and the
regional (mmeS-R), and the optimal multi-scale ensemble
of rank 6 (mmeS-GR) that is constructed from elements of
the optimal single-scale ensembles. The multi-scale ensem-
ble achieves an improved diversity by at least 4 % compared
to the single-scale ensembles, even reaching 10 % for the
daily maximum time series (Table 3). It reflects the indepen-
dent development of global and regional models. The change
in accuracy is generally smaller since the optimal single-
scale pool contains models with not very different errors.
When the two pools are combined, the mmeS-GR achieves
a better RMSE by 13–16 % compared to mmeS-G and by 2–
3 % compared to mmeS-R. Further, the mean of the distribu-
tions of diversity, accuracy and RMSE from mmeS-GR dif-
fers from the corresponding mean of mmeS-G and mmeS-R
(they passed the t test at the 5 % significance level). The same
holds for the distributions (they passed the Kolmogorov-
Smirnov test). Improvements are also revealed for the POD
and the FAR, where the mmeS-R does better than mmeS-G,
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Figure 9. Contribution of Global models to mmeS_GR and its spatial representation.

Figure 10. POD and FAR for the best-performing ensemble treatment (mmeW) and for three ensemble grouping (regional – R; global – G;
and mixed global and regional – RG).

especially at high thresholds. The mmeS-GR generally im-
proves the indices compared to mmeS-R, even though global
models are included. Like before, the improvements are seen
in all datasets, despite their temporal aggregation.

In Fig. 12 the spectra of the ensembles are presented. For
the just-global- and just-regional-scale ensembles, and the
rank 6 hybrid ensemble, the spectra of mme, mmeS, mmeW
and kFO (Kolmogorov–Zurbenko first order) are shown in
the figure. Figure 12 also shows the spectra of the four en-
sembles (mme_R6, mme_G6, mme_GR6 and mmeS_GR6)
for which the six largest contributors from the regional mod-
els, the six largest contributors from the global models, and
three regional plus three global models were used. From the
picture we see that, regardless of the treatment, the ensem-
ble data capture the ozone power spectrum with no notable
deviation from the measured spectrum from one another. It
is important to note that an ensemble treatment is a purely
statistical treatment that does not consider any physics con-

straints. The deficiencies that were originally present in the
individual model spectra are still present in the ensemble re-
sults, particularly the large power deficit in the range from
0.8 days to 100 days. The mme_GR spectrum appears to pro-
duce a slight improvement toward filling this energy gap, but
the change is very small.

5 Discussion and conclusions. How much is the
improvement attributable to the hybrid character of
the ensemble?

The analysis presented above gives us clear indications that
the combination of the two sets of models analysed produces
an improvement in the ensemble performance. In particular,
the hybrid ensemble appears to be superior to any single-
scale ensemble in the optimum setting. For example, given
six global, six regional, and three global and three regional
ensembles, the optimization always favours the hybrid en-
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Table 3. The fractional change achieved in accuracy, diversity, RMSE, POD and FAR when moving from single-scale to multi-scale ensem-
bles. Results consider the optimal ensembles of rank 6, at hourly or daily maximum resolution.

ANNUM (1 h) < Accuracy > < Diversity > RMSEM POD FAR

60 120 60 120

mmeS-G 0.75 66.3 17.9 75 13 22 0.25
mmeS-R 0.80 66.9 16.0 75 17 21 0.22
mmeS-GR 0.81 63.6 15.6 77 16 20 0.18

Fractional change (%) 1–8 4–5 3–13 3 −6 to 23 5–9 18–28

JJA (1 h) < Accuracy > < Diversity > RMSEM POD FAR

60 120 60 120

mmeS-G 0.76 72.8 20.1 83 14 44 0.96
mmeS-R 0.76 67.8 17.7 85 25 41 1.14
mmeS-GR 0.78 65.4 17.1 86 25 39 1.01

Fractional change (%) 3 4–10 3–15 1–3 0–79 5–11 −5 to 11

ANNUM (DailyMAX) < Accuracy > < Diversity > RMSEM POD FAR

60 120 60 120

mmeS-G 0.71 61.6 14.4 91 38 34 1.1
mmeS-R 0.76 61.8 12.5 93 46 37 0.9
mmeS-GR 0.73 55.7 12.2 93 48 35 0.9

Fractional change (%) −4 to 3 10 2–16 0–2 4–26 −3 to 5 0–18

Figure 11. Representation of the accuracy (y axis) vs. diversity
(x axis) and RMSE for the ensemble of the six most contributing
global (a) and regional models (b), and a hybrid ensemble calcu-
lated with mme and mmeS ensemble methods (c, d). For reference,
the square represents the ideal point corresponding to an indepen-
dent and identically distributed models (i.i.d ensemble). If the mod-
els are i.i.d., then all eigenvalues are equal, each explains 1/N of
the variance and therefore for six models the point is at (0.16; 1).
RMSEM is the median root mean square error, while RMSEiqr is
the interquartile RMSE.

semble. This was repeated for all examined cases: the annual
hourly records, the JJA hourly records and the annual daily
maximum records.

In terms of quantitative conclusions, comparing the opti-
mal multi-scale (GR) ensemble with the optimal single-scale
(G and R) ensembles yielded the following results:

– Diversity improved at least by 4 % for the hourly time
series, becoming 10 % for the daily maximum time se-
ries.

– Accuracy generally improved less than diversity.

– RMSE improved by 13–16 % compared to G and by 2–
3 % compared to R.

– POD and FAR show a remarkable improvement, with a
steep increase in the largest POD values and compara-
tively smallest values of FAR across the concentration
ranges.

Some important considerations need to be taken into ac-
count at this point. It is difficult to find quantitative evidence
for the fact that the hybrid ensemble improvement can be un-
equivocally attributed to the multi-scale nature of the ensem-
ble. We have no evidence, nor guarantee, that the same kind
of improvement could be reached by adding more regional-
scale models to the regional-scale ensemble, or more global
models to the global-scale ensemble. However, what is a
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Figure 12. Spectra behaviour of the ensemble treatments: full
global ensemble (a); full regional ensemble (b); mme of the six
most frequently present global and regional models and the hybrid
ensemble calculated with mme and mmeS ensemble methods (c).

clear conclusion is that the regional-scale ensemble is charac-
terized by a higher level of redundancy in the members than
the global ensemble, since fewer than half of the members
produced the optimal ensemble, and that the use of the three
best members from the regional-scale ensemble and three
best global-scale models produces an improvement in the en-
semble performance. This last argument suggests that the ad-
dition of more model results of the same “nature” would just
contribute to further increase the level of redundancy, while
on the other hand the improvement obtained could indeed be
attributed to the different “nature” of the global-scale models
compared to the regional-scale models.

Therefore, considering

– the large number of regional-scale models and the spec-
trum of diversity in their nature (only a small number
of the same models were used by multiple groups, and
there was an abundance of models developed indepen-
dently from one another),

– the relatively smaller number of global model results
compared to the regional models and also their different
nature,

– the fact that the two groups of models used the same
emission inventories and all the regional-scale models
used boundary conditions from the same global model,

one could attribute the improvement of the mmeS_GR en-
semble performance to the difference in nature of the two
groups and a complementary contribution of the two toward
an improved result.
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