Document Type

Article

Publication Date

7-2018

Publication Title

Construction and Building Materials

ISSN

1879-0526

Volume

186

DOI

https://doi.org/10.1016/j.conbuildmat.2018.07.119

Abstract

In this review, we present a meta-analysis of experimental data concerning chloride transport in alkali-activated cement (AAC) paste, mortar, and concrete. Sixty-six (66) studies were reviewed with a primary focus on measurement methodology, mixture design, and process-structure-property relationships related to microstructural development (i.e., porosity, pore size distribution), chloride diffusion, and chloride binding. In general, this review elucidates that aluminosilicate precursors with high amorphous contents and increased fineness that are activated with solutions of high alkalinity (Na:Al ≥ 0.75) and silica content (Si:Al ≥ 1.5) in combination with heat-curing (>40 °C) lead to microstructural characteristics (e.g., binder gel chemistries) that improve chloride durability, even though interactions between these factors are not well understood. Descriptive statistics of reported AAC paste porosities and AAC concrete chloride diffusion coefficients by aluminosilicate precursor (i.e., fly ash, slag, calcined clay, natural clay, binary blends) are presented, along with a summative discussion regarding new opportunities for advancing current scientific understanding of chloride transport in AACs.

Comments

This is a post-print version of an article published in Construction and Building Materials.

Share

COinS