Graduate Thesis Or Dissertation

 

Numerical Simulations of Two-Phase Flow in Rigid Porous Media Public Deposited

https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/f4752h00k
Abstract
  • This study concerns the development of a series of finite difference codes for solving one-dimensional two-phase flow problems. The ability to predict fluid movement in saturated and unsaturated soils is an important problem in many branches of science and engineering, including soil science, agricultural engineering, environmental engineering and groundwater hydrology. The research performed for this thesis is motivated by three main areas of study: blast densification in saturated sand, enhanced oil recovery and geothermal energy harvesting. This study models imbibition fronts in rigid porous skeleton resulting from varying boundary and initial conditions by solving governing equations for two-phase flow using the Picard and fourth-order Runge Kutta methods with finite difference spatial approximations. The numerical results were validated using experimental data from Melean et al. (2003) and Touma and Vauclin (1986). Results indicate that the numerical approximations yield accurate and practical estimations of the infiltration variables of interest.
Creator
Date Issued
  • 2017
Academic Affiliation
Advisor
Committee Member
Degree Grantor
Commencement Year
Subject
Last Modified
  • 2019-11-18
Resource Type
Rights Statement
Language

Relationships

Items