Date of Award

Spring 1-1-2015

Document Type


Degree Name

Master of Science (MS)


Civil, Environmental & Architectural Engineering

First Advisor

Wil V. Srubar

Second Advisor

Abbie Liel

Third Advisor

Joseph Kasprzyk


The development and implementation of one-dimensional (a) analytical and (b) numerical service-life models for chloride-induced corrosion of reinforced concrete containing both recycled-aggregates and supplementary cementitious materials (SCMs) are presented in this work. Both the analytical and numerical models account for initial chloride contamination levels due to previous applications. The effects of aggregate type (e.g., virgin, recycled aggregate, recycled mortar), aggregate replacement ratio, severity of chloride contamination levels, severity of in-service chloride exposure, reinforcement cover depth, SCM type (e.g., fly ash, slag, slice fume, metakaolin), and SCM replacement ratio on the expected service life of recycled-aggregate reinforced concrete were investigated. Results illustrated trends between concrete mixes and life cycle costs, which were employed to make conclusions on the trade-offs presented by cost, sustainability, and service life.