Graduate Thesis Or Dissertation


Lattices of Supercharacter Theories Public Deposited
  • The set of supercharacter theories of a finite group forms a lattice under a natural partial order. An active area of research in the study of supercharacter theories is the classification of this lattice for various families of groups. One other active area of research is the formation of Hopf structures from compatible supercharacter theories over indexed families of groups. This thesis therefore has two goals. First, we will classify the supercharacter theory lattice of the dihedral groups D2n in terms of their cyclic subgroups of rotations, as well as for some semidirect products of the form ℤn ⋊ ℤp. Second, we will construct a pair of combinatorial Hopf algebras from natural supercharacter theories on the alternating and finite special linear groups and relate them using the theory of combinatorial Hopf algebras, as developed by Aguiar, Bergeron, and Sottile in 2006.

Date Issued
  • 2018
Academic Affiliation
Committee Member
Degree Grantor
Commencement Year
Last Modified
  • 2020-01-21
Resource Type
Rights Statement