Graduate Thesis Or Dissertation

 

Surface layer O3 and NOx in the Arctic: the in uence of boundary layer dynamics, snowpack chemistry, surface exchanges, and seasonality Público Deposited

https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/ms35t868n
Abstract
  • The snowpack is a region of active chemistry. Aqueous chemistry in a quasi-liquid layer on snow grains and gas-phase chemical reactions in snow interstitial air can lead to the production or destruction of important trace gases. Physical transport parameters such as wind pumping and diffusion affect the vertical distribution of gases within the snowpack. The resulting emission or uptake of trace gases at the atmosphere-snowpack interface can have significant influence on the chemistry of the lower atmosphere. In this work the dynamic interactions between the snowpack and atmosphere are examined from multiple perspectives. The primary focus is on ozone (O3) and nitrogen oxides (NOx) in the Arctic, a region undergoing widespread environmental change. To investigate an ice-sheet location with year round snow cover data from a two-year campaign at Summit, Greenland are implemented. At Summit this study examines (1) the processes contributing to vigorous chemistry in snow interstitial air, and (2) the role of the boundary layer over snow in determining surface layer NOx. Physical and chemical processes are shown to contribute to distinct seasonal and diurnal cycles of O3, NO, and NO2 in the snowpack. Boundary layer depths estimated from sonic anemometer turbulence quantities are used alongside sodar-derived values to show that the depth of the stable to weakly stable boundary layer at Summit was not a primary factor in determining NOx in early summer.

    Motivated by observations of an increase in the length of the snow-free season in the Arctic in recent decades, data from a one-year experiment at the seasonally-snow covered location of Toolik Lake, AK are also incorporated. This study shows the first observations of springtime ozone depletion events at a location over 200 km from the coast in the Arctic. FLEXPART analysis is used to illustrate that these inland events are linked to transport conditions. Lastly at this location, eddy-covariance O3 fluxes were calculated to characterize deposition of O3 to the Arctic tundra surface in the summertime. Surface deposition in combination with stability conditions is shown to contribute to the development of a diurnal cycle in surface O3 with amplitude ranging 5 to 35 ppbv.

Creator
Date Issued
  • 2013
Academic Affiliation
Advisor
Committee Member
Degree Grantor
Commencement Year
Última modificação
  • 2020-01-23
Resource Type
Declaração de direitos
Language

Relações

Itens