Graduate Thesis Or Dissertation


Microfabricated Spin Polarized Atomic Magnetometers Public Deposited

Downloadable Content

Download PDF
  • Spin polarized atomic magnetometers involve the preparation of atomic spins and their detection for monitoring magnetic fields. Due to the fact that magnetic fields are ubiquitous in our world, spin polarized atomic magnetometers are used in a wide range of applications from the detection of magnetic fields generated by the human heart and brain to the detection of nuclear magnetic resonance. In this thesis we developed microfabricated spin polarized atomic magnetometers. These sensors are based on optical pumping and spin-exchange collisions between alkali atoms and noble gases contained in microfabricated millimeter-scale vapor cells. In the first part of the thesis, we improved different features of current microfabricated optical magnetometers. Specifically, we improved the bandwidth of these devices, without degrading their magnetic field sensitivity, by broadening their magnetic resonance through spin-exchange collisions between alkali atoms. We also implemented all-optical excitation techniques to avoid problems, such as the magnetic perturbation of the environment, induced by the radio-frequency fields used in some of these sensors. In the second part of the thesis we demonstrated a microfluidic chip for the optical production and detection of hyperpolarized Xe gas through spin-exchange collisions with optically pumped Rb atoms. These devices are critical for the widespread use of spin polarized atomic magnetometers in applications requiring simple, compact, low-cost, and portable instrumentation.
Date Issued
  • 2013
Academic Affiliation
Committee Member
Degree Grantor
Commencement Year
Last Modified
  • 2019-11-16
Resource Type
Rights Statement