Graduate Thesis Or Dissertation

 

A Robust RBF-FD Formulation based on Polyharmonic Splines and Polynomials Public Deposited

Downloadable Content

Download PDF
https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/8623hx72q
Abstract
  • We introduce a local method based on radial basis function-generated finite differences (RBF-FD) for interpolation and the numerical solution of partial differential equations (PDEs). The method uses polyharmonic spline (PHS) RBFs together with polynomials to derive differentiation weights on different node configurations. The formulation is explored in three directions: (i) Interpolation and approximation of differential operators, (ii) Elliptic PDEs, and (iii) Hyperbolic PDEs. In particular, the novel RBF-FD methodology is applied to standard test cases in numerical weather prediction, modeled by the compressible Navier-Stokes equations in 2D. Furthermore, the evaluation of the method on different node layouts, Cartesian, hexagonal, and scattered, is studied. The RBF-FD implementation acts as an extension of conventional finite-differences, achieving high accuracy on scattered nodes with no need for a computational mesh.
Creator
Date Issued
  • 2015
Academic Affiliation
Advisor
Committee Member
Degree Grantor
Commencement Year
Subject
Last Modified
  • 2019-11-15
Resource Type
Rights Statement
Language

Relationships

Items