Graduate Thesis Or Dissertation


Submillimeter Video Imaging with a Superconducting Bolometer Array Public Deposited

Downloadable Content

Download PDF
  • Millimeter wavelength radiation holds promise for detection of security threats at a distance, including suicide bombers and maritime threats in poor weather. The high sensitivity of superconducting Transition Edge Sensor (TES) bolometers makes them ideal for passive imaging of thermal signals at millimeter and submillimeter wavelengths. I have built a 350 GHz video-rate imaging system using an array of feedhorn-coupled TES bolometers. The system operates at standoff distances of 16 m to 28 m with a measured spatial resolution of 1.4 cm (at 17 m). It currently contains one 251-detector sub-array, and can be expanded to contain four sub-arrays for a total of 1004 detectors. The system has been used to take video images that reveal the presence of weapons concealed beneath a shirt in an indoor setting. This dissertation describes the design, implementation and characterization of this system. It presents an overview of the challenges associated with standoff passive imaging and how these problems can be overcome through the use of large-format TES bolometer arrays. I describe the design of the system and cover the results of detector and optical characterization. I explain the procedure used to generate video images using the system, and present a noise analysis of those images. This analysis indicates that the Noise Equivalent Temperature Difference (NETD) of the video images is currently limited by artifacts of the scanning process. More sophisticated image processing algorithms can eliminate these artifacts and reduce the NETD to 100 mK, which is the target value for the most demanding passive imaging scenarios. I finish with an overview of future directions for this system.
Date Issued
  • 2014
Academic Affiliation
Committee Member
Degree Grantor
Commencement Year
Last Modified
  • 2019-11-16
Resource Type
Rights Statement