Graduate Thesis Or Dissertation


Stochastic Geometric Modeling and Analysis of Wireless Communications Systems Public Deposited

Downloadable Content

Download PDF
  • This thesis studies the interference performance of large-scale wireless communications systems. Mathematical models are developed for ad-hoc networks, cellular networks, multi-tier (heterogeneous cellular) networks, cognitive radio networks and the massive-MIMO networks based on stochastic geometry where the nodes of the network are distributed in a space according to a spatial stochastic (random) process. Analytical characterizations for important performance metrics such as the distribution of the signal to interference plus noise ratio, outage probability, average rate, etc. are obtained for the most general channel conditions and system scenarios. In the past the above mentioned wireless systems have been studied through large system simulations which suffer from computational infeasibilities and provide limited insights about the system. The mathematical models are shown to closely approximate the practical systems in scattering and fading rich environments. Using the tools in stochastic geometry and stochastic ordering, we demonstrate analytical tractability of these models and closed-form characterizations of important performance metrics of the systems. The tools developed in this work can be used to characterize the achievable performance gains with interference mitigation techniques employed in 4G LTE such as fractional frequency reuse, relays, multi-cell coordination and in the study of MIMO and secrecy networks.
Date Issued
  • 2013
Academic Affiliation
Committee Member
Degree Grantor
Commencement Year
Last Modified
  • 2019-11-14
Resource Type
Rights Statement