Article

 

Machine Learning Models Accurately Model Ozone Exposure during Wildfire Events Public Deposited

Downloadable Content

Download PDF
https://scholar.colorado.edu/concern/articles/v405sb42c
Abstract
  • Epidemiologists use prediction models to downscale (i.e., interpolate) air pollution exposure where monitoring data is insufficient. This study compares machine learning prediction models for ground-level ozone during wildfires, evaluating the predictive accuracy of ten algorithms on the daily 8-hour maximum average ozone during a 2008 wildfire event in northern California. Models were evaluated using a leave-one-location-out cross-validation (LOLO CV) procedure to account for the spatial and temporal dependence of the data and produce more realistic estimates of prediction error. LOLO CV avoids both the well-known overly optimistic bias of k-fold cross-validation on dependent data and the conservative bias of evaluating prediction error over a coarser spatial resolution via leave-k-locations-out CV. Gradient boosting was the most accurate of the ten machine learning algorithms with the lowest LOLO CV estimated root mean square error (0.228) and the highest LOLO CV Rˆ2 (0.677). Random forest was the second best performing algorithm with an LOLO CV Rˆ2 of 0.661. The LOLO CV estimates of predictive accuracy were less optimistic than 10-fold CV estimates for all ten models. The difference in estimated accuracy between the 10-fold CV and LOLO CV was greater for more flexible models like gradient boosting and random forest. The order of estimated model accuracy depended on the choice of evaluation metric, indicating that 10-fold CV and LOLO CV may select different models or sets of covariates as optimal, which calls into question the reliability of 10-fold CV for model (or variable) selection. These prediction models are designed for interpolating ozone exposure, and are not suited to inferring the effect of wildfires on ozone or extrapolating to predict ozone in other spatial or temporal domains. This is demonstrated by the inability of the best performing models to accurately predict ozone during 2007 southern California wildfires.

Creator
Date Issued
  • 2019
Academic Affiliation
Journal Title
Journal Volume
  • 254
Last Modified
  • 2021-06-09
Resource Type
Rights Statement
DOI
ISSN
  • 1873-6424
Language

Relationships

Items