Article

 

Equatorial cavities on asteroids, an evidence of fission events Public Deposited

Downloadable Content

Download PDF
https://scholar.colorado.edu/concern/articles/0v838114w
Abstract
  • This paper investigates the equatorial cavities found on asteroids 2008 EV5 and 2000 DP107 Alpha. As the likelihood of these cavities being impact craters is demonstrated to be low, the paper presents a fission mechanism that explains their existence as a scar of past fission events. The dynamical environment of "top-shaped" asteroids is such that, at high spin rates, an identifiable equatorial region enters into tension before the rest of the body. We propose hypothetical past shapes for 2008 EV5 and 2000 DP107, with mass added within the cavity to recreate a smoother equatorial ridge. The dynamical environment of these hypothetical parent bodies reveal that this modified region is indeed set in tension when spin is increased. The fission process requires tensile strength at the interface between the ejecta and the remaining body, at the moment of fission, between 0 and 2 Pa for 2008 EV5 and between 0 and 15 Pa for 2000 DP107, depending on the precise fission scenario considered. Going back to the spin-up deformation phase of the asteroids, the paper examines how kinetic sieving can form predominantly rocky equators, whose tensile strength could be much lower than that of the rest of the body. This process could explain the low cohesion values implied for this fission mechanism.
Creator
Date Issued
  • 2017-06-27
Academic Affiliation
Journal Title
Journal Volume
  • 304
Subject
Last Modified
  • 2019-12-06
Resource Type
Rights Statement
DOI
ISSN
  • 1090-2643
Language
License

Relationships

Items