Graduate Thesis Or Dissertation

 

RNA-RNA Interactions in RNP Granule Assembly Public Deposited

Downloadable Content

Download PDF
https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/cc08hf76v
Abstract
  • Ribonucleoprotein (RNP) granules, which are composed of numerous RNAs and proteins, are ubiquitous features of eukaryotic cells. This thesis investigates the assembly mechanisms of P-bodies and stress granules, two cytoplasmic granules that rely on RNAs unengaged in translation to form. Previous studies in the field have focused on the roles of proteins, and specifically their intrinsically disordered regions (IDRs), in targeting components and driving granule assembly. However, domain analysis of four proteins illustrates that having an IDR is neither sufficient nor necessary for targeting to P-bodies. Although IDRs have been shown to be important in some contexts, these results suggest that IDRs are not solely responsible for RNP granule formation. With this in mind, the assembly roles of RNA were considered. RNAs self-assemble robustly in vitro, aided by crowders and salt. Remarkably, when total yeast RNA is allowed to assemble in vitro, the RNAs that are enriched in these assemblies are the same RNAs that are enriched in stress granules in vivo. This, in addition to observations compiled from the literature, suggests that RNA-RNA interactions may play an important role in the assembly of many RNP granules. Preliminary interrogation into RNA sequences important for RNA localization to stress granules has revealed that the addition of certain sequences can significantly alter RNA localization under stress despite total length being held constant. This argues for the presence of stress granule targeting elements within RNA, although further mechanistic investigation is required. Taken together, this thesis works towards understanding RNP assembly and the mechanisms that target their components.
Creator
Date Issued
  • 2018
Academic Affiliation
Advisor
Committee Member
Degree Grantor
Commencement Year
Subject
Last Modified
  • 2019-11-16
Resource Type
Rights Statement
Language

Relationships

Items