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anywhere in the world. However, in practice, different environments (e.g., the 

magnetic field) lead to slightly different quantum transition frequencies [1–5]. Then 

new questions regarding clocks arise: which clock should be chosen as the standard 

clock? If this standard clock does not work, what shall we do? The robust solution to 

these questions is the establishment of a world time scale known as “Coordinated 

Universal Time (UTC),” which is formed by hundreds of clocks. In this way, we no 

longer need to be worried about whether a specific clock is working properly. The 

problem with this solution is that we have to gather time information of all the 

clocks to do averaging. So we need to transmit the time information of each clock to 

a central station. Comparing clocks within a laboratory can be done by many fancy 

techniques [6–9]. However, comparing clocks between laboratories is almost always 

a bottleneck of the world time formation. The process of transmitting the time 

information between laboratories is called “Time Transfer.” As we can see from the 

above, time transfer is central to the formation and maintenance of a world time 

scale [10–12]. Without good time transfer, a precise clock would no longer be able to 

provide precise time information to other places.   

        Time transfer is also widely used whenever a reference time is required. For 

example, in the field of telecommunications, if the receiver is not synchronized to 

the transmitter, then slips (either overflows or underflows) will occur and degrade 

performance. The better the time transfer is, the smaller the bit error rate (BER) in 

the telecommunication link is. If we instead keep the same BER for the 

telecommunication link, then a better time transfer leads to a wider bandwidth [13]. 
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As another example, if the clocks of generators are not well synchronized in an 

electrical power grid, then alternating currents with different phases from different 

generators will be added together, leading to a smaller amplitude than if the 

currents all had the same phase. Thus we lose power because of non-

synchronization of time. The accurate and precise timing is also required in the 

stock market. Without good clock synchronization, you may pay for stocks that do 

not exist because they were already sold out a millisecond earlier. This kind of 

situation leads to chaos in a stock exchange. In fact, the stock market must be shut 

down if synchronization with the standard time fails. Precise time transfer also has 

applications in the field of fundamental research. A good example is the neutrino 

speed-measurement experiment. Since a neutrino flies at almost the speed of light, 

a few nanoseconds of time-transfer error can “make” the neutrino travel faster than 

light [14]. Nanosecond-level time-transfer accuracy is required in such state-of-the-

art experiments. 

        Thus, we clearly see that time transfer is an old, but very important and very 

dynamic, research field. Time transfer affects world time formation, people’s daily 

life and fundamental physical science. 

        Chapter 1 of this thesis is organized as follows: I first introduce frequency 

stability analysis and GPS principles in Sections 1.2 and 1.3. Then I review the 

mainstream time transfer techniques in Section 1.4. Section 1.5 discusses GPS 

carrier-phase time transfer, a widely used precise time-transfer technique in detail. 
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1.2        Frequency Stability Analysis1 

        A frequency source has a sine wave output signal given by  

 𝑉(𝑡) = [𝑉0 + 𝜀(𝑡)]𝑠𝑖𝑛⁡[2𝜋𝜈0𝑡 + 𝜙(𝑡)], (1.1)   

where 𝑉0 is the nominal peak output voltage, 𝜀(𝑡) is the amplitude deviation, 𝜈0 is 

the nominal frequency, and 𝜙(𝑡) is the phase deviation. The actual output-time 

error (or time offset) from the frequency source is 𝑥(𝑡) = 𝜙(𝑡)/(2𝜋𝜈0) . For the 

analysis of frequency stability, we are concerned primarily with the 𝜙(𝑡) term. The 

instantaneous frequency is 

 𝜈(𝑡) = ⁡ 𝜈0 +
1

2𝜋

𝑑𝜙

𝑑𝑡
. (1.2) 

We define the fractional frequency as 

 𝑦(𝑡) =
𝛥𝑓

𝑓
=

𝜈(𝑡)−𝜈0

𝜈0
=

1

2𝜋𝜈0

𝑑𝜙

𝑑𝑡
=

𝑑𝑥

𝑑𝑡
. (1.3) 

Experimentally, we measure 𝑥(𝑡)  or 𝑦(𝑡)  every 𝜏0  seconds. 𝜏0  is called the data-

sampling or measurement interval [15, Chapter 3]. 

        A frequency source typically has the following noise types: white phase-

modulation (PM) noise, flicker PM noise, white frequency-modulation (FM) noise, 

flicker FM noise, random walk FM, or flicker walk FM. Figure 1.1 shows examples 

of the last four noise types. In order to analyze the frequency stability of a frequency 

source, we introduce two approaches next.  

        The first approach is to characterize frequency stability in the frequency 

domain in terms of a power spectral density (PSD) that describes the intensity of 

                              
1 This section is mainly based on “W. J. Riley, Handbook of frequency stability analysis, NIST 

Special Publication 1065, 2008” [15]. 
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the frequency (or phase) fluctuations as a function of Fourier frequency. The other 

approach is to characterize frequency stability in the time domain based on the 

statistics, i.e., typically some type of variance, of the frequency (or phase) 

fluctuation as a function of time. 

        Frequency-domain analysis or spectral analysis can be done by doing a fast 

Fourier transform (FFT) on the time domain data. This analysis identifies the 

periodic components in the data very well. It is most often used to characterize the 

short-term (< 1 s) fluctuations of a frequency source. A frequency domain analysis 

can also distinguish the noise type. According to Section 3.2 of Reference [15], all 

noise types can be modeled by the form 𝑆𝑦(𝑓) ∝ 𝑓𝛼 , where 𝑆𝑦(𝑓) is the one-sided 

power spectral density of y, the fractional frequency fluctuations; 𝑓 is the Fourier 

frequency; and 𝛼 is the exponent of the power law noise process, which can be used 

to distinguish the noise type. Table 1.1 shows the relationship between noise type 

and the value of 𝛼. 

        Although frequency-domain analysis and time-domain analysis are equivalent 

in principle, time-domain analysis is usually preferred in the field of time transfer 

because of measurement and/or analysis convenience and tradition. In addition, 

time-domain analysis is usually used to provide information about the statistics of 

frequency source instability over a long interval (> 1 s). Because of these 

advantages, the remainder of this section will discuss time-domain analysis. 

        Time domain analysis is typically done using some type of variance. Before 

diving into the details of variance, we first introduce the concept of averaging time. 
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Although we measure 𝑥(𝑡) or 𝑦(𝑡) every 𝜏0 seconds experimentally, statistically, we 

may be more interested in the behavior of 𝑥(𝑡)  or 𝑦(𝑡)  with some other time 

interval. We define the time interval that we are statistically interested in as the 

averaging time 𝜏 = 𝑚𝜏0, where 𝑚 is typically an integer (otherwise we do not have 

the corresponding measured data). Next, we discuss all types of variance assuming 

that we have the fractional frequency value 𝑦𝑖 every 𝜏 seconds, rather than every 𝜏0 

seconds.  

 

 

Figure 1.1. Examples of noise types, from [15]. 
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Table 1.1. Spectral characteristics of noise types [15]. 

Noise Type 𝛼 
White PM 2 
Flicker PM 1 
White FM 0 
Flicker FM -1 

Random Walk FM -2 
Flicker Walk FM -3 
Random Run FM -4 

 

 

        The standard variance 𝑠2 =
1

𝑁−1
∑ (𝑦𝑖 − 𝑦)2𝑁
𝑖=1  is widely used in statistics. So one 

may think that the standard variance is good enough to describe the time-domain 

noise behavior. Although the standard variance is convergent for white PM, flicker 

PM and white FM, it is nonconvergent for the noise types of flicker FM and random 

walk FM [16], which are common in the H-maser frequency standard. The blue 

curve in Figure 1.2 illustrates the nonconvergence of the standard deviation for 

flicker FM noise. Here, we keep the averaging time 𝜏 a constant. As we increase the 

number of data points from 10 to 1000, the standard deviation (blue curve) 

increases from 1.5 to 2.8. However, we know the noise level is the same no matter 

how many data points we have. In other words, the deviation should be independent 

of the number of data points, if this deviation is a good indicator of noise level. 

Obviously, the standard deviation is not a good indicator. The problem with the 

standard deviation stems from its use in describing the deviations from the average, 

which is not stationary for the more divergent noise types.  
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Figure 1.2. Convergence of standard and Allan deviation for flicker FM noise [15]. 

 

 

        To solve this problem, David Allan introduced the Allan variance,  

 𝜎𝑦
2(𝜏) =

1

2(𝑁−1)
∑ (𝑦𝑖+1 − 𝑦𝑖)

2𝑁−1
𝑖=1 ,  (1.4) 

which uses the first differences of the fractional frequency values, rather than the 

differences between the fractional frequency values and the average value. The 

Allan variance is independent of the number of samples for flicker FM (see the red 

curve in Figure 1.2) and random walk FM. This independence means that the Allan 

variance well characterizes the stability of a frequency source in the time domain. 

Another property of the Allan variance is that it was designed to be the same as the 

standard variance for white FM noise. In addition, if the fractional frequency y has 

a periodic behavior with a period of T, then we can observe a bump at the averaging 

time of T/2 in the “log(𝜎𝑦(𝜏))-log(𝜏)” diagram. (Notice that 𝜎𝑦(𝜏) = √𝜎𝑦2(𝜏) and it is 

called the Allan deviation). Finally, the noise type can be distinguished by the slope 
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of the “log(𝜎𝑦(𝜏))-log(𝜏)” diagram, as shown in Figure 1.3. There, the white FM has a 

slope of −1/2, while the flicker FM has a slope of 0.  

        However, the Allan deviation is not sufficient to distinguish white PM from 

flicker PM. The modified Allan deviation, 𝑀𝑜𝑑𝜎𝑦(𝜏), was designed to solve this 

ambiguity. The slope of the white PM becomes −3/2 by using the modified Allan 

deviation, while the slope of the flicker PM remains −1 . The modified total 

deviation provides improved confidence at long averaging times. The time deviation, 

𝜎𝑥(𝜏) ≝
𝜏

√3
∙ 𝑀𝑜𝑑𝜎𝑦(𝜏), is a measure of time stability based on the modified Allan 

deviation. Its unit is a second, instead of “1” as in Allan deviation. For details about 

these updated versions of Allan deviation, please see [15].  

 

Figure 1.3. log(𝜎𝑦(𝜏))-log(𝜏) diagram (or sigma-tau diagram) [15]. 
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1.3        GPS Principles 

        The GPS satellite constellation consists of at least 24 satellites. The satellites 

are positioned in six Earth-centered nearly circular orbits with four satellites in 

each orbit. The dihedral angle between the orbit plane and equator is 55°. The six 

intersection points between the six satellite orbits and the equator are equally 

spaced at a 60° separation.  The nominal orbital period of a GPS satellite is 11 h 58 

min. Figure 1.4 presents the satellite orbits in a planar projection referenced to the 

very beginning of July 1, 1993 [17].  

        A GPS satellite transmits a signal with codes on the carrier wave. The code 

chipping rate is 1.023 × 106 chips/sec for civilian purpose. The carrier wave can be 

L1 (1575.42 MHz), L2 (1227.6 MHz), or L5 (1176.45 MHz). The time reference of the 

signal is the satellite clock. A GPS receiver generates a replica of the GPS signal 

based on the receiver clock. From the time difference between the received GPS 

signal and the replica GPS signal, we can tell the distance between the GPS 

satellite and the GPS receiver by simply multiplying by the speed of light [17].  

        There are two methods of getting the time difference. One method is to 

measure the time difference between the received code and the replica code. This is 

called pseudorange measurement or code measurement. The other method is to 

measure the phase difference between the received carrier wave and the replica 

carrier wave. This is called phase measurement. The difficulty of this method lies in 

the fact that we have no idea of the number of cycles between the satellite and the 
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receiver. We call the uncertainty of cycle number “integer ambiguity” or “phase 

ambiguity.” 

 

Figure 1.4.  GPS constellation planar projection [17, Chapter 3]. 

 

 

        Next, we discuss how to do positioning using GPS. In the Earth-centered 

Earth-fixed (ECEF) coordinate system, at GPS system time 𝑡0, a “𝑗” GPS satellite at 

position 𝑟𝑗= (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗), which has the satellite time of 𝑡𝑗 (the satellite clock bias ∆𝑡𝑗 

is thus 𝑡𝑗 − 𝑡0), transmits a signal with a carrier phase of 𝜑𝑗. At epoch 𝑡𝑖, a GPS 

receiver “𝑖” on the ground at position 𝑟𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)⁡ (this position corresponds to 𝑡𝑖, 

instead of 𝑡𝑗) receives the signal. The replica carrier phase of the GPS receiver at 

this moment is 𝜑𝑖. Then we have the following equations for code measurement and 
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We can clearly see from the example in Figure 2.9 that the 4-day data-arc PPP 

result (the red curve) is almost an average of the four 1-day data-arc PPP results. 

This result verifies Eq. (2.2). 

       

 

       

 

 

 

 

 

 

 

1(a) 1(b) 

2(a) 2(b) 
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Figure 2.8. Statistics of the boundary discontinuity of different data-arcs for USN3 

[1(a) and 1(b)], PTBB [2(a) and 2(b)], NIST [3(a) and 3(b)], and AMC2 [4(a) and 

4(b)]. (a)s are for the mean value of the boundary discontinuity and (b)s are for the 

standard deviation of the boundary discontinuity. In all cases, the blue curves are 

the real results, while the red curves in the (a) are the theoretically predicted 

results. 

 

 

        Now, we study the multi-day data-arc boundary discontinuity. Similar to Eq. 

(2.1), the multi-day data-arc boundary discontinuity can be computed by Eq. (2.3). 

 𝐵𝐷𝑀,𝑀+1
𝑀 = ∆𝑀+1,2𝑀

𝑀 − ∆1,𝑀
𝑀 . (2.3) 

3(a) 

4(a) 

3(b) 

4(b) 
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Now we plug in Eq. (2.2), obtaining 

 𝐵𝐷𝑀,𝑀+1
𝑀 =

[(∆𝑀+1,𝑀+1
1 +∆𝑀+2,𝑀+2

1 +⋯+∆2𝑀,2𝑀
1 )−(∆1,1

1 +∆2,2
1 +⋯+∆𝑀,𝑀

1 )]

𝑀
.  (2.4) 

Because of Eq. (2.1), we can express the M-day data-arc boundary discontinuity 

𝐵𝐷𝑀,𝑀+1
𝑀  by the day boundary discontinuity 𝐵𝐷𝑖,𝑖+1

1 . That is, 

 𝐵𝐷𝑀,𝑀+1
𝑀 = (⁡∑ 𝐵𝐷𝑖,𝑖+1

1𝑀
𝑖=1 ⁡+ ⁡∑ 𝐵𝐷𝑖,𝑖+1

1𝑀+1
𝑖=2 +⁡⋯+⁡∑ 𝐵𝐷𝑖,𝑖+1

12𝑀−1
𝑖=𝑀 )/𝑀.  (2.5) 

        Next, we study the statistics of the M-day data-arc boundary discontinuity.  

        First, for the expectation, we have the following equation: 

 𝐸(𝐵𝐷𝑀,𝑀+1
𝑀 ) = 𝐸(

⁡∑ 𝐵𝐷𝑖,𝑖+1
1𝑀

𝑖=1 ⁡+⁡∑ 𝐵𝐷𝑖,𝑖+1
1𝑀+1

𝑖=2 +⁡⋯+⁡∑ 𝐵𝐷𝑖,𝑖+1
12𝑀−1

𝑖=𝑀

𝑀
).  (2.6) 

Because 𝐵𝐷𝑖,𝑖+1
1  observes the same distribution, we further have 

 𝐸(𝐵𝐷𝑀,𝑀+1
𝑀 ) =

𝑀∙𝐸(𝐵𝐷𝑖,𝑖+1
1 )⁡⁡+⁡𝑀∙𝐸(𝐵𝐷𝑖,𝑖+1

1 )+⁡⋯+𝑀∙𝐸(𝐵𝐷𝑖,𝑖+1
1 )

𝑀
= 𝑀 ∙ 𝐸(𝐵𝐷𝑖,𝑖+1

1 ). (2.7) 

Eq. (2.7) tells us that the mean value of the M-day data-arc boundary discontinuity 

is proportional to the data-arc length M. This theoretical calculation matches our 

actual results in Figure 2.8. The theoretically predicted mean value (red curve in all 

(a) figures) is very close to the actual mean value (blue curve in all (a) figures).  

        Second, we study the standard deviation of 𝐵𝐷𝑀,𝑀+1
𝑀 . Here, we can have two 

different, but both reasonable, assumptions. The two assumptions lead to 

completely different conclusions.  
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Figure 2.9. Illustration of Eq. (2.2). The blue curve is the 1-day data-arc NRCan 

PPP result, and the red curve is the 4-day data-arc NRCan PPP result. Clearly, the 

4-day data-arc PPP result (the red curve) is almost an average of the four 1-day 

data-arc PPP results. 

 

 

        The first assumption is that for any k, ∆𝑘,𝑘
1  is Gaussian distributed and it is 

independent from ∆𝑖,𝑖
1  (where 𝑖 ≠ 𝑘). Physically, this assumption is based on the fact 

that the noise in the measurements is white, and thus the distribution of the 

estimated phase ambiguities is Gaussian. If this assumption is true, Eq. (2.4) 

reveals that 

 𝑆𝑇𝐷(𝐵𝐷𝑀,𝑀+1
𝑀 ) =

1

𝑀
√2𝑀 ∙ 𝑉𝑎𝑟(∆𝑖,𝑖

1 ) = √
2

𝑀
𝑆𝑇𝐷(∆𝑖,𝑖

1 ). (2.8) 

Because  

 𝑆𝑇𝐷(𝐵𝐷𝑖,𝑖+1
1 ) = √2𝑆𝑇𝐷(∆𝑖,𝑖

1 ), (2.9) 

we have 
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 𝑆𝑇𝐷(𝐵𝐷𝑀,𝑀+1
𝑀 ) = √

1

𝑀
𝑆𝑇𝐷(𝐵𝐷𝑖,𝑖+1

1 ). (2.10) 

Eq. (2.10) tells us that the STD of the M-day data-arc boundary discontinuity is 

proportional to √
1

𝑀
. Thus, by increasing the length of data-arc to a large value, the 

STD of the boundary discontinuity can be almost 0. 

        The second assumption is that 𝐵𝐷𝑘,𝑘+1
1  is Gaussian distributed and 

independent from 𝐵𝐷𝑖,𝑖+1
1  (where 𝑖 ≠ 𝑘). This assumption also makes sense because 

previous studies (see [18]) show that the boundary discontinuity can affect the slope 

of the PPP result. Thus, the boundary discontinuity may be more fundamental than 

the time shift ∆. So we can possibly assume that BD is white and independent. If 

this assumption is correct, ∆ is actually a random-walk process, becasue ∆𝑖+1,𝑖+1
1 =

∆𝑖,𝑖
1 + 𝐵𝐷𝑀,𝑀+1

1 . According to Eq. (2.5), we have 

 𝑆𝑇𝐷(𝐵𝐷𝑀,𝑀+1
𝑀 ) = 𝑆𝑇𝐷 (

⁡𝐵𝐷1,2
1 +2∙𝐵𝐷2,3

1 +⁡⋯+𝑀∙𝐵𝐷𝑀,𝑀+1
1 +(𝑀−1)∙𝐵𝐷𝑀+1,𝑀+2

1 +⋯+𝐵𝐷2𝑀−1,2𝑀
1

𝑀
), (2.11) 

thus,  𝑆𝑇𝐷(𝐵𝐷𝑀,𝑀+1
𝑀 ) =

1

𝑀
𝑆𝑇𝐷(𝐵𝐷𝑖,𝑖+1

1 ) ∙ √12 + 22 +⋯+𝑀2 + (𝑀 − 1)2 +⋯+ 12. (2.12) 

Further simplification gives  

 𝑆𝑇𝐷(𝐵𝐷𝑀,𝑀+1
𝑀 ) = √

2𝑀3+𝑀

3𝑀2
𝑆𝑇𝐷(𝐵𝐷𝑖,𝑖+1

1 ). (2.13) 

When M is large, we have 

  𝑆𝑇𝐷(𝐵𝐷𝑀,𝑀+1
𝑀 ) ≅ √

2𝑀

3
𝑆𝑇𝐷(𝐵𝐷𝑖,𝑖+1

1 ). (2.14) 

Thus, the STD of the M-day data-arc boundary discontinuity is proportional to √
2𝑀

3
 

when M is large. 
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        Our actual results shown in Figure 2.8 (b) series are quite far away from what 

our first assumption predicts. In contrast, we can see that the second assumption 

works quite well for USN3. For other receivers, the STD of the boundary 

discontinuity increases, but not as much as √
2𝑀3+𝑀

3𝑀2
. This may come from the case 

that there may have some correlation between two consecutive boundary 

discontinuities or that we are at somewhere between the first and second 

assumptions.  

        In a whole, the theoretical study shows that 𝑀𝑒𝑎𝑛 ∝ 𝐷𝑎𝑡𝑎⁡𝐴𝑟𝑐⁡𝐿𝑒𝑛𝑔𝑡ℎ. But for 

the STD, it could be either proportional to √𝐷𝑎𝑡𝑎⁡𝐴𝑟𝑐⁡𝐿𝑒𝑛𝑔𝑡ℎ or 1/√𝐷𝑎𝑡𝑎⁡𝐴𝑟𝑐⁡𝐿𝑒𝑛𝑔𝑡ℎ. 

The actual result matches the theoretical prediction on the mean value of the 

boundary discontinuity. The fact that the actual STD of the boundary discontinuity 

is closer to the tendency of √𝐷𝑎𝑡𝑎⁡𝐴𝑟𝑐⁡𝐿𝑒𝑛𝑔𝑡ℎ indicates that the PPP result is closer 

to a Brownian (or random-walk) process. 

2.6   Other PPP Software Packages 

        Although NRCan PPP is a standard PPP program in the time transfer 

community, we still want to compare it with other PPP programs because other 

PPP programs may be comparable to or even better than NRCan PPP. Besides, 

other PPPs may be a good substitute when NRCan PPP is not available.  

        Here, we choose Atomium PPP [45–46] and Novatel PPP (or Novatel GrafNav 

PPP) to compare with NRCan PPP. Atomium PPP was developed by Dr. Pascale 

Defraigne who is well known in the time-transfer community. She has studied the 
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boundary discontinuity for many years. Thus, there may be some advantages of 

using Atomium PPP over NRCan PPP, in terms of boundary discontinuity. On the 

other hand, Novatel PPP is a commercial PPP program. It has a fancy graphic user 

interface and many useful functions (e.g., it can process GLONASS data; and it can 

process data forward, then reverse, and then forward again). Since Novatel is not 

targeted toward the time-transfer community, its performance of precise timing 

may not be as good as NRCan PPP and Atomium PPP. However, it is still 

interesting to evaluate the performance of such a commercial PPP in the area of 

precise timing. 

        Our main concerns about the performance of a PPP program are boundary 

discontinuity and frequency stability. To do the comparison, we first run the three 

PPP programs (i.e., NRCan, Atomium, Novatel) for NIST, USN3 and PTBB for 

MJD 55600–55750 with respect to the IGS final time. We can clearly see from 

Figures 2.10–2.12 that all three curves are very close, indicating that all PPPs give 

very similar long-term (> 5 days) time-transfer results. However, the Novatel PPP 

result for PTBB has many outliers/spikes. These anomalies indicate that Novatel 

PPP may not be as robust as the other two PPPs. 
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Figure 2.10. The results of three PPPs (NRCan, Atomium, and Novatel) for the 

NIST time with respect to the IGS final time, for MJD 55600–55750. 

 

 

 

Figure 2.11. The results of three PPPs (NRCan, Atomium, and Novatel) for the 

USN3 time with respect to the IGS final time, for MJD 55600–55750. 
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Figure 2.12. The results of three PPPs (NRCan, Atomium, and Novatel) for the 

PTBB time with respect to the IGS final time, for MJD 55600–55750. 

 

 

        The STDs of the boundary discontinuity for the three PPPs are shown in Table 

2.1. Obviously, NRCan PPP and Atomium PPP have almost the same STD of the 

boundary discontinuity. In addition, they typically provide a smaller boundary 

discontinuity than Novatel PPP. 

        Next, we study the frequency stability of the three PPPs. We first enlarge 

Figures 2.10–2.11 to see the stability in the time-domain (Figures 2.13–2.14). 

Clearly, all three curves in Figures 2.13–2.14 have similar patterns. They reach the 

maxima and minima at the same epochs. For NIST (Figure 2.13), the three PPPs 

have quite comparable results. However, Novatel PPP is noiser than NRCan and 

Atomium for USN3 (Figure 2.14). The tiny peaks in the blue/red curve are enlarged 

in the black curve! For example, in Figure 2.14, at around MJD 55653.5, there is a 
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peak of greater than 0.1 ns, while in the blue and red curves, the peaks are 

negligible. In the frequency domain (see Figures 2.15–2.16), we further confirm our 

above observation that Novatel PPP is noisier than NRCan PPP and Atomium PPP 

for USN3. Figure 2.16 shows that Novatel PPP is much worse than the other two 

for the averaging time of 1000 to 100,000 sec, for USN3.  

Table 2.1. The standard deviation (STD) of the boundary discontinuity of the three 

PPPs (NRCan, Atomium, and Novatel) for NIST, USN3, and PTBB. Note, the STD 

of the Novatel PPP for PTBB STD (i.e., 308.4 ps) is the result after the dates with 

spikes in Figure 2.13 have already been removed. 

 

 

 

Figure 2.13. The results of three PPPs (NRCan, Atomium, and Novatel) for the 

NIST time with respect to the IGS final time, for MJD 55646–55648. This figure is 

enlarged from Figure 2.11. 

 NRCan PPP Atomium PPP Novatel PPP 

NIST 243.5 ps 247.8 ps 238.3 ps 

USN3 118.6 ps 118.7 ps 192.1 ps 

PTBB 145.3 ps 155.0 ps 308.4 ps 
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(a)                                          (b)                                           (c) 

 

(d)                                             (e) 

Figure 2.17. Histograms of jumps of NIST, PTBB, USN3, OPMT, and USNO with 

respect to the IGS final time. The red curve in each plot is the Gaussian-

distribution fit. 
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Chapter 3 

 

 

Origin of Day Boundary Discontinuity1 

 

 

 

3.1        Introduction: Noise and Boundary Discontinuity 

        As stated in Section 1.5.1, in theory, the boundary discontinuity comes from 

both the code and phase noise. Here, we simulate the impact of the code and phase 

noise on the boundary discontinuity.  

        There are basically two methods for doing the simulation. One method is to 

generate ideal noise-free RINEX data. Then we add noise to the RINEX data and 

see the change in the boundary discontinuity. The difficulty with this method comes 

from the generation of noise-free RINEX data. Although there are some software 

packages available in the world [48], we do not know their details, e.g., whether 

they include the ionospheric and tropospheric delays. We may also need to revise 

the PPP software package to remove some corrections in PPP.  

        The other method involves adding white noise to the original measured RINEX 

data and studying the change in the boundary discontinuity. This method is easier 

                              
1 The results of this chapter are mainly based on [18, 47]. 
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to implement. And, it can reveal the relationship between measurement noise and 

boundary discontinuity quite effectively. 

        Here, we use the second method for our simulation. First, we keep the phase 

noise at the noise level of 0.01 cycle and increase the code noise from 0.0 m to 0.5 m 

(Figure 3.1). One thousand trials are done for each code noise level to get a reliable 

statistical distribution. We can see from Figure 3.1 that the STD of the clock offset 

at epoch 0 (that is, the very beginning epoch of the day) increases almost linearly as 

the code noise increases. For a code noise of 0.3 m and a phase noise of 0.01 cycle, 

which is a common noise level for the RINEX data, the STD is 85 ps, which 

corresponds to the STD of the boundary discontinuity of 85 ps × 2  = 120 ps. This 

value matches the statistical result of the boundary discontinuity in Section 2.4 

quite well.  

        We can also see from Figure 3.2 that the STD of the clock offset at epoch 0 

changes little for a phase noise in the range of 0.00–0.02 cycle. Because the phase 

noise of the RINEX data after corrections (such as the satellite clock offsets, the 

earth tide, etc.) is typically below 0.02 cycle, the phase noise has little impact on the 

boundary discontinuity.  
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Figure 3.1. Relation between the clock offset at epoch 0 and the code noise 

(simulation result). The phase noise is kept at the STD of 0.01 cycle. 

 

 

 

 

Figure 3.2. Relation between the clock offset at epoch 0 and the phase noise 

(simulation result). The pseudorange noise is kept at the STD of 0.3 m. 
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        Next, we study the relation between the short-term (300 sec) stability of the 

carrier-phase (CP) time transfer and the measurement noise (Figure 3.3). The time 

deviation (TDEV) at an averaging time of 300 sec is used to characterize the short-

term stability. The six curves in Figure 3.3 are very close to each other, which 

indicates that the code noise has little impact on the short-term stability of CP time 

transfer. TDEV (300 sec) increases from 8 ps to approximately 50 ps as the phase 

noise increases from 0 cycle to 0.05 cycle. This increase shows that the phase 

measurement plays an important role in the short-term CP time transfer.   

 

Figure 3.3. TDEV at 300 sec for different pseudorange noise and phase noise levels 

(simulation result). 
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        The above analysis confirms our theoretical study reported in Section 1.5.1 

that showed that both the code noise and the phase noise can affect boundary 

discontinuity. Practically, however, the phase noise is typically too small (< 0.02 

cycle) to cause an effect. Therefore, the code noise is much more critical to the 

boundary discontinuity than the phase noise.  

        The code noise [see Eq. (1.5)] can be divided into two categories: systematic 

noise and outliers (or anomalies). Systematic noise can be further divided into three 

sub-categories: satellite-related noise, path-related noise, and receiver-related noise. 

Such systematic noise is always there, and the noise level typically remains very 

stable unless there is a sudden big improvement of the system design (such as the 

update of a GPS receiver, or a better estimate of the satellite clock offset by a new 

algorithm).  

        The satellite-related noise mainly comes from the uncertainty of satellite clock 

offset and position. IGS provides the IGS 30-sec clock product that has more 

information about the satellite clocks than the IGS 5-min clock product. Thus, using 

the IGS 30-sec clock product as the input of PPP can potentially reduce the 

boundary discontinuity. This issue will be discussed in Section 3.2. However, IGS 

does not provide the IGS 30-sec sp3 product. Thus, we cannot evaluate the impact of 

the satellite position on the boundary discontinuity, at least for the time being. 

However, we believe that the IGS 30-sec sp3 product [49] has a similar effect on the 

boundary discontinuity as the IGS 30-sec clock product. 
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        The path-related noise is mainly ionospheric noise and tropospheric noise. The 

ionospheric noise can be cancelled out to the first order by using dual-frequency 

measurements. This is what the PPP does. However, the second order of ionospheric 

noise can still be as big as a few centimeters [50]. Triple-frequency measurements 

can cancel out the ionospheric noise to the second order. But a triple-frequency GPS 

receiver is not available in our lab. Therefore, we cannot explore the impact of high-

order ionospheric noise on boundary discontinuity in this thesis. The tropospheric 

noise will be discussed in Section 3.3. 

        Section 3.4 will explore the receiver-related noise and propose a practical 

method for reducing the impact of the receiver-related noise on the boundary 

discontinuity. 

        An outlier or an anomaly in the RINEX data occurs quite unpredictably. The 

origin of an outlier can be almost anything. For example, the GPS receiver loses the 

tracking of a satellite, or the satellite-receiver line is blocked by an object, or the 

reference time for the receiver is adjusted, or even a man-made error occurs. The 

relationship between an outlier and the boundary discontinuity will be discussed in 

Section 3.5.  

        Note that the results in Sections 3.2–3.5 are all based on the PPP program. As 

mentioned in Section 1.5.2, the other implementation of the carrier-phase time 

transfer is the network method. Section 3.6 compares the PPP method with the 

network method. We’ll see that the network method is superior to the PPP method, 

in terms of boundary discontinuity. 
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3.2        IGS Clock Data and Boundary Discontinuity 

        IGS provides the IGS 30-sec clock product that has more information about the 

satellite clocks than the IGS 5-min clock product. Therefore, using the IGS 30-sec 

clock product as the input of PPP could potentially reduce the boundary 

discontinuity.  

        Figure 3.4 confirms this prediction. We run PPP for PTBB (a GPS receiver in 

PTB, Germany) from Modified Julian Day (MJD) 56050 to MJD 56200 with the IGS 

5-min clock product as the input [Figure 3.4(a)]. The STD of the boundary 

discontinuity jump values is 163.4 ps. Then we run PPP the same but with the IGS 

30-sec clock product as the input [Figure 3.4(b)]. The STD of jump values becomes 

115.7 ps. The improvement over the boundary discontinuity by using the IGS 30-sec 

clock product is as much as 29.2% for PTBB. Similarly, for PTBG (also in PTB, 

Germany), the improvement is 22.8% [Figure 3.4(c–d)]. In addition, the mean value 

of the boundary discontinuity becomes closer to 0 ps for both PTBB and PTBG. 
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Figure 3.4. Boundary discontinuity using the IGS 5-min clock product vs using the 

IGS 30-sec clock product, for PTBB and PTBG from MJD 56050 to MJD 56200. 


