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 From the scatter plots, rapid changes over the hours of day indicate that air quality in 

London responds quickly to changes in emissions—it may be possible to analyze changes in 

emissions by equating air pollution levels within a relatively narrow time interval. It appears that 

the green treatment points display a downward drop in both NOx and NO2 levels following the 

addition of the eleven buses on November 12, 2016; however, the following weeks display 

random noise within the data where treatment levels are both above and below the controls at 

different periods in time.  

 Next, summary statistics will check for significant statistical differences by organizing 

pre- and post-rollout summary tables for the treatment monitors and control variables. The tables 

summarize treatment site data from Camden Holborn and Westminster Strand Northbank and 

control site data from Camden Euston, the Westminster Marylebone, Kensington & Chelsea—

Knightsbridge, Tower Hamlets Mile End Road, City of London John Cass, Southwark A2 Kent 

Road and the City of London Beech Street monitors from January 1, 2016 to September 23, 2016 

and September 24, 2016 through September 2018.  

 

2 Treatment Road Monitors Before Obs. Mean Median Std. Dev. Min Max 

NOx (µg/m³) 25,477 267.84 210.50 196.92 5.48 1651.29 

NO2 (µg/m³) 25,477 92.08 82.87 45.37 4.45 351.36 

Wind Speed (meters/second) 25,477 1.77 1.55 1.32 0.088 8.79 

Wind Direction (azimuth degrees) 25,477 207.02 234.93 86.86 0.099 359.99 

Rain (cm) 25,102 0.02 0.00 0.10 0.00 5.55 

Ambient Air Temperature (°C) 25,477 13.38 13.20 6.07 -2.43 36.45 

Barometric Pressure (millibars) 25,477 1009.46 1010.61 9.68 969.26 1035.50 

Relative Humidity (%) 25,468 73.69 76.50 16.28 23.37 99.92 
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4 Control Road Monitors Before Obs. Mean Median Std. Dev. Min Max 

NOx (µg/m³) 58,107 270.59 199.96 239.13 3.11 3363.39 

NO2 (µg/m³) 58,107 83.62 77.29 43.03 3.25 427.92 

Wind Speed (meters/second) 58,520 1.78 1.56 1.33 0.09 8.79 

Wind Direction (azimuth degrees) 58,520 207.81 235.20 87.28 0.10 359.99 

Rain (cm) 57,709 0.02 0.00 0.10 0.00 5.55 

Ambient Air Temperature (°C) 58,520 12.89 12.65 6.16 -2.443 36.45 

Barometric Pressure (millibars) 58,520 1009.81 1010.95 10.03 969.26 1035.50 

Relative Humidity (%) 58,502 73.67 76.44 16.10 23.37 99.92 

 

 

 

2 Treatment Road Monitors After Obs. Mean Median Std. Dev. Min Max 

NOx (µg/m³) 29,776 233.55 190.70 162.65 9.90 1282.76 

NO2 (µg/m³) 29,776 83.94 79.35 35.11 9.19 289.18 

Wind Speed (meters/second) 25,210 1.03 0.64 1.05 0.00 7.61 

Wind Direction (azimuth degrees) 25,210 203.04 229.93 88.18 0.00 359.97 

Rain (cm) 25,734 0.01 0.00 0.08 0.00 3.150 

Ambient Air Temperature (°C) 29,055 12.34 11.66 6.57 -4.26 107.88 

Barometric Pressure (millibars) 28,128 1010.46 1011.69 10.02 966.29 1037.85 

Relative Humidity (%) 29,721 75.82 79.00 16.08 18.67 99.92 
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4 Control Road Monitors After Obs. Mean Median Std. Dev. Min Max 

NOx (µg/m³) 58,945 260.09 195.76 225.82 1.90 3252.55 

NO2 (µg/m³) 58,945 81.31 76.27 39.65 0.67 414.82 

Wind Speed (meters/second) 51,358 1.05 0.68 1.06 0.00 7.61 

Wind Direction (azimuth degrees) 51,358 204.25 231.26 86.66 0.00 359.97 

Rain (cm) 52,041 0.01 0.00 0.08 0.00 3.15 

Ambient Air Temperature (°C) 58,190 12.50 11.95 6.60 -4.26 107.88 

Barometric Pressure (millibars) 56,770 1010.40 1011.62 10.03 966.29 1037.85 

Relative Humidity (%) 59,398 75.91 79.12 16.13 18.67 99.92 

 

 The summary tables convey nearly constant weather effects between the control and 

treatment monitors following electrification: wind speed, rain, ambient air temperature, 

barometric pressure, and relative humidity, all of which affect air pollution concentrations, have 

similar mean, median, and standard deviations across the treatment and control panels. It should 

also be noted that the NOx and NO2 sample measurements share a correlation of 0.89, which 

indicates a strong positive linear relationship and precedent to run separate regressions to avoid 

endogeneity.  

 Prior to the first electric bus fleet conversion date, NOx volumes at the treatment sites had 

an average of 267.84 µg/m³, a median of 210.50 µg/m³, and a standard deviation of 196.92 

µg/m³. At the control sites, NOx volumes average of 270.59 µg/m³, have a median of 199.96 

µg/m³, and a standard deviation of 239.13 µg/m³. Following the electric bus fleet conversion, 

NOx volumes at the treatment sites decreased to an average of 233.55 µg/m³, a median of 190.70 

µg/m³, and a standard deviation of 162.65 µg/m³. During this same time period, NOx volumes at 
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the control sites dropped to an average of 260.09 µg/m³, a median of 195.76 µg/m³, and a 

standard deviation of 225.82 µg/m³.  

 Before the bus route’s electrification, NO2 volumes at the treatment sites averaged 92.08 

µg/m³ with a median of 82.87 µg/m³ and standard deviation of 45.37 µg/m³, while control site 

NO2 volumes averaged 83.62 µg/m³ with a median of 77.29 µg/m³ and a standard deviation of 

43.03 µg/m³. After the conversion date, NO2 volumes at the treatment sites averaged 83.94 µg/m³ 

with a median of 79.35 µg/m³ and a standard deviation of 35.11 µg/m³. At the control sites, NO2 

averaged 81.31 µg/m³ with a median of 76.27 µg/m³ and standard deviation of 39.65 µg/m³.  

 Between the two time periods, the average and median reductions in volume of NOx and 

NO2 at the treatment sites each equate to be approximately three to four times the amount of 

decline in NOx and NO2 at the control sites, respectively. However, the high standard deviations 

for both NOx and NO2 indicate that these data points are spread out across a much larger range of 

values, leading the study to expect statistically insignificant results, as the differences in average 

and median pollutant decline between the treatment and control sites for before and after the 

electric buses find values at small fractions to their corresponding standard deviations.  

 Before imposing the methodological parameters onto the panel, a simple linear regression 

model dependent on NO2 and NOx and controlling for hour of day and the corresponding hourly 

weather runs on the following page. The downward non-linearity and skewed error variance of 

the residual plots showcase the intertwined erraticism in working within emissions inventories. 

The model is aware of the long-term downward trend of emissions in the sample and its ability to 

bias the treatment coefficients.  
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Methodology 

  A panel fixed effects model with individual and time fixed effects is deployed to test the 

designed research hypothesis that the twenty-six total electric buses rolled out onto Route 521 

across four separate events, caused a significant, exogenous reduction in average hourly nitrogen 

dioxide and oxide emissions at local route-side and urban background air monitors. If the model 

proves effective, we can accurately estimate the marginal and cumulative magnitudes of air 

pollutant mitigation funded from the electric buses. The analysis utilizes a variety of air-

monitoring control sites and copious amounts of restrictive time dummies. The model is as 

follows:  

Υit = βbit +δwit + ∝i + λt + εit 

 The fixed effects regression model relies on the statistical properties of OLS to explore 

the exogenous relationships between the experimentally defined electric bus difference in 

difference estimator, 𝛽bit, and hourly weather predictors, 𝛿𝑤it , with the endogenous NOx and 

NO2 outcome variables, 𝛶it. The model symbolizes 𝛶it as predicted NO2 or NOx (µg/m³) at air 

monitoring site, i and at hour, t, which denote the cumulative number of hours since the sample’s 

beginning date, January 1, 2015. The coefficients of interest,  𝛽bit at independent route-side and 

urban background treatments, control for individual changes in average hourly NO2 and NOx 

variation attributed to the time-specific electric bus values. With respect to the aforementioned 

rollout events, 𝛽bit is measured by the specified treatments: number of electric buses in 

operation, b, during the cumulative hour, hour of day, and day of week t, at roadside and urban 

background sites, i. The treatment parameter measures cross-sectional variation in NOx and NO2 

at the individual treatment sites caused from an electric bus addition of four on September 24, 

eleven on November 11, 2016 and ten on January 14 and one on January 28, 2017. Parameters 
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checking for variation from just three buses operating route 521 and zero buses running from 

midnight to six a.m. are treated within βbit in sperate regressions. The weather covariate, 𝛿𝑤it, 

uses the panel’s hourly meteorological observations to predict the strength between hourly and 

seasonal meteorological cycles and NO2 and NOx concentrations at hour, t, caused from the 

variables: wind direction (azimuth degrees), wind speed (m/s), rainfall (cm), ambient air 

temperature (°C), relative humidity (%), and barometric pressure (millibars). The estimator, ∝i, 

employs both panel fixed effects estimation to account for unobserved time-constant 

heterogeneity and cluster-adjusted standard error to account for within-group correlation or 

heteroscedasticity across the regression’s air monitoring sites, i. The time fixed effects variable, 

λt, controls for time-variant, omitted variables, by capturing average group trends across the 

panels and demeaning the uncorrelated regressors at their respective time restrictive dummy. 

With a three- and a half-year hourly time series, we can reasonably assume its ability to balance 

the average cyclical patterns across seasons as well as short term variations happening during, 

say, weekends or rush hours. The idiosyncratic error term, 𝜀it, represents the differences 

between the predicted and observed values of 𝛶it in correspondence to the ith air monitoring site 

in the tth hour. The error term is made up of three components: one site specific, one time 

specific, and a remainder which is both time and site specific. The error term is expressed as: it 

=i+t+it . These three components are assumed to be uncorrelated with one other and with the 

variables in the equation. The error component, i, represents individual effects from unobserved 

characteristics at each monitoring control site, which are likely correlated with the observed 

exogenous variables in the model. Because it is likely that these individual characteristics, i.e. 

traffic congestion, vehicle fleet, and changes in emission regulations, are non-random and 
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consequently correlated with the observed exogenous variables, this is why the study is led 

inexorably to the fixed effects model.  

 The fixed effects model implicitly assists in controlling for unobserved heterogeneity of 

NO2 and NOx by utilizing thirteen hourly urban-air monitoring panels for the duration of ~1.5 

years before and after the four-month electrification period. Because it is impossible to measure 

the individual causal-effects at the counterfactual level, the model relies on the parallel trends 

assumption to discount the average casual effects happening at the treatment site during the time 

of treatment. By netting out common differences in average NO2 and NOx time trends across the 

sample’s air monitors, the model assumes these trends to have an equal effect at the control and 

treatment sites. To better explain, let 𝛶1it imply the potential hourly NOx or NO2 reduction at 

the treatment monitoring site i if the electric bus fleet conversion were to happen at t and let 𝛶0it 

denote the average NOx or NO2 reduction during t at treatment monitoring site i if not. Denote 

electric bus status by a dummy variable, βbit. For each monitoring site, we observe 𝛶i = 𝛶0it + 

βbit*(𝛶1it – 𝛶0it), or that is, we perceive 𝛶1it for the electric bus fleet conversion and 𝛶0it for 

every other site. Now let E[𝛶i] express the population average for the continuous random 

variable. With a large enough observation, sample averages converge to population averages and 

the average treatment effect on the treated monitor is contextualized as E[𝛶1it – 𝛶0it | βbit=1] = 

E[𝛶1it | βbit =1]-E[𝛶0it | βbit =1]. This equation explains the counter-factual behavior of a causal 

effect. The leading term is the average change in NO2 or NOx concentrations within the 

population of electric buses—a hypothetically observable quantity. The following term is the 

average change in NO2 or NOx volumes had the electrification been cancelled. Although this is 

untestable, the model utilizes an alternative control group strategy to provide a consistent 
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econometric estimate. Through this methodology, the goal is to detrend the unobserved, time-

constant effects on NO2 & NOx trending across the sample site group, such as constantly higher 

traffic densities during weekday rush hours, the average change in alternative fuel use across 

London’s vehicle fleet, higher pollutant combustions during periods of hot or cold weather, or 

changes from London’s congestion toll or emission standards. If the panel data’s heterogeneity is 

constant over time, then the model will enable us to acquire coefficients on the exogenous 

variables with theoretically no selection bias by excluding the related individual properties of 

each monitoring site. However, unpredictability and random noise are fundamental problems in 

this field of study. 

Method 1: Treating Route-side Monitors with Progressive Electric Bus Parameters  

𝑁𝑂2it , 𝑁𝑂𝑥it 

 = 𝛽bit +𝛿1𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑖𝑡 + 𝛿2𝑤𝑖𝑛𝑑𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑡 + 𝛿3𝑟𝑎𝑖𝑛𝑖𝑡  + 𝛿4𝑡𝑒𝑚𝑝𝑖𝑡  + 𝛿5𝑏𝑝𝑖𝑡+ 

𝛿6𝑟ℎ𝑢𝑚𝑖𝑡+ ∝i + λ1ℎ𝑜𝑢𝑟𝑜𝑓𝑑𝑎𝑦𝑡+ λ2ℎ𝑜𝑢𝑟𝑜𝑓𝑤𝑒𝑒𝑘𝑒𝑛𝑑𝑡+ λ3𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘𝑡 + λ4𝑚𝑜𝑛𝑡ℎ𝑡 +

λ5ℎ𝑜𝑢𝑟𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑡 + λ6ℎ𝑜𝑢𝑟𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑡
2 + 𝜀 it  

 The first method runs eight regressions to establish a baseline significance by 

incrementally treating route-side hourly NO2 and NOx concentrations upon the case’s 

electrification events. We explain 𝛽bit to signify the marginal reduction in cubic micrograms of 

nitrogen dioxide attributed from an electric bus brought online, by adding treatment parameters 

to the route-side sites, Westminster Northbank Strand and Camden Holborn Bee Midtown. To 

control for the hourly intervals of electric bus operation by the number of electric buses rolled 

out, the following regressions redefine 𝛽bit  by adding more concise time parameters within, to 

demonstrate the treatment’s increased accuracy in predicting marginal route-side changes in NO2 

and NOx. 𝛿1−6𝑤it strive to control for weather effects while ∝i imposes panel fixed effects and 
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cluster-adjusted standard errors across twelve individual panels.  λ1-6 are imposed to demean 

commonly unobserved, cross-sectional, cyclical trends in NO2 & NOx across hours of the day, 

weekend hours, weekends, days of the week, and months. To fix long term trends, λ6 & λ7 

employ two continuous linear and quadratic parameters on the across the sample’s cumulative 

hours to differentiate time-constant NOx or NO2 trends between January 2015 and September 

2018.  

Method 1: Regression 1& 2 

 𝑁𝑂2it = 𝛽1ℎ𝑜𝑠𝑟𝑑𝐸𝐵𝑖𝑡+ 𝛿1−6 𝑤it+ ∝i + λ1−7𝑡
+ 𝜀 it 

 

 𝑁𝑂𝑥it = 𝛽2ℎ𝑜𝑠𝑟𝑑𝐸𝐵𝑖𝑡+𝛿1−6 𝑤it+ ∝i + λ1−7𝑡
+ 𝜀 it 

 Before testing the effect of bus electrification on NO2 and NOx at the two, individual 

route-side monitors, we start by defining 𝛽bit = to 𝛽ℎ𝑜𝑠𝑟𝑑𝐸𝐵𝑖𝑡 and analyze the common 

difference in effects shared between Camden Holborn and Westminster Strand. Each electric bus 

variable, 𝛽hosrdEBit, is simply defined by setting four parameters on the cumulative hour of 

sample (hos) to treat for the time of increase in total electric buses online following the four 

aforementioned rollout dates.  

Method 1: Regression 3 & 4 

 𝑁𝑂2it = 𝛽3𝑤𝑑ℎ𝑜𝑠𝑟𝑑𝐸𝐵𝑖𝑡+ 𝛿1−6 𝑤it+ ∝i + λ1−7𝑡
+ 𝜀 it 

 

 𝑁𝑂𝑥it = 𝛽4𝑤𝑑ℎ𝑜𝑠𝑟𝑑𝐸𝐵𝑖𝑡+𝛿1−6 𝑤it+ ∝i + λ1−7𝑡
+ 𝜀 it 

 Next, we support the previous bus variable and create β𝑏𝑖𝑡 = β𝑑𝑜𝑤ℎ𝑜𝑠𝑟𝑜𝑎𝑑𝐸𝑏𝑢𝑠𝑖𝑡, to 

account for just three electric buses operating Route 521 on weekends (dow), following 

September 24, 2016. β𝑤𝑑ℎ𝑜𝑠𝑟𝑑𝐸𝐵𝑖𝑡 maintains the marginal rollout numbers according to the 

respective dates (hos) and recycles Method 1 parameters.  

Method 1: Route side Regression 5 & 6 



 Schmidt 30 

 𝑁𝑂2it = 𝛽5ℎ𝑟𝑤𝑑ℎ𝑜𝑠𝑟𝑑𝐸𝐵𝑖𝑡+ 𝛿1−6 𝑤it+ ∝i + λ1−7𝑡
+ 𝜀 it 

 

 𝑁𝑂𝑥it = 𝛽6ℎ𝑟𝑤𝑑ℎ𝑜𝑠𝑟𝑑𝐸𝐵𝑖𝑡+𝛿1−6 𝑤it+ ∝i + λ1−7𝑡
+ 𝜀 it 

 The sequence continues to fix the model’s bus variable by adding parameters to control 

for Route 521 hours of operation (hr), six a.m. to midnight, which will exclude the coefficient’s 

effect on NO2 and NOx during definitive hours outside of TfL operation, 1:00 a.m. to 4:59 a.m.  

Method 1: Route side Regression 7 & 8 

 𝑁𝑂2it = 𝛽7ℎ𝑟𝑤𝑑ℎ𝑜𝑠𝐶𝐻𝐸𝐵𝑖𝑡+𝛽8ℎ𝑟𝑤𝑑ℎ𝑜𝑠𝑁𝐵𝐸𝐵𝑖𝑡+ 𝛿1−6 𝑤it+ ∝i + λ1−7𝑡
+ 𝜀 it 

 

 𝑁𝑂𝑥it = 𝛽9ℎ𝑟𝑤𝑑ℎ𝑜𝑠𝐶𝐻𝐸𝐵𝑖𝑡+𝛽10ℎ𝑟𝑤𝑑ℎ𝑜𝑠𝑁𝐵𝐸𝐵𝑖𝑡+ 𝛿1−6 𝑤it+ ∝i + λ1−7𝑡
+ 𝜀 it 

 Now that the comprehensive time parameters have been identified within 𝛽bit , Method 1 

concludes by verifying the electric bus coefficient’s significance in predicting marginal bus 

pollution abatement at each individual route-side monitor. The completed set of parameters 

define 𝛽bit for the remainder of the analysis.  

 

Method 2: Urban Background & Roadside Bus Treatments with interactive & continuous Fixed 

Effects 

 Regression 1 & 2 

𝑁𝑂2it & 𝑁𝑂𝑥it = 𝛽1NBr𝐸𝐵𝑖𝑡 + 𝛽2𝐶𝐻𝑟𝐸𝐵𝑖𝑡 + 𝛽3𝑢𝑏𝐸𝐵𝑖𝑡+ 

𝛿1−6𝑤𝑖𝑡+𝛿7𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑖𝑡*hour
𝑖𝑡

+𝛿8𝑇𝑒𝑚𝑝𝑖𝑡 ∗ 𝑚𝑜𝑛𝑡ℎ𝑖𝑡+ ∝i + λ1−7𝑡
+ λ8𝐻𝑜𝑢𝑟𝑡 ∗ 𝑀𝑜𝑛𝑡ℎ𝑡 +

λ9𝑀𝑜𝑛𝑡ℎ𝑡 ∗ 𝑌𝑒𝑎𝑟𝑡 + λ10𝑌𝑒𝑎𝑟𝑡 + 𝜀 it 

 Method 2 equations recycle the electrification parameters from the final pairs of 

regressions in Method 1, as expressed by the number of online electric buses during the 

cumulative hour of sample, weekend, and hour of day. The analysis also resumes the baseline 

weather covariates, panel fixed effects, and clustering methods. Moreover, Method 2 strengthens 
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the model’s dummies with 336 additional time-trending fixed compared to Method 1’s 93, by 

interacting the previously used indicator variables on the panel’s twenty-four-clock and the 

twelve-month indicators, the average yearly trends between 2015-2018, and a robust, forty-five 

term control on common monthly trends by year. Since we have now chosen to group the local 

background monitors as relatively equal, distant treatments, the model must undercut wind and 

temperature interactions. Continuous hourly wind speeds are interacted with the continuous hour 

of day parameter to allow for continuous changes as wind fluctuates momentously—we expect 

this to have an immediate effect on predicting average hourly emissions concentrations. Method 

2 also considers how outlying high and low temperatures typically inhibit abnormally high 

concentrations of toxic pollution. In accordance, the model adds a coefficient to help control for 

the non-linear hourly averages varying by month, but most likely uniform within the panel. With 

more considerate site treatment and control over hourly pollutant trends, Method 2 assesses the 

Transport for London’s affirmative emission offsets traveling throughout the square kilometer 

ranges of two local urban background monitors measuring diffuse transport, commercial, and 

residential emissions 50 meters from the road, Westminster Covent Garden and Camden 

Bloomsbury. This ideology derives from the secondary livelihood of NO2 and the sample’s urban 

street canyons and infamous temperature inversions. Regressions 1 and 2 start by grouping the 

background treatment sites under a single coefficient, to first see if their pooled variance can 

explain a significant difference across the treatment period.  

 Method 2: Regression 3 & 4 

𝑁𝑂2it, 𝑁𝑂𝑥it  
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 = 𝛽1NBr𝐸𝐵𝑖𝑡 + 𝛽2𝐶𝐻𝑟𝐸𝐵𝑖𝑡 +𝛽3𝑊𝐶𝐺𝑢𝑏𝐸𝑏𝑢𝑠𝑖𝑡 + 

𝛽4𝐶𝐵𝑢𝑏𝐸𝑏𝑢𝑠𝑖𝑡+ 𝛿1−6 𝑤𝑡 + δ7(𝐻𝑜𝑢𝑟𝑡 *𝑀𝑜𝑛𝑡ℎ𝑡*𝑊𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑖𝑡)+ 

δ8(𝑀𝑜𝑛𝑡ℎ𝑡*𝑊𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑖𝑡) + δ9(𝐻𝑜𝑢𝑟𝑡*𝑊𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑖𝑡) + δ10(𝑇𝑒𝑚𝑝𝑖𝑡*𝑀𝑜𝑛𝑡ℎ𝑡) +  δ11(ℎ𝑜𝑢𝑟𝑡*𝑤𝑖𝑛𝑑𝑖𝑟𝑖𝑡 ) 

+ ∝i + λ1ℎ𝑜𝑢𝑟𝑜𝑓𝑑𝑎𝑦𝑡+ λ2ℎ𝑜𝑢𝑟𝑜𝑓𝑤𝑒𝑒𝑘𝑒𝑛𝑑𝑡+ λ3𝑤𝑒𝑒𝑘𝑒𝑛𝑑𝑡+ λ4𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘𝑡 +

λ5(𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘𝑡 ∗ 𝑦𝑒𝑎𝑟𝑡) + λ6(ℎ𝑜𝑢𝑟𝑡 ∗ 𝑚𝑜𝑛𝑡ℎ𝑡) + λ7𝑚𝑜𝑛𝑡ℎ𝑡 + λ8𝑦𝑒𝑎𝑟𝑡 + λ9(ℎ𝑜𝑢𝑟 ∗

𝑑𝑎𝑦𝑜𝑓𝑤𝑒𝑒𝑘)𝑡 + 𝜀 it 

 With signs of grouped significance at the urban background sites, this next step in 

regressions separates Camden Bloomsbury and Westminster Covent Garden urban backgrounds 

to test each of the four treatment sites separately. With careful review, a variety of controls are 

removed and replaced. We first implement a three-factorial interaction,  δ7−9, to control for the 

varying trends in continual hourly windspeeds by its monthly indicator. The term condenses 

itself to interact for common emission variations across continuous hours of the day by month 

and continuous average wind speeds by month. Continual average hourly temperature trends 

across the sample, by month,  δ10, are brought forth to explain outlying pollutant variations from 

extreme weather events. λ5 adds 18 dummies to control for weekday by year effects and λ9 fixes 

for continuous time effects for hourly emissions patterns happing across hours of the week. δ11, 

∝i , λ1−4, and λ6−8 showed constant significance and are recycled. Method 2 regression 3 and 4 

utilize 527 fixed effects.  

 Method 3: Natural Logs & Robust Standard Error Check 

Regression 1 & 2 

𝑙𝑛 (𝑁𝑂2it), 𝑙𝑛 (𝑁𝑂𝑥it) = 

 = 𝛽1NBr𝐸𝐵𝑖𝑡 + 𝛽2𝐶𝐻𝑟𝐸𝐵𝑖𝑡 +𝛽3𝑊𝐶𝐺𝑢𝑏𝐸𝐵𝑖𝑡 + 𝛽4𝐶𝐵𝑢𝑏𝐸𝐵𝑖𝑡+ 𝛿1−12 𝑤𝑡 + ∝i + λ1−9𝑡
+

𝜀𝑖𝑡  
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Regression 3 & 4 

 =𝛽1NBr𝐸𝐵𝑖𝑡 + 𝛽2𝐶𝐻𝑟𝐸𝐵𝑖𝑡 +𝛽3𝑊𝐶𝐺𝑢𝑏𝐸𝐵𝑖𝑡 

+ 𝛽4𝐶𝐵𝑢𝑏𝐸𝐵𝑖𝑡+ 𝛿1−12 𝑤𝑡+ ∝i(month*year) + λ1−9𝑡
+ λ10𝑠𝑖𝑡𝑒 + 𝜀𝑖𝑡 

 With vigorous fixed effects and high statistical significance founded at each treatment 

monitor, the final method concludes with a log-level model and a check on potentially missed 

spatial correlations across the few clusters. By applying the same individual electric bus 

parameters and 527 fixed effects as the last pair of regressions onto a log-level model, the model 

better interprets the estimated roadside and background magnitudes of NO2 and NOx emissions 

prospectively attributed to the electrified transport corridors. The natural logarithmic model is 

also attractive in its properties as it will smooth out the fluctuative nature of urban air quality 

data and more accurately predict the Transport for London’s local pollution mitigation. To check 

for uncontrolled influential observations at the treatment sites and possibly results conveying 

underestimated standard errors, regressions 3 and 4 are ran as a standard log-level regression 

with site fixed effects, λ10, and a cluster at the month-year level, which allows for cross-site 

correlations that may have previously underestimated the standard errors of the electric bus 

coefficients. As the final step of the methodology, a residual versus fitted plot will visualize the 

preciseness of the targeted roadside and urban background pairs.  
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Results 

 

 This section begins by analyzing the three method’s results from the aforementioned 

regression equations. Next, discussion and robustness checks over the model’s predictions in 

NOx and NO2 will explore alternative specifications and controls on input choices. Finally, the 

paper concludes with a discussion of additional extensions and limitations that were considered 

during the research. In the succeeding results, each table value denotes the subsequent Method 

used.  

Table 1: Route side Bus Treatments 

 (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES NO2 NOx NO2 NOx NO2 NOx NO2 NOx 

         

𝛽1−2ℎ𝑜𝑠𝑟𝑑𝐸𝐵𝑖𝑡 -0.280*** -1.118*       

 (0.0893) (0.605)       

𝛽3−4𝑤𝑑ℎ𝑜𝑠𝑟𝑑𝐸𝐵𝑖𝑡   -0.243*** -0.985**     

   (0.0686) (0.389)     

𝛽5−6ℎ𝑟𝑤𝑑ℎ𝑜𝑠𝑟𝑑𝐸𝐵𝑖𝑡     -0.188* -0.886   

     (0.0932) (0.547)   

𝛽7−8ℎ𝑟𝑤𝑑ℎ𝑜𝑠𝐶𝐻𝐻𝐵𝑖𝑡       -0.160*** -0.471 

       (0.0309) (0.283) 

𝛽9−10ℎ𝑟𝑤𝑑ℎ𝑜𝑠𝑁𝐵𝐸𝐵𝑖𝑡       -0.378*** -1.974*** 

       (0.0311) (0.322) 

Wind (m/s) -8.745*** -34.95*** -8.909*** -35.88*** -8.918*** -35.92*** -7.890*** -31.15*** 

 (0.781) (6.850) (0.806) (7.124) (0.807) (7.137) (0.880) (6.419) 

Wind Direction -0.0451** -0.153 -0.0476** -0.160 -0.0476** -0.160 -0.0434* -0.126 

 (0.0202) (0.0946) (0.0210) (0.0982) (0.0210) (0.0980) (0.0210) (0.0973) 

Rain (cm) -0.266 -14.47 0.480 -11.32 0.464 -11.39 -1.193 -21.04* 

 (1.723) (9.112) (1.794) (9.314) (1.789) (9.309) (1.863) (10.30) 

Ambient T. (°C) -0.0209 -2.199 0.0699 -2.002 0.0706 -1.999 -0.776*** -3.986*** 

 (0.387) (1.368) (0.394) (1.472) (0.394) (1.474) (0.241) (0.644) 

Rel. Hum (%) -0.0271 0.705** -0.0570 0.591** -0.0573 0.591** -0.0113 1.128*** 

 (0.0414) (0.247) (0.0456) (0.247) (0.0456) (0.247) (0.0394) (0.274) 

BP (millibars) 0.0243 0.623** 0.0186 0.577* 0.0175 0.574* 0.0522 0.935*** 

 (0.0725) (0.261) (0.0766) (0.275) (0.0769) (0.276) (0.0629) (0.213) 

Constant 70.70 -419.2* 71.78 -415.4* 77.79 -389.0 38.14 -797.9*** 

 (66.82) (229.4) (66.91) (229.6) (68.04) (235.4) (57.31) (183.8) 

Observations 278,029 275,206 278,029 275,206 278,029 275,206 278,029 275,206 

R-squared 0.350 0.300 0.349 0.300 0.349 0.300 0.339 0.289 

Number of Monitors 12 12 12 12 12 12 12 12 

Hr. of Day FE Y Y Y Y Y Y Y Y 

Hr. of Day by Weekend FE Y Y Y Y Y Y Y Y 

Hr. of Day by Month FE N N N N N N N N 

Day of Week FE Y Y Y Y Y Y Y Y 

Month FE Y Y Y Y Y Y Y Y 

Sample Hr. FE Y Y Y Y Y Y Y Y 

Sample Hr.2 FE Y Y Y Y Y Y Y Y 

Month by Year FE N N N N N N N N 

Cluster & Panel FE Y Y Y Y Y Y Y Y 

Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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 Table 1 objectifies the marginal effects from an additional parameter restricting the beta 

coefficients to limited times and values as defined by the online electric bus fleet. Regressions 1-

4 initially pool the two route side monitors under one treatment variable to ensure interest for the  

electric bus coefficient at the forefront of the analysis. By simply setting four parameters equal to 

the number of incoming electric buses across the four rollout dates and then restricting for no 

more than three operating during weekend hours, a relative decline in average NO2 and NOx 

levels exists in comparison to the other monitoring sites. However, this effect is lost to 

unobservable variance across the pooled treatment sites once the hours of operations are 

accounted for, which set precedent to treat the Westminster Northbank Strand and Camden 

Holborn independently in regression 7 and 8 to reach a more coherent grouping of standard 

errors. Fear of collinearity arises from setting the precise treatment on separate panels monitoring 

the same route throughout the analysis. Conversely, simple intuition may already figure to not be 

weary of strong correlations and inflated variance between the hourly emission levels at 

distanced route side treatments, when bearing in mind central London’s daily traffic episodes and 

the underlying incentives for the bus fleet’s electrification.  Statistical evidence from Table one 

carries forward a causal claim to continue testing the selected sites and time parameters.  
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Table 2: Urban Background & Roadside Bus Treatments with interactive & continuous Fixed 

Effects 

 (1) (2) (3) (4) 

VARIABLES NO2 NOx NO2 NOx 

     

𝛽1NBr𝐸𝐵𝑖𝑡 -0.410*** -2.038*** -0.427*** -2.138*** 

 (0.0394) (0.311) (0.0314) (0.282) 

𝛽2𝐶𝐻𝑟𝐸𝐵𝑖𝑡  -0.197*** -0.669** -0.188*** -0.579* 

 (0.0289) (0.231) (0.0268) (0.276) 

𝛽3𝑢𝑏𝐸𝐵𝑖𝑡 -0.498*** -2.740**   

 (0.124) (0.925)   

𝛽3𝑊𝐶𝐺𝑢𝑏𝐸𝑏𝑢𝑠𝑖𝑡   -0.637*** -3.823*** 

   (0.136) (1.023) 

𝛽4𝐶𝐵𝑢𝑏𝐸𝑏𝑢𝑠𝑖𝑡   -0.409*** -2.091*** 

   (0.0765) (0.476) 
Wind (m/s) -7.556*** -25.59*** -7.469*** -29.46*** 

 (0.559) (5.102) (0.499) (5.195) 
Wind Direction 1.381 -7.186 1.115 -4.228 

 (1.667) (8.775) (1.466) (8.137) 
Rain (cm) 0.0318 0.898*** 0.0251 0.804*** 

 (0.0425) (0.194) (0.0382) (0.191) 
Ambient T. (°C) 0.0252 0.649** 0.0201 0.555* 

 (0.0755) (0.263) (0.0754) (0.283) 
Rel. Hum (%) -0.0399* -0.141 -0.0301** -0.100* 

 (0.0200) (0.0924) (0.0124) (0.0527) 
BP (millibars) -2.101*** -13.05*** -1.805*** -10.38*** 

 (0.245) (1.257) (0.313) (1.407) 

Constant 81.32 -366.1 96.44 -180.4 

 (72.09) (247.5) (75.57) (285.6) 

     

Observations 278,029 275,206 278,029 275,206 

R-squared 0.368 0.318 0.377 0.325 

Number of Monitors 12 12 12 12 
Hour of Day FE Y Y Y Y 
Hour of Day: Weekend FE Y Y Y Y 
Weekend Y Y Y Y 
Hour of Day*Month FE Y Y Y Y 
Hr.*Wind Dir. FE N N Y Y 
Wind Speed*Hr. Y Y Y Y 
Hour*Month*Windspeed N N Y Y 
Day of Week FE Y Y Y Y 
Hour of Day * Month FE Y Y Y Y 
Temp*Month Y Y Y Y 
Month*Windspeed N N Y Y 
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Month FE Y Y Y Y 
Sample Hr. FE Y Y N N 
Sample Hr.2 FE Y Y N N 
Month by Year FE Y Y Y Y 
Day*Year N N Y Y 
Year FE Y Y Y Y 
Cluster & Panel FE Y Y Y Y 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

 Table 2 regression results convey sequentially consistent negative coefficients with high 

certainty, as the signs, magnitudes, and standard errors on all the predictors withstand 

interactivity between the enhanced weather and time demeaners. Although the route side electric 

bus estimators sustain negative values within their range of standard error, even after imposing 

over five hundred average treatment effects across the panel, the four resulting coefficients 

treating for the nearby online electric buses hypothetically effective NO2 or NOx reduction, stage 

higher magnitudes of predictive power at both urban background monitors as well as with wind 

speed and barometric pressure, especially compared to Camden Holborn. However, the slightly 

higher electrification coefficient at Westminster Covent Garden, 𝛽4𝐶𝐵𝑢𝑏𝐸𝑏𝑢𝑠𝑖𝑡, compared to 

Westminster Strand Northbank on route, 𝛽1NBr𝐸𝐵𝑖𝑡, may be explained by the background’s 

ability to capture a more representative, larger, and steadier sample air space, with a greater rate 

of exposure to a wider range of emitting sources. Table 2’s final pair of regression columns 

highlight the highest explained variations in predicted levels of NO2 and NOx from the model 

thus far, where impacts from the weather covariates predict the reductions from the electric bus 

coefficient, as it is most obvious that climatic factors such as wind speeds and air particle density 

provide the most deterministic explanation for the average changes in downward emissions 

reductions. Interacting the weather covariates with the beta electric bus coefficients may help to 

explain for variations between wind and the buses at the respective monitors. The study’s 
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inability to control the environment’s overwhelming chemical and climatic influences on the 

boundary layer lifetime of nitrogen oxides and dioxide raises scientific uncertainty in controlling 

for the unobserved environmental factors affecting each monitor’s range of sources. To check the 

magnitude of Regression 4’s statistically significant treatment coefficient on NOx ,  

𝛽1NBr𝐸𝐵𝑖𝑡, = -2.138 cubic micrograms per hour per bus, compare this coefficient against the 

Transport for London’s (2016) press release on the route’s electrification, where it was first 

publicized that the fifty-one electric buses entering routes 507 and 521 would reduce NOx by 10 

metric tonnes per year. If there were 51 route side monitors equally distanced, assuming parallel 

trends, measuring all 51 electrified bus operations per hour—simply multiply the model’s most 

predictive treatment coefficient on NOx, -2.138 micrograms per bus per hour, by the total 51 

buses, by the 8760 hours per year to get a predicted reduction of ~955,173 cubic micrograms, 

which explains less than 0% of the tons saved. The analysis is showing major difference between 

reduced tailpipe emissions versus reduced sidewalk emissions, which conveys the magnitude of 

electrification may not be significant compared to total traffic pollution.  
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Table 3: Natural Logs & Standard Error Diagnostic 

 (1) (2) (3) (4) 

VARIABLES lno2 lnox lno2 lnox 

     

𝛽1NBr𝐸𝐵𝑖𝑡 -0.00296*** -0.00551*** -0.00296** -0.00551*** 

 (0.000742) (0.00150) (0.00139) (0.00192) 

𝛽2𝐶𝐻𝑟𝐸𝐵𝑖𝑡 -0.00352*** -0.00563*** -0.00352*** -0.00563*** 

 (0.000812) (0.00154) (0.00114) (0.00200) 

𝛽3𝑊𝐶𝐺𝑢𝑏𝐸𝐵𝑖𝑡 -0.00458*** -0.0104*** -0.00458*** -0.0104*** 

 (0.00121) (0.00280) (0.000569) (0.000634) 

𝛽4𝐶𝐵𝑢𝑏𝐸𝐵𝑖𝑡 -0.00382*** -0.00796*** -0.00382** -0.00796*** 

 (0.000818) (0.00159) (0.00157) (0.00165) 
Wind (m/s) -0.186*** -0.250*** -0.186*** -0.250*** 

 (0.0129) (0.0126) (0.0118) (0.0231) 
Wind Direction -0.000522** -0.000853* -0.000522*** -0.000853*** 

 (0.000229) (0.000393) (0.000113) (0.000123) 
Rain (cm) -0.0122 -0.0363 -0.0122 -0.0363 

 (0.0211) (0.0370) (0.0221) (0.0350) 
Ambient T. (°C) -0.0284*** -0.0510*** -0.0284*** -0.0510*** 

 (0.00654) (0.0118) (0.00274) (0.00402) 
Rel. Hum (%) 0.000331 0.00377*** 0.000331 0.00377*** 

 (0.000658) (0.000900) (0.000467) (0.000610) 
BP (millibars) 0.00125 0.00405* 0.00125* 0.00405*** 

 (0.00135) (0.00207) (0.000684) (0.000923) 

Constant 3.615** 1.835 3.219*** 1.051 

 (1.286) (1.987) (0.726) (0.958) 

     

Observations 278,027 275,206 278,027 275,206 

R-squared 0.447 0.477 0.600 0.657 

Number of sites 12 12 12 12 
Hour of Day FE Y Y Y Y 
Hour of Day: Weekend FE Y Y Y Y 
Weekend Y Y Y Y 
Hour of Day*Month FE Y Y Y Y 
Hr.*Wind Dir. FE Y Y Y Y 
Wind Speed*Hr. Y Y Y Y 
Hour*Month*Windspeed Y Y Y Y 
Day of Week FE Y Y Y Y 
Hour of Day * Month FE Y Y Y Y 
Temp*Month Y Y Y Y 
Month*Windspeed Y Y Y Y 
Month FE Y Y Y Y 
Sample Hr. FE N N N N 
Sample Hr.2 FE N N N N 
Month by Year FE N N N N 
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Day*Year Y Y Y Y 
Year FE Y Y Y Y 
Cluster & Panel FE 

Site Fixed Effects 

Month*Year Clustering 

Y 

N 

N 

Y 

N 

N 

N 

Y 

Y 

N 

Y 

Y 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Plot 3: Residuals v. Fitted Values 

 

 Table 3 and Plot 3 exhibit a smoother, more accurate interpretation of the resulting 

downward trends in pollution happening during the time of bus 521’s electrification; however, 

the pattern in which the data points deviate from where the residual line equals zero suggest that 

the variances of the error term remain unequal and the model still slightly suffers from 

heterogeneity. Regression 3 and 4 show less precise confidence intervals when allowing for 

cross-site correlation across within a month of the year, but the robust standard errors still 

convey highly similar magnitudes. 

 By utilizing the tight range in statistical variation across the Table’s electric bus 

coefficients, a conservative estimate of 0.3% NO2 & 0.5% NOx reduction per electric bus per 

hour at the route side monitors accepts viability. Hypothetically, if each operating electric bus 

were running simultaneously and being monitored under the same conditions as the treatment, 

multiplying -0.3% by the number of electric buses in operation at 521 or 507, predicts a 

reasonable, simultaneous sidewalk reduction in NO2 cubic micrograms per hour for the fully 
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operating 521and 507 route. To check the total predicted magnitude of the simultaneous 

electrification episode at Waterloo station, the regression results forecast a cumulative ~15% 

reduction in total hourly NO2 attributed from the 507 and 521 operation. Considering the 

Transport for London’s conveyed bus fleet contribution of 27% NO2 to aggregate central London 

levels, the model’s -15% aggregate hourly NO2 reduction estimate, which combines each 

Waterloo bus reducing its operating location’s nearby NO2 concentrations by -0.3%, we equate 

the Transport for London’s noxious fleet contribution to be cut by ~50% in Central London. 

Table 3’s statistically significant treatment coefficients ranging from predicted -0.296% to -

0.458% decreases in local NO2 per electric bus rollout at the respective site proves rather small 

in comparison to central London’s average hourly noxious concentrations; but in respect, 

improvements are shown.  

  

Discussion on Limitations and Further Research 

 The central limitations reside with the model’s inability to predict a higher magnitude on 

noxious emissions reductions, but this may just be the case given London’s total traffic 

congestion. The presence of an uncontrolled and unobservable, downward variance in noxious 

emissions across the sample may have likely led to correlations across the entire group, which 

violates the central assumption that the control errors are uncorrelated while the treatment errors 

belonging to the same cluster are correlated. Possible mismeasurements may still rely on 

confoundedness in clustering the panel’s standardized errors across too few clusters—where the 

model’s variation in the covariate matrix across clusters yields significant variability. However, 

Table 3, Regression 3 and 4 do not define the magnitude of cross site correlation as significant. 

Given the data available, the beta bus coefficient’s three parameters signifying the number of 
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electric buses online were not perfectly precise in calculating the mitigation as there may still 

exist endogenous variances in combustion across the control sites and different minor 

uncontrolled, hourly correlations between the treatments. Extensions may be made with higher 

degree polynomials and weather to beta-electric-bus interactions. 

 Another potentially overlooked limitation within the analysis draws from unexpected, 

and unexplained, NOx and NO2 variation flooded by the idiosyncratic vehicle fleet composition. 

Nitrogen dioxide emitted from diesel engines remains inadequately controlled for in the UK and 

is still today a particular problem within London, where nearly half of cars run on diesel, as well 

as virtually all trucks, lorries, water transport, trains, construction, and farm machinery (Holgate, 

2016). This potential endogeneity may have been enhanced as a result of insufficient clustering, 

which would lead to bias in the prediction. For this study, common trends in London fleet 

vehicle composition are assumed, but the possibility of an isolated, electrified commercial or 

residential fleet created a bias.   

 Heterogeneous treatment effects are the primary concern in the study’s potentially 

underestimated effect of electric buses on noxious pollution. For example, unobserved noxious 

heterogeneity could have been controlled if the panel contained statistical levels for ozone, solar 

radiation, or boundary layers, each of which instigate major variations in nitrogen oxide 

concentrations through temperature inversions or secondary formations of NO2 through 

photovoltaic reactions. This uncontrolled effect is particularly relevant as the electric buses were 

rolled out during winter, when morning inversions are most frequent, which may have 

contributed to an underestimation on the bus electrification coefficient if these effects vary 

across monitors.  
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 The analysis also missed controlling for potential causality in reduced nitrogen oxides 

emissions within the time of the electric buses by unexplained fading glow bias. Suppose 

London citizens were attracted to the publicity surrounding the press release on bus route 

electrification as a means of reducing toxic pollution and chose to ride the buses during the 

rollouts but returned to private drives as the public glow from the electric bus reform faded over 

time.  

 Although the method assumes homogeneous effects from governmental regulation, an 

increase in the congestion toll on high emitting vehicles entering London past October 23, 2017, 

as well as the enactment of Euro VI emission standards in June, 2016 may also explain the 

unobserved downward trending variance (Dipnarine, 2018). 

 Moving forward, an extension of this research may consider the case of Antelope Valley, 

CA, where a shock at a local air monitor from the electrification of 85 buses may be more 

definitive, as the entire fleet is being converted in 2018 and there exists less of an effect from 

diesel vehicles in the United States.  Bootstrapping inferences may also be extended from this 

area of research and can further be used to help explain if the use of clustering is optimal.  

 

Final Conclusions 

 

 Excluding the highest polluting traffic is efficient in its direct method of reducing public 

externalities, as well as a popular way for European cities to clean up their diesel pollution. Bans, 

emission taxes, tolls, emission standards, and retrofitted or electrified public transport have all 

proven effective. Public governance over air quality embraces future security through authority 

and awareness, rather than relying on the lags of vehicle replacement within the private market.  

In the case of London, it is valuable to see downward trends in noxious pollution as well as a 

measurable control over air pollution from an activer public transport agency. Effective public 
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action over emission concentrations is a central cause in determining the future landscape of 

urban environments, as public financed agencies have the power to be effectively faster in 

controlling pollution than reactions within the free-market. As a public agency, the Transport for 

London has set a model precedent for unambiguous air quality benefits through its transition to 

clean-energy transport.  
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