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Figure	6:	Nylon	monofilaments.	
A)	Nylon	monofilament	before	being	placed	in	a	caterpillar.	
B)	Melanized	nylon	monofilament	recovered	after	24	hours	inside	a	
caterpillar.		
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Figure	7:	A	photo	of	the	hemocytometer	counting	grid	used	for	counting	
hemocytes.		
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Figure	8:	Total	hemocyte	count	per	10	microliters	over	third,	fourth,	and	fifth	
instar	on	two	host	plants,	P.	lanceolata	and	M.	guttatus.			
The	hemocytes	increased	over	each	instar	throughout	development	and	were	
consistently	higher	in	individuals	fed	P.	lanceolata.	
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Figure	9:	Percent	melanization	over	third,	fourth,	and	fifth	instar	on	host	plants,	P.	lanceolata	
and	M.	guttatus.			
Percent	melanization	increased	over	each	instar,	but	there	was	no	significant	effect	of	host	
plant.		There	was	a	significant	interaction	between	host	plant	and	instar,	indicating	the	immune	
system	functions	differently	with	instar.	
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Figure	10:	Pearson	correlation	between	percent	melanization	and	total	hemocyte	count.	
There	was	a	significant	positive	correlation	between	percent	melanization	and	total	hemocyte	count	
independent	of	host	plant	and	for	individuals	fed	Mimulus	gutattus.	

						M.	gutattus												P.	lanceolata 
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Figure	11:	Percent	dry	weight	iridoid	glycosides	over	third,	fourth,	and	fifth	instar.		
Iridoid	glycoside	content	increased	over	each	instar	for	immune	challenged	
caterpillars.		The	immune	challenged	caterpillars	contained	less	iridoid	glycosides,	
except	in	the	fifth	instar.	There	was	a	significant	difference	in	iridoid	glycoside	content	
between	the	three	instars.		The	intact	caterpillars	increased	over	third	and	fourth	
instar,	but	decreased	in	the	fifth	instar.					
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Figure	12:	Iridoid	glycosides	in	milligrams	per	caterpillar	over	third,	fourth,	and	fifth	instar.			
Iridoid	glycoside	content	increased	over	each	instar	for	both	intact	and	immune	challenged	
caterpillars.		The	immune	challenged	caterpillars	contained	more	iridoid	glycosides	(mg)	over	
the	fourth	and	fifth	instar,	but	the	intact	caterpillars	contained	more	in	the	third	instar.		
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Figure	13:	Pearson	correlation	between	percent	dry	weight	catalpol	and	total	
hemocyte	count.	
There	is	a	significant	negative	correlation	between	percent	dry	weight	catalpol	
and	total	hemocyte	count	per	ten	microliters.		
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Figure	14:	Percent	dry	weight	iridoid	glycosides	in	five	samples	of	
Plantago	lanceolata.		
Each	sample	consists	of	five	different	leaves	from	the	same	plant.		Total	
iridoid	glycosides	ranged	from	0.362	to	1.092	percent	dry	weight.		
Aucubin	ranged	from	0.305	to	0.987	and	catalpol	ranged	from	0.057	to	
0.312	percent	dry	weight.			
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