Overview

National Instruments RT Series PXI embedded controllers deliver a flexible, rugged platform for your deterministic, real-time measurement and control applications. The NI PXI-8184 RT, NI PXI-8186 RT, and NI PXI-8187 RT controllers offer a high-performance platform, ideal for real-time test and control applications. You develop your LabVIEW application with the NI LabVIEW Real-Time Module on Windows or Mac OS X, and then download the program to your RT Series PXI embedded controller via Ethernet. The embedded code executes on a real-time operating system. Thus, you use the powerful and flexible development tools of LabVIEW to build reliable, real-time solutions.

LabVIEW Real-Time applications running on PXI systems achieve microsecond loop rates with only 3 to 4 ns of system jitter. These real-time measurement and control systems capitalize on Intel processors coupled with the advanced timing, triggering, and I/O synchronization benefits of PXI. Furthermore, NI-DAQmx Measurement Services software extends the timing capabilities of PXI to deliver tight integration with LabVIEW Real-Time applications through operations such as hardware-timed software loops.

Connect to Any I/O

The modularity of PXI and open development environment of LabVIEW make it easy to integrate a variety of I/O within your application. Create a custom real-time embedded solution using an RT Series PXI embedded controller with any number and combination of PXI/CompactPCI plug-in modules.

Built-in LabVIEW libraries help you create applications with data acquisition, dynamic signal acquisition, motion control, image acquisition, and reconfigurable I/O. Communicate with peripheral devices through CAN, GPIB, Ethernet, or serial protocols. Use NI-VISA to integrate third-party PXI/CompactPCI modules in your application.

In addition, the RT Series PXI embedded controllers include an external SMB connection for use as a trigger input, output, or watchdog timer. Use the external SMB to pass trigger and timing signals into and out of the PXI trigger bus in your PXI system.

Create Reliable Stand-Alone Systems

To ensure reliable operation, embedded LabVIEW applications continue to run even if the host PC is interrupted or rebooted. Because RT Series PXI embedded controllers run in a separate chassis with a dedicated power supply, the operator can shut down the host computer entirely without disrupting the real-time program.

For stand-alone operation, you can permanently embed code in the system so it starts automatically when the system boots, requiring no human interaction. Use the LabVIEW Professional Development System and LabVIEW Real-Time Module to compile your LabVIEW application to an executable and download it to your RT Series PXI embedded controller.

<table>
<thead>
<tr>
<th>Model</th>
<th>PXI-8187 RT</th>
<th>PXI-8186 RT</th>
<th>PXI-8184 RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>2.5 GHz P4-M</td>
<td>2.2 GHz P4-M</td>
<td>850 MHz Celeron</td>
</tr>
<tr>
<td>RAM, standard</td>
<td>256 MB</td>
<td>256 MB</td>
<td>128 MB</td>
</tr>
<tr>
<td>RAM, maximum</td>
<td>1 GB</td>
<td>1 GB</td>
<td>512 MB</td>
</tr>
<tr>
<td>Storage, hard drive</td>
<td>40 GB^1</td>
<td>40 GB^1</td>
<td>40 GB^1</td>
</tr>
<tr>
<td>Storage, solid-state</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>GPIB interface</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ethernet port (10/100BaseTX)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Serial ports (RS232)</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Built-in hardware timing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Watchdog/trigger SMB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

1^GB for PXI-8186 RT and PXI-8187 RT. Optional 128 or 512 MB solid-state drives can replace the hard drives.

Table 1. PXI RT Series Controller Selection Guide
Dual-Boot Option

NI PXI embedded controllers can be configured to boot into Windows or the real-time OS. NI Measurement & Automation Explorer includes features for installing and configuring PXI embedded controllers as LabVIEW Real-Time targets. The controllers use a hardware switch or BIOS setting to boot into the desired OS.

The result is a PXI controller that can run embedded LabVIEW Real-Time or Windows applications. When the controller is in real-time mode, you need another Windows or Mac OS X computer to develop and debug the LabVIEW Real-Time code for the PXI controller. To enable a Windows PXI embedded controller to dual-boot with the real-time OS, you must purchase the LabVIEW Real-Time embedded software for the controller.

Extended Temperature Option

The PXI-8186 RT and PXI-8187 RT controllers are available in two versions to address different environmental conditions. The standard version has an operating temperature of 5 to 40 °C with a storage temperature of -20 to 60 °C. The extended temperature version has an operating temperature of 0 to 55 °C with a storage temperature of -40 to 85 °C.

The extended temperature option uses a hard drive designed for reliability in the low and high-temperature extremes. This extended temperature hard drive has a capacity of 30 GB (minimum), versus 40 GB (minimum) on the standard controller. Refer to the specifications section for additional details, including chassis-specific temperature specifications.

Table 2. Maximum Loop Rates for LabVIEW Real-Time PXI Systems (All benchmarks use LabVIEW 7 Real-Time Module and traditional NI-DAQ 7.0 and adhere to the NI recommended architecture for LabVIEW Real-Time applications. Contact National Instruments for additional details regarding these and other benchmarks.)

Ordering Information

To order a complete PXI system based on a LabVIEW Real-Time embedded controller, visit ni.com/pxiadvisor.

Step 1. Select Controller

<table>
<thead>
<tr>
<th>NI Hardware</th>
<th>Benchmark</th>
<th>Processing</th>
<th>Channels</th>
<th>File Write</th>
<th>Network Transfer</th>
<th>PXI-8187 RT</th>
<th>PXI-8186 RT</th>
<th>PXI-8186 RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Series DAQ</td>
<td>Analog Input and Output</td>
<td>PID</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>43</td>
<td>42</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Analog Input and Output</td>
<td>PID</td>
<td>8</td>
<td>–</td>
<td>–</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Analog Input and Output</td>
<td>PID</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>35</td>
<td>31</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Analog Input and Output</td>
<td>PID</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>38</td>
<td>24</td>
<td>15</td>
</tr>
<tr>
<td>PXI-6533</td>
<td>Digital Input and Output (1)</td>
<td>-</td>
<td>8</td>
<td>–</td>
<td>–</td>
<td>179</td>
<td>150</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Digital Input and Output (2)</td>
<td>-</td>
<td>16</td>
<td>–</td>
<td>–</td>
<td>124</td>
<td>104</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Digital Output (1)</td>
<td>-</td>
<td>16</td>
<td>–</td>
<td>–</td>
<td>380</td>
<td>298</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>Counter Read (1)</td>
<td>-</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>144</td>
<td>140</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Counter Read (2)</td>
<td>-</td>
<td>4</td>
<td>–</td>
<td>–</td>
<td>35</td>
<td>34</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Data Analysis (FFT)</td>
<td></td>
<td>1 array</td>
<td>–</td>
<td>–</td>
<td>5.1</td>
<td>5</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Note: One data value per iteration written to an open file. *TCP transfers of 512 bytes per transfer. **Static (non-buffered, unstrobed) digital write. ***Static (non-buffered, buffered) digital write. ****Read current value of counter register. **FFT** per second based on test of 1000 FFTs using one array of 2048 double-precision data points with Hanning windowing and no averaging.

Step 3. Select Solid-State Storage Options

128 MB Solid-State HDD for PXI-8184 RT, PXI-8186 RT, PXI-8187 RT 779175-128
512 MB Solid-State HDD for PXI-8184 RT, PXI-8186 RT, PXI-8187 RT 779175-512

Step 4. Select Accessories

Micro-GPIB to GPIB cable (0.2 m) 183285-0R2
Micro-GPIB to GPIB cable (1 m) 183285-01
Micro-GPIB to GPIB cable (2 m) 183285-02
NI PXI-8252 FireWire (IEEE 1394) interface module 778925-01

BUY NOW!

For complete product specifications, pricing, and accessory information, call (800) 813-3693 (U.S. only) or go to ni.com/pxi
High-Performance Real-Time Embedded Controllers for PXI

Specifications

Physical

Slot Requirements
- PXI-8184 RT: 1 system slot, 2 controller expansion slots
- PXI-8186 RT and PXI-8187 RT: 1 system slot, 3 controller expansion slots

Dimensions
- PXI-8184 RT: 6.1 by 13 by 21.6 cm (2.4 by 5.1 by 8.5 in.), 3U
- PXI-8186 RT and PXI-8187 RT: 8.1 by 13 by 21.6 cm (3.2 by 5.1 by 8.5 in.), 3U

Weight
- PXI-8184 RT: 0.64 kg (1.14 lb), typical
- PXI-8186 RT and PXI-8187 RT: 1.0 kg (2.2 lb), typical

Mean Time Between Failures (MTBF)
- PXI-8184 RT: 226,000
- PXI-8186 RT and PXI-8187 RT: 170,248

(Predictions in accordance with Belcore methods)

Peripherals

Ethernet
- 10/100BaseTX, RJ-45 connector

Serial port (RS232)
- PXI-8184 RT: 1
- PXI-8186 RT and PXI-8187 RT: 2

GPIB port (PXI-8186 RT and PXI-8187 RT)
- PCI-GPIB/TNT, Micro D25 connector (adapter not included), IEEE 488 and HS488 protocols

RAM
- PXI-8184 RT: 128 MB standard, 512 MB maximum, 7.5 ns SDRAM, 1 SO-DIMM socket
- PXI-8186 RT and PXI-8187 RT: 256 MB standard, 1 GB maximum, DDR SDRAM, 1 SO-DIMM socket

Nonvolatile Memory
- PXI-8184 RT, PXI-8186 RT, and PXI-8187 RT: 40 GB minimum, Internal 2.5 in, Fast Ultra ATA100 Interface
- PXI-8186 RT and PXI-8187 RT extended temperature: 30 GB minimum, Internal 2.5 in, Fast Ultra ATA100 Interface

Power Requirements

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>PXI-8184 RT</th>
<th>Typical</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>+3.3</td>
<td>3.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>+5</td>
<td>4.5</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>-12</td>
<td>0.001</td>
<td>0.04</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>PXI-8186 RT, PXI-8187 RT</th>
<th>Typical</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>+3.3</td>
<td>4.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>+5</td>
<td>6.5</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>+12</td>
<td>0.15</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>-12</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Shock and Vibration

Operational Shock
- 30 g peak, half-sine, 11 ms pulse

Random Vibration
- Operating: 5 to 500 Hz, 0.3 gms (with solid-state hard drive)
- Nonoperating: 5 to 500 Hz, 2.4 gms (Tested in accordance with IEC-60068-2-64. Nonoperating test profile exceeds the requirements of MIL-PRF-28800F, Class 3)

Operating Environment

Ambient Temperature

<table>
<thead>
<tr>
<th>Chassis</th>
<th>PXI-8184 RT</th>
<th>PXI-8186 RT, PXI-8187 RT</th>
<th>Extended Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>PXI-1000B</td>
<td>5 to 50</td>
<td>5 to 40</td>
<td>0 to 65</td>
</tr>
<tr>
<td>PXI-1002</td>
<td>5 to 50</td>
<td>5 to 40</td>
<td>0 to 65</td>
</tr>
<tr>
<td>PXI-1009</td>
<td>5 to 45</td>
<td>5 to 45</td>
<td>0 to 65</td>
</tr>
<tr>
<td>PXI-1010</td>
<td>5 to 35</td>
<td>Not Recommended</td>
<td>0 to 35</td>
</tr>
<tr>
<td>PXI-1011</td>
<td>5 to 50</td>
<td>5 to 40</td>
<td>0 to 65</td>
</tr>
<tr>
<td>PXI-1042</td>
<td>5 to 50</td>
<td>5 to 40</td>
<td>0 to 65</td>
</tr>
<tr>
<td>PXI-1048</td>
<td>5 to 55</td>
<td>5 to 45</td>
<td>0 to 65</td>
</tr>
</tbody>
</table>

(Tests in accordance with IEC-60068-2-1 and IEC-60068-2-2)

Relative Humidity
- 10 to 90%, noncondensing (IEC-60068-2-56)

Altitude
- 2000 m (at 25 °C ambient temperature)

Storage Environment

Ambient Temperature

- PXI-8184 RT, PXI-8186 RT, and PXI-8187 RT: -20 to 65 °C (IEC-60068-2-1 and IEC-60068-2-2)
- PXI-8186 RT and PXI-8187 RT extended temperature: -40 to 85 °C (IEC-60068-2-1 and IEC-60068-2-2)

Relative Humidity
- 5 to 95%, noncondensing (IEC-60068-2-56)

Safety Compliance

EN 61010-1, IEC 61010-1

Electromagnetic Compatibility

Refer to the Declaration of Conformity (DoC) for regulatory compliance information. To obtain the DoC for this product, click Declaration of Conformity at ni.com/hardref.nsf.

Specifications subject to change without notice
NI Services and Support

NI has the services and support to meet your needs around the globe and through the application life cycle – from planning and development through deployment and ongoing maintenance. We offer services and service levels to meet customer requirements in research, design, validation, and manufacturing. Visit ni.com/services.

Training and Certification
NI training is the fastest, most certain route to productivity with our products. NI training can shorten your learning curve, save development time, and reduce maintenance costs over the application life cycle. We schedule instructor-led courses in cities worldwide, or we can hold a course at your facility. We also offer a professional certification program that identifies individuals who have high levels of skill and knowledge on using NI products. Visit ni.com/training.

Professional Services
Our Professional Services Team is comprised of NI applications engineers, NI Consulting Services, and a worldwide NI Alliance Partner Program of more than 600 independent consultants and integrators. Services range from start-up assistance to turnkey system integration. Visit ni.com/alliance.

OEM Support
We offer design-in consulting and product integration assistance if you want to use our products for OEM applications. For information about special pricing and services for OEM customers, visit ni.com/oem.

Local Sales and Technical Support
In offices worldwide, our staff is local to the country, giving you access to engineers who speak your language. NI delivers industry-leading technical support through online knowledge bases, our applications engineers, and access to 14,000 measurement and automation professionals within NI Developer Exchange forums. Find immediate answers to your questions at ni.com/support.

We also offer service programs that provide automatic upgrades to your application development environment and higher levels of technical support. Visit ni.com/ssp.

Hardware Services
NI Factory Installation Services
NI Factory Installation Services (FIS) is the fastest and easiest way to use your PXI or PXI/SCXI™ combination systems right out of the box. Trained NI technicians install the software and hardware and configure the system to your specifications. NI extends the standard warranty by one year on hardware components (controllers, chassis, modules) purchased with FIS. To use FIS, simply configure your system online with ni.com/pxiadvisor.

Calibration Services
NI recognizes the need to maintain properly calibrated devices for high-accuracy measurements. We provide manual calibration procedures, services to recalibrate your products, and automated calibration software specifically designed for use by metrology laboratories. Visit ni.com/calibration.

Repair and Extended Warranty
NI provides complete repair services for our products. Express repair and advance replacement services are also available. We offer extended warranties to help you meet project life-cycle requirements. Visit ni.com/services.