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Based on the improved cycling stability and high rate performance, it is clear that the 

ALD coating represents a marked improvement for NMC based cathodes. In order to be 

applicable in electric vehicles, they also need to perform well at elevated temperatures. The 

cycling stability performance, as well as the 3
rd

 and 70
th

 charge/discharge voltage profiles, of 

NMC, NMC/4ALD, and NMC:LMO at an elevated temperature of 55 °C is shown in figure 

4.14.
65

 This data shows that the bare NMC sample degrades rapidly and exhibits large 

overpotentials by the 70
th

 cycle. The NMC:LMO sample performs better than the bare NMC 

sample, however still has much lower capacity and a higher overpotential than the ALD coated 

sample. Between the 3
rd

 and the 70
th

 cycles, the bare sample retains a mere 14% of its original 

capacity and the ALD coated cell retains 92% of its original capacity. The improved stability of 

the ALD coated sample at elevated temperatures is most likely due to the suppression of 

electrolyte decomposition and metal dissolution, the rates of which are faster at higher 

temperatures.  
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Figure 4.13 

FIB cross-section images of fully charged (delithiated) (a) NMC Bare and (b) NMC/4ALD after 

100 cycles at 1 C-rate between 3.0 and 4.5 V. TEM selected area electron diffraction (SAED) 

patterns from inner area (1) and outer area (2) of each particle show phase transition in NMC 

Bare electrode (c,d) whereas NMC/4ALD presents same crystal structure from inner and outer 

area (e,f). Reproduced from reference 65. 
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section 3.1.2. It was found that the ALD coating on the graphite had prevented the low 

temperature exothermic reactions occurring on the anode.  

In order to investigate the effects of an ALD coating on the NMC based cathodes, DSC 

was performed on two NMC electrodes, one of which was coated with 6 cycles of Al2O3 ALD, 

which had been extracted from coin cells after 5 formation cycles. Figure 4.15 shows the results 

of this comparison. The data shows that the 6 cycles of Al2O3 ALD did not improve the thermal 

abuse performance of the NMC based electrode.  

Similar results were obtained with NMC cathodes which had been coated with 2, 4, 8, 10, 

and 12 cycles of Al2O3 ALD. This is most likely due to the mechanism of thermal decomposition 

of the NMC based electrodes during thermal runaway. It has previously been shown that at 

elevated temperatures the cobalt and nickel oxide materials within NMC based cathodes release 

oxygen which leads to combustion of the electrolyte, thus accelerating the thermal runaway 

event by releasing massive amounts of heat.
66

 In order to improve the thermal abuse performance 

of NMC based cathode materials, the oxygen release must be kinetically hindered or contained at 

temperatures at which thermal runaway normally occurs. Aluminum oxide is traditionally a high 

quality oxygen barrier. However, the thin, i.e. sub-nm, Al2O3 ALD films are not sufficient to 

stem the flow of oxygen into the electrolyte. In order for Al2O3 to act as an effective barrier to 

oxygen it must be at least as thick as the native oxide layer which naturally forms on aluminum 

metal. The native oxide layer on aluminum is approximately 5 nm. However, the use of 5 nm 

Al2O3 on a cathode electrode will likely be impractical due to the resulting limitation in 

interfacial ionic and electrical conductivity and performance. 
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Figure 5.18 

Grazing incidence X-ray diffraction scans for TiGL titanicone films pyrolyzed at a range of 

temperatures. The initial thickness of each sample prior to pyrolysis was approximately 500 nm. 

The films were amorphous prior to pyrolysis. Reproduced from reference 69.  
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Previous studies have reported the crystallization of TiO2 films to anatase structure at 

much lower temperatures of 300 – 400 °C.
87,88

 Another group has reported an increase in the 

TiO2 crystallization temperature during the pyrolysis of titanium alkoxide gels.
89

 The titanium 

alkoxide gels are similar in structure to the MLD grown titanicones, which are titanium alkoxide 

polymer films. The increase in crystallization temperature was attributed to the TiO2 domains 

being constrained by the carbon matrix. This is most likely the reason for the increased 

crystallization temperature for the pyrolyzed titanicone films.  

5.3.5  TEM Imaging of Pyrolyzed Titanicones 

 

Raman spectroscopy confirmed the presence of sp
2
 carbon within the film. X-ray 

photoelectron spectroscopy confirmed that the carbon was interspersed throughout the film with 

a tendency to segregate towards just below the surface at higher temperatures. X-ray diffraction 

data showed that the titanium oxide within the film forms measurable crystalline domains. In 

order to fully visualize the microstructure of the pyrolyzed titanicone films, FIB-TEM analysis 

was performed on a TiGL film pyrolyzed at 800 °C. Figure 5.19 shows a FIB-TEM image of the 

TiGL film post pyrolysis. This image shows the carbon and platinum coatings deposited prior to 

FIB cutting. It also shows the composite material and a surface layer on top of the SiO2 substrate. 

Compositional mapping by EDS is shown in figure 5.20. The titanium rich domains are shown in 

figure 5.20a, the carbon rich domains are shown in figure 5.20b, and the oxygen rich domains are 

shown in figure 5.20c. It is clear from this data that the surface layer which formed on the 

composite material does not contain much carbon but is rich in titanium and oxygen. This data 

correlates well with the XPS data and indicates that the surface film is almost pure titanium 

dioxide. 
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Figure 5.21 shows a zoomed HRTEM image of a TiO2 crystal at the surface of the 

composite. This image also clearly shows smaller crystalline domains interspersed throughout 

the carbon matrix within the bulk of the film. Although the largest TiO2 crystals are located at 

the surface, there are still smaller crystalline domains which form in the bulk.  

The presence of stoichiometric crystalline TiO2 at the surface of the composite layer might 

explain the segregation behavior of the carbon. As the titanium dioxide crystallizes at the 

surface, it is possible that it pushes the existing carbon in that layer down into bulk which would 

result in a higher concentration of carbon directly below the crystalline layer. The crystals at the 

surface of the film are capable of forming larger domains than those in the bulk of the film due to 

less constraint from the carbon matrix.  
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Figure 5.19 

FIB-TEM image of TiGL film after pyrolysis at 800 °C. The film was approximately 115 nm 

thick prior to pyrolysis  
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Figure 5.20 

Elemental mapping of the pyrolyzed TiGL film performed by EDS showing a) titanium, b) 

carbon, and c) oxygen. 
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Figure 5.21 

HRTEM image of pyrolyzed TiO2/C composite bulk showing crystalline titania domains within 

carbon matrix. 
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5.3.6  Potential Applications for Pyrolyzed Titanicones 

 

Titanium dioxide has many applications and is widely used commercially. These applications 

range from being the main component of sunscreen to photocatalysts. There have been many 

efforts to attain desirable properties for titanium dioxide through doping and introducing oxygen 

vacancies. Titanium dioxide is one of the most heavily studied materials due to its presence in 

many different products.  

 A number of studies have used TiO2 ALD on carbon supports to make electrochemical 

supercapacitors and LIB anodes.
90-92

 In some cases, the performance of the TiO2 is limited by its 

intrinsically poor electrical properties. For instance, the ALD TiO2 layer grown for use as a LIB 

anode had to be thin enough to conduct electrons during cycling, thus limiting the amount of 

active material which can be loaded into the electrode. Thicker titania films can be deposited and 

utilized as a LIB anode if they are electrically conductive. Due to the ability of the MLD process 

to conformally deposit titanicone on high surface area substrates, as well as the compatibility of 

the pyrolysis process with high surface area carbon substrates, it could potentially lead to high 

power TiO2 based LIB anodes.  

 Titanium dioxide is also a widely used corrosion resistant film.
93-95

 There are limitations 

for its use as a corrosion inhibitor due to its lack of electrical conductivity. For instance, 

protection of stainless steel bipolar plates for hydrogen fuel cells could be accomplished using 

titanium dioxide if it was not electrically insulating. Integration of conductive carbon domains 

through the use of pyrolyzed titanicone films could enable its use as a corrosion inhibitor for 

carbon electrodes and stainless steel bipolar plates.  
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5.3.7  Pyrolysis of Titanicones Conclusion 

 

 Titanicone films grown with sequential reactions between titanium tetrachloride and 

glycerol were pyrolyzed under inert argon at a range of temperatures to produce electrically 

conductive titanium oxide/carbon composites. Raman spectroscopy confirmed the presence of 

sp
2
 carbon within the composites after pyrolysis. Elemental analysis via XPS confirmed the films 

were composed of titanium, oxygen, and carbon. The titanium oxide within the composite film 

forms larger crystals on the surface and smaller crystals within the bulk as confirmed by XRD 

and HRTEM analysis. A minimum sheet resistance of 2.2 x 10
4
 Ω/□ for the pyrolyzed 

titanicones was achieved at a pyrolysis temperature of 800 °C. This sheet resistance corresponds 

to a resistivity of 1.96 x 10
-1

 Ωcm.  
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