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a single conventional cell with its 26 neighbors. Since each neighboring conventional cell can either

be occupied or vacant, there are 226 unique neighbor-cell configurations. Typically however, a small

subset of these configurations need to be considered. The unit cell for a nanopillared thin film shown

in Fig. 6.2 for example only contains 59 unique configurations of neighboring conventional cells.

Base: 
6 × 6 × 6 conventional cells
(3.26 × 3.26 × 3.26) nm

Pillar: 
2 × 2 × 6 conventional cells
(1.09 × 1.09 × 3.26) nm

Figure 6.2: Silicon nano-pillared thin film unit cell.

Each unique configuration of neighboring cells constitutes a building block that can be used

to assemble the full model stiffness matrix. For each of the eight atoms within a building block, and

for every bond that that atom makes with any other atoms (inside or outside the building block),

a 3x3 stiffness matrix is stored. During the stiffness matrix assembly, anytime a new building

block is encountered (this is checked by testing the presence of neighboring cells), the empirical

interatomic potential is used to obtain the building block’s bond stiffness matrices. This building

block is then stored for future use. Anytime a building block has already been encountered, the

bond stiffness matrices are simply added into the global stiffness matrix via the direct stiffness
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method used commonly in FE methods.

This building strategy avoids many redundant computations and offers much faster calcu-

lation of the stiffness matrix. The method is slightly less general than the traditional approach

because it does not allow for the atomic coordinates to be changed even slightly (i.e., every instance

of a building block must be identical). This precludes any relaxation wherein the atoms are allowed

to settle to new coordinates in order to minimize the total interatomic potential energy. It may

be possible however to obtain a good approximation to the relaxed system if the building block

approach is only applied to internal building blocks and any blocks with free surfaces are allowed

to relax as normal. This is left for further investigation.

6.3 Full-Spectrum Eigenvalue Solution by Spectrum Slicing

The full-spectrum band-structure calculation is performed by computing all of the eigenvalue

solutions at every k point along a path following the boundary of the IBZ. Although iterative

eigenvalue solvers can obtain multiple eigenpairs at a time, they do not perform well when the

number of eigenpairs is very large. Thus, the traditional approach is to use direct solvers which

are designed to compute the full eigenvalue spectrum. The direct solvers that are commonly used

for hermitian problems are based on the QR decomposition and thus scale cubicly with matrix

size. This severely limits the size of systems that can feasibly be analyzed and often does not take

advantage of sparsity.

An alternative method for obtaining the full spectrum of sparse hermitian matrices is to use

spectrum slicing [73, 74]. Since all eigenvalues lie on the real axis, the main idea is to split the real

axis into a number of windows (or spectral slices) and use an iterative solver to obtain solutions

in that window. For a matrix of size (n × n) the shift-and-invert Lanczos method (implemented

in Matlab’s eigs) can obtain a fixed number of eigenpairs in O(n) computation time. The total

number of windows needed should be proportional to n as well, so the full-spectrum calculation

requires O(n2) computation time. For large matrices, the savings in computation time over direct

methods can be quite significant. An additional benefit of spectrum slicing calculations is that they
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are simple to parallelize [75].

To achieve good performance with a spectrum slicing algorithm the windows must be carefully

defined. The algorithm presented here is simple and undoubtedly can be improved, but it already

shows promising performance. A window can be defined as a frequency range, or it can be defined

by a central frequency with a specified number of nearest eigenvalues. The latter is chosen here

so that the number of eigenvalues computed for each window is constant. The spectrum slicing

algorithm is then implemented as follows:

(1) Compute the k eigenpairs with largest magnitude eigenvalue and split them into a negative

and a positive set: λ1
1 ≤ ... ≤ λ2

j < 0 and 0 ≤ λ2
1 ≤ ... ≤ λ2

k−j .

(2) If either set is empty, compute the k eigenpairs with smallest magnitude eigenvalue and

place them in that set. The two sets represent the endpoints of the eigenvalue spectrum.

(3) Find the gaps in the eigenvalue spectrum by ordering the sets and comparing the maximum

of each set with the minimum of the next set above it.

(4) If the maximum gap size is positive, use the center of the maximum gap as the shift about

which to compute the next set of k eigenpairs.

(5) Repeat steps three and four until the maximum gap size is below a negative tolerance.

Requiring that there is a minimum amount of overlap between all of the sets ensures that

no degenerate eigenvalues are lost between sets.

(6) Step through all computed sets and keep only a single copy of any eigenpairs that overlap

with neighboring sets∗.

The spectrum slicing algorithm is illustrated by calculating the eigenvalues of a 2D unit

cell made up of springs and masses arranged in a “plus” shaped configuration shown in Fig. 6.3.

∗For an eigenvalue of degeneracy m that has some overlap netween two sets, the overlapping eigenvectors should

be grouped together and used to produce m orthogonal vectors
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Figure 6.3: 2D “plus” shaped spring-mass unit cell used to investigate spectrum slicing algorithm

Figure 6.4 shows the iterative solution of the full eigenvalue spectrum by consecutively identifying

the maximum gap and centering the next eigenvalue window there until overlap is achieved between

all sets.

To test the scaling of the spectrum slicing algorithm, the number of masses in the plus-shaped

spring-mass unit cell is incremented from 115 to 10035 and the full eigenvalue spectrum is calculated

for a single k point (the M point). In all cases, k, the number of eigenvalues computed per window,

is 30. The results of the scaling analysis are summarized in table 6.1. The average number of

eigenvalues kept per window can be used to gauge the amount of overlap between neighboring

spectrum slices. This stays remarkably constant as the model size increases. The timing results

for the direct algorithm (Matlab’s eig) are also included for comparison. In all cases, the error

between the two is extremely small.

The timing results plotted in Fig. 6.5 versus model size. Best fit lines are added in order to

elucidate the computational order. The direct algorithm is approximately cubic and the spectrum

slicing algorithm is approximately quadratic. The two algorithms seem to break even around a

model size of n = 20, 000, but this result is not general. The break-even point will be model

dependent because the number of non-zero elements per row of the stiffness matrix will affect each
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Table 6.1: Scaling analysis results for full-spectrum eigenvalue calculation using spectrum slicing
algorithm and direct algorithm.

Number of Matrix Number of Avg. number Spectrum slicing Direct Maximum
masses size, n windows of eigenvalues algorithm algorithm relative

kept per computation computation eigenvalue
window time (s) time (s) error (%)

115 230 9 25.6 2.16 0.06 1.57e-12
480 960 49 19.6 16.04 0.98 3.35e-12
1095 2190 115 19.0 62.00 7.54 9.03e-12
1960 3920 202 19.4 176.33 50.30 1.76e-11
3075 6150 310 19.8 444.14 177.84 1.48e-10
4440 8880 450 19.7 862.68 513.77 1.26e-10
6055 12110 619 19.6 1698.63 1107.85 6.94e-11
7920 15840 824 19.2 2974.36 2318.21 1.94e-10
10035 20070 1017 19.7 5002.60 4102.90 3.59e-10

algorithm differently.

6.4 Windowed Bloch Mode Synthesis for Reduced-Order Spectrum Slicing

The ideas presented in the previous section are not specific to band-structure calculations.

Spectral slicing can be applied to any hermitian eigenvalue problem. Ideally, for full-spectrum

band-structure calculations one would take advantage of spectral slicing and also use model-order

reduction to speed up the traversal of the BZ. In order for BMS to be used in conjunction with

spectral slicing, it must first be modified to allow for arbitrary frequency windows to be considered.

As discussed earlier, the accuracy of mode-synthesis methods deteriorates as one moves to

higher frequencies. Thus, one cannot simply set a centering frequency outside the accurate range

of the reduce-order model and hope to obtain the correct results. For the HCB model, one could

simply increase the number of FI modes used in the interior to extend the accurate range, but this

defeats the purpose of the reduced-order model. Ideally, one would only need to keep the fixed-

interface modes that are near the centering frequency, but this doesn’t work either. To understand

why, it is useful to think of the HCB representation as a static (Guyan) condensation whose accurate

frequency range can be extended further and further by adding more fixed-interface modes.
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This gives a clue as to how the HCB representation must be modified in order to obtain

accurate solutions in an arbitrary frequency range while keeping only FI modes near the central

frequency. Considering the partitioned free equations of motion,
KII KIA

KAI KAA

− ω2

MII MIA

MAI MAA



qI

qA

 = 0, (6.1)

the constraint modes are typically obtained by solving for the static response (by setting ω = 0),

of the interior due to consecutive unit displacements of the interface:

Ψ = −K−1
II KIA. (6.2)

Alternatively, a dynamic version of the constraint modes can be created that by setting the fre-

quency equal to a centering frequency ω = ωc, and then solving for the interior displacements due

to unit amplitudes at the interface:

ΨQS = −
(
KII − ω2

cMII

)−1 (
KIA − ω2

cMIA

)
. (6.3)

These modified constraint modes, first introduced in reference[76], are termed “quasi-static” because

they arise from an extension of static mode compensation techniques. Using only the quasi-static

constraint modes as a basis (without adding any FI modes), is equivalent to performing a dynamic

condensation about the centering frequency. Recall that dynamic condensation produces a model

that is exact at the centering frequency and that deteriorates in accuracy away from the centering

frequency. Just like the traditional HCB representation where a static condensation is made more

accurate by including FI modes near zero frequency, the quasi-static HCB representation allows

the frequency range of a dynamic condensation to be expanded by adding FI modes that are near

the centering frequency. A practical point to consider is that the matrix inversion in Eq. (6.3) will

be poorly conditioned if ωc is too close to any natural frequencies of the FI eigenvalue problem.

This is easily avoided however because the FI eigenvalue solutions in the vicinity of the centering

frequency must be obtained anyway.

Compared to the original HCB approach, the quasi-static HCB method typically requires

many more FI modes to accurately span a similar sized frequency range. It is possible however



117

to improve the accuracy in a frequency range by including multiple quasi-static mode sets [77].

Three quasi-static mode sets equally spaced in eigenvalue space show give very good accuracy. For

a frequency range spanning from ωa to ωb, a good selection for the centering frequencies is:

ωc1 = ωA, ωc2 =

√
1

2
(ω2
A + ω2

B), ωc3 = ωB. (6.4)

The transformation matrix to obtain the quasi-static HCB model is then formed simply by collecting

all of the constraint mode sets together with the FI modes that fall in the frequency window of

interest,

q︷ ︸︸ ︷qI

qA

 =

BQS︷ ︸︸ ︷ΦI ΨQS1 ΨQS2 ΨQS3

0 I I I



g︷ ︸︸ ︷

ηI

qA1

qA2

qA3


. (6.5)

There is no guarantee that the three sets of constraint modes are linearly independent, so it may

be beneficial to discard any modes that are too similar to other modes, or to perform an orthog-

onalization. In the present work however, the mode sets are simply left as is without noticeable

consequence. The transformation is applied to the full free mass and stiffness matrices to obtain

the free quasi-static HCB matrices. Bloch BCs can be applied in order to obtain the band-structure

solution inside the frequency window. Since there are now three separate sets of interface DOFs,

Bloch BCs must be applied to each interface set.

The steps used to compute a quasi-static BMS model and obtain a segment of the band-

structure centered about frequency ωS are then as follows:

(1) Compute the k eigenpairs of the FI eigenvalue problem with eigenvalue nearest to ω2
S ,

ordered as λFI
1 ≤ ... ≤ λFI

k .

(2) Define the quasi static centering frequencies for the window based on the FI eigenvalues:{
ω2
c1 ω2

c2 ω2
c3

}
= λFI

1 +

{
0.05 0.5 0.95

}
(λFI
k − λFI

1 ).
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(3) Combine the FI eigenvalues and quasi-static constraint mode sets into a reduced-order basis

and obtain the quasi-static BMS mass and stiffness matrices.

(4) At every k point, apply Bloch BCs to the reduced order model and compute k eigenpairs.

With this quasi-static BMS framework for computing a reduced-order band structure in an

arbitrary frequency window, the spectral slicing algorithm presented earlier can be applied two

small changes to obtain the full-spectrum band-structure window by window. First, the lowest and

highest spectral slices are centered at the maximum and minimum frequencies obtained from an

iterative solution of the full model at the Γ point. Second, for the overlap between band-structure

windows, the lowest maximum frequency (across all k points) for a window is compared to the

highest minimum of the next window.

6.4.1 Numerical Example: Silicon Nanopillared Membrane Full-Spectrum Band

Structure

To demonstrate the spectrum-sliced BMS algorithm, it is used to find the full-spectrum band

structure of the silicon nanopillared membrane shown in Fig. 6.2. This model contains 1920 silicon

atoms and 5760 DOFs (after enforcing periodic BCs). The band-structure calculation is performed

just over the Γ − X portion of the BZ which is discretized into 17 k points. In order to provide

a reference, the full-spectrum band structure is first computed using the full model with a direct

eigenvalue solver. Then, the windowed BMS approach is used to perform the same calculation.

The resulting band-structure diagram is shown in Fig. 6.6. The high density of branches makes it

difficult to resolve much detail in the band-structure diagram, so insets are included to show certain

frequency ranges in more detail. From the insets, it appears that the BMS solution reproduces the

full solution very well, however the BMS calculation does produce some spurious solutions (see

circled points in top inset). The number of spurious solutions is quite small however compared to

the number of true solutions. If the number of spurious solutions was very large, then the density

of states curves shown on the right side of Fig. 6.6 would not match so closely. The density of
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Figure 6.6: Full-spectrum band-structure diagram for silicon nanopillared membrane (left) and
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states is computed by splitting the frequency range into 250 bins, counting the total number of

band-structure solutions in every bin, and dividing by the bin width multiplied by the number of

k points.

The computation time required for the full direct solution is 2,585 seconds. The windowed

BMS calculation on the other hand takes 62,828 seconds. Thus no reduction in computation time

has been achieved. The reason for this is that the number of boundary DOFs in the BMS model

is very large because three sets of constraint modes are required. The windowed BMS calculation

would clearly benefit from an interface reduction, but all attempts thus far have failed to obtain ac-

curate results when local interface reduction is applied to the boundary. It is possible that interface

reduction fails because the quasi-free representation used to model the silicon nanopillar does not

yield true boundary modes. Thus, one possibility is to use a system-level interface reduction rather

than local interface reduction. Although the interface reduction would have to be computed at ev-

ery k point, it may be possible to do so independently for each of the three quasi-static constraint

mode sets. This would divide the single large eigenvalue problem into three smaller eigenvalue

problems that can be solved much more quickly.

Another possibility for speeding up the windowed BMS calculation is to extend residual-mode

enhancement to the quasi-static BMS model. If this is possible, it would allow for larger (and hence

fewer) windows to be considered in the spectrum-sliced BMS calculation.

6.5 Summary

This chapter presented a framework for improving the computational efficiency of full-spectrum

phononic band-structure calculations for atomic crystals. First, the modeling approach itself was

improved by utilizing a building-block approach to perform the system assembly. Also, a quasi-

free unit-cell representation was developed to allow for just a single model to be formed (rather

than one for every k point). Next, the computational cost of the full-spectrum eigenvalue solution

was addressed. The approach proposed in this chapter was to employ spectrum slicing so that the

O(n3) direct eigenvalue solution can be replaced with a series of O(n) iterative eigenvalue solutions.
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The number of spectrum slices is proportional to n as well, so the overall computational order of

the spectrum slicing algorithm is O(n2). This approach has a much higher constant multiplier so

“break-even” does not occur until model sizes are quite large (about 20,000 DOFs for the 2D exam-

ple considered, and higher when the number of non-zero terms in the system matrices increases).

Next, an extension of BMS using quasi-static constraint mode sets was presented. This extension

allows for reduced-order calculation of band structures in an arbitrary frequency range (i.e., not

just the lowest frequency range). With the quasi-static representation it is possible to implement a

reduced-order spectral slicing algorithm. Although this approach was shown to be relatively accu-

rate in obtaining the band structure, the computational cost is considerable even with respect to the

full-model direct solution. Thus, further work is necessary to improve the reduced-order spectrum

slicing method. The extension of both interface reduction and residual mode enhancement to the

quasi-static BMS representation would make the method much more effective.



Chapter 7

Conclusion

7.1 Summary

This thesis describes BMS, a novel unit-cell reduction technique inspired by CMS that dra-

matically reduces band-structure calculation times compared to full FE calculations. The examples

shown in this thesis achieve speedups of one to two orders of magnitude for the ω(k) problem, but

even better performance can be expected when the number of k points is very large. For the k(ω)

problem, speedups of three orders of magnitude are demonstrated.

The BMS model is created by starting with a free, real-space model of the unit cell without

any BCs applied. This free model allows for application of Bloch-periodic BCs, which incorporate

phase terms corresponding to a PW with a given wave vector. The full-model band-structure

calculation proceeds by stepping through a set of k points in the BZ and at each k point: (1)

applying the corresponding Bloch BC transformation, and (2) solving the resulting eigenvalue

problem for the band-structure frequencies (or energies). Rather than computing this full-model

solution, a costly process due to the repeated eigenvalue solutions, one can first perform a BMS

model-order reduction. This reduction begins with a real-space partitioning of the model into

interior and boundary DOFs. The dynamics of the interior can be approximated very accurately

using a small set of FI normal modes. The boundary partition is represented with a set of static

constraint modes which preserve the boundary in its entirety so that the real-space application of

Bloch BCs follows the exact same approach as with the full model. Thus steps (1) and (2) are

exactly the same for the full and reduced-order models. In order for the BMS to obtain a very
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accurate solution with the smallest possible model size, a residual-mode enhancement is applied

in order to approximate the contribution of the interior modes that were truncated. Rather than

computing the interior reduction all in one step, it can be computed using AMLS, a multi-level

approach wherein the unit cell is iteratively split into smaller and smaller substructures until the

substructure size is small enough to analyze very quickly. Each substructure is then reduced with

its own set of FI and constraint modes and then the full model is assembled by recombining the

substructures in each level until the reduced-representation of the full unit cell is recovered.

The reduction of the unit-cell interior is achieved via a secondary reduction of the unit cell

(the primary reduction being the FE discretization). This provides significant benefit because the

interior typically contains the majority of the model’s DOFs. After reduction of the interior, the

boundary terms typically represent the majority of BMS model’s DOFs. Thus a tertiary reduction

to reduce the size of the boundary size is applied. This boundary reduction is complicated by

the fact that it must retain compatibility across interface sets that are to be coupled by Bloch

BCs. A local interface reduction is used which first computes a global set of normal modes for the

boundary, slices them into interface sets, and achieves compatibility by hybridizing the interface

mode sets. The hybridization process simply concatenates all of the sliced modes that are to be

coupled with their counterparts from opposite unit-cell faces and performs an orthogonalization

to avoid ill conditioning. This allows for a reduction in the number of boundary DOFs that is

somewhat less dramatic than the interior reduction, but that still provides significant improvement

in computation time.

The extension of BMS to electronic-structure calculations is relatively straightforward. Once

the Kohn-Sham equations have been discretized over the unit-cell domain with a real-space tech-

nique, the application of BMS is virtually identical to the elastic band-structure problem. The main

differences compared to phononic band-structure calculations are that the BMS band-structure cal-

culation is performed as part of a BZ integration that makes up one step in a self-consistent iteration,

and that the error tolerances are quite a bit lower than those seen in elastic wave propagation. The

current workhorse techniques rely on PW expansion which has many limitations. BMS brings FE
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models one step closer to surpassing the performance of PW techniques.

This chapter introduced the fundamentals of electronic-structure calculation, including an

overview of Schrödinger’s equation and it’s simplification via DFT to the Kohn Sham equations.

Then, the application of FE discretization to the Kohn Sham equations was described. Finally, the

extension of BMS to electronic-structure calculations was demonstrated using a simple silicon unit

cell (modeled using an empirical pseudopotential). The results showed speedups in computation

time of over an order of magnitude compared to the full FE model, while retaining highly accurate

solutions with less than 1× 10−4 Ha/atom error in integrated band energy.

The BMS representation is very useful for computing a small number of the lowest frequency

branches very quickly, but the accuracy of the solutions deteriorates as the frequency of the branches

approaches the frequency of the highest interior/boundary modes used in the basis. In order to

compute band-structure frequencies that are arbitrarily high, BMS must first be extended. This is

possible by replacing the single set of static constraint modes with three sets of quasi-static con-

straint modes, each of which is computed about a centering frequency. These centering frequencies

are chosen to give coverage of the frequency range of interest, and only those FI modes falling into

this frequency range are kept in the reduced order basis. This modified BMS representation is

referred to as windowed BMS because it allows for consideration of frequency windows. Combined

with a spectrum slicing algorithm, it can be used to compute the full-spectrum band structure,

which is particularly useful for atomic-scale phonon calculations. The performance of this tech-

nique is currently limited because it expands the number of interface DOFs by a factor of three, and

does not subsequently admit a local interface reduction. This is a challenge that must be overcome

before windowed BMS can make an impact for full-spectrum band structure calculations.

7.2 Future Work

There are several ways in which the applicability and performance of BMS can be expanded.

First, for macroscale phononic crystals, the presence of damping can have a marked effect on

the band structure. Damped band-structure calculation is more difficult because it requires a
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state-space solution approach. Furthermore, the difficulty of damped band-structure calculation

is compounded by the fact that the eigenvalues are complex and it may not always be easy for

iterative solvers to obtain the desired branches first. In some cases this requires a direct eigenvalue

solution which significantly limits the size of models that can be considered. The extension of CMS

techniques to include damping is relatively straightforward, so the extension of BMS techniques to

include damping should be as well.

Typically, CMS representations are not used to speed up the calculation of characteristic

solutions (i.e., eigensolutions), because the up-front cost is usually too large. Thus, one of the

main applications of CMS is to provide reduced-order models for time integration. The reduced-

order models have a twofold benefit for these problems. First, the smaller model size reduces the

computational cost at every time step. Second, truncating the high frequency modes provides

a stabilizing effect that allows explicit methods to take larger time steps. Similar benefits are

expected if BMS is applied to reduced-order direct numerical simulation of the unit-cell [78]. This

is an application that has not been tested, but that should require no modification to the BMS

model-order reduction itself.

The residual-mode enhancement is capable of markedly lowering the error introduced by the

BMS model. The end effect is that much fewer interior modes need to be kept to achieve good

accuracy. A similar correction applied to the boundary modes could allow the size of the reduced-

order model to be decreased as well, leading to improved performance. Residual-mode enhancement

is quite simple to extend to system-level boundary modes (after interfaces are coupled), but does

not work for the local interface description. Thus, further investigation into the extension of

residual-enhancement techniques for application to local interface reduction is necessary.

As mentioned in the previous section, the windowed BMS reduction does not provide much,

if any, computational benefit for full-spectrum problems because the number of interface DOFs is

very large and in the current description does not allow for local interface reduction or residual

enhancement. Extending both of these techniques to the quasi-static BMS model could allow it

to provide significant computational benefit. An alternate avenue for obtaining a reduced-order
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model for spectrum slicing is to extend RBME to higher frequency windows.

Finally, the FE models used as a basis for BMS model reduction are very simple based on

Lagrangian shape functions. A large benefit of the BMS representation is that it can be applied

to any real-space model that allows a decomposition into interior and boundary DOFs. Thus,

commercial FE packages can be employed to produce the base model and then reduced with BMS.

In order to compare with techniques based on PW expansion, FE-based BMS should be tested with

the highest performing base FE model possible.
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Appendix A. Acronyms

AMLS automated multi-level substructuring. 53, 54, 61, 63, 124

AMLS+ residual-enhanced AMLS. 53, 61, 63

BC boundary condition. 7, 8, 17–19, 21, 22, 25, 26, 28, 30, 32, 34, 35, 41, 42, 45, 46, 48, 49, 54,

65, 66, 69–71, 79, 83, 108, 109, 118, 119, 123, 124

BMS Bloch mode synthesis. 7–9, 18, 34, 37, 39, 40, 42, 46, 49, 56, 57, 61, 65, 66, 69, 73, 74, 76,

79, 81, 83, 87, 89, 90, 97–103, 105, 107, 116, 118, 119, 121–126

BZ Brillouin zone. 7, 12, 15, 18, 25, 41, 45, 66, 70, 81, 91–93, 99, 102, 103, 106, 116, 119, 123

CC characteristic constraint. 7, 65

CMS component mode synthesis. 7, 8, 37, 46, 49, 63, 65, 123, 125

DFT density functional theory. 85, 87, 88, 90, 103, 107

DOF degree of freedom. 5–7, 11, 17, 18, 21, 22, 24, 32, 40, 41, 46, 48, 49, 53, 54, 57, 58, 61, 63,

65, 70, 71, 73, 76, 77, 79–81, 83, 99, 100, 102, 118, 119, 121, 123–126

EC exact-compatibility. 66, 75, 83

FD finite difference. 4, 9, 39

FE finite element. x, 4, 9, 18–20, 23, 26, 30, 34, 39, 54, 56, 63, 64, 79, 86, 87, 95–101, 105, 106,

110, 123, 124, 126
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FI fixed interface. 46, 48, 49, 61, 63, 79, 83, 101, 102, 117, 118

FRF frequency response function. 44, 45

H-CC hybrid-level CC. 66

HCB Hurty/Craig-Bampton. 46, 48–51, 53, 59, 61, 63–65, 70, 116–118

HCB+ residual-enhanced HCB. 53, 63

IBZ irreducible Brillouin zone. 15, 61, 92, 111

L-CC local-level CC. 66, 70, 75, 83, 84

MP Monkhorst-Pack. 91–95, 99, 100, 102

ODE ordinary differential equation. 4, 45

PW plane-wave. 4, 9, 86, 87, 95, 96

RBME reduced Bloch mode expansion. 7, 45, 126

S-CC system-level CC. 65, 66, 69, 84

SICOR simultaneous coordinate over-relaxation. 5, 6

SVD singular value decomposition. 71

UWC uncoupled weak-compatibility. 66

VN virtual node. 66

WC weak-compatibility. 66


