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Abstract 

Gopalakrishnan, Maithreyi (Master’s, Physics) 

Comparative Study of Laser-Induced Ultrafast Demagnetization Dynamics in Fe, Co and Ni 

Thesis directed by Professor Henry Kapteyn and Professor Margaret Murnane 

 

Even twenty years after the discovery of ultrafast demagnetization of ferromagnetic 

materials induced by a femtosecond laser pulse there is still an ongoing debate about the 

mechanisms that drive the process. Surprisingly, a comprehensive study that compares 

demagnetization dynamics in different materials on equal footing is lacking. Yet, the scientific 

community would greatly benefit from such study. We fill this gap by performing a systematic 

comparison of ultrafast demagnetization behavior in Iron, Cobalt and Nickel, the simplest itinerant 

ferromagnets, under a wide range of pump fluences. In this experiment, we utilize a tabletop 

broadband extreme ultraviolet source to probe magnetization dynamics at the M2,3 absorption 

edges of these three elements using the transverse magneto-optical Kerr effect. The obtained data 

can be used to inform theory and, thereby, assist in resolving the remaining questions about the 

micro- and macroscopic mechanisms behind ultrafast laser-induced magnetization dynamics in 

materials. 
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Figure 6.5: Asymmetry vs. time delay for Nickel, averaged over all scans at each respective pump 

fluence. Curves marked with a ‘*’ were generated from the first round of data taking, and curves 

marked with a ‘o’ were generated in the second round. ............................................................... 39 

 

Figure 6.6: Demagnetization time as a function of quenching. Experimental data points with error 

bars are plotted for Iron, Cobalt, and Nickel. The overlaid blue and green curves are from 

Koopmans’ microscopic three temperature model [10], and are for Cobalt and Nickel only as 

Koopmans did not generate a curve for Iron. ............................................................................... 41 
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I. Introduction 

A. Understanding of Ultrafast Demagnetization Dynamics 

Understanding of the physics governing dynamics in magnetism has progressed 

significantly in the last two decades. Prior to 1996, the fastest known magnetic dynamics were on 

the nanosecond time scale. However, Beaurepaire’s publication of demagnetization dynamics in 

Nickel on the sub-picosecond time scale ushered in a new era in the study of magnetic materials 

[1]. Since Beaurepaire’s discovery, even faster dynamics have been uncovered, such as the 

attosecond-time-scale coherent coupling of light and magnetization [2].  

What is the importance of gaining a more complete understanding of light-magnetic 

matter interactions on the sub-picosecond time scale? From a pure physics standpoint, these 

dynamics contain interactions between electrons, phonons, and photons, and these interactions 

are of interest to further understand. Additionally, the time scales of these dynamics are 

comparable to the time scales of exchange and spin-orbit coupling, so experiments at these time 

scales can further inform and enhance the theory governing these mechanisms.  

From an applications perspective, the observation of magnetization dynamics on the sub-

picosecond time scale has generated interest in many new research endeavors, such as laser-

induced ferromagnetic resonance [3] and all-optical switching [4]. The latter of these research 

areas has implications in the development of hard-disk drives with higher storage capacities. To 

increase these capacities, two technologies have been proposed. The first is bit-patterned media, 

in which each bit is stored on an individual, fabricated island as small as tens of nanometers in 

area [5]. Since the islands are already patterned, the device is ordered, which makes for more stable 

hard disk drives. The second is heat-assisted magnetic recording, which uses a laser to heat and 
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thereby switch magnetic bits when smaller external magnetic fields are applied [6-9]. To gain a 

comprehensive understanding of the physics behind these techniques, studies must be performed 

at the picosecond temporal resolution on which the switching of spins occurs, and at the tens of 

nanometers spatial resolution of the magnetic islands. For this reason, ultrafast demagnetization 

experiments, including this experiment, utilize a short laser pulse (for temporal resolution) in the 

extreme ultraviolet range (for spatial resolution) to study the properties of and dynamics within 

these magnetic materials. 

B. Motivation for Comparative Study 

Demagnetization dynamics have been widely studied, but even 20 years after Beaurepaire 

published his study of demagnetization in Nickel, the mechanisms contributing to these dynamics 

are still not well-understood. There are certainly interactions between photons from a probing laser 

pulse and electrons, spins, and phonons within the magnetic material, but the exact nature of these 

interactions and the degree to which these interactions initiate demagnetization are not fully 

known. Many theories have been proposed to explain these dynamics on a microscopic level. The 

three-temperature model [1] and microscopic three-temperature model [10] suggest that spin-flip 

scattering is the primary mechanism for demagnetization. The Landau-Lifshitz-Gilbert/Bloch 

models propose that magnons, or collective excitations of spin waves, are the explanation for the 

phenomenon of demagnetization [11-13]. Several experiments have been performed to 

demonstrate evidence of spin-flip scattering [14-16], magnon scattering [17-21], and other 

microscopic mechanisms that could contribute to laser-induced demagnetization. There is no 

conclusive evidence that any one of these mechanisms is entirely responsible for quenching of 

magnetization. As such, there could be multiple mechanisms at play. However, all of the 

experiments referred to above utilize different setups, with different laser parameters, which makes 
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it extremely difficult to directly compare experimental evidence supporting any of the proposed 

microscopic mechanisms. The comparative study on which this thesis will elaborate provides the 

baseline data required to perform such a comparison between mechanisms. In this experiment, 

data is taken on the same setup and in a systematic manner for the demagnetization dynamics in 

Iron, Cobalt, and Nickel. This comprehensive data set is intended to inform the theories explaining 

ultrafast laser-induced demagnetization dynamics, and thus provide a clearer picture of the physics 

governing these dynamics. 

C. Outline of Thesis 

In this thesis, current progress on a study comparing ultrafast demagnetization dynamics 

in Iron, Cobalt, and Nickel is demonstrated.  

The thesis begins with an explanation of the relevant theory behind this comparative study. 

Section II introduces high-harmonic generation, the process showing how the extreme ultraviolet 

light source required for this experiment is generated in the laboratory. Section III contains 

information about the Magneto-Optical Kerr Effect, a description of the interaction of light with 

the surface of a magnetic material. This effect is studied in the experiment in order to extract 

parameters related to demagnetization dynamics. Finally, in Section IV, proposed mechanisms 

contributing to ultrafast demagnetization dynamics are explained, and in particular the three-

temperature model is described as a macroscopic picture for these dynamics.  

Section V walks through the experimental setup, including the generation of harmonics 

and the typical pump-probe method utilized here to capture magnetization dynamics. Section VI 

displays the results of quenching of ferromagnetic order in Iron, Cobalt, and Nickel for various 

fluences of the pump beam, and analyzes this parameter as related to the time delay between the 

pump and probe beams and as related to demagnetization time. These results are compared with a 
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theoretical microscopic model, and the model is briefly analyzed for initial full or partial validity. 

Section VII concludes and summarizes this thesis, and describes what will be done on this 

experiment in the future. Section VIII provides references, and Section IX provides an appendix 

with code utilized for data analysis. 

II. High-Harmonic Generation 

Tabletop extreme ultraviolet (EUV) light sources are ideal tools for studying magnetic 

phenomena and materials on all fundamental time and length scales. A short EUV light pulse 

provides two necessary features for studying the magnetization dynamics of interest. First, the 

pulses are on the few femtosecond time scale, so dynamics on this time scale can be captured. 

Second, since the pulses are in the EUV frequency range (124 nm – 10 nm), the energies of the 

pulses can reach the M2,3 absorption edges of the Nickel (66.2-68 eV), Iron (52.7 eV), and Cobalt 

(58.9-59.9 eV) samples being studied. Only in reaching these absorption edges can significant 

magneto-optical contrast be obtained (further described in Section III of this thesis). This contrast 

gives the ability to achieve element specificity between different magnetic materials, as each has 

a different absorption edge. Such elemental specificity has been demonstrated in several previous 

experiments [22-26], but it would be beneficial to have a set of baseline demagnetization 

measurements for these types of experiments. Those measurements are the primary reason for this 

comparative study to be conducted in the EUV range. 

The EUV light source can be made through high-harmonic generation (HHG), a nonlinear-

optical process whereby photons of lower energy are up-converted to photons of higher energy 

through a laser-gas interaction. HHG has the advantage of being able to occur on a tabletop scale, 

so the experiment is not dependent on time at a synchrotron facility to be performed. 
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A. Three-Step Model 

HHG is well-represented by the three-step model, the steps being: tunnel ionization, 

acceleration, and recombination. Figure 2.1 depicts each step of this model. 

 

 

 

 

 

 

 

 

 

Each step—ionization of the electron from its parent atom, oscillation and acceleration of 

the electron in the electric field of the laser, and recombination with the parent atom— is described 

in further detail in the following sections. 

1. Tunnel Ionization 

Initially, an electron resides in the Coulomb potential of its parent atom. A laser pulse 

interacts with the parent atom, and the superposition of the electric field of the laser with the 

Coulomb potential of the atom results in an asymmetric potential. Thus, the electron possesses a 

certain probability of tunnel-ionizing out of the parent-ion potential well. The rate of this tunnel-

ionization can be described by the ADK equation [27]: 

𝑊(𝑡) = −
1

𝑁(𝑡)

𝑑𝑁(𝑡)

𝑑𝑡
= 𝜔𝑝|𝐶𝑛∗|2 (

4𝜔𝑝

𝜔𝑡
)

2𝑛∗−1

𝑒
−

4𝜔𝑝

3𝜔𝑡              (2.1) 

High-harmonic 

photon (EUV/X-ray) 

1. Ionization 

2. Oscillation in 

Field 

3. Return 

to Parent-

Ion 

Recombination 

Figure 2.1: Three-step model of the process of high harmonic generation. This is how a coherent 

source of EUV light is created in the laboratory. 
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In Equation 2.1, 𝑁(𝑡) is the number of neutral atoms at time 𝑡. 𝜔𝑝 =
𝐼𝑝

ℏ
 , where 𝐼𝑝 is the 

ionization potential of the gas being used. 𝜔𝑡 = √
𝑒|𝐸(𝑡)|

2𝑚𝐼𝑝
 , where 𝐸(𝑡) is the electric field of the 

laser, 𝑒 is the charge of the ionized electron, and 𝑚 is the mass of the electron. 𝑛∗ = 𝑍√
𝐼𝐻

𝐼𝑝
 , where 

𝐼𝐻 is 13.6 eV, the ionization potential of hydrogen. |𝐶𝑛∗|2 =
22𝑛∗

𝑛∗Γ(𝑛∗+1)Γ(𝑛∗)
 , where the gamma 

function is Γ(x) = ∫ 𝑒−𝑡𝑡𝑥−1𝑑𝑡
∞

0
. 

2. Acceleration 

Once the electron is tunnel-ionized, it travels in the electric field of the laser pulse. The 

laser electric field can be defined as: 

𝐸(𝑡) = 𝐸𝑜 cos(𝜔𝑜𝑡)      (2.2) 

𝜔𝑜 is the initial frequency of the pulse. For following equations, the 𝜔𝑜𝑡 will be redefined as a 

phase term 𝜃, and an initial condition 𝜃𝑖 = 𝜔𝑜𝑡𝑖, where  𝑡𝑖 is the time of electrons ionization, will 

be introduced. 

The field accelerates the electron upon ionization, hence transferring energy to the electron. 

The motion of the electron traveling in the laser electric field is described by Newton’s second law 

of motion, with 𝑥 being the electron trajectory.  

𝐹 = 𝑚�̈� = −𝑒𝐸(𝑡)                        �̈� =
𝑑�̇�

𝑑𝑡
= −

𝑒𝐸(𝑡)

𝑚
   (2.3) 

The kinetic energy of the ionized electron in the field is given by: 

𝐸𝑘𝑖𝑛(𝜃) = 2 𝒰𝑝(sin 𝜃 − sin 𝜃𝑖)2    (2.4) 
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Here 𝒰𝑝 =
𝑒2𝐸𝑜

2

4𝑚2𝜔𝑜
2 is the ponderomotive energy of the electron. 

3. Recombination 

Recombination of the electron with its parent-ion only occurs when a specific set of 

conditions have been met, and the probability of recombination is 10-6 [28]. For an electron to 

recombine with its parent atom, the kinetic energy of the recombining electron cannot exceed 

3.17 𝒰𝑝. Furthermore, the initial phase of the electron must lie within the range  0 < 𝜃𝑖 <
𝜋

2
. In 

this phase range, the electron is initially pulled away from its parent-ion, and on the half cycle of 

the laser field, the electron’s trajectory is reversed and it can therefore recombine with the parent 

atom. If, however, the initial phase is between   
𝜋

2
< 𝜃𝑖 < 𝜋 then the electron travels away from the 

parent ion and cannot return and recombine. Figure 2.2, created using MATLAB software, 

demonstrates this initial phase cutoff as well as the condition for the maximum kinetic energy the 

electron can have upon recombination. The code for this figure is shown in Appendix G.  
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Figure 2.2: Two plots. First, the kinetic energy of the electron as it tunnel ionizes out of the parent-

atom, switches directions, and recombines. The maximum kinetic energy the electron can acquire 

for recombination to occur is 3.17Up, as indicated by the arrow. Second, the angle at which the 

electron will recombine with the parent atom as a function of the initial phase. This recombination 

angle cannot exceed π/2. 

 

In Figure 2.2, the graph of the electron recombination angle as a function of initial phase, 

a sharp cutoff is observed just around  𝜃𝑖 =
𝜋

2
, indicating that beyond this initial phase angle 

electron recombination does not occur. The graph of electron kinetic energy shows that the 

maximum such energy within the angle range of 0 < 𝜃𝑖 <
𝜋

2
 is ~3.17 𝒰𝑝. Figure 2.3 elucidates 

these conditions, by showing the long and short trajectories of the ionized electron mapped with 

the driving laser field, and the kinetic energy of the electron for these trajectories. 
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Figure 2.3: Graph of electron kinetic energy as a function of phase. For the ionized electron in the 

short trajectory, recombination is possible if the initial phase is within the range of 0 to π/2. 

Additionally, the kinetic energy of the electron must be at or below 3.17Up. From reference [47]. 

 

From Figures 2.2 and 2.3, the recombining electron must have a total energy at or 

below 3.17𝒰𝑝 + 𝐼𝑝, where again, 𝐼𝑝 is the ionization potential of the atoms of gas being used to 

generate high harmonics. 

If the aforementioned conditions are met, then harmonics will be generated at every half 

cycle of the driving laser field. Figure 2.4 shows the points in the driving field where recombination 

can occur and harmonics are created. 
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Figure 2.4: Plot of when harmonics are generated (every half cycle of the driving laser pulse). The 

fundamental field is the incoming electric field of the driving laser. On every half cycle of this 

field, the direction of the field flips direction. This is when the ionized electron can switch 

directions and recombine with its parent atom, producing the harmonic field in red. From reference 

[47].   

B. Phase Matching 

For HHG to work in practice, the phase velocity 𝑘𝜔 of the driving laser field must match 

the phase velocity  𝑘𝑞𝑤 of the harmonics generated. If there is a difference between the two phase 

velocities, destructive interference will result, so the harmonics created will be less intense. To 

adjust for any phase mismatch in this experiment, a glass fiber with a noble gas flowing into it is 

utilized as a hollow waveguide. With this setup, the pressure of the gas in the fiber can be fine-
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tuned to achieve phase matching and generate the brightest possible harmonics. The equation 

representing the phase mismatch, as a function of the gas pressure, is: 

∆𝑘 ≈ 𝑁 (
𝑢11

2 𝜆

4𝜋𝑎2 − 𝑃(1 − 𝜂)
2𝜋

𝜆
(Δ𝛿 + 𝑛2) + 𝑃𝜂𝑛𝑎𝑟𝑒𝜆)   (2.5) 

In the above equation, 𝑁 is the harmonic order, 𝑢11 is the first zero of the Bessel function 

 𝐽0 and approximately equal to 2.4, 𝜆 is the wavelength of the driving laser, 𝑃 is the pressure of the 

gas flowing into the fiber, 𝑎 is the waveguide diameter, Δ𝛿 is the difference between the 

fundamental and harmonic beam refractive indices, 𝜂 is the ionization fraction (ratio of number of 

ions to initial number of atoms), 𝑛2 is the nonlinear index of refraction, 𝑛𝑎 is the atom number 

density at 1 atmosphere of pressure, and 𝑟𝑒 is the radius of the electron in the classical picture. The 

first term of the equation comes from the geometry of the waveguide, the second term is dispersion 

in a neutral gas, and the third term comes from the plasma in the waveguide. As evidenced from 

the equation, phase mismatch can be compensated for by adjusting the gas pressure in the second 

and third terms such that all three terms cancel one another out. However, beyond a critical 

ionization fraction 𝜂𝑐, it is no longer possible to compensate for any phase mismatch. This critical 

ionization fraction, derived from setting the last two terms of the phase mismatch equation to zero, 

is:  

𝜂𝑐 =
1

1+
𝑛𝑎𝑟𝑐𝜆2

2𝜋Δ𝛿

      (2.6) 

Based on the information about 𝜂𝑐, bright high harmonics are only generated in the early 

part of the driving laser pulse, so the HHG cutoff energies measured in experiment are lower than 

those calculated in theoretical models. 
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C. Conclusions 

HHG is a nonlinear process that can be employed to generate coherent EUV light from 

visible light. It is best represented by the three-step model—tunnel ionization, acceleration, and 

recombination—and requires phase-matching between the harmonic and driving fields in order to 

generate the brightest possible EUV light. With this tabletop source of EUV light, the edges of 

absorption of the three ferromagnetic materials of interest can be reached, and the desired strong 

magneto-optical contrast can be obtained. 

III. Magneto-Optical Kerr Effect (MOKE) 

The coherent EUV light produced from HHG is used in the experiment to probe magnetic 

samples. The most fundamental concept that describes what happens when light reflects off a 

magnetic material is the Magneto-Optical Kerr Effect (MOKE). This phenomenon, discovered by 

John Kerr in 1877, illustrates that light changes polarization states and amplitude upon reflection 

off of a magnetic material [29]. The degree to which the polarization and/or amplitude of incoming 

light changes depends directly on the magnetization of the material being probed. In MOKE, there 

are three main configurations, differing from one another based on: the relative angles of the 

material surface, magnetization of the material, and plane of incidence where the light probes the 

material.  Figure 3.1 displays each of the three configurations [30]. 
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Figure 3.1: Three configurations of MOKE. (a) is polar MOKE, where the magnetization is 

perpendicular to the surface of the material. (b) is longitudinal MOKE, where the magnetization is 

parallel to both the surface of the material and to the plane of incidence. (c) is transverse MOKE, 

where the magnetization is perpendicular to the plane of incidence but parallel to the surface of 

the material. Transverse MOKE is the geometry studied in this experiment. From reference [30]. 

 

 

In all three types of MOKE, the symmetry in the material is reduced due to the change in 

magnetization, and that reduction in symmetry is related to the permittivity tensor 𝜀̂ where 𝑫 =

𝜀̂𝑬 (𝑫 is the displacement field, and 𝑬 is the electric field of the incoming EUV light). In an 

isotropic material, the tensor has only on-diagonal elements, all with the value 𝜀. However, for a 

magnetic material magnetized by an external field, the permittivity tensor is: 

𝜀̂ = (
𝜀 𝜖′ 0

−𝜀′ 𝜖 0
0 0 𝜖

)     (3.1) 

In this tensor 𝜖′ is the magneto-optical constant. When the magnetization of the material is 

in the positive z-direction, this tensor corresponds to that magnetization magnitude and direction. 

If the magnetization is in the negative z-direction, a simple transpose of 𝜀̂ will produce the 

corresponding permittivity tensor. 

One approximation that can be made with this value is that the magneto-optical constant is 

orders of magnitude lower than the diagonal element of the permittivity tensor. In fact, in the EUV 
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range in which this experiment is performed, the former is on the order of 10-3 [31], and the latter 

is close to 1 [32]. Thus for future calculations, the following approximation can be utilized: 

|𝜖′| ≪ |𝜖|     (3.2) 

A. Maxwell’s Equations to Calculate Refractive Index in Magnetic Material 

The electric field of EUV light propagating in space is a plane wave solution: 

𝑬 = 𝑬𝑜𝒆𝒊(𝒌∙𝒓−𝜔𝑡)    (3.3) 

Through manipulation of Maxwell’s equations, a solution is found from which the refractive index 

of the magnetic material can be extrapolated: 

∇ × 𝑯 =
1

𝑐
(𝜀̂ ∙

𝜕𝑬

𝜕𝑡
)    (3.4) 

∇ × 𝑬 = −
1

𝑐
(

𝜕𝑯

𝜕𝑡
)    (3.5) 

Combining these two Maxwell’s equations: 

𝑐2(∇2𝑬 − ∇(∇ ∙ 𝐄)) = 𝜀̂ ∙
𝜕2𝑬

𝜕𝑡2     (3.6) 

Substituting in the plane solution Equation 3.3 into Equation 3.6, the resulting solution is: 

−𝑘(𝑘 ∙ 𝑬) + 𝑘2𝑬 = 𝑘𝑜
2𝜀̂ ∙ 𝑬    (3.7) 

From this the refractive index can be extracted after solving for 𝑘, as the wave vector and refractive 

index are related by: 

𝑘 =
𝜔𝑛

𝑐
      (3.8) 
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Since the permittivity tensor is present in Equation 3.7, there is a magnetic contribution to the 

solution to the wave equation. The solution is additionally dependent on the direction in which the 

light propagates, leading to a need to separate the magnetic contribution from the contribution 

from the directionality of the EUV light. 

B. Transverse MOKE (T-MOKE) 

In this experiment, the transverse MOKE (T-MOKE) geometry is employed, because it 

allows for the study of the relative intensities of the harmonic signal when the sample 

magnetization is pointed in the positive z-direction (𝐼𝑈𝑃) versus in the negative z-direction 

(𝐼𝐷𝑂𝑊𝑁). There is no change in the polarization of reflected light in the T-MOKE geometry, so 

only the change in intensity is extracted. From information gained about these intensities, one can 

calculate the magnetic asymmetry of the sample from the equation: 

𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 =
𝐼𝑈𝑃−𝐼𝐷𝑂𝑊𝑁

𝐼𝑈𝑃+𝐼𝐷𝑂𝑊𝑁
    (3.9) 

1. Magnetic Refractive Index 

As an example situation, the incident (and transmitted) light is in the xy-plane, with the 

magnetization in the z direction. The incident light travels in vacuum, and approaches a magnetic 

material through which the light is transmitted. The wave numbers for the incident and transmitted 

beam respectively are: 

𝑘𝐼 = (𝑘𝑜 cos 𝜃 , 𝑘𝑜 sin 𝜃 , 0)    (3.10) 

𝑘𝑇 = (𝑘 cos 𝜃𝑇 , 𝑘 sin 𝜃𝑇 , 0)    (3.11) 

In these equations |𝑘𝐼| = 𝑘𝑜 is the magnitude of the incident beam, |𝑘𝑇| = 𝑛𝑘𝑜 = 𝑘 is the 

transmitted beam, and the two angles are related by sin 𝜃 = 𝑛 sin 𝜃𝑇 , with 𝑛 being the refractive 
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index of the magnetic material. The wave numbers in Equations 3.10-3.11 can be entered into the 

wave equation solution in Equation 3.7 to obtain the following eigenvalue problem: 

𝑘𝑜
2 (

𝜖 − 𝑛2 sin2 𝜃𝑇 𝜖′ + 𝑛2 sin 𝜃𝑇 cos 𝜃𝑇 0

−𝜖′ + 𝑛2 sin 𝜃𝑇 cos 𝜃𝑇 𝜖 − 𝑛2 cos2 𝜃𝑇 0

0 0 𝜖 − 𝑛2

) (

𝐸𝑥𝑇

𝐸𝑦𝑇

𝐸𝑧𝑇

) = 0  (3.12) 

In this expression 𝑬 = (𝐸𝑥𝑇 , 𝐸𝑦𝑇 , 𝐸𝑧𝑇). The eigenvalues, which represent the refractive indices of 

the material, can be calculated by taking the determinant of the matrix in Equation 3.12.   

𝑛𝑠
2 = 𝜖      (3.13) 

𝑛𝑝
2 = 𝜖 +

𝜖′2

𝜖
     (3.14) 

The eigenvectors corresponding to each of these eigenvalues are: 

𝑒𝑠 = (
0
0
1

)     (3.15) 

𝑒𝑝 = (

1
𝜖′ sin 𝜃𝑇−𝜖 cos 𝜃𝑇

𝜖′ cos 𝜃𝑇+𝜖 sin 𝜃𝑇

0

)    (3.16) 

Only one of these eigenvectors depends on the aforementioned magneto-optical constant 𝜖′, and 

that is the p-polarized eigenvector 𝑒𝑝. In fact, this eigenvector corresponds to elliptically polarized 

light, but since the 𝜖′ factor is relatively small, a first-order Taylor expansion around 𝜖′ can be 

performed to approximate the eigenvector: 

𝑒𝑝 ≈ (
− sin 𝜃𝑇 −

𝜖′

𝜖
sec 𝜃𝑇

cos 𝜃𝑇

0

)    (3.17) 
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With 𝜖′ typically being small, the contribution from this factor in the x-direction is negligible, so 

the light is almost fully p-polarized. 

2. Reflection and Transmission Coefficients 

Since the refractive index depends on the magnetization, by extension, so too does the 

reflectivity that will be measured in this experiment. T-MOKE is done with p-polarized light, as 

previously explained, so the analysis of transmission and reflection coefficients will be considered 

for this polarization of light. First, the electric field, magnetic field, and wave vectors for each of 

the incident, reflected, and transmitted light must be determined. 

The electric fields are: 

𝑬𝑰 = 𝐸𝐼0(− sin 𝜃 , cos 𝜃 , 0)    (3.18) 

𝑬𝑹 = 𝐸𝑅0(− sin 𝜃 , − cos 𝜃 , 0)   (3.19) 

𝑬𝑻 = 𝐸𝑇0 (− sin 𝜃𝑇 −
𝜖′ sec 𝜃𝑇

𝜖
, cos 𝜃𝑇 , 0)   (3.20) 

The boundary conditions on the electric field at the surface of the magnetic sample require that: 

𝑬𝑰𝒚 + 𝑬𝑹𝒚 = 𝑬𝑻𝒚     (3.21) 

The magnetic fields are: 

𝑯𝑰 = 𝐸𝐼0(0,0,1)     (3.22) 

𝑯𝑹 = 𝐸𝑅0(0,0,1)     (3.23) 

𝑯𝑻 = 𝐸𝑇0√𝜖 +
𝜖′2

𝜖
(0,0,1 +

𝜖′

𝜖
tan 𝜃𝑇)   (3.24) 

The boundary conditions on the magnetic field at the sample surface require that: 
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𝑯𝑰𝒛 + 𝑯𝑹𝒛 = 𝑯𝑻𝒛     (3.25) 

The wave vectors are: 

𝒌𝑰 = 𝑘0(cos 𝜃 , sin 𝜃 , 0)    (3.26) 

𝒌𝑹 = 𝑘0(− cos 𝜃 , − sin 𝜃 , 0)    (3.27) 

𝒌𝑻 = 𝑘0√𝜖 +
𝜖′2

𝜖
(cos 𝜃𝑇 , sin 𝜃𝑇 , 0)   (3.28) 

Now the transmission and reflection coefficients can be determined from the above equations. The 

transmission coefficient is: 

𝐸𝑇0

𝐸𝐼0
=

2 cos 𝜃

cos 𝜃𝑇+cos 𝜃(1+
𝜖′

𝜖
tan 𝜃𝑇)√𝜖+

𝜖′2

𝜖

   (3.29) 

A first order Taylor expansion of this transmission coefficient around 𝜖′ results in: 

𝐸𝑇0

𝐸𝐼0
≈

2 cos 𝜃

√𝜖 cos 𝜃+cos 𝜃𝑇
−

2𝜖′ cos2 𝜃 tan 𝜃𝑇

√𝜖(cos 𝜃𝑇+√𝜖 cos 𝜃)
2  (3.30) 

The reflection coefficient is: 

𝐸𝑅0

𝐸𝐼0
=

cos 𝜃𝑇−cos 𝜃(1+
𝜖′

𝜖
tan 𝜃𝑇)√𝜖+

𝜖′2

𝜖

cos 𝜃𝑇+cos 𝜃(1+
𝜖′

𝜖
tan 𝜃𝑇)√𝜖+

𝜖′2

𝜖

   (3.31) 

A first order Taylor expansion of this reflection coefficient around 𝜖′ results in: 

𝐸𝑅0

𝐸𝐼0
≈

√𝜖 cos 𝜃−cos 𝜃𝑇

√𝜖 cos 𝜃+cos 𝜃𝑇
+

2𝜖′ sin 𝜃𝑇 cos 𝜃

√𝜖(cos 𝜃𝑇+√𝜖 cos 𝜃)
2  (3.32) 

Substituting in 𝑛𝑜 = 𝜖, and 
sin 𝜃

𝑛𝑜
= sin 𝜃𝑇, the resulting transmission and reflection coefficients 

are: 
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𝐸𝑇0

𝐸𝐼0
≈

2 cos 𝜃

𝑛𝑜 cos 𝜃+√1−
sin2 𝜃

𝑛𝑜
2

+
2𝜖′ cos2 𝜃 sin 𝜃

𝑛𝑜
2√1−

sin2 𝜃

𝑛𝑜
2 (𝑛𝑜 cos 𝜃+√1−

sin2 𝜃

𝑛𝑜
2 )

2  (3.33) 

𝐸𝑅0

𝐸𝐼0
≈

𝑛𝑜 cos 𝜃−√1−
sin2 𝜃

𝑛𝑜
2

𝑛𝑜 cos 𝜃+√1−
sin2 𝜃

𝑛𝑜
2

+
𝜖′ sin 2𝜃

𝑛𝑜
2(𝑛𝑜 cos 𝜃+√1−

sin2 𝜃

𝑛𝑜
2 )

2   (3.34) 

The second term in each of these coefficients includes the magneto-optical constant 𝜖′, 

which is generally relatively small (|𝜖′| ≪ |𝜖|) so the first terms in these coefficients that are 

equivalent to the Fresnel coefficients typically dominate. However, when the photon energies are 

near the absorption edges of the magnetic samples being studied and the light probes the sample 

at the Brewster angle, the magnetic term becomes significant. As previously mentioned, this is one 

of the reasons why this experiment is conducted in the EUV energy range—only pulses with such 

energies can reach the absorption edges of iron, nickel, and cobalt. The transmission and reflection 

coefficients cannot be directly measured in the experiment, as there is no way to obtain the phase 

information to do so. However, the intensities of the reflected and transmitted light can be 

measured, and since 𝐼𝑅 ∝ |𝐸𝑅0|2 and 𝐼𝑇 ∝ |𝐸𝑇0|2, a rough estimate of the transmission and 

reflection coefficients can be determined from information about the intensities. What is of interest 

in this experiment is the previously mentioned asymmetry parameter, which will be expounded on 

and calculated in the following section. 

3. Calculating Asymmetry 

Asymmetry is measured for this experiment because in the first approximation, asymmetry 

is proportional to the magnetization of the material. The asymmetry can be calculated by taking 

the intensity measurement of the reflected beam with the magnetization in one direction and then 
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the opposite direction, taking the difference between the two measurements, and dividing by the 

sum of the measurements to normalize. From that information, the first term in the reflection 

coefficient in Equation 3.34 that corresponds to the optical contribution is subtracted out, and the 

result isolates the magnetic contribution. Referring to Equation 3.9 for the magnetic asymmetry of 

a material and writing the equation in terms of the reflected electric fields for opposite 

magnetizations: 

𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 =
𝐼(𝜖′)−𝐼(−𝜖′)

𝐼(𝜖′)+𝐼(−𝜖′)
=

|𝑬𝑹𝟎(𝜖′)|2−|𝑬𝑹𝟎(−𝜖′)|2

|𝑬𝑹𝟎(𝜖′)|2+|𝑬𝑹𝟎(−𝜖′)|2
≈ 2𝔑 [

𝜖′ sin 2𝜃

(𝑛𝑜
4 cos2 𝜃−𝑛𝑜

2+sin2 𝜃)
] (3.35) 

Though the math is not fully shown, an approximation that the optical contribution is much greater 

than the magnetic contribution was made to obtain the final asymmetry equation. 

The asymmetry is directly proportional to the magneto-optical constant 𝜖′, and thus 

measuring the asymmetry gives a measurement of the magnetization of the material, as well. The 

maximum asymmetry occurs at the Brewster angle, where the optical reflectivity is zero. This 

angle 𝜃𝐵 is determined through the equation: 

sin2 𝜃𝐵 =
𝑛𝑜

2

1+𝑛𝑜
2     (3.36) 

tan 𝜃𝐵 = 𝑛      (3.37) 

C. Conclusions 

MOKE is a powerful phenomenon demonstrating the dependence of the polarization and 

magnitude of intensity of light reflected off of a magnetic material on the magnetization of said 

material. It serves as a versatile means of studying properties of a magnetic sample such as 

magnetic asymmetry, which is the significant value measured in this experiment. Specifically, 

determining the asymmetry of a magnetic material allows for the extraction of the magnetization 
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of the material. When a material’s magnetization can be found through MOKE, so too can the 

change in magnetization of the material when probed with EUV light. The factors and internal 

dynamics contributing to this change in magnetization are described in the following section. 

IV. Ultrafast Demagnetization and Three-Temperature Model 

Combining HHG and MOKE, one can investigate the demagnetization of a magnetic 

sample that has been probed with ultrafast EUV light. It is remarkable that this demagnetization 

occurs over an extremely short time scale when the sample is probed with femtosecond laser 

pulses. Understanding the dynamics that contribute to this rapid demagnetization as well as the 

subsequent demagnetization that occurs is of interest, as this knowledge can pave the path toward 

fine control of the dynamics of magnets with nanoscale lengths. 

The first evidence of ultrafast demagnetization was shown by Beaurepaire et al, who 

observed the magnetization of a nickel sample rapidly dropping within a picosecond when excited 

with a 60 fs, 620 nm laser pulse [1]. The normalized demagnetization is shown in Figure 4.1, and 

as can be seen from this figure, demagnetization happens rapidly, followed by a much longer re-

magnetization period. Much excitement was generated from this finding, as the previously known 

fastest magnetization dynamics were the 100 ps timescales of the spin-lattice relaxation 

mechanism from the results published by Valterlaus et al [33].  
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Figure 4.1: Longitudinal MOKE signal, probing a Ni (20 nm)/MgF2 (100 nm) magnetic thin film 

with a 7 mJ/cm2 pump fluence. This curve is normalized. From Reference [1]. 

 

Since this discovery, ultrafast magnetization dynamics have studied in a variety of 

magnetic materials including multilayers [34] and semiconductors [35]. Short x-ray pulses became 

a powerful tool for investigating these dynamics as evidenced in several experiments [36-38], and 

this wavelength of short pulses will be employed for this experiment. The applications of studying 

ultrafast demagnetization dynamics include all-optical switching which is extremely useful for 

development of the next generation of hard disk drives [4], and ferromagnetic resonance [3]. 

A. Three-Temperature Model: A Macroscopic Picture 

In his paper on the ultrafast demagnetization of nickel, after showing the demagnetization 

over time of the sample, Beaurepaire proceeds to characterize the dynamics within the probed 
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magnetic sample by the interaction between three heat baths—the electron system with 

temperature Te, the lattice system with temperature Tl, and the spin system with temperature Ts 

[1]. The interaction between these baths is known as the three-temperature model, and serves as a 

basis on which to characterize laser-induced demagnetization dynamics between electrons, spins, 

and phonons (lattice). The laser pulse initially heats the electron bath, and then the heat is 

dissipated to the lattice and spin baths at different rates. Figure 4.2 depicts an overarching 

description of the three-temperature model, with time scales at which heat dissipation occurs 

between the three baths included [39].  

 

Figure 4.2: Visual depiction of three-temperature model for a magnetic sample irradiated by a 

short laser pulse. The three heat baths shown are those of electrons, spins, and the lattice (or 

phonons). Transfer of energy between these respective heat baths happen at different time scales. 

In the figure, 𝜏𝑒𝑠 is the electron-spin relaxation time, or the time it takes for the electrons-spin 

scattering to occur. Similarly, 𝜏𝑒𝑙 is the electron-lattice relaxation time, and 𝜏𝑠𝑙 is the spin-lattice 

relaxation time. From Reference [39]. 
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From Figure 4.2, it is evident that only the electron-lattice and electron-spin interactions 

contribute to the demagnetization of magnetic materials, as the ~100 ps spin-lattice interaction 

timescale is too long to influence the 1-2 ps demagnetization time of such materials. 

The coupled equations describing the time-dependent interactions between these heat baths 

are: 

𝐶𝑒(𝑇𝑒)𝑑𝑇𝑒

𝑑𝑡
= −𝐺𝑒𝑙(𝑇𝑒 − 𝑇𝑙) − 𝐺𝑒𝑠(𝑇𝑒 − 𝑇𝑠) + 𝑃(𝑡)   (4.1) 

𝐶𝑠(𝑇𝑠)𝑑𝑇𝑠

𝑑𝑡
= −𝐺𝑒𝑠(𝑇𝑠 − 𝑇𝑒) − 𝐺𝑠𝑙(𝑇𝑠 − 𝑇𝑙)    (4.2) 

𝐶𝑙(𝑇𝑙)𝑑𝑇𝑙

𝑑𝑡
= −𝐺𝑒𝑙(𝑇𝑙 − 𝑇𝑒) − 𝐺𝑠𝑙(𝑇𝑙 − 𝑇𝑠) − 𝜅∇2𝑇𝑙(𝒓, 𝑡)  (4.3) 

In Equations 4.1-4.3, 𝐶𝑒 is the specific heat of Nickel from the electrons, 𝐶𝑠 is the specific 

heat from the magnetic spins, and 𝐶𝑙 is the specific heat from the lattice. 𝐺𝑒𝑙 is the electron-lattice 

interaction constant, 𝐺𝑒𝑠 is the electron-spin interaction constant, and 𝐺𝑠𝑙 is the spin-lattice 

interaction constant [1]. These constants define the rate at which energy is transferred between the 

electron, spin, and lattice temperature baths. The parameter 𝑃(𝑡) describes the influence that the 

pump laser beam has on the dynamics between the three baths over time. This parameter is only 

present in the first equation with the temporal evolution of the electronic temperature bath, as only 

the electron bath is heated when the pump beam is incident on the magnetic sample. The 

𝜅∇2𝑇𝑙(𝒓, 𝑡) represents heat diffusion through the lattice. Two approximations can be made to 

determine an analytical solution to these three coupled equations. The first is a low pump fluence, 

which allows for the magnetization to be proportional to the temperature. The second is to neglect 

the spatial term 𝜅∇2𝑇𝑙(𝒓, 𝑡), as the sample is thin enough (tens of nanometers) that heat diffusion 

through the sample is relatively uniform. With these approximations, the analytical solution to is 
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represented by a double exponential that account for the demagnetization and recovery of 

magnetization within the sample. Equation 4.4 shows the form of the solution. 

𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 = 1 + ℎ𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒(𝐷𝑒𝑙𝑎𝑦 − 𝑂𝑓𝑓𝑠𝑒𝑡) × (−𝑎 × (1 − 𝑒−(𝐷𝑒𝑙𝑎𝑦−𝑂𝑓𝑓𝑠𝑒𝑡)/𝐷)) ×

𝑒−(𝐷𝑒𝑙𝑎𝑦−𝑂𝑓𝑓𝑠𝑒𝑡)/𝑅          (4.4) 

In Equation 4.4, 𝐷𝑒𝑙𝑎𝑦 is the time delay between the pump and probe beams arriving at 

the magnetic sample, 𝑂𝑓𝑓𝑠𝑒𝑡 is the offset from time zero (relevant for the upcoming data analysis 

section), 𝑎 is the quenching, or the degree to which the sample demagnetizes, 𝐷 is the 

demagnetization time, and 𝑅 is the recovery time. This solution will be utilized in analysis to fit 

acquired data to the three-temperature model and to extract demagnetization times for Nickel, Iron, 

and Cobalt at different pump fluences. Solving this system of equations provides an overarching, 

macroscopic picture of what occurs when a magnetic sample is probed by a short laser pulse. 

However, the three-temperature model does not take into account any microscopic processes that 

could contribute to the demagnetization of a sample. Specifically, this model does not include the 

dynamics of scattering between electrons, spins, and phonons. Including this microscopic picture 

adds another layer of understanding in the study of ultrafast magnetization dynamics. 

B. Microscopic Mechanisms in Three-Temperature Model 

The exact microscopic mechanisms contributing to the demagnetization and subsequent 

re-magnetization of a sample probed with an ultrafast EUV pulse are still under debate. However, 

as is shown in Figure 4.2, it is generally agreed upon that the heat from the electrons is first 

dissipated into the intrinsic spins of the external electrons, and then into the lattice. There are 

several explanations that have been provided for exactly what occurs amongst individual electrons, 

spins, and phonons, but two such explanations are dominant in the literature. 
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1. Elliot-Yafet Spin-Flip Scattering 

A paper by Koopmans et al proposes one of these two explanations, and that is spin-flip 

scattering due to the Elliot-Yafet mechanism [40-41]. In this model, the heating up of a magnetic 

sample excited by a laser pulse increases the probability that the intrinsic spin of each electron will 

flip directions. Some of these spins will flip upon excitation, and the overall magnitude of 

magnetization will be lower than it was prior to excitation. That reduction of total spin magnitude 

is the demagnetization of the magnetic sample. To conserve angular momentum when these spins 

flip, Koopmans et al suggests that a phonon is absorbed and emitted, such that angular momentum 

is transferred from the spins to the lattice [14]. The transfer of angular momentum is analogous to 

the Einstein de-Haas experiment in which a solid rotates after the magnetization is flipped [42]. In 

Elliot-Yafet scattering, the total magnetization need not be kept constant. In a similar model based 

on exchange scattering, magnetization is held constant. The Elliot-Yafet and exchange scattering 

models are depicted in Figure 4.3 [43]. 

 

Figure 4.3: (a) Visual representation of Elliott-Yafet spin-flip scattering proposed in the Koopmans 

model [14] Intermediate state contains both spin-up and spin-down that can be attributed to spin-

orbit coupling. qph is the momentum of the photon. (b) Spin-flip that is mediated by an exchange 

interaction, with the total magnetization maintained as constant. From Reference [43]. 
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There are limitations to the Elliot-Yafet model. Most notably, the collective excitation of 

all the spins of external electrons (electrons outside the lattice), otherwise known as the magnon, 

is not considered. Magnons will be considered in the second microscopic model discussed: The 

Landau-Lifshitz-Bloch and Landau-Lifshitz-Gilbert Equations. 

2. Landau-Lifshitz-Bloch (LLB) and Landau Lifshitz-Gilbert (LLG) 

Equations 

The physics governing the LLB and LLG equations is that electronic excitations induce a 

precession of electron spins, which reduce the effective magnetic moment of each spin. 

Collectively, this spin-precession leads to generation of magnons. Since the on-axis magnetization 

of each spin is reduced when precession of spins occurs, from a macroscopic view a 

demagnetization occurs. 

The Landau-Lifshitz-Gilbert equation, a standard equation describing time-dependent spin 

precession, is: 

𝑑𝑴

𝑑𝑡
= −𝛾𝑴 × 𝑯𝑒𝑓𝑓 −

𝛾𝛼

𝑀2 𝑴 × (𝑴 × 𝑯𝑒𝑓𝑓)    (4.5) 

In Equation 4.5, 𝛾 is the gyromagnetic constant, 𝑯𝑒𝑓𝑓 is the effective magnetic field, and 

𝛼 is a damping parameter. The first term in this equation defines precession of the spin (or 

magnetization) around the effective magnetic field, and the second term describes damping of the 

magnetization. The LLG equation does not account for demagnetization that occurs on a relatively 

short time scale compared with spin precession, so a term that accounts for this is included in the 

Landau-Lifshitz-Bloch equation. The added term allows for changes in the local magnetic field, 

which becomes significant at high temperatures, as is the case when a magnetic sample is heated 

by a laser pulse with high photon energy [44]. When this term is included, the LLB equation is: 
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𝑑𝑴

𝑑𝑡
= −𝛾𝑴 × 𝑯𝑒𝑓𝑓 + 𝛾𝛼∥

(𝑴∙𝑯𝑒𝑓𝑓)𝑴

𝑀2 −
𝛾𝛼⊥

𝑀2 𝑴 × (𝑴 × 𝑯𝑒𝑓𝑓)  (4.6) 

In Equation 4.6 [45], the second term accounts for the ultrafast demagnetization dynamics. 

Additionally, the parameters 𝛼∥, 𝛼⊥ and 𝑯𝑒𝑓𝑓 become time-dependent. Figure 4.4 provides a 

picture of the three mechanisms of the LLB equation at play [46].  

 

 

Figure 4.4: The different torques on the magnetization involved in the Landau-Lifshitz-Bloch 

Equation. Precession (the term in green) causes the magnetization (in black) to precess around the 

effective magnetic field (in red). The radius of precession is reduced and the magnetization aligned 

with the field through the damping term (in blue). The relaxation term (in orange) is the mechanism 

causing demagnetization within the material. Reference [46]. 

 

In the LLB equation, the spins eventually return to their original alignment, with the 

angular momentum going into the lattice just as in the case of Elliot-Yafet spin-flip scattering. 

Thus, for this microscopic model too, angular momentum is conserved. However, the LLB model 

also comes with limitations. This model does not account for scattering between electrons, spins, 

and phonons as the Elliot-Yafet model does. 

A resolution of the Elliot-Yafet and Landau-Lifshitz-Bloch models has not yet been 

developed, but a complete microscopic theory will include elements of both models. For the 
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purposes of this experiment, both models paint a microscopic picture of the three-temperature 

model, and the focus will be on developing a primarily macroscopic analysis of data collected.  

C. Conclusions 

At the macroscopic level, the ultrafast demagnetization dynamics of the magnetic materials 

of interest can be represented by the three temperature model, which describes the interactions 

between electron, spin, and lattice temperature baths. There are exchanges of heat between these 

three baths that is provided to the system through interaction with a short EUV pulse, and the 

specifics of these exchanges are of interest for analysis in this experiment. There are underlying 

microscopic mechanisms that govern the dynamics of these exchanges, the most prominent models 

of these mechanisms being Elliot-Yafet spin-flip scattering and the Landau-Lifshitz-Bloch 

equation. However, a comprehensive theory defining these microscopic mechanisms does not yet 

exist, so many explanations could be valid for what occurs on the microscopic scale.  

The essential theory behind this comparative study experiment has now been discussed, 

including: the role of high-harmonic generation for studying ultrafast dynamics in magnetic 

materials, the use of MOKE to extract information about changes in magnetization, and the 

phenomenological three-temperature model that explains the interactions that occur within the 

magnetic material to cause demagnetization. The remainder of this thesis will be dedicated to the 

experiment itself, beginning with the experimental setup employed. 

V. Experimental Setup 

The experimental setup is in the T-MOKE reflection geometry and is pictured in Figure 

5.1.  
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Figure 5.1: Experimental setup. The laser parameters are specified in red at the left of the image. 

The lower half of the image (the 90% arm) is the probe arm, and the upper half (the 10% arm) is 

the pump arm. Minor differences between this setup and the actual experimental setup are that: 1) 

The arm of the experiment after the toroidal mirror is not pointing upwards, but rather is lying flat 

on the table (at the same angle). 2) The sample is separate from the grating. The sample is before 

the aluminum filters, and the grating comes after these filters and just before the CCD camera. 3) 

The gas used in the capillary is Helium, not Neon, and there is no hole for incoming gas in the 

capillary itself. From Reference [46]. 

 

The setup can be divided into two parts: the optical path to produce high harmonics, and 

the probing of the magnetic sample. Each part of the setup will be described in further detail as 

follows.  

A. Generation of High Harmonic Beam 

For HHG, a driving laser field is required, and for this experiment, the source is a pulsed 

800 nm beam. Each pulse has a ~2.5 mJ pulse energy and a 40 fs pulse duration, and the repetition 

rate of the laser is 5 kHz. The beam is split into two arms: a pump arm and a probe arm. The pump 

serves to excite the magnetic sample, and the probe is the driving field for making high harmonics. 
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This is a typical pump-probe experimental setup, where the pump arm excites the sample being 

studied, and the probe arm images the dynamics of the sample. 

In the probe arm, a 50-cm lens is used to focus the beam into a gas-filled capillary and 

produce harmonics. The half wave plate in this arm adjusts the beam polarization. A long tube 

connected to a fiber holder assists with alignment, as there is a stage attached to this tube and 

another on the other side of the fiber holder that allow for the beam to be “walked” into alignment. 

The capillary itself is 5 cm long, with holes one centimeter from either end for gas flow.  

In the pump arm, there is a delay stage pictured. This stage gives control over the delay 

between the relative times at which the pump pulse and high harmonic pulse arrive at the magnetic 

sample. If the pump beam arrives after the harmonic beam, a signal is not seen, since there was no 

excitation at the moment the signal was measured. If the pump beam arrives before the harmonic 

beam, demagnetization dynamics can be seen. Additionally, there is a neutral density (ND) filter 

wheel in the beamline, so that the pump fluence can be adjusted by filtering out a certain amount 

of the incoming pump beam before it reaches the sample. 

B. Probing the Magnetic Sample 

After the harmonic beam is produced, there is still excess 800 nm light from the driving 

laser field, so a 200-nm-thick Lebow aluminum filter is used to filter out this light and only allow 

the harmonic beam through. The harmonic beam then travels through a hole in a mirror optimized 

for reflection of 800 nm light (the significance of that mirror will be explained later), and reflects 

off of a toroidal mirror. The toroidal mirror is utilized because 1) there are no lenses that transmit 

light in the EUV range and 2) the harmonic beam needs to be focused onto a CCD camera at the 

end of the setup to measure a signal. The aforementioned mirror with a hole is utilized to reflect 

the 800 nm pump beam, such that it is nearly collinear with the high harmonic beam as both 
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approach the 10-nm magnetic sample. It is important that the two beams are nearly collinear in 

order for maximal spatial and temporal overlap to be achieved. There is a magnet placed flush 

against the sample, applying a 150 mT field to magnetize the sample. The magnet is set to switch 

magnetizations periodically, so that data with the magnetization pointed in one direction versus in 

the other direction can be taken. Both beams arrive at and reflect off of the sample at a 50-degree 

angle. Again, aluminum filters are used to filter out the 800 nm pump light, as if this beam were 

to reach the CCD camera, it would oversaturate the camera and the signal from the high harmonic 

beam would not be visible. A grating after the filters spatially separates the signal in the high 

harmonic beam, and a CCD camera allows for the signal to be viewed in an external program.  

A typical harmonic spectrum seen from the CCD camera is shown in Figure 5.2. The 

spectrum in this figure is from reflection off a Nickel sample. 

 

Figure 5.2: A typical high harmonic spectrum, as seen from the CCD camera program. The first 

and second orders of harmonics are shown here in this spectrum, and this particular spectrum is 

that of the harmonic beam reflected off a Nickel sample. 
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There are two “combs” with two relative peaks seen in Figure 5.2, which correspond to the 

first and second harmonic of the fundamental 800 nm beam. For each harmonic, a strong 

asymmetry will be observed when the pump beam arrives after the probe beam (no 

demagnetization seen). 

VI. Results and Data Analysis 

A. Scans of Asymmetry vs. Time Delay 

The data taken is that of the intensity of the reflected beam, when the magnetization of the 

sample is directed up versus down. Equation 3.9 is used to calculate the asymmetry at each time 

delay between the pump beam and the probe beam, so that dynamics can be obtained. Matlab code 

in Appendix A shows how the asymmetry is calculated for each time delay within each scan. For 

every time delay, an asymmetry spectrum is obtained. Figure 6.1 shows the difference between an 

asymmetry spectrum for a negative time delay (before demagnetization) and a spectrum for a 

positive time delay (after demagnetization). Note that for this figure, the pump power was 150 

mW, corresponding to an 8.10 mJ/cm2 pump fluence for the laser parameters utilized. 
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Figure 6.1: A typical asymmetry spectrum before (blue) and after (red) demagnetization of a 

Nickel sample with a pump power of 150 mW. The asymmetry is almost entirely quenched after 

the sample is irradiated by a short laser pulse. 

 

As mentioned at the end of Section V, there are two strong asymmetry signals that 

correspond to the two harmonics seen in the spectrum of Figure 5.1. These asymmetries are 

quenched when the sample is demagnetized. 

Next, a single value for asymmetry is obtained for each time delay, by finding an average 

signal around a peak asymmetry at every time step. These asymmetry values, after normalization, 

can be plotted as a function of the time delay between pump and probe. An example of such a plot, 

for one scan of Nickel with a 150 mW pump power, is seen in Figure 6.2. 
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Figure 6.2: Asymmetry as a function of time delay for Nickel probed by a 150 mW pump beam. 

The shape of this curve is quite similar to an asymmetry vs. time delay curve for Iron and Cobalt, 

as well. 

 

The trace in Figure 6.2 is very typical of an asymmetry vs. delay curve for any of the three 

ferromagnetic materials at any pump power, though Nickel demagnetizes far more than do Cobalt 

and Iron. The comparison between the three materials will be shown in the following section. 

B. Asymmetries Averaged Over All Scans 

A graph like the one in Figure 6.2 is generated for each scan of Nickel, Iron, and Cobalt at 

each pump power. Several scans are taken for each of the three materials for various pump 

fluences, and the scans are averaged. Matlab code in Appendix B shows how this averaging is 

done for different samples and different pump powers, so that the data can be more easily utilized 

for future graphs and calculations. Code from Appendix E plots each of these average asymmetries 

against pump-probe delay, adjusting the time zeros of each data set to be aligned so that the 

demagnetization at different pump fluences for each material can be more directly compared. 


