Spring 1-1-2014

Gold Approach to Polycyclic Indole Alkaloids and Chemical Probes for Histone Demethylases

Wenqing Xu
University of Colorado at Boulder, wenqing.xu@colorado.edu

Follow this and additional works at: https://scholar.colorado.edu/chem_gradetds

Part of the Chemistry Commons

Recommended Citation
https://scholar.colorado.edu/chem_gradetds/138

This Dissertation is brought to you for free and open access by Chemistry & Biochemistry at CU Scholar. It has been accepted for inclusion in Chemistry & Biochemistry Graduate Theses & Dissertations by an authorized administrator of CU Scholar. For more information, please contact cuscholaradmin@colorado.edu.
Gold Approach to Polycyclic Indole Alkaloids and Chemical Probes for Histone Demethylases

by

Wenqing Xu

B.S., University of Science and Technology of China, 2008

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirement for the degree of
Doctor of Philosophy
Department of Chemistry and Biochemistry

2014
This thesis entitled:
Gold Approach to Polycyclic Indole Alkaloids and Chemical Probes for Histone Demethylases
written by Wenqing Xu
has been approved for the Department of Chemistry and Biochemistry

Xiang Wang

Tarek Sammakia

Date ______________

The final copy of this thesis has been examined by the signatories, and we
Find that both the content and the form meet acceptable presentation standards
Of scholarly work in the above mentioned discipline.

IRB protocol # _____________________
Xu, Wenqing (Ph.D., Chemistry and Biochemistry)
Gold Approach to Polycyclic Indole Alkaloids and Chemical Probes for Histone Demethylases
Thesis directed by Assistant Professor Xiang Wang

My research contains two divisions:

The first one is to develop novel synthetic methods for polycyclic indole alkaloids, such as strictamine. As one of the constituents of Rhazya alkaloids, strictamine was first isolated from the flower of Alstonis scholaris, which has been used as folk medicine in India, by H. K. Schnoes, etc in 1966, while the absolute structure was resolved with the aid of X-ray crystallography in 1977. The densely fused pentacyclic skeleton of the indole alkaloid has attracted considerable interest and posed great challenge to organic chemists. Since its isolation, several groups have reported their synthetic studies, but no total synthesis is completed. In 2013 we succeeded in constructing the bridged skeleton under the catalysis of gold complex and further studies of strictamine is in progress.

The second one is focused on the development of chemical probes for jumonji C domain-containing histone demethylases (JHDMs). As one of the most important epigenetic modifications, histone methylation is closely associated with heritable changes without altering DNA sequence. Based on the enzymatic mechanisms, histone demethylases can be categorized into two classes: flavin adenine dinucleotide (FAD)-dependent monoamine oxidases (LSD1 and 2) and JHDMs. Compared to LSDs, JHDMs have a much broader substrate scope and can modify lysine residues at all methylation states. In 2011, our group reported the discovery of methylstat as the first cell-active selective small-molecule inhibitor of JHDMs. Based on the structure of methylstat, we designed and synthesized a series of fluorescent probes for quantitative analysis of JHDMs in fluorescence polarization (FP) assays. Also, a library of over 100 compounds was prepared. Their binding affinities to JHDM1A were evaluated in FP assays and structure-activity relationship (SAR) was further studies.
Dedicated to My Parents
Acknowledgements

I would like to thank everyone I’ve known at University of Colorado at Boulder. I was offered a lot of help in the past 6 years. Even if you are not specifically named below, know that I am grateful.

Thanks to my advisor Prof. Xiang Wang, from whom I learn a lot about organic chemistry and chemical biology. Without his help I would not be here and enjoy the wonderful research experience.

Thanks to my course teachers. Special thanks to Prof. Tarek Sammakia, Prof. Hang (Hubert) Yin, Prof. Xiang Wang and Prof. Richard Shoemaker for patient explanation of interesting topics in class.

It has been a fulfilling experience to work among so many talented chemists and biochemists. Dr. Yongxiang Liu shared with me his knowledge and benchwork skills. I am greatly impressed by the collaboration with Dr. Xuelai Luo, Dr. Le Chang and Dr. Wei Wang as well as other Wang Lab’s members: Jessica Podoll, Laura Marholz, Patrick Barbour, Patrick Castro, Shane Walls, Se Jeong Yeo and Eunice Kim. Former and current members in Prof. Tarek Sammakia’s group are very nice persons to work with.

Special thanks to Prof. Richard Shoemaker for NMR help.

Thanks to Prof. Xiang Wang, Prof. Tarek Sammakia, Prof. Maciej Walczak, Prof. Zhongping Tan and Prof. Erin Tripp for being my committee members.

Finally, thanks to my parents, without whom I couldn’t have done these.
Table of Contents

Abstract...iii

Dedication...iv

Acknowledgements..v

Table of Contents..vi

List of Tables..x

List of Figures...xi

List of Schemes..xii

List of Acronyms and Abbreviations...xv

Chapter 1 Monoterpene Indole Alkaloids...1

1.1 Introduction..1

1.2 Biosynthesis...2

1.3 Reported Approaches to Polycyclic Indole Alkaloids and Application to Total Syntheses of Monoterpene Indole Alkaloids..3

1.3.1 Heck Cyclization Approach..3

1.3.2 Tandem [4 + 2]/[3 + 2] Cycloaddition Approach..4

1.3.3 Interrupted Fischer Indolization..5

1.3.4 Cyclopropanation Strategy..7

1.3.5 Oxidative Anion Coupling..9

1.3.6 Diels-Alder/Amine Cyclization Approach...11

1.4 References..14
Chapter 2 Au(I)-Catalyzed Tandem Cyclization Approach to Tetracyclic Indolines..16

2.1 Gold Catalysis..16
2.1.1 Oxygen Nucleophiles..17
2.1.2 Nitrogen Nucleophiles..20
2.1.3 Alkenes as Nucleophiles (Enyne Cyclization)..21
2.1.4 Aromatic Systems as Nucleophiles...23
2.2 Proposed Approach to Polycyclic Indoline Alkaloids...25
2.3 Tandem Cyclization of Alkynyldole...25
2.3.1 Substrate Preparation...25
2.3.2 Au(III)-Catalyzed Tandem Cyclization of Alkynyldole.......................................27
2.3.3 Optimization of the Gold-Catalyzed Tandem Cyclization.................................27
2.3.4 Substrate Scope of the Au(I)-Catalyzed Tandem Cyclization...............................28
2.4 Mechanistic Study ..32
2.5 Application to Construction of Fused Indoline Skeleton...35
2.5.1 Substrate Preparation...36
2.5.2 Au(I)-Catalyzed Tandem Cyclization...37
2.5.3 Formal Synthesis of Minfiensine...39
2.6 Conclusion..39
2.7 Experimental..40
2.8 References..84

Chapter 3 Construction of Bridged Tetracyclic Indolenine Skeleton through Gold

Carbene-Catalyzed Desilylative Cyclization...87

3.1 Background of Bridged Indolenine Alkaloids...87
3.2 Reported Methodology of Construction of Indolenine Skeleton..............................88
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1</td>
<td>Oxidation of Indole or Indoline Derivative</td>
<td>88</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Palladium-Catalyzed Allylation or Benzylolation</td>
<td>88</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Interrupted Fischer Indolization</td>
<td>90</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Others</td>
<td>90</td>
</tr>
<tr>
<td>3.3</td>
<td>Initial Attempt to Construct Bridged Tetracyclic Indolenine</td>
<td>92</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Substrate Preparation</td>
<td>93</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Gold-Catalyzed Cyclization</td>
<td>94</td>
</tr>
<tr>
<td>3.4</td>
<td>Construction of Bridged Tetracyclic Indolenine through Gold-Catalyzed</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Desilylative Cyclization</td>
<td></td>
</tr>
<tr>
<td>3.4.1</td>
<td>Background of Metal-Catalyzed Desilylative Cyclization of Acetylenic</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Silyl Enol Ether</td>
<td></td>
</tr>
<tr>
<td>3.4.2</td>
<td>Proposed Approach</td>
<td>99</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Preparation of N-silyl Indole Substrate</td>
<td>100</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Gold-Catalyzed Desilylative Approach to Tetracyclic Indolenine</td>
<td>101</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Substrate Scope</td>
<td>104</td>
</tr>
<tr>
<td>3.5</td>
<td>Experimental</td>
<td>106</td>
</tr>
<tr>
<td>3.6</td>
<td>References</td>
<td>119</td>
</tr>
</tbody>
</table>

Chapter 4
Studies Towards the Total Synthesis of Strictamine: Application of Gold Carbene-Catalyzed Desilylative Cyclization

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Background of Strictamine</td>
<td>122</td>
</tr>
<tr>
<td>4.2</td>
<td>Previous Attempted Syntheses of Strictamine</td>
<td>123</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Synthetic Study Reported by the Bosch Group</td>
<td>123</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Synthetic Study Reported by the Cook Group</td>
<td>125</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Synthetic Study Reported by the Tokuyama Group</td>
<td>126</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Synthetic Study Reported by the Zhu Group</td>
<td>127</td>
</tr>
</tbody>
</table>
Chapter 4 Retrosynthetic Analysis of Strictamine

4.3 Retrosynthetic Analysis of Strictamine...128
4.4 Synthetic Study of Strictamine..129
4.5 Attempted Cyclization...136
4.6 Conclusion ...137
4.7 Experimental...138
4.8 References..144

Chapter 5 Quantitative Analysis of Histone Demethylase Probes Using Fluorescence Polarization

5.1 Background ...148
5.2 Synthesis of Methylstat$^{\text{fluor}}$..149
5.3 Development of A Fluorescent Polarization Assay for JHDM1A using Methylstat$^{\text{fluor}}$
as the chemical probe...150
5.4 Conclusion..153
5.5 Outlook...154
5.6 Experimental...155
5.7 References..160

Bibliography..162
Table 2.1 Hydrogens (Hs) and Their Coupled Atoms in 2D NMR Experiments ………27
Table 2.2 Optimization of the Gold-Catalyzed Tandem Cyclization……………….28
Table 2.3 Substrate Scope – O as Nucleophile………………………………………30
Table 2.4 Substrate Scope – N as Nucleophile………………………………………32
Table 2.5 Scope of Au(I)-Catalyzed Tandem Cyclization…………………………38
Table 3.1 Au(I)-Catalyzed Cyclization Reactions……………………………………97
Table 3.2 Screening of Au-Catalyzed Desilylative Cyclization………………………101
Table 3.3 Gold Carbene-Catalyzed Desilylative Cyclization………………………105
Table 4.1 Screening for Epoxidation…………………………………………………131
Table 4.2 Reagent Screening for Isomerization of Epoxide…………………………133
Table 4.3 Optimization of Epoxide Isomerization……………………………………134
Table 4.4 Attempted Cyclization……………………………………………………137
List of Figures

Figure 1.1 Representative Monoterpene Indole Alkaloids.................................1
Figure 2.1 Free Energy Diagram...35
Figure 2.2 Core Motif of Akuammiline Alkaloids..36
Figure 3.1 Representative Bridged Indolenine-Containing Natural Products.........87
Figure 3.2 Alkynylindoles...93
Figure 4.1 Structures of Strictamine 1 and Strictalamine....................................122
Figure 4.2 Synthetic Strategy of Strictamine by the Bosch Group123
Figure 4.3 Synthetic Strategy of Strictamine by the Cook Group........................125
Figure 4.4 Synthetic Strategy of Strictamine by the Tokuyama Group................126
Figure 4.5 Synthetic Strategy of Strictamine by the Zhu Group............................127
Figure 4.6 Formation and Isomerization of Epoxides..132
Figure 5.1 Structure of Methylstat (1), Methylstat Acid (2) and Its Fluorescent Analogue Methylstatfluor (3)..150
Figure 5.2 Assessment of Binding of fluorophore 3 to JHDM1A, JMJD2A, and JMJD3....151
Figure 5.3 Optimization of Binding of fluorophore 3 to JHDM1A in the presence of Ni2+: (A) addition of various metal ions. (B) Stablized FP signals over the course of at least 20 hours...152
Figure 5.4 Determination of IC\textsubscript{50} and K\textsubscript{i} values for known JHDM probes using our FP competition assay...152
Figure 5.5 Application of Fluorophore 3 to High-Throughput Screening of JHDM inhibitors...153
Figure 5.6 (A) Structure of fluorophore 8 (B) Binding of 8 to JMJD2A. (C) FP competition assay for determination of IC\textsubscript{50} and K\textsubscript{i} values for known probes............154
List of Schemes

Scheme 1.1 Biosyntheses of Monoterpene Indole Alkaloids...2
Scheme 1.2 Asymmetric Intramolecular Heck Cyclization..3
Scheme 1.3 Total Syntheses of Minfiensine by the Overman Group..4
Scheme 1.4 Total Syntheses of Vindoline by the Boger Group..5
Scheme 1.5 Total Synthesis of Aspidophylline A by the Garg Group...6
Scheme 1.6 Total Synthesis of Picrinine by the Garg Group...7
Scheme 1.7 Cyclopropanation Strategy..8
Scheme 1.8 Total Syntheses of Minfiensine and Vincorine by the Qin Group9
Scheme 1.9 Total Synthesis of Vincorine by the Ma Group..10
Scheme 1.10 Total Synthesis of Aspidophylline by the Ma Group...11
Scheme 1.11 Enantioselective Synthesis of Minfiensine by the MacMillan Group.........................12
Scheme 1.12 Enantioselective Synthesis of Vincorine by the MacMillan Group............................13
Scheme 2.1 Au(I)-Catalyzed Nucleophilic Addition to Alkyne..16
Scheme 2.2 Gold-for-Chromium Transmetalation and the Structure of Isolated Gold Carbenoid..17
Scheme 2.3 Synthesis of Bryostatin 16..18
Scheme 2.4 Synthesis of Tricyclic Ketone..19
Scheme 2.5 Tandem Cyclization of 1,7-diynene..20
Scheme 2.6 Au(I)-Catalyzed Hydroamination..21
Scheme 2.7 Au(III)-Catalyzed [3+2] Cycloaddition Reaction...21
Scheme 2.8 Au(I)-Catalyzed 1,6-Enyne Cyclization..22
Scheme 2.9 Au(I)-Catalyzed Claisen Rearrangement..22
Scheme 2.10 Au(III)-Catalyzed Formation of Substituted Phenol...23
Scheme 2.11 Au(I)-Catalyzed Formation of Indoloazocines..24
Scheme 2.12 Various Cyclization Under Au(I)/(III) Catalysts..24
Scheme 2.13 Proposed Approach...25
Scheme 2.14 Designed Route for Synthesizing Alkynylindole 4826
Scheme 2.15 Synthesis of Alkynylindole 48 ...26
Scheme 2.16 Tandem Cyclization of 48 into 54 ...27
Scheme 2.17 Representative Preparation of 60k ..29
Scheme 2.18 Cyclization Paths ...33
Scheme 2.19 Proposed Au(I)-Catalyzed Tandem Cyclization ..36
Scheme 2.20 Preparation of Alkynylindole 86 ...37
Scheme 2.21 Formal Synthesis of Minfiensine ...39
Scheme 3.1 Formation of Indolenine by Oxidation ..88
Scheme 3.2 Pd-Catalyzed Decarboxylative Allylation and Benzylolation89
Scheme 3.3 Interrupted Fischer Indolization Applied to Total Synthesis of Picrinine90
Scheme 3.4 Intramolecular Cyclization under Acidic Condition91
Scheme 3.5 Preparation of Indolenine by Base-Mediated Cyclization92
Scheme 3.6 Preparation of 30 ..93
Scheme 3.7 Preparation of 31, 32 ..94
Scheme 3.8 Initial Results of Attempted Cyclization Reactions95
Scheme 3.9 Au(I)-Catalyzed Desilylative Cyclization ..96
Scheme 3.10 Total Syntheses of (+)-lycopladine A and (+)-fawcettimine96
Scheme 3.11 Au(I)-Catalyzed Cyclizations of Silyl Ketene Amides98
Scheme 3.12 Au(I)-Catalyzed Formation of Bridged Cycloheptanes and Cyclooctanes 99
Scheme 3.13 Proposed Approach to Indolenine 66 ..100
Scheme 3.14 Preparation of N-silyl Substrate ...100
Scheme 4.1 Preparation of Tetracycle ..124
Scheme 4.2 Results of Attempted Cyclization ..124
Scheme 4.3 Synthesis of Diazonium Salt ...125
Scheme 4.4 Attempted Rh(II)-Catalyzed Cyclization of Diazonium Salt126
Scheme 4.5 Tokuyama’s Synthetic Route ...127
Scheme 4.6 Attempted Oxidative Cyclization ... 128
Scheme 4.7 Our Retrosynthetic Analysis ... 129
Scheme 4.8 Ring Opening Under Acidic Oxidative Condition 135
Scheme 4.9 Preparation of Precursor of Strictamine ... 136
Scheme 4.10 Our Route of Synthetic Study of Stricatmine 138
Scheme 5.1 Synthesis of Fluorophore 3 .. 150
List of Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>acetyl</td>
</tr>
<tr>
<td>AIBN</td>
<td>2,2’-azo-bis-isobutyronitrile</td>
</tr>
<tr>
<td>aq</td>
<td>aqueous</td>
</tr>
<tr>
<td>Ar</td>
<td>aryl (substituted aromatic ring)</td>
</tr>
<tr>
<td>atm</td>
<td>1 atmosphere = 10^5 Pa (pressure)</td>
</tr>
<tr>
<td>BBN(9-BBN)</td>
<td>9-borabicyclo[3.3.1]nonane</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>Boc</td>
<td>t-butoxycarbonyl</td>
</tr>
<tr>
<td>bp (b.p.)</td>
<td>boiling point</td>
</tr>
<tr>
<td>Bz</td>
<td>benzoyl</td>
</tr>
<tr>
<td>Bu</td>
<td>n-butyl</td>
</tr>
<tr>
<td>Cbz</td>
<td>benzyloxy carbonyl</td>
</tr>
<tr>
<td>CSA</td>
<td>camphorsulfonic acid</td>
</tr>
<tr>
<td>DBN</td>
<td>1,5-diazabicyclo[4.3.0]non-5-ene</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>DCE</td>
<td>1,2-dichloroethane</td>
</tr>
<tr>
<td>DCM</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>DIBAL</td>
<td>diisobutylaluminum hydride</td>
</tr>
<tr>
<td>DIPEA</td>
<td>diisopropylethylamine</td>
</tr>
<tr>
<td>DMAP</td>
<td>N,N-4-dimethylaminopyridine</td>
</tr>
<tr>
<td>DMDO</td>
<td>dimethyl dioxirane</td>
</tr>
<tr>
<td>DME</td>
<td>1,2-dimethoxyethane</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DMP</td>
<td>Dess-Martin periodinane</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
</tbody>
</table>
dr (d.r.) diastereomeric ratio
Et ethyl
FP fluorescent polarization
HRMS (ESI) high-resolution electrospray ionisation mass spectrometry
IBX o-iodoxybenzoic acid
LA (L.A.) Lewis acid
LAH lithium aluminum hydride
LDA lithium diisopropylamide
m-CPBA meta-chloroperbenzoic acid
Me methyl
NBS N-bromosuccinimide
NMR nuclear magnetic resonance
Ns (4-Ns) 4-nitrobenzenesulfonyl
Nuc nucleophile
Ph phenyl
Pr propyl
RCM ring-closing metathesis
TBAF tetra-n-butylammonium fluoride
TBS t-butyldimethylsilyl
TEA triethylamine
TES triethylysilyl
Tf trifluoromethanesulfonyl
TFA trifuoroacetic acid
TFAA trifuoroacetic anhydride
THF tetrahydrofuran
TMS trimethylsilyl
Tol p-tolyl
Chapter 1

Monoterpane Indole Alkaloids

1.1 Introduction

Monoterpane indole alkaloids are one class of indole alkaloids, which contain structural moiety of indole and are prevalent in plants and fungi (Figure 1.1). These natural products possess a range of complex chemical structures and exhibit diverse biological activities.\(^1\) Ajmalicine is an antihypertensive drug used in the treatment of high blood pressure.\(^1\) Vindoline is the synthetic precursor of the anticancer drugs, vinblastine and vincristine. Strychnine is highly toxic and used as pesticide.\(^1\) Based on preliminary study, aspidophylline A can reverse drug resistance in drug-resistant KB cells.\(^2\) Pseudoakuammigine has exhibited in vivo anti-inflammatory and analgesic activities.\(^3\) The antagonism displayed by corymine at the glycine receptor have been reported.\(^4\)

Figure 1.1 Representative Monoterpane Indole Alkaloids
1.2 Biosynthesis

All monoterpene indole alkaloids are derived from tryptophan and the iridoid terpene secologanin (Scheme 1.1). Tryptophan decarboxylase converts tryptophan to tryptamine and secologanin is derived from non-mevalonate through terpene biosynthesis.

Scheme 1.1 Biosyntheses of Monoterpene Indole Alkaloids

In the presence of strictosidine synthase, tryptamine and secologanin are converted into strictosidine, which is rearranged into after deglucosylation catalyzed by strictosidine.
glucosidase. Intramolecular conjugate addition of 1 gives 2 and the following NADPH-catalyzed reduction affords ajmalicine. Geissoschizine is obtained from reduction of 1 catalyzed by NADPH reductase. The cyclization of geissoschizine leads to the formation of rhazimal, but the mechanism is still unkown. Rhazimal represents the central building block, from which many monoterpenoids, such as pseudoakuammigine, aspidophylline A and strictamine, can be accessed.

1.3 Reported Approaches to Polycyclic Indole Alkaloids and Application to Total Syntheses of Monoterpenic Indole Alkaloids

The biological activities of monoterpenic indole alkaloids and their complex polycyclic indoline scaffolds have attracted considerable attention of synthetic research groups. Until now, many synthetic methods and strategies have been developed. The syntheses of strychnos family, especially strychnine, have been investigated extensively since 1954. Thus, only the recent methodologies and application to total syntheses are described here.

1.3.1 Heck Cyclization Approach

In 2005, Overman and co-workers reported the development of an efficient catalytic enantioselective synthesis of 3,4-dihydro-9a,4a-(iminoethano)-9H-carbazole 5 (Scheme 1.2) by combining a palladium-catalyzed asymmetric Heck cyclization of 3 into 4 with an intramolecular iminium ion cyclization of 4 into 5. The intermediate 5 was utilized to accomplish the first total synthesis of minfiensine.

Scheme 1.2 Asymmetric Intramolecular Heck Cyclization
Compound 6 (Scheme 1.3), prepared from 5 in 6 steps, was subjected to palladium-catalyzed reductive cyclization to give 7 in 80% yield and minfiensine was obtained upon 8 steps of modification of 7 (Scheme 1.3).13 The synthetic route was further optimized and ketone 8 was synthesized from 5 in 4 steps. 8 was cyclized under palladium-catalyzed intramolecular α-vinylation of ketone to afford 9 in 74% yield. Another 4 steps of modification completed the synthesis of minfiensine.14

![Scheme 1.3 Total Syntheses of Minfiensine by the Overman Group](image)

1.3.2 **Tandem [4 + 2]/[3 + 2] Cycloaddition Approach**

In 2009 Boger and co-workers reported a concise total synthesis of vindoline featuring a tandem intramolecular [4 + 2]/[3 + 2] cycloaddition cascade of a 1,3,4-oxadiazole 10 (Scheme 1.4).15 Facial selective Diels-Alder reaction gave intermediate 12 and exclusion of nitrogen afforded dipole 13, which underwent an intramolecular [3 + 2] cyclization to furnish 11. Three rings and four C-C bonds were formed central to the characteristic pentacyclic ring system with six stereocenters. Reduction under acidic condition gave 14 in 55% over 2 steps and the enantioselective synthesis of vindoline was completed in another 13 steps from 14.
1.3.3 Interrupted Fischer Indolization

In 2011, Garg and co-workers reported the first total synthesis of aspidophylline A (Scheme 1.5). The substrate 16 was treated with Pd(0) under Vanderwal’s conditions to afford bicycle 17 in near quantitative yield. After 8 steps, 17 was converted into ketone 18, which was subjected to Fischer indolization condition to give indolenine 19 and methanolysis of the lactone under basic condition followed by cyclization afforded the pentacycle 20 in 70% yield in one pot. Removal of tosyl group and formylation of the resulting amine furnished aspidophylline A.
Scheme 1.5 Total Synthesis of Aspidophylline A by the Garg Group

The interrupted Fischer indolization has also been applied to the synthesis of picrinine by Garg group (Scheme 1.6).17 Treatment of 21 with PdCl₂(dppe) under basic condition furnished bicycle 22 via Pd-catalyzed enolate cyclization. 22 was converted to ketone 23 in another 10 steps. 23 was treated with phenylhydrazine under Fischer indolization condition afforded the indoleneine 24 in 69% yield. 24 was converted to 25 in 81% in 2 steps. Oxidation, esterification, deprotection of nosyl group and proximity-driven cyclization completed the synthesis of picrinine.
1.3.4 Cyclopropanation Strategy

In 2008, Qin and co-workers reported a cascade reaction for assembly of tetracyclic framework (Scheme 1.7). Under the catalysis of CuOTf, the diazo ester 26 formed cyclopropane intermediate 27, which was prone to collapse to generate indolenium cation 28. 28 was captured intramolecularly by the nitrogen of sulfonamide to afford the tetracyclic compound 29.

Scheme 1.6 Total Synthesis of Picrinine by the Garg Group
This cyclopropanation approach has been applied to the syntheses of minfiensine18 and vincorine19 by Qin and co-workers (Scheme 1.8). The tetracycle 30 prepared from β-ketoester 29 in 5 steps, was cyclized under palladium-catalyzed intramolecular α-vinylation of ketone to afford the pentacyclic compound 31, which furnished minfiensine over 3 steps.18 For the synthesis of vincorine, the tetracycle 32 was prepared from β-ketoester 29 over 18 steps and subsequent intramolecular alkylation furnished 33 in 93% yield. The first racemic synthesis of vincorine was achieved over another 6 steps.19
Scheme 1.8 Total Syntheses of Minfiensine and Vincorine by the Qin Group

1.3.5 Oxidative Anion Coupling

In 2012, Ma and co-workers reported an asymmetric total synthesis of (-)-vincorine featuring an intramolecular oxidative coupling reaction.20 Substrate 35 (Scheme 1.9) was prepared from 5-methoxytryptamine 34 in 12 steps. Under the treatment of LiHMDS and iodine, 35 was efficiently and diastereoselectively cyclized into the tetracycle 37 through intermediate 36 based on the proposed mechanism. The compound 38 was obtained from 37 in 2 steps and then subjected to intramolecular alkylation condition to afford the pentacycle 39 in 74% yield. Reductive amination completed the total synthesis of vincorine.
The oxidative coupling has also been applied to synthesis of aspidophylline A as shown in Scheme 1.10.21 The indole 41 prepared from 40 in 4 steps, was treated with LiHMDS to give 42 based on the proposed mechanism and oxidation with iodine afforded the tetracycle 43 in 36% yield. 43 was modified into cyclization precursor 44 in 7 steps. Ni(cod)\textsubscript{2}-mediated reductive cyclization of 44 furnished the tetracyclic indoline motif 45 in 58% yield. Deprotection of Boc completed the synthesis of aspidophylline A.
1.3.6 Diels-Alder/Amine Cyclization Approach

In 2009, MacMillan and co-workers reported the Diels-Alder/cyclization cascade reaction. Subjection of 2-vinylindole 46 (Scheme 1.11) to propynal 47 in the presence of imidazolidinone catalyst 48 at -40 °C over 24 h and following reduction produced the tetracycle 49 in 87% yield with 96% enantiomeric excess. Further deprotection and alkylation afforded the final cyclization precursor 50, which underwent radical reaction to furnish allene 51 in 61% yield. The allene 51 was efficiently converted into minfiensine in another 2 steps and the enantioselective synthesis of minfiensine was accomplished in overall 9 steps.

Scheme 1.10 Total Synthesis of Aspidophylline by the Ma Group
In 2013, MacMillan and co-workers accomplished a concise and enantioselective total synthesis of vincorine, featuring an enantioselective organocatalytic Diels-Alder/iminium cyclization cascade sequence (Scheme 1.12). Tetracycle 55 was obtained from the diene 52 and the dienophile 53 in 73% yield and 95% enantiomeric excess. The enclosure of the 7-member ring of allene 57 by a single electron-mediated cyclization event initiated from an acyl telluride precursor 56 was achieved in 51% yield. Hydrogenation of 57 completed the enantioselective synthesis of vincorine.
Scheme 1.12 Enantioselective Synthesis of Vincorine by the MacMillan Group
1.4 References

Chapter 2

Au(I)-Catalyzed Tandem Cyclization Approach to Tetracyclic Indolines

2.1 Gold Catalysis

Gold catalysis has attracted considerable interest from organic chemists since the beginning of the 21st century. The soft Lewis acidic nature of gold allows selective activation of unsaturated carbon-carbon bonds. For Au(I), it predominantly forms linear two-coordinate complexes. Abstraction of a coordinating halide or an alkyl group (such as Me) by treatment with silver salt or Brønsted acid is therefore required to provide a free coordination site for the ligand, which is generally a phosphine or N-heterocyclic carbene ligand. The generated Au(I) cation is a soft Lewis acid and prefers to bind to a soft Lewis base, such as \(\pi \)-system, instead of oxygen which is a relatively harder Lewis base. Consequently, air and moisture stability of gold catalysts adds to their practicality in organic synthesis. The \textit{anti}-addition of the nucleophile to the activated \(\pi \)-system with respect to Au(I) also provides a simplified chemical interaction among catalyst, binding site and nucleophile (Scheme 2.1). The reactivity of gold catalysts can be fine-tuned with various ligands and counterions.

\[
\begin{aligned}
\text{Scheme 2.1 Au(I)-Catalyzed Nucleophilic Addition to Alkyne}
\end{aligned}
\]

It is undisputed that many gold-catalyzed transformations proceed via carbenoid intermediates, but the nature of the Au–C bonds, either Au=C carbenes or Au-stabilized carbocations, has been debated. In 2014, Fürstner and co-workers isolated the gold carbenoid
species $[\text{Cy}_3\text{PAuCAr}_2]^+\text{NTf}_2^-$ ($\text{Ar} = p\text{-MeOC}_6\text{H}_4^-$) in crystalline form from a formal gold-for-
chromium transmetalation (Scheme 2.2).\cite{4} The bond lengths ($\text{Au} - \text{C}1$, 2.039(5) Å; $\text{C}1 - \text{C}9$, 1.429(7) Å; $\text{C}1 - \text{C}2$, 1.455(6) Å) suggests that gold carbenoids are better described as gold carbocations. This result is also consistent with previously reported data.\cite{5} Thus, all the carbenoids reported in the literature are drawn as gold carbocations herein.

\begin{center}
\textbf{Scheme 2.2 Gold-for-Chromium Transmetalation and the Structure of Isolated Gold Carbenoid}
\end{center}

Gold-catalyzed cyclization reactions of alkynyl substrates have been well documented and some have been applied to construct complex ring systems for natural product syntheses.\cite{1} Various nucleophiles, such as O, N, alkenes and aromatic systems, have been explored for nucleophilic addition to alkynes under the catalysis of Au(I) or Au(III) catalysts.

\subsection*{2.1.1 Oxygen Nucleophiles}

In 2008, the total synthesis of Bryostatin 16 was completed by Trost and co-workers.\cite{6} One of the key steps of the synthesis, the late-stage cyclization of 1 (Scheme 2.3) catalyzed by
Au(I), furnished the closure of the dihydropyran of 2. The reaction conditions tolerated a variety of functional groups, including several alkene groups. As the product 2 is highly sensitive to acid, the selective 6-endo-dig cyclization was accomplished in buffered solution under the catalysis of Ph₃PAuSbF₆ in 73% yield.

Scheme 2.3 Synthesis of Bryostatin 16

In 2005, Oh and co-workers developed a methodology to construct tricyclic ketone 4 through Au(III)-catalyzed cycloisomerization of diynal 3 (Scheme 2.4).⁷ Nucleophilic addition of aldehyde to gold-activated internal alkyne gave the pyrylium ion intermediate 5, which delivered seven-membered cyclic ketone 6 through an intramolecular 1,3-dipolar cycloaddition. A sequential fragmentation and protodeauration afforded the tricyclic product 4 in 76% yield.
In 2011, Yang and co-workers developed a gold-catalyzed tandem cyclization of 1,7-diynes (Scheme 2.5). Carboxylic acid 8 underwent nucleophilic attack to the neighboring gold-activated alkyne to form enol 11, which acted as a nucleophile to attack the second activated alkyne to give intermediate 12. Addition of BnOH and protonation provided the fused product 9 in 54% yield. This methodology can be applied to the syntheses of kuehneromycin A, anhydromarasmone and antrocin. The carboxylic acid of 8 can be replaced by alcohol of 13, which was applied to synthesis of marasmene.
Scheme 2.5 Tandem Cyclization of 1,7-diynes

2.1.2 Nitrogen Nucleophiles

Funk and co-workers reported the intramolecular hydroamination of alkyne 15 (Scheme 2.6), which was applied to the synthetic study of communesin B. Under the catalysis of Ph₃PAuOTf, the alkyne 15 underwent 7-exo-dig ring closure to provide highly strained enamine 16, which gave the core carbocyclic skeleton of communesin B.
Iwasawa and co-workers reported a Au(III)-catalyzed [3 + 2] cycloaddition reaction (Scheme 2.7).10 Nucleophilic addition of imine to gold-activated alkyne generated the gold carbenoid intermediate 19, which underwent 1,3-dipolar cycloaddition to afford the tricyclic indole 18 in 81% yield.

2.1.3 Alkenes as Nucleophiles (Enyne Cyclization)

Echavarren and co-workers reported the Au(I)-catalyzed 1,6-enzyme cyclization (Scheme 2.8).11 Enyne 22 undwente 5-exo-dig cyclization and the generated cyclopropyl gold carbenoid 24
was converted to **25** by a Nazarov-type cyclization. Aromatization and deauration furnished the tricyclic product **23** in 86% yield.

![Scheme 2.8 Au(I)-Catalyzed 1,6-Enyne Cyclization](image)

Ley and co-workers published the total synthesis of azadirachtin A after 22-years of synthetic effort (Scheme 2.9). One of the key steps is the Au(I)-catalyzed Claisen rearrangement, which allowed the formation of allene **27** under mild conditions in 80% yield.

![Scheme 2.9 Au(I)-Catalyzed Claisen Rearrangement](image)
2.1.4 Aromatic Systems as Nucleophiles

Hashmi and co-workers reported a Au(III)-catalyzed synthesis of phenol 28 (Scheme 2.10) bearing a phenolic hydroxyl group ortho- to the ring-junction in 2000.13 The cascade reaction started from the nucleophilic addition of the furan ring to gold-coordinated alkyne of ketone 29 to give the cyclopropyl intermediate 30, which rearranged to form ring-opened intermediate 31. Further cyclization and deauration provided the oxepine intermediate 32 and its arene oxide tautomer 33, which underwent an epoxide ring opening and aromatized into phenol in 75% yield. This methodology was applied to syntheses of jungianol and epi-jungianol.

![Scheme 2.10 Au(III)-Catalyzed Formation of Substituted Phenol](image)

Echavare and co-workers developed a method to access indoloazocines under gold catalysis (Scheme 2.11, 2.12).14 Tryptophan derivative 34 (Scheme 2.11) was treated with Au(I) catalyst 35, which provided a tricyclic indole 36 and an allene 37. Initial 7-endo-dig cyclization gave iminium intermediate 38, which rearranged into 39. Rearomatization followed by protonation or elimination afforded indoloazocine 36 in 54% yield and allene 37 in 43% yield.
Scheme 2.11 Au(I)-Catalyzed Formation of Indoloazocines

For the terminal alkyne 41 (Scheme 2.11), cyclization through a 7-*exo-dig* pathway afforded cyclized product 42 under the treatment of catalyst 35. In contrast, AuCl₃-catalyzed cyclization preferred to proceed through 8-*endo-dig* cyclization to give product 43.

Scheme 2.12 Various Cyclization Under Au(I)/(III) Catalysts
2.2 Proposed Approach to Polycyclic Indoline Alkaloids

To construct the skeleton of naturally occurring indoline alkaloids shown in Chapter 1, we envisioned a novel and potentially general approach to polycyclic indolines 44 bearing two stereocenters by using noble metal catalyst as shown in Scheme 2.13. A gold or platinum catalyst would selectively activate the terminal alkyne of alkynylindole 45 and promote either endo- or exo-cyclization. The resulting iminium ions 46 and 47 would then be susceptible to nucleophilic attack, which was expected to provide highly functionalized indolines 44 after protonation of the vinylmetal species.

Scheme 2.13 Proposed Approach

2.3 Tandem Cyclization of Alkynylindole

2.3.1 Substrate Preparation

Alkynylindole 48 (Scheme 2.14) was chosen as the substrate to test the proposed cyclization shown in Scheme 2.13. It contains a secondary alcohol, which may serve as an internal nucleophile in a second step of cyclization. Commercially available indole 49 was used to prepare alkynylindole 48. The major challenge in this route is the formation of C-C bond at C2 of indole 49 to give aldehyde 50.
Scheme 2.14 Designed Route for Synthesizing Alkynylindole 48

To prepare aldehyde 50 from indole 49, various Lewis acids were screened for conjugate addition of indole 49 to acrolein 51, t-buyl acrylate 52 and other electrophiles (Scheme 2.15). Decomposition occurred or less than 10% yield of product 50 was obtained. Following the procedure of reported oxidative heck reactions, compound 53 was obtained in 75% yield under the catalysis of Pd(OAc)$_2$ using t-butyl peroxybenzoate as the oxidant in acetic acid at 80 °C. Pd-catalyzed hydrogenation and DIBAL-H reduction gave the desired aldehyde 50, which was subjected to nucleophilic addition of alkyne under basic condition. TBAF-mediated desilylation afforded alkynylindole 48 in 68% yield over 4 linear steps (Scheme 2.15).

Scheme 2.15 Synthesis of Alkynylindole 48
2.3.2 Au(III)-Catalyzed Tandem Cyclization of Alkynylindole

Initially, alkynylindole 48 was subjected to 5 mol% of AuCl₃ in dichloromethane at room temperature and 32% yield of compound 54 was isolated (Scheme 2.16).

![Scheme 2.16 Tandem Cyclization of 48 into 54](image)

Its structure was assigned based on a series of 1D and 2D NMR studies (Table 2.1) and further confirmed by X-ray crystallographic analysis (Scheme 2.16).

Table 2.1 Hydrogens (Hs) and Their Coupled Atoms in 2D NMR Experiments

<table>
<thead>
<tr>
<th>Hs</th>
<th>COSY</th>
<th>NOESY</th>
<th>HSQC</th>
<th>HMBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₁</td>
<td>H₂, H₆</td>
<td>H₂, H₆</td>
<td>C₁</td>
<td>C₅, C₃</td>
</tr>
<tr>
<td>H₂</td>
<td>H₁, H₃</td>
<td>H₁, H₃</td>
<td>C₂</td>
<td>C₆</td>
</tr>
<tr>
<td>H₃</td>
<td>H₂</td>
<td>H₂</td>
<td>C₃</td>
<td>n/a</td>
</tr>
<tr>
<td>H₆</td>
<td>H₁</td>
<td>H₁, H₁₈</td>
<td>C₆</td>
<td>C₂, C₄</td>
</tr>
<tr>
<td>H₁₀a</td>
<td>H₁₀b, H₁₁a, H₁₁b</td>
<td>H₁₀b, H₁₁a, H₁₁b</td>
<td>C₁₀</td>
<td>C₉, C₁₁, C₁₃</td>
</tr>
<tr>
<td>H₁₀b</td>
<td>H₁₀a, H₁₁a, H₁₁b</td>
<td>H₁₀a, H₁₁a, H₁₁b, H₁₄</td>
<td>C₁₀</td>
<td>C₉, C₁₂</td>
</tr>
<tr>
<td>H₁₁a</td>
<td>H₁₀a, H₁₀b, H₁₁b</td>
<td>H₁₀a, H₁₀b, H₁₁b, H₁₂</td>
<td>C₁₁</td>
<td>C₈, C₁₂</td>
</tr>
<tr>
<td>H₁₁b</td>
<td>H₁₀a, H₁₀b, H₁₁a</td>
<td>H₁₀a, H₁₀b, H₁₁a, H₁₂, H₁₄</td>
<td>C₁₁</td>
<td>C₈, C₁₃</td>
</tr>
<tr>
<td>H₁₂</td>
<td>H₁₁a</td>
<td>H₁₁a, H₁₁b</td>
<td>C₁₂</td>
<td>C₉, C₁₀, C₁₃</td>
</tr>
<tr>
<td>H₁₄</td>
<td>n/a</td>
<td>H₁₀b, H₁₁b</td>
<td>C₁₄</td>
<td>C₅, C₉, C₁₃</td>
</tr>
<tr>
<td>H₁₇</td>
<td>H₁₂, H₁₈</td>
<td>H₁₂, H₁₈</td>
<td>C₁₅</td>
<td>C₅, C₈, C₉, C₁₁, C₁₂, C₁₄, C₁₅</td>
</tr>
<tr>
<td>H₁₈</td>
<td>H₁₂, H₁₇</td>
<td>H₁₆, H₁₇</td>
<td>C₁₅</td>
<td>C₅, C₈, C₉, C₁₂, C₁₅</td>
</tr>
<tr>
<td>H₂₂</td>
<td>n/a</td>
<td>n/a</td>
<td>C₂₂</td>
<td>C₂₂</td>
</tr>
</tbody>
</table>

2.3.3 Optimization of the Gold-Catalyzed Tandem Cyclization
Several catalysts were investigated for the tandem cyclization reaction shown in Scheme 2.15 (Table 2.2). Platinum(II) chloride and triflic acid were also capable of promoting this reaction (Table 2.2, entries 2 and 3); however, significant decomposition of the substrate 48 was observed in these conditions. Attempts to use different Lewis acids, such as AgSbF₆, and Brønsted acid, p-toluenesulfonic acid, failed to provide any desired product (Table 2.2, entries 4 and 5). Ph₃PAuCl-promoted process required higher temperature, longer reaction time, but provided a slightly better yield of 54 than with AuCl₃ (Table 2.2, entry 1 versus 6). Good to high yields of the isolated products were obtained (67-83%; Table 2.2, entries 7-9) by using cationic Au(I) species generated from gold catalysts and silver salts. Based on the screening results of various counterions, hexafluoroantimonate was found to be the optimal counterion providing the product 54 in 83% yield (Table 2.2, entry 9).

Table 2.2 Optimization of the Gold-Catalyzed Tandem Cyclization

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst/Additiveᵃ</th>
<th>Time (h)</th>
<th>Temp (°C)</th>
<th>Consumption of 48 (%)ᵇ</th>
<th>Yield of 54 (%)ᶜ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AuCl₃</td>
<td>0.5</td>
<td>23</td>
<td>100</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>PtCl₂</td>
<td>12</td>
<td>80</td>
<td>50</td>
<td>14ᵈ</td>
</tr>
<tr>
<td>3</td>
<td>TfOH</td>
<td>12</td>
<td>23</td>
<td>70</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>AgSbF₆</td>
<td>12</td>
<td>23</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>TsOH</td>
<td>12</td>
<td>23</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Ph₃PAuCl</td>
<td>12</td>
<td>80</td>
<td>80</td>
<td>55ᵉ</td>
</tr>
<tr>
<td>7</td>
<td>Ph₃PAuCl/AgBF₄</td>
<td>1</td>
<td>23</td>
<td>100</td>
<td>78</td>
</tr>
<tr>
<td>8</td>
<td>Ph₃PAuCl/AgOTf</td>
<td>1</td>
<td>23</td>
<td>100</td>
<td>67</td>
</tr>
<tr>
<td>9</td>
<td>Ph₃PAuCl/AgSbF₆</td>
<td>1</td>
<td>23</td>
<td>100</td>
<td>83</td>
</tr>
</tbody>
</table>

ᵃ 5 mol%. ᵇ Consumption of 48 was calculated by the integration of H-NMR spectra. ᶜ Average isolated yield of at least of two runs. ᵈ In toluene. ᵉ In acetonitrile.

2.3.4 Substrate Scope of the Au(I)-Catalyzed Tandem Cyclization
A variety of alkynylindoles \(\text{60a-j} \) were prepared and the syntheses were the same as shown in Scheme 2.14. For \(\text{60k-n} \), a representative synthetic route was described in Scheme 2.17. Propargyl alcohol \(\text{55} \) was mesylated under basic conditions, and \(\text{S}_2\) reaction afforded azide \(\text{56} \) in 60% yield for 2 steps. Under Staudinger reduction conditions, azide \(\text{56} \) was reduced into primary amine \(\text{58} \), which was converted into methyl carbamate \(\text{59} \). TBAF-mediated desilylation gave alkynylindole \(\text{60m} \) in 64% yield for 3 steps (Scheme 2.17).

The alkynylindoles \(\text{60a-k} \) were subjected to the optimized Au(I)-catalyzed cyclization conditions. The reactions proceeded very well in all cases as shown in Table 2.3. No other regioisomers or diastereomers were identified from the reaction mixtures. Indoles possessing substitution at C3 and C5, including tryptamine derivatives (Table 2.3, entries 6 and 10), were generally well tolerated. The indole nitrogen requires an electron-withdrawing group, such as a methoxycarbonyl, Boc, or tosyl group, to provide the desired products. The \(\text{N}^{\text{Me}} \)-Me or \(\text{N}^{\text{H}} \)-H substrates failed to cyclize under the standard reaction conditions and provided a complex
mixture of products at higher temperature. Phenyl-substituted alkynes (Table 2.3, entries 2, 3, 5, and 9) required longer reaction time and provided slightly lower yields of the desired products. The olefin geometry of the products was determined to be E by 1D NOE studies, which is consistent with literature reports on several other gold-catalyzed cyclizations.\(^\text{18}\)

Table 2.3 Substrate Scope – O as Nucleophile

<table>
<thead>
<tr>
<th>Entry</th>
<th>Alkynylindole</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>CO$_2$Me 60a</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>CO$_2$Me 60b</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>CO$_2$Me 60c</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>CO$_2$Me 60d</td>
</tr>
</tbody>
</table>
These tandem cyclization reactions are not limited to alcohol nucleophiles. Sulfonamides or carbamates also served as nucleophiles in the second cyclization reaction and afforded the tetracyclic indolines with good yields and selectivity. (Table 2.4, entries 1-4).
Table 2.4 Substrate Scope – N as Nucleophile

<table>
<thead>
<tr>
<th>Entry</th>
<th>Alkynylnidole</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>70</td>
</tr>
</tbody>
</table>

2.4 Mechanistic Study

The mechanism of cyclization was investigated in silico in collaboration with Prof. K. N. Houk. All calculations were based on the model reaction of substrate 62 under the catalysis of AuPH$_3$ in dichloromethane (Scheme 2.18). The alkyne 62 is coordinated by Au(I) catalyst to form the complex 67. For the following nucleophilic attack of C3 of indole 67 at activated alkyne, regioselectivity can give rise to four different intermediates 68, 72, 76 and 80 in paths a-c. Nucleophiles undergo intramolecular addition to the iminium ions generated in situ and final
processes of deprotonation/protonation afford the polycyclic products 63, 64, 65 and 66. Since compound 63 is the sole product based on the previous experimental result, discrimination of the other three paths is studied by calculating the free energy diagram for all four paths.

Scheme 2.18 Cyclization Paths-continued on the next page
Scheme 2.18 Cyclization Paths
The free energy diagram (Figure 2.1) shows that exo transition structures 68 and 72 are lower in energy than the endo transition structures 76 and 80 by about 4 to 5 kcal/mol. Also, the exo intermediates formed, 69 and 73, are lower in energy than the endo intermediates, 77 and 81. Intermediate 73 would form ether-bridged species 75 through transition structure 74. The barrier from 73 to 75 is 21.6 kcal/mol, while the barrier from 73 back to starting material, 67, is only 13.4 kcal/mol, so 73 will revert back to 67. However, 69 forms the ether-bridged species 71 with no barrier and the final protonation is exothermic. These data provide an explanation for the preference of path a to form product 63 instead of 64, 65 and 66.

Figure 2.1 Free Energy Diagram

2.5 Application to Construction of Fused Indoline Skeleton

The fused indoline skeleton 84 is found to be the core motif of many akuammiline alkaloids (Figure 2.2). We set out to investigate the application of the Au(I)-catalyzed tandem cyclization described above to the construction of fused indoline 84.
Figure 2.2 Core Motif of Akuammiline Alkaloids

85 was envisioned to be formed from alkynylindole 86 under Au(I) catalysis (Scheme 2.19). Nucleophilic attack of indole at gold-activated alkyne 87 was anticipated to generate the iminium intermediate 88, which could undergo intramolecular addition to afford the tetracycle 85.

Scheme 2.19 Proposed Au(I)-Catalyzed Tandem Cyclization

2.5.1 Substrate Preparation

Alkynylindole 86 (Scheme 2.20) was synthesized from the aldehyde 89, which was prepared as shown in Scheme 2.14. Seyferth-Gilbert homologation21 transformed the aldehyde 89 into alkyne 90, which was deprotected in acidic condition to give indole 91. Installation of R₁
under basic condition, deprotection of phthalimide (Phth) and installation of R_2 to primary amine afforded alkynylindole 94. Sonogashira reaction condition gave internal alkynylindole 86.

\begin{center}
\textbf{Scheme 2.20 Preparation of Alkynylindole 86}
\end{center}

\section*{2.5.2 Au(I)-Catalyzed Tandem Cyclization}

For all substrates tested (Table 2.5), the reactions went to completion within 2 h and afforded the core structures of the akuammine alkaloids (Figure 2.2) in good yields (75-88%); no 5-exo-dig products were detected in all cases. In addition to carbamates and sulfonamides, secondary amides (Table 2.5, entries 5 and 7) also served as nucleophiles in the second cyclization steps. Interestingly, the N^{in}-H and N^{in}-Me substrates also participate in this tandem cyclization reaction and provide tetracyclic indolines 85 cleanly (Table 2.5, entries 6-8).
Table 2.5 Scope of Au(I)-Catalyzed Tandem Cyclization

![Scheme](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Alkynylindole</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>87</td>
</tr>
</tbody>
</table>
2.5.3 Formal Synthesis of Minfiensine

For the indoline \(85f \), the aniline was converted to a methyl carbamate when treated with triphosgene followed by quenching with anhydrous methanol (Scheme 2.21). The resulting compound \(95 \) is a key intermediate in Overman’s total synthesis of the akuammiline alkaloid minfiensine.\(^\text{23}\)

![Scheme 2.21 Formal Synthesis of Minfiensine](image)

2.6 Conclusion

In summary, a novel approach to the construction of tetracyclic indolines using stereoselective cationic \(\text{Au(I)} \)-catalyzed tandem cyclization reactions was developed. This approach allows rapid assembly of two rings and two stereocenters including a quaternary carbon center in a single step with a wide substrate scope and tolerance of functional groups. A formal synthesis of the akuammiline alkaloid minfiensine was also completed. Furthermore, this
methodology has been applied to synthesis of a small-molecule library and diverse skeletons have been constructed, some of which exhibited excellent antibiotic activity.24

2.7 Experimental

Unless otherwise noted, reagents were obtained commercially and used without further purification. CH\textsubscript{2}Cl\textsubscript{2} was distilled from CaH\textsubscript{2} under a nitrogen atmosphere. THF was distilled from sodium-benzophenone under a nitrogen atmosphere. Toluene was distilled from sodium under a nitrogen atmosphere. Thin-layer chromatography (TLC) analysis of reaction mixtures was performed on Dynamicadsorbents silica gel F-254 TLC plates. Flash chromatography was carried out on Zeoprep 60 ECO silica gel. 1H and 13C NMR spectra were recorded with Varian INOVA 400, 500 and Bruker Avance-III 300 spectrometers. Mass spectral and analytical data were obtained via the PE SCIEX/ABI API QSTAR Pulsar i Hybrid LC/MS/MS, Applied Biosystems operated by the Central Analytical Laboratory, University of Colorado at Boulder. Infrared (IR) spectra were recorded on a Thermo Nicolet Avatar 370 FT-IR spectrometer. Melting point (mp) determinations were performed by using a Thomas Hoover capillary melting point apparatus and are uncorrected. High performance liquid chromatography (HPLC) analyses of chiral compounds were performed using a ChiralCel OD column (250 x 4.6 mm) and ChiralPak IA column (250 x 4.6 mm). Compounds were detected by monitoring UV absorbance at 254 nm. Optical rotations were determined on a JASCO 1030 polarimeter at 25 °C.

General preparation of alkynylindoles and characterization data

\textit{(E)-Methyl 2-(3-ethoxy-3-oxoprop-1-enyl)-3-ethyl-1H-indole-1-carboxylate (60a1)}
To a solution of the indole substrate 60a1 (1.02 g, 5.0 mmol) in 1, 4-dioxane/AcOH (3:1, v:v, 10.0 mL) was added Pd(OAc)$_2$ (23 mg, 0.10 mmol), tert-butyl benzoyl peroxide (1.3 g, 6.5 mmol) and ethyl acrylate (2.9 mL, 20.0 mmol). The resulting mixture was heated to 80 °C under N$_2$ atmosphere for 24 h before it was cooled to room temperature, diluted with ethyl acetate, and filtered through a pad of celite. The filtrate was washed with saturated aqueous NaHCO$_3$, dried over anhydrous Na$_2$SO$_4$, and concentrated in vacuo to give a crude oil, which was purified by column chromatography (hexanes/ethyl acetate = 30:1) to afford desired product 60a1 (1.10 g, 3.6 mmol) as a white solid in 72% yield.

1H NMR (400 MHz, CDCl$_3$): δ 8.11 (d, $J = 8.3$ Hz, 1H), 8.06 (d, $J = 16.1$ Hz, 1H), 7.58 (d, $J = 7.8$ Hz, 1H), 7.62 – 7.56 (m, 1H), 7.31 – 7.27 (m, 1H), 6.11 (d, $J = 16.1$ Hz, 1H), 4.29 (q, $J = 7.1$ Hz, 2H), 4.05 (s, 3H), 2.84 (q, $J = 7.6$ Hz, 2H), 1.36 (t, $J = 7.1$ Hz, 3H), 1.31 (t, $J = 7.6$ Hz, 3H).

13C NMR (101 MHz, CDCl$_3$): δ 166.92, 152.55, 136.54, 135.87, 131.00, 129.89, 127.31, 126.16, 123.43, 120.49, 119.73, 115.92, 60.84, 54.09, 18.31, 15.21, 14.56.

m.p. 65 – 66 °C.

IR (neat, cm$^{-1}$): ν 2967, 1740, 1713, 1629, 1455, 1441, 1359, 1176, 1037.

HRMS (ESI) m/z calcd for C$_{17}$H$_{19}$NNaO$_4^+$: 324.1206, Found: 324.1196.

![Chemical Structure](image)

(E)-Methyl 2-(3-tert-butoxy-3-oxoprop-1-enyl)-3-methyl-1H-indole-1-carboxylate (53)

A colorless oil was obtained in 75% yield by following general procedure.

1H NMR (400 MHz, CDCl$_3$): δ 8.10 (d, $J = 8.4$ Hz, 1H), 8.03 (d, $J = 16.0$ Hz, 1H), 7.59 – 7.52 (m, 1H), 7.39 – 7.34 (m, 1H), 7.32 – 7.27 (m, 1H), 6.03 (d, $J = 16.0$ Hz, 1H), 4.05 (s, 3H), 2.38 (s, 3H), 1.56 (s, 9H).
13C NMR (101 MHz, CDCl$_3$): δ 166.18, 152.39, 136.19, 134.88, 131.59, 130.70, 126.02, 123.30, 123.23, 120.68, 119.52, 115.71, 80.69, 53.93, 28.38, 10.78.

IR (neat, cm$^{-1}$): v 3359, 3053, 2977, 1698, 1626, 1455, 1145, 1065, 1025.

HRMS (ESI) m/z Calcd for C$_{18}$H$_{21}$NNaO$_4$+: 338.1362, Found 338.1372.

\[
\begin{align*}
\text{(E)-Methyl 2-}(3\text{-tert-butoxy-3-oxoprop-1-enyl})\text{-1H-indole-1-carboxylate (60c1)}
\end{align*}
\]

A colorless oil was obtained in 71% yield by following general procedure.

1H NMR (400 MHz, CDCl$_3$): δ 8.18 (dd, $J = 15.8$ Hz, 0.9 Hz, 1H), 8.13 (dd, $J = 8.5$ Hz, 0.9 Hz, 1H), 7.55 (d, $J = 7.9$ Hz, 1H), 7.35 (dd, $J = 8.5$ Hz, 7.2 Hz, 1.3 Hz, 1H), 7.30 – 7.26 (m, 1H), 6.97 (s, 1H), 6.34 (d, $J = 15.8$ Hz, 1H), 4.09 (s, 3H), 1.54 (s, 9H).

13C NMR (101 MHz, CDCl$_3$): δ 165.82, 152.08, 137.31, 136.11, 134.63, 128.81, 125.66, 123.57, 121.73, 121.10, 115.82, 110.41, 80.55, 53.94, 28.23.

IR (neat, cm$^{-1}$): v 2977, 1715, 1625, 1440, 1368, 1160, 1121, 1072.

HRMS (ESI) m/z Calcd for C$_{17}$H$_{19}$NNaO$_4$+: 324.1206, Found 324.1192.

\[
\begin{align*}
\text{(E)-Methyl 2-}(3\text{-tert-butoxy-3-oxoprop-1-enyl}-3\text{-ethyl-5-methoxy-1H-indole-1-carboxylate (60d1)}}
\end{align*}
\]

A white solid was obtained in 78% yield by following general procedure.

1H NMR (400 MHz, CDCl$_3$): δ 8.00 (d, $J = 8.5$ Hz, 1H), 7.96 (d, $J = 16.1$ Hz, 1H), 7.00 – 6.94 (m, 2H), 6.02 (d, $J = 16.1$ Hz, 1H), 4.03 (s, 3H), 3.88 (s, 3H), 2.80 (q, $J = 7.6$ Hz, 2H), 1.55 (s, 9H), 1.30 (t, $J = 7.6$ Hz, 3H).
$^{13}\text{C NMR}$ (101 MHz, CDCl$_3$): δ 166.19, 156.29, 152.39, 134.82, 131.74, 131.13, 130.72, 126.61, 122.27, 116.74, 114.55, 101.88, 80.75, 55.84, 53.89, 28.39, 18.28, 15.00.

m.p. 116–118 °C;

IR (neat, cm$^{-1}$): ν 2971, 2934, 1737, 1705, 1625, 1479, 1366, 1144, 1025.

HRMS (ESI) m/z Calcd for C$_{20}$H$_{25}$NNaO$_5$ [M+Na]$^+$: 382.1624, Found 382.1623.

(E)-*tert*-Butyl 2-(3-butoxy-3-oxoprop-1-enyl)-3-(2-(1, 3-dioxoisindolin-2-yl)ethyl)-1H-indole-1-carboxylate (60f1)

A colorless oil was obtained in 73% yield by following general procedure.

$^1\text{H NMR}$ (500 MHz, CDCl$_3$): δ 8.17 (d, $J = 8.3$ Hz, 1H), 7.97 (d, $J = 16.2$ Hz, 1H), 7.89 – 7.83 (m, 2H), 7.75 (d, $J = 7.7$ Hz, 1H), 7.73 – 7.68 (m, 2H), 7.35 (t, $J = 7.3$ Hz, 1H), 7.31 – 7.26 (m, 1H), 6.35 (d, $J = 16.2$ Hz, 1H), 4.25 (t, $J = 6.7$ Hz, 2H), 4.09 – 3.88 (m, 2H), 3.24 – 3.09 (m, 2H), 1.76 – 1.70 (m, 2H), 1.66 (s, 9H), 1.53 – 1.44 (m, 2H), 0.99 (t, $J = 7.4$ Hz, 3H).

$^{13}\text{C NMR}$ (101 MHz, CDCl$_3$): δ 168.09, 166.75, 150.09, 136.58, 135.86, 134.04, 132.35, 132.16, 129.48, 126.02, 123.34, 120.65, 119.77, 119.37, 115.69, 84.72, 64.61, 37.74, 30.90, 28.26, 24.34, 19.29, 13.95.

IR (neat, cm$^{-1}$): ν 2959, 1771, 1715, 1632, 1455, 1166, 1107.

HRMS (ESI) m/z Calcd for C$_{30}$H$_{32}$N$_2$NaO$_6$ $^+$: 539.2125, Found 539.2172.

(E)-*Butyl 3-(3-methyl-1-(4-methylbenzene-sulfonyl)-1H-indol-2-yl)acrylate (60g1)
A colorless oil was obtained in 70% yield by following general procedure.

\(^1\text{H NMR}\) (500 MHz, CDCl\(_3\)): \(\delta\) 8.27 – 8.21 (m, 2H), 7.57 (d, \(J = 8.4\) Hz, 2H), 7.45 (d, \(J = 7.8\) Hz, 1H), 7.41 – 7.37 (m, 1H), 7.30 – 7.26 (m, 1H), 7.13 (d, \(J = 8.2\) Hz, 2H), 6.11 (d, \(J = 16.1\) Hz, 1H), 4.27 (t, \(J = 6.7\) Hz, 2H), 2.30 – 2.32 (m, 6H), 1.75 (dt, \(J = 14.6\) Hz, 6.8 Hz, 2H), 1.52 – 1.43 (m, 2H), 1.00 (t, \(J = 7.4\) Hz, 3H).

\(^{13}\text{C NMR}\) (101 MHz, CDCl\(_3\)): \(\delta\) 166.62, 145.00, 137.20, 135.00, 134.64, 131.83, 131.49, 129.74, 126.77, 126.56, 124.15, 123.43, 122.55, 119.93, 115.49, 64.83, 30.88, 21.66, 19.36, 13.94, 11.04.

IR (neat, cm\(^{-1}\)): \(\nu\) 2959, 1712, 1628, 1450, 1372, 1311, 1175, 1133.

HRMS (ESI) m/z Calcd for C\(_{23}\)H\(_{25}\)NNaO\(_4\)S\(^+\): 434.1396, Found 434.1401.

![Structure](image)

\((E)-\text{Butyl 3-(3-ethyl-5-methoxy-1-(4-methylbenzenesulfonyl)-1H-indol-2-yl)acrylate (60h1)}\)

A white solid was obtained in 76% yield by following general procedure.

\(^1\text{H NMR}\) (400 MHz, CDCl\(_3\)): \(\delta\) 8.15 (d, \(J = 16.1\) Hz, 1H), 8.10 (d, \(J = 9.1\) Hz, 1H), 7.50 (d, \(J = 8.0\) Hz, 2H), 7.11 (d, \(J = 8.0\) Hz, 2H), 6.98 (dd, \(J = 9.1\) Hz, 2.5 Hz, 1H), 6.85 (d, \(J = 2.5\) Hz, 1H), 6.10 (d, \(J = 16.1\) Hz, 1H), 4.26 (t, \(J = 6.8\) Hz, 2H), 3.84 (s, 3H), 2.71 (q, \(J = 7.6\) Hz, 2H), 2.30 (s, 3H), 1.74 (dt, \(J = 14.6\) Hz, 6.8 Hz, 2H), 1.53 – 1.41 (m, 2H), 1.16 (t, \(J = 7.6\) Hz, 3H), 0.99 (t, \(J = 7.4\) Hz, 3H).

\(^{13}\text{C NMR}\) (101 MHz, CDCl\(_3\)): \(\delta\) 166.71, 157.05, 144.89, 134.70, 134.64, 132.28, 131.93, 130.09, 129.65, 126.83, 121.72, 116.92, 115.20, 102.21, 64.93, 55.83, 30.94, 21.74, 19.42, 18.52, 14.66, 14.01.

m.p. 146–147 ºC.

IR (neat, cm\(^{-1}\)): \(\nu\) 2954, 1713, 1630, 1450, 1311, 1176, 1163.

HRMS (ESI) m/z Calcd for C\(_{25}\)H\(_{29}\)NNaO\(_5\)S\(^+\): 478.1659, Found 478.1664.
(E)-Butyl 3-(3-(2,1-dioxoisindolin-2-yl)ethyl)-1-(4-methylbenzene-sulfonyl)-1Hindol-2-yl)acrylate (60j1)

A white solid was obtained in 76% yield by following general procedure.

1H NMR (400 MHz, CDCl$_3$): δ 8.21 (d, $J = 8.4$ Hz, 1H), 8.13 (d, $J = 16.2$ Hz, 1H), 7.87 – 7.78 (m, 2H), 7.75 – 7.69 (m, 2H), 7.67 (d, $J = 7.7$ Hz, 1H), 7.58 (d, $J = 8.4$ Hz, 2H), 7.40 – 7.34 (m, 1H), 7.32 – 7.26 (m, 1H), 7.15 (d, $J = 8.4$ Hz, 2H), 6.38 (d, $J = 16.2$ Hz, 1H), 4.28 (t, $J = 6.8$ Hz, 2H), 3.84 – 3.79 (m, 2H), 3.14 – 3.06 (m, 2H), 2.32 (s, 3H), 1.76 (dt, $J = 14.6$ Hz, 6.8 Hz, 2H), 1.59 – 1.40 (m, 2H), 1.01 (t, $J = 7.4$ Hz, 3H).

13C NMR (101 MHz, CDCl$_3$): δ 168.11, 166.37, 145.16, 137.27, 135.05, 134.21, 133.78, 133.01, 132.14, 130.48, 129.86, 126.87, 126.66, 124.46, 123.49, 123.02, 122.71, 119.89, 115.59, 64.95, 37.42, 30.93, 24.55, 21.78, 19.39, 14.05.

m.p. 149–151 ºC.

IR (neat, cm$^{-1}$): ν = 2959, 2873, 1771, 1713, 1632, 1449, 1174, 1090.

HRMS (ESI) m/z Calcd for C$_{32}$H$_{30}$N$_2$NaO$_6$S$^+$: 593.1717, Found 593.1733.

(E)-Tert-butyl 2-(3-butoxy-3-oxoprop-1-enyl)-3-methyl-1H-indole-1-carboxylate

A white solid was obtained in 72% yield by following general procedure.
\[^1\text{H NMR} \ (400\ \text{MHz, CDCl}_3): \delta \ 8.19 - 8.13 \ (m, 1\text{H}), 8.08 \ (dd, J = 16.1\ \text{Hz}, 0.7\ \text{Hz}, 1\text{H}), 7.54 \ (d, J = 7.8\ \text{Hz}, 1\text{H}), 7.36 \ (ddd, J = 8.4\ \text{Hz}, 7.2\ \text{Hz}, 1.3\ \text{Hz}, 1\text{H}), 7.31 - 7.25 \ (m, 1\text{H}), 6.10 \ (d, J = 16.1\ \text{Hz}, 1\text{H}), 4.23 \ (t, J = 6.7\ \text{Hz}, 2\text{H}), 2.39 \ (s, 3\text{H}), 1.78 - 1.67 \ (m, 2\text{H}), 1.67 \ (s, 9\text{H}), 1.52 - 1.38 \ (m, 2\text{H}), 0.97 \ (t, J = 7.4\ \text{Hz}, 3\text{H}). \]

\[^1\text{C NMR} \ (101\ \text{MHz, CDCl}_3): \delta \ 167.06, 150.36, 136.77, 136.61, 131.41, 130.51, 126.01, 123.04, 120.56, 120.30, 119.50, 115.66, 84.50, 64.62, 30.96, 28.35, 19.38, 13.95, 10.73. \]

m.p. 45–46 °C.

IR (neat, cm\(^{-1}\)): \(\nu = 2959, 2931, 2872, 1731, 1630, 1455, 1354, 1331, 1283, 1145, 1065. \)

HRMS (ESI) m/z Calcd for C\(_{21}\)H\(_{27}\)NNaO\(_4\): 380.1832, Found 380.1832.

General preparation of alkynylindole substrates for Au(I)-catalyzed cyclization and characterization data

![Diagrams of chemical reactions](image)

Methyl 2-(3-hydroxypent-4-ynyl)-3-methyl-1H-indole-1-carboxylate (60a)

To a solution of conjugate ester (1.1 g, 3.6 mmol) in anhydrous methanol (10.0 mL) was added 10% Pd/C (110 mg). The resulting mixture was stirred under hydrogen atmosphere (56 psi) for 1 h before it was filtrated through a short pad of silica gel to afford reduced ester, which was used for the next step without further purification.
The ester was dissolved in anhydrous dichloromethane and the solution was cooled to -78 °C before the addition of the solution of DIBAL-H (1.0 M in hexane, 4.3 mL, 4.3 mmol) dropwise. The reaction mixture was stirred for 2 h at -78 °C before it was treated with saturated aqueous solution of Rochelle salt (10.0 mL at -78 °C. After being stirred for 1 h at r.t., the layers were separated. The aqueous layer was extracted with ether, and the combined organic layers were washed with water and brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo to give aldehyde as a yellow oil, which was used for the next step without further purification.

A solution of n-BuLi (1.6 M in hexanes, 4.5 mL, 7.2 mmol) was added to a solution of trimethylsilylacetylene (1.06 mL, 7.5 mmol) in anhydrous THF (20.0 mL) at -78 °C. The resulting mixture was stirred for 30 min before the addition of the solution of aldehyde in anhydrous THF (3.0 mL) dropwise. The reaction mixture was stirred for 1 hour at the same temperature before it was quenched with water, and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo to afford a yellow oil, which was then dissolved in anhydrous THF (10.0 mL) and cooled to 0 °C. Tetrabutylammonium fluoride (1.0 M in THF, 3.6 mL, 3.6 mmol) was added dropwise to the above solution, and the resulting mixture was stirred for 10 min at 0 °C. After the reaction was terminated by the addition of water (20.0 mL), the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo to produce a crude oil, which was purified by column chromatography (hexanes/ethyl acetate = 5:1) to afford alkynylindole (616 mg, 2.16 mmol) as a colorless oil in 60% yield over 4 steps.

1H NMR (400 MHz, CDCl₃): δ 8.05 (dd, J = 7.1 Hz, 2.1 Hz, 1H), 7.48 (dd, J = 6.5 Hz, 2.5 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.26 – 7.21 (m, 1H), 4.46 (td, J = 6.1 Hz, 2.9 Hz, 1H), 4.05 (s, 3H), 3.20 (m, 2H), 2.71 (q, J = 7.6 Hz, 2H), 2.53 – 2.49 (d, J = 4.0 Hz,1H), 2.23 (d, J = 5.5 Hz, 1H), 2.05 (dt, J = 10.8 Hz, 6.6 Hz, 2H), 1.22 (t, J = 7.6 Hz, 3H).
\[^{13}\text{C NMR}\ (101\ \text{MHz, CDCl}_3): \delta 152.76, 135.88, 135.40, 130.02, 123.98, 122.97, 122.11, 118.45, 115.95, 84.84, 73.22, 61.78, 53.69, 37.90, 22.28, 17.38, 15.13.\]

\[^{1}\text{H NMR}\ (400\ \text{MHz, CDCl}_3): \delta 8.06 – 8.02 (m, 1H), 7.46 – 7.42 (m, 1H), 7.32 – 7.23 (m, 1H), 7.27 – 7.21 (m, 1H), 4.42 (qd, J = 6.2\ Hz, 2.0\ Hz, 1H), 4.05 (s, 3H), 3.25 – 3.20 (m, 2H), 2.50 (d, J = 2.0\ Hz, 1H), 2.23 (s, 3H), 2.09 – 2.00 (m, 2H).\]

\[^{13}\text{C NMR}\ (101\ \text{MHz, CDCl}_3): \delta 152.60, 135.68, 135.55, 130.83, 123.95, 122.90, 118.21, 115.70, 115.67, 84.92, 73.07, 61.49, 53.56, 37.31, 22.33, 8.73.\]

\[^{1}\text{H NMR}\ (400\ \text{MHz, CDCl}_3): \delta 9.30 – 9.27 (m, 1H), 8.07 – 8.02 (m, 1H), 7.47 – 7.43 (m, 2H), 7.42 – 7.37 (m, 3H), 7.29 – 7.26 (m, 1H), 7.26 – 7.24 (m, 1H), 4.64 (q, J = 6.2\ Hz, 1H), 4.05 (s, 3H), 3.28 (td, J = 8.8\ Hz, 4.0\ Hz, 2H), 2.26 (s, 3H), 2.13 (dd, J = 12.0\ Hz, 8.0\ Hz, 2H).\]
\[^{13} \text{C NMR (101 MHz, CDCl}_3 \text{): } \delta 152.75, 135.94, 135.70, 131.83, 130.99, 128.56, 128.46, 124.07, 123.00, 122.74, 118.34, 115.83, 115.80, 90.08, 85.15, 62.37, 53.66, 37.66, 22.59, 8.91. \]

\textbf{m.p.} 91–92 °C.

\textbf{IR} (neat, cm\(^{-1}\)): v 3435, 3051, 2954, 2863, 1732, 1459, 1354, 1220, 1135, 756.

\textbf{HRMS (ESI) m/z} Calcd for C\(_{22}\)H\(_{21}\)NNaO\(_3\): 370.1414, Found 370.1426.

\textbf{Methyl 2-(3-hydroxy-5-phenylpent-4-ynyl)-1H-indole-1-carboxylate (60c)}

A colorless oil was obtained in 58% yield by following general procedure.

\[^{1} \text{H NMR (400 MHz, CDCl}_3 \text{): } \delta 8.07 \text{ (d, } J = 8.1 \text{ Hz, 1H), 7.47 \text{ (d, } J = 7.1 \text{ Hz, 1H), 7.45 – 7.40 (m, 2H), 7.35 – 7.31 \text{ (m, 3H), 7.30 – 7.26 (m, 1H), 7.26 – 7.19 (m, 1H), 6.46 \text{ (s, 1H), 4.71 \text{ (q, } J = 6.1 \text{ Hz, 1H), 4.06 \text{ (s, 3H), 3.30 – 3.24 (m, 2H), 2.26 – 2.19 (m, 2H), 2.11 \text{ (d, } J = 5.4 \text{ Hz, 1H).}} \]

\[^{13} \text{C NMR (101 MHz, CDCl}_3 \text{): } \delta 152.72, 141.09, 136.61, 131.89, 129.56, 128.66, 128.50, 123.89, 123.27, 122.68, 120.11, 115.87, 108.66, 89.87, 85.42, 62.44, 53.80, 37.18, 25.86. \]

\textbf{IR} (neat, cm\(^{-1}\)): v 3434, 2954, 2853, 1739, 1456, 1332, 1214, 1059.

\textbf{HRMS (ESI) m/z} Calcd for C\(_{21}\)H\(_{19}\)NNaO\(_3\): 356.1257, Found 356.1252.

\textbf{Methyl 3-ethyl-2-(3-hydroxypent-4-ynyl)-5-methoxy-1H-indole-1-carboxylate (60d)}

A white solid was obtained in 72% yield by following general procedure.

\[^{1} \text{H NMR (400 MHz, CDCl}_3 \text{): } \delta 7.93 \text{ (d, } J = 9.0 \text{ Hz, 1H), 6.93 \text{ (d, } J = 2.6 \text{ Hz, 1H), 6.86 \text{ (dd, } J = 9.0 \text{ Hz, 2.6 Hz, 1H), 4.45 \text{ (m, 1H), 4.03 \text{ (s, 3H), 3.87 \text{ (s, 3H), 3.18 (td, } J = 8.0 \text{ Hz, 4.0 Hz, 2H),}} \]

49
2.68 (q, J = 7.6 Hz, 2H), 2.50 (d, J = 2.1 Hz, 1H), 2.04 (t, J = 8.0 Hz, 2H), 1.21 (t, J = 7.6 Hz, 3H).

^{13}C NMR (101 MHz, CDCl₃): δ 156.09, 152.61, 136.24, 130.94, 130.43, 121.95, 116.73, 111.88, 101.56, 84.85, 73.19, 61.76, 55.89, 53.61, 37.85, 22.34, 17.37, 15.00.

m.p. 69–70 °C.

IR (neat, cm⁻¹): ν 3451, 3284, 2961, 1731, 1608, 1478, 1442, 1364, 1262, 1131.

HRMS (ESI) m/z Calcd for C₁₈H₂₁NNaO₄⁺: 338.1362, Found 338.1364.

Methyl 3-ethyl-2-(3-hydroxy-5-phenylpent-4-ynyl)-5-methoxy-1H-indole-1-carboxylate (60e)

A colorless oil was obtained in 74% yield by following general procedure.

^{1}H NMR (400 MHz, CDCl₃): δ 7.94 (d, J = 9.0 Hz, 1H), 7.44 – 7.40 (m, 2H), 7.34 – 7.28 (m, 3H), 6.93 (d, J = 2.6 Hz, 1H), 6.86 (dd, J = 9.0 Hz, 2.6 Hz, 1H), 4.69 (t, J = 5.5 Hz, 1H), 4.02 (s, 3H), 3.87 (s, 3H), 3.31 – 3.21 (m, 2H), 2.71 (q, J = 7.6 Hz, 2H), 2.13 (m, 2H), 1.23 (t, J = 7.6 Hz, 3H).

^{13}C NMR (101 MHz, CDCl₃): δ 156.09, 152.61, 136.40, 131.80, 130.96, 130.49, 128.53, 128.44, 122.75, 121.91, 116.73, 111.86, 101.55, 90.07, 85.12, 62.44, 55.88, 53.57, 38.11, 22.57, 17.41, 14.99.

IR (neat, cm⁻¹): ν 3442, 2956, 1731, 1454, 1333, 1221, 1067.

HRMS (ESI) m/z Calcd for C₂₄H₂₅NNaO₄⁺: 414.1676, Found 414.1667.
Tert-butyl 3-(2-(1,3-dioxoisooindolin-2-yl)ethyl)-2-(3-hydroxypent-4-ynyl)-1H-indole-1-carboxylate (60f)

A white solid was obtained in 65% yield by following general procedure.

m.p. 140–141 °C;

^1^H NMR (400 MHz, CDCl\textsubscript{3}): δ 8.09 – 8.04 (m, 1H), 7.88 – 7.84 (m, 2H), 7.76 – 7.71 (m, 2H), 7.68 (dt, J = 7.9 Hz, 3.1 Hz, 1H), 7.26 – 7.21 (m, 2H), 4.52 – 4.42 (m, 1H), 3.98 – 3.81 (m, 2H), 3.35 – 3.20 (m, 2H), 3.06 (t, J = 8.3 Hz, 2H), 2.91 (d, J = 6.1 Hz, 1H), 2.50 (d, J = 2.1 Hz, 1H), 2.28 – 2.10 (m, 2H), 1.70 (s, 9H).

^1^3^C NMR (101 MHz, CDCl\textsubscript{3}) δ 151.95, 142.71, 141.91, 137.62, 132.89, 129.31, 128.08, 127.96, 126.94, 125.83, 123.79, 121.69, 118.14, 90.00, 82.26, 58.02, 48.51, 33.08, 31.33, 29.91, 28.39, 23.64, 21.61.

IR (neat, cm-1): ν 3466, 3287, 2930, 2359, 1770, 1712, 1457, 1365, 1328, 1161.

HRMS (ESI) m/z Calcd for C\textsubscript{28}H\textsubscript{29}N\textsubscript{2}O\textsubscript{5}+: 473.2086, Found 473.2088.

5-(3-Methyl-1-(4-methylbenzene-sulfonyl)-1H-indol-2-yl)pent-1-yn-3-ol (60g)

A colorless oil was obtained in 72% yield by following general procedure.

^1^H NMR (400 MHz, CDCl\textsubscript{3}): δ 8.18 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.0 Hz, 1H), 7.29 – 7.23 (m, 2H), 7.14 (d, J = 8.2 Hz, 2H), 4.43 (m, 1H), 3.17 (td, J = 7.2 Hz, 3.0 Hz, 2H), 2.50 (d, J = 2.1 Hz, 1H), 2.31 (s, 3H), 2.22 – 2.10 (m, 5H).

^1^3^C NMR (101 MHz, CDCl\textsubscript{3}) δ 144.75, 136.84, 135.93, 135.83, 131.60, 129.93, 126.41, 124.53, 123.71, 118.70, 117.98, 115.35, 84.72, 73.30, 61.65, 38.16, 22.20, 21.75, 9.16.
IR (neat, cm$^{-1}$): ν 3291, 2924, 1453, 1360, 1232, 1170, 1042.

HRMS (ESI) m/z Calcd for C$_{21}$H$_{22}$NO$_3$S$^+$: 368.1315, Found 368.1317.

5-(3-Ethyl-5-methoxy-1-(4-methylbenzene-sulfonyl)-1H-indol-2-yl)pent-1-yn-3-ol (60h)

A colorless oil was obtained in 71% yield by following general procedure.

1H NMR (400 MHz, CDCl$_3$): δ 8.06 (dd, $J = 9.0$ Hz, 0.4 Hz, 1H), 7.51 (d, $J = 8.0$ Hz, 2H), 7.13 (d, $J = 8.0$ Hz, 2H), 6.87 (dd, $J = 9.0$ Hz, 2.6 Hz, 1H), 6.83 (d, $J = 2.2$ Hz, 1H), 4.47 (td, $J = 6.3$ Hz, 2.1 Hz, 1H), 3.83 (s, 3H), 3.22 – 3.04 (m, 2H), 2.60 (m, 2H), 2.51 (d, $J = 2.1$ Hz, 1H), 2.30 (s, 3H), 2.16 (td, $J = 7.8$ Hz, 6.4 Hz, 2H), 1.13 (t, $J = 7.6$ Hz, 3H).

13C NMR (101 MHz, CDCl$_3$): δ 156.71, 144.60, 136.47, 135.61, 131.86, 131.62, 129.80, 126.31, 124.48, 116.47, 112.40, 101.85, 84.68, 73.28, 61.73, 55.83, 38.71, 22.28, 21.70, 17.66, 14.77.

IR (neat, cm$^{-1}$): ν 3289, 2966, 1598, 1447, 1359, 1214, 1175, 1036.

HRMS (ESI) m/z Calcd for C$_{23}$H$_{25}$NNaO$_4$S$^+$: 434.1397, Found 434.1400.

5-(3-Ethyl-5-methoxy-1-(4-methylbenzene-sulfonyl)-1H-indol-2-yl)-1-phenylpent-1-yn-3-ol (60i)

A colorless oil was obtained in 77% yield by following general procedure.

1H NMR (400 MHz, CDCl$_3$): δ 8.07 (d, $J = 9.0$ Hz, 1H), 7.55 – 7.50 (m, 2H), 7.47 – 7.41 (m, 2H), 7.34 – 7.29 (m, 3H), 7.11 (d, $J = 8.4$ Hz, 2H), 6.87 (dd, $J = 9.0$ Hz, 2.6 Hz, 1H), 6.84 – 6.80 (m, 1H), 4.69 (t, $J = 6.2$ Hz, 1H), 3.83 (s, 3H), 3.27 – 3.10 (m, 2H), 2.62 (q, $J = 7.6$ Hz, 2H), 2.30 (s, 3H), 2.28 – 2.16 (m, 2H), 1.17 – 1.10 (m, 3H).
13C NMR (101 MHz, CDCl$_3$) δ 156.73, 144.57, 136.64, 135.75, 131.89, 131.69, 129.81, 128.58, 128.47, 126.35, 124.39, 122.79, 116.50, 112.39, 101.85, 89.87, 85.25, 62.49, 55.84, 38.97, 22.49, 21.72, 17.73, 14.79.

IR (neat, cm$^{-1}$): ν 3345, 3027, 2942, 2876, 1603, 1496, 1453, 1046, 747.

HRMS (ESI) m/z Calcd for C$_{29}$H$_{29}$NNaO$_4$S$: 510.1509, Found 510.1514.

A colorless oil was obtained in 69% yield by following general procedure.

1H NMR (400 MHz, CDCl$_3$): δ 8.19 – 8.15 (m, 1H), 7.89 – 7.78 (m, 2H), 7.77 – 7.70 (m, 2H), 7.65 – 7.60 (m, 1H), 7.57 (d, $J = 8.0$ Hz, 2H), 7.33 – 7.23 (m, 2H), 7.16 (d, $J = 8.0$ Hz, 2H), 4.50 (tdd, $J = 6.8$ Hz, 4.6 Hz, 2.1 Hz, 1H), 3.88 – 3.78 (m, 2H), 3.31 – 3.13 (m, 2H), 3.03 – 2.97 (m, 2H), 2.53 (d, $J = 2.1$ Hz, 1H), 2.33 (s, 3H), 2.28 – 2.11 (m, 2H).

13C NMR (100 MHz, CDCl$_3$) δ 168.46, 144.89, 137.56, 136.85, 1315.98, 134.33, 132.19, 130.28, 130.02, 126.45, 124.73, 123.97, 123.58, 118.81, 118.01, 115.36, 84.71, 73.26, 61.53, 39.00, 37.77, 29.92, 23.89, 22.21, 21.79.

IR (neat, cm$^{-1}$): ν 3349, 2963, 1713, 1596, 1447, 1358, 1218, 1180.

HRMS (ESI) m/z Calcd for C$_{30}$H$_{27}$N$_2$O$_5$S$: 527.1635, Found 527.1637.

General preparation of alkynylindoles containing nitrogen nucleophiles and characterization data
Methyl 2-(3-azido-5-(trimethylsilyl)pent-4-ynyl)-3-ethyl-5-methoxy-1H-indole-1-carboxylate (57)

A solution of alcohol (1.94 g, 5.0 mmol) in anhydrous dichloromethane (10.0 mL) was cooled to -20 °C before triethylamine (1.70 mL, 12.0 mmol) was added dropwise. The mixture was stirred at -20 °C for 10 min; then tosyl chloride (0.47 mL, 6.0 mmol) was added over a period of 10 min. The resulting mixture was stirred at 0 °C for 2 h before quenched with saturated aqueous NaHCO₃ (10.0 mL) and extracted with CH₂Cl₂. The combined organic extracts were dried over anhydrous Na₂SO₄ and filtered through a pad of celite, and the solvent was removed in vacuo to yield crude mesylate. A mixture of mesylate and sodium azide (0.98 g, 15.0 mmol) in anhydrous DMF (20.0 mL) was stirred at RT for 12 h. After removal of DMF in vacuo, water was added to the reaction solution and the mixture was extracted with ethyl acetate. The combined extracts were dried over anhydrous Na₂SO₄ and concentrated in vacuo to give a crude oil, which was purified by column chromatography (hexanes/ethyl acetate = 20:1) to afford azide (1.24 g, 3.0 mmol) as a yellowish oil in 60% yield (2 steps):

¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, J = 9.0 Hz, 1H), 6.93 (d, J = 2.6 Hz, 1H), 6.87 (dd, J = 9.0 Hz, 2.6 Hz, 1H), 4.18 – 4.12 (m, 1H), 4.03 (s, 3H), 3.87 (s, 3H), 3.21 – 3.08 (m, 2H), 2.68 (q, J = 7.6 Hz, 2H), 2.00 (q, J = 7.4 Hz, 2H), 1.22 (t, J = 7.6 Hz, 3H), 0.22 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 156.13, 152.39, 135.55, 130.83, 130.52, 122.11, 116.73, 112.03, 112.01, 101.56, 100.48, 92.73, 55.88, 55.86, 53.53, 53.24, 35.51, 23.13, 17.38, 15.00, 0.05.

IR (neat, cm⁻¹): ν 2961, 2106, 1732, 1478, 1442, 1363, 1262, 1217, 1131, 845.

HRMS (ESI) m/z Calcd for C₂₁H₂₈N₄NaO₃Si⁺: 435.1823, Found 435.1840.

![Molecular Structure](image)

2-(3-Azido-5-(trimethylsilyl)pent-4-ynyl)-3-ethyl-5-methoxy-1-tosyl-1H-indole (60m1)
A yellowish oil was obtained in 56% yield by following general procedure.

¹H NMR (400 MHz, CDCl₃): δ 8.04 (d, J = 9.0 Hz, 1H), 7.48 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 6.85 (dd, J = 9.0 Hz, 2.6 Hz, 1H), 6.81 (d, J = 2.4 Hz, 1H), 4.12 (t, J = 6.7 Hz, 1H), 3.81 (s, 3H), 3.14 – 2.99 (m, 2H), 2.58 (q, J = 7.6 Hz, 2H), 2.29 (s, 3H), 2.15 – 2.05 (m, 2H), 1.11 (t, J = 7.6 Hz, 3H), 0.20 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 156.75, 144.59, 135.87, 135.67, 131.77, 131.66, 129.80, 126.33, 124.68, 116.51, 112.53, 101.87, 100.37, 92.70, 55.83, 55.81, 53.16, 36.26, 29.90, 23.03, 21.72, 17.68, 14.78, 0.07.

IR (neat, cm⁻¹): ν 2964, 2106, 1599, 1475, 1362, 1216, 1035, 744.

HRMS (ESI) m/z Calcd for C₂₆H₃₂N₄NaO₃SSi⁺: 531.1857, Found 531.1843.

Methyl 3-ethyl-5-methoxy-2-(3-(methoxycarbonylamino)pent-4-ynyl)-1H-indole-1-carboxylate (60k)

To the solution of the azide in anhydrous THF (10.0 mL) at room temperature was added triphenylphosphine (0.87 g, 3.3 mmol) and water (0.54 mL, 30.0 mmol). The resulting mixture was heated to 55 °C for 1.5 h before it was cooled to room temperature and concentrated in vacuo. The crude amine was then dissolved in anhydrous dichloromethane (10.0 mL) and cooled to 0 °C. To the cooled solution triethylamine (1.65 mL, 6.0 mmol) was added followed by the addition of methyl chloroformate (0.25 mL, 3.2 mmol). The resulting solution was stirred at
room temperature for 3 h before quenched with saturated aqueous NaHCO₃. The layers were separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄, and the solvents were removed in vacuo to give the crude, which was used for the next step without further purification. Tetrabutylammonium fluoride (1.0 M in THF, 3.0 mL, 3.0 mmol) was added to a solution of the crude in THF (3.0 mL) at 0 °C, and the resulting mixture was stirred for 10 min at 0 °C. After the reaction was terminated by the addition of water, the organic layer was extracted with ethyl acetate. The combined organic parts were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo to give a crude oil, which was purified by column chromatography (hexanes/ethyl acetate = 3:1) to afford propargyl carbamate (715 mg, 1.92 mmol) as a colorless oil in 64% yield over 3 steps.

¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, J = 9.0 Hz, 1H), 6.94 (d, J = 2.5 Hz, 1H), 6.88 (dd, J = 9.0 Hz, 2.5 Hz, 1H), 5.25-5.15 (br, 1H), 4.60-4.50 (br, 1H), 4.05 (s, 3H), 3.88 (s, 3H), 3.72 (s, 3H), 3.17 – 3.04 (m, 2H), 2.67 (q, J = 7.6 Hz, 2H), 2.37 (d, J = 2.3 Hz, 1H), 2.04 – 1.94 (m, 2H), 1.22 (t, J = 7.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.38, 156.13, 152.48, 135.86, 130.89, 130.43, 121.89, 116.75, 111.98, 101.55, 83.23, 77.43, 71.58, 55.90, 55.88, 53.60, 52.53, 43.31, 35.78, 23.10, 17.40, 15.07.

IR (neat, cm⁻¹): v 3295, 2964, 1731, 1723, 1522, 1475, 1361, 1242.

HRMS (ESI) m/z Calcd for C₂₀H₂₅N₂O₅⁺: 373.1758, Found 373.1759.

![Structure](image)

Methyl 3-ethyl-5-methoxy-2-(3-(4-methylphenylsulfonamido)pent-4-ynyl)-1H-indole-1-carboxylate (60l)

A colorless oil was obtained in 69% yield by following general procedure.
H NMR (400 MHz, CDCl₃): δ 7.92 (d, J = 9.0 Hz, 1H), 7.77 (d, J = 6.4 Hz, 2H), 7.27 (d, J = 6.4 Hz, 2H), 6.92 (d, J = 2.6 Hz, 1H), 6.86 (dd, J = 9.0 Hz, 2.6 Hz, 1H), 5.09 (d, J = 8.2 Hz, 1H), 4.15 (qd, J = 6.7 Hz, 2.3 Hz, 1H), 4.02 (s, 3H), 3.87 (s, 3H), 3.17 – 3.00 (m, 2H), 2.62 (q, J = 7.6 Hz, 2H), 2.41 (s, 3H), 2.15 (d, J = 2.3 Hz, 1H), 1.99 – 1.96 (m, 2H), 1.17 (t, J = 7.6 Hz, 3H).

13C NMR (101 MHz, CDCl₃): δ 156.07, 152.39, 143.60, 137.36, 135.45, 130.77, 130.39, 129.62, 127.49, 121.97, 116.71, 111.99, 101.52, 81.86, 72.88, 55.85, 53.63, 45.38, 36.45, 22.87, 21.68, 17.32, 15.00.

IR (neat, cm⁻¹): ν 3274, 2961, 2929, 1731, 1607, 1478, 1442, 1332, 1161, 1090.

HRMS (ESI) m/z Calcd for C₂₅H₂₈N₂NaO₅S⁺: 491.1611, Found 491.1614.

Methyl 5-(3-ethyl-5-methoxy-1-(4-methylbenzene-sulfoyl)-1H-indol-2-yl)pent-1-yn-3-ylcarbamate (60m)

A colorless oil was obtained in 52% yield by following general procedure.

H NMR (400 MHz, CDCl₃): δ 8.05 (d, J = 9.0 Hz, 1H), 7.49 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 6.87 (dd, J = 9.0 Hz, 2.5 Hz, 1H), 6.83 (d, J = 2.5 Hz, 1H), 5.18 (d, J = 7.2 Hz, 1H), 4.55 – 4.45 (br, 1H), 3.83 (s, 3H), 3.72 (s, 3H), 3.10 – 2.96 (m, 2H), 2.57 (q, J = 7.6 Hz, 2H), 2.34 (d, J = 2.3 Hz, 1H), 2.31 (s, 3H), 2.19 – 2.06 (m, 2H), 1.12 (t, J = 7.6 Hz, 3H).

13C NMR (75 MHz, CDCl₃): δ 156.74, 156.50, 144.64, 135.98, 135.74, 131.72, 131.63, 129.84, 126.29, 124.36, 116.39, 112.54, 101.88, 83.18, 71.57, 55.82, 52.55, 43.24, 36.61, 23.11, 21.69, 17.68, 14.81.

IR (neat, cm⁻¹): ν 3294, 2965, 1723, 1599, 1520, 1475, 1360, 1246, 1163, 1047.

HRMS (ESI) m/z Calcd for C₂₅H₂₈N₂NaO₅S⁺: 491.1611, Found 491.1599.
Methyl 3-ethyl-5-methoxy-2-(3-(2-nitrophenylsulfonamido)pent-4-ynyl)-1H-indole-1-carboxylate (60n)

A colorless oil was obtained in 65% yield by following general procedure.

^{1}H NMR (400 MHz, CDCl$_3$): δ 8.24 – 8.15 (m, 1H), 7.95 – 7.92 (m, 2H), 7.78 – 7.70 (m, 2H), 6.94 (d, $J = 2.3$ Hz, 1H), 6.89 (dd, $J = 9.0$ Hz, 2.6 Hz, 1H), 5.96 – 5.85 (br, 1H), 4.35 – 4.24 (br, 1H), 4.06 (s, 3H), 3.89 (s, 3H), 3.29 – 3.08 (m, 2H), 2.67 (q, $J = 7.6$ Hz, 2H), 2.11 – 2.02 (m, 3H), 1.21 (t, $J = 7.6$ Hz, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 156.06, 152.33, 147.92, 135.16, 134.18, 133.84, 132.91, 131.66, 130.72, 130.37, 125.50, 122.08, 116.71, 112.07, 112.04, 101.48, 80.97, 73.40, 55.80, 53.65, 46.09, 36.26, 22.95, 17.34, 15.04.

IR (neat, cm$^{-1}$): ν 3286, 2962, 2932, 1728, 1608, 1541, 1478, 1363, 1170, 1132.

HRMS (ESI) m/z Calcd for C$_{24}$H$_{26}$N$_{3}$O$_{7}$S: 500.1486, Found 500.1473.

General procedure of Au(I)-catalyzed tandem cyclization reaction

The catalyst solution was prepared by addition of Ph$_3$PAuCl (2.5 mg, 0.005 mmol) to a suspension of AgSbF$_6$ (1.7 mg, 0.005 mmol) in anhydrous dichloromethane (0.50 mL) at room temperature. The suspension was stirred for 20 min at room temperature under Argon atmosphere. The resulting catalyst solution was then added to a solution of substrate (28.5 mg, 0.10 mmol) in anhydrous dichloromethane (0.50 mL) dropwise at room temperature. The
resulting mixture was kept stirring at room temperature until TLC showed that there was no starting material left (about 1 h). The reaction mixture was then filtered through a short pad of silica gel. The filtrate was concentrated in vacuo, and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to afford tetracyclic indoline (23.7 mg, 0.083 mmol) as a colorless oil in 83% yield.

1H NMR (500 MHz, CDCl$_3$): δ 7.79 (d, $J = 7.6$ Hz, 1H), 7.26 – 7.21 (m, 2H), 7.07 (td, $J = 7.5$ Hz, 1.0 Hz, 1H), 5.10 (d, $J = 0.7$ Hz, 1H), 5.01 (s, 1H), 4.59 (d, $J = 6.1$ Hz, 1H), 3.91 (s, 3H), 3.06 – 3.03 (m, 1H), 2.27 (tdd, $J = 12.4$ Hz, 6.1 Hz, 3.5 Hz, 1H), 2.10 (ddd, $J = 12.4$ Hz, 9.0 Hz, 3.5 Hz, 1H), 1.90 (dq, $J = 15.2$ Hz, 7.6 Hz, 1H), 1.79 (ddd, $J = 12.2$ Hz, 9.1 Hz, 5.5 Hz, 1H), 1.72 – 1.60 (m, 1H), 0.60 (t, $J = 7.4$ Hz, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 157.21, 154.02, 133.34, 128.04, 123.93, 123.29, 115.94, 105.62, 102.47, 77.15, 60.11, 53.09, 33.23, 30.82, 29.93, 23.54, 8.90.

IR (neat, cm$^{-1}$): ν 2957, 2923, 1720, 1458, 1442, 1360, 1242, 1132.

HRMS (ESI) m/z Calcd for C$_{17}$H$_{20}$NO$_3$: 286.1437, Found 286.1443.

Methyl 9-methyl-10-methylidene-14-oxa-2-azatetracyclo[9.2.1.019.08]tetradeca-3,5,7-triene-2-carboxylate (48)

A white solid was obtained in 83% yield by following general procedure.

1H NMR (500 MHz, CDCl$_3$): δ 7.76 (d, $J = 8.2$ Hz, 1H), 7.26 (d, $J = 7.5$ Hz, 1H), 7.19 (td, $J = 8.2$ Hz, 1.3 Hz, 1H), 7.02 (t, $J = 7.5$ Hz, 1H), 5.10 (s, 1H), 5.00 (s, 1H), 4.57 (t, $J = 11.8$ Hz, 1H), 3.89 (s, 3H), 2.99 (td, $J = 12.1$ Hz, 5.0 Hz, 1H), 2.23 (tdd, $J = 12.4$ Hz, 6.1 Hz, 3.6 Hz, 1H), 2.09 (ddd, $J = 12.4$ Hz, 9.0 Hz, 3.6 Hz, 1H), 1.76 (ddd, $J = 12.3$ Hz, 9.0 Hz, 5.4 Hz, 1H), 1.31 (s, 3H).
\(^{13}C\) NMR (101 MHz, CDCl\(_3\)) \(\delta 156.91, 154.36, 141.66, 136.09, 127.94, 123.96, 122.88, 116.20, 106.05, 102.42, 77.28, 56.86, 53.11, 30.62, 26.25, 23.40.\)

m.p. 105–106 °C.

IR (neat, cm\(^{-1}\)): \(\nu 2956, 2924, 1720, 1479, 1440, 1361, 1316, 1240, 1101.\)

HRMS (ESI) m/z Calcd for C\(_{16}\)H\(_{17}\)NNaO\(_3\): 294.1101, Found 294.1090.

![Image](https://example.com/image.png)

Methyl (10\(E\))-9-methyl-10-(phenylmethylidene)-14-oxa-2-azatetracyclo[9.2.1.0\(^1_9\).0\(^3_8\)]tetradeca-3,5,7-triene-2-carboxylate (61b)

A colorless oil was obtained in 65% yield by following general procedure.

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.74 (d, J = 8.2 \text{ Hz}, 1H), 7.44 – 7.33 (m, 5H), 7.15 – 7.08 (m, 1H), 6.79 (td, J = 7.5 \text{ Hz}, 1.0, 1H), 6.59 (dd, J = 7.6 \text{ Hz}, 0.9 Hz, 1H), 5.96 (d, J = 4.9 \text{ Hz}, 1H), 4.55 (dd, J = 6.3 Hz, 5.0 Hz, 1H), 3.93 (s, 3H), 3.38 – 3.29 (m, 1H), 2.52 – 2.37 (m, 1H), 2.37 – 2.29 (m, 1H), 2.04 (ddd, J = 11.7 Hz, 9.2 Hz, 2.7 Hz, 1H), 1.48 (s, 3H).

\(^{13}C\) NMR (101 MHz, CDCl\(_3\)) \(\delta 154.37, 143.06, 139.55, 134.45, 129.07, 128.09, 128.36, 128.09, 126.66, 124.34, 123.28, 115.48, 102.66, 72.79, 52.52, 33.82, 30.02, 26.17, 23.24.\)

IR (neat, cm\(^{-1}\)): \(\nu 3581, 2923, 1715, 1463, 1360, 1236.\)

HRMS (ESI): m/z: Calcd for C\(_{22}\)H\(_{21}\)NNaO\(_3\): 370.1414, Found 370.1409.

![Image](https://example.com/image.png)

Methyl (10\(E\))-10-(phenylmethylidene)-14-oxa-2-azatetracyclo[9.2.1.0\(^1_9\).0\(^3_8\)]tetradeca-3,5,7-triene-2-carboxylate (61c)

A colorless oil was obtained in 67% yield by following general procedure.
\textbf{1H NMR} (400 MHz, CDCl\textsubscript{3}): \(\delta\) 7.78 (d, \(J = 7.6\) Hz, 1H), 7.55 – 7.46 (m, 2H), 7.45 – 7.36 (m, 3H), 7.14 (t, \(J = 7.9\) Hz, 1H), 6.75 (td, \(J = 7.9\) Hz, 5.0 Hz, 1H), 6.50 (d, \(J = 7.5\) Hz, 1H), 6.41 (dd, \(J = 4.7\) Hz, 1.9 Hz, 1H), 4.74 – 4.61 (m, 1H), 4.11 – 4.14 (m, 1H), 3.94 (s, 3H), 3.42 (t, \(J = 11.9\) Hz, 1H), 2.37 (ddd, \(J = 11.5\) Hz, 7.0 Hz, 4.4 Hz, 1H), 2.12 (td, \(J = 9.2\) Hz, 4.6 Hz, 1H), 2.00 (dt, \(J = 12.6\) Hz, 8.4 Hz, 1H).

\textbf{13C NMR} (101 MHz, CDCl\textsubscript{3}) \(\delta\) 154.28, 142.97, 139.46, 134.36, 130.91, 129.48, 128.98, 128.36, 128.00, 126.57, 124.25, 123.19, 115.39, 99.91, 72.70, 52.43, 33.73, 29.93, 14.30.

\textbf{IR} (neat, cm-1): \(\nu\) 3608, 3583, 2924, 1714, 1477, 1358, 1259.

\textbf{HRMS} (ESI) m/z Calcd for C\textsubscript{21}H\textsubscript{19}NNaO\textsubscript{3}+: 356.1257, Found 356.1250.

A colorless oil was obtained in 85% yield by following general procedure.

\textbf{1H NMR} (500 MHz, CDCl\textsubscript{3}): \(\delta\) 7.66 (d, \(J = 8.9\) Hz, 1H), 7.42 – 7.28 (m, 5H), 6.67 (dd, \(J = 8.9\) Hz, 2.7 Hz, 1H), 6.18 (d, \(J = 2.7\) Hz, 1H), 5.94 (d, \(J = 5.0\) Hz, 1H), 4.53 – 4.49 (m, 1H), 3.90 (s, 3H), 3.56 (s, 3H), 3.36 (t, \(J = 10.7\) Hz, 1H), 2.41 – 2.29 (m, 3H), 2.03 (dt, \(J = 11.5\) Hz, 7.1 Hz, 2H), 1.95 (dt, \(J = 15.9\) Hz, 7.9 Hz, 1H), 1.89 (dd, \(J = 14.1\) Hz, 7.5 Hz, 1H), 0.54 (t, \(J = 7.4\) Hz, 3H).

\textbf{13C NMR} (101 MHz, CDCl\textsubscript{3}): \(\delta\) 157.12, 156.57, 153.92, 136.74, 134.82, 116.49, 112.24, 110.00, 109.97, 105.87, 102.49, 102.45, 77.10, 60.16, 55.87, 52.96, 33.11, 30.79, 23.59, 8.88.

\textbf{IR} (neat, cm-1): \(\nu\) 2964, 1720, 1484, 1367, 1114, 1087, 1025, 1065.

\textbf{HRMS} (ESI) m/z Calcd for C\textsubscript{18}H\textsubscript{21}NNaO\textsubscript{4}+: 338.1362, Found 338.1353.
Methyl (10E)-9-ethyl-6-methoxy-10-(phenylmethylidene)-14-oxa-2-azatetracyclo [9.2.1.0^1,9.0^3,8]tetradeca-3,5,7-triene-2-carboxylate (61e)

A colorless oil was obtained in 75% yield by following general procedure.

1H NMR (500 MHz, CDCl$_3$): δ 7.66 (d, $J = 8.2$ Hz, 1H), 7.42 – 7.28 (m, 5H), 6.67 (dd, $J = 8.2$ Hz, 2.7 Hz, 1H), 6.18 (t, $J = 2.7$ Hz, 1H), 5.94 (d, $J = 5.0$ Hz, 1H), 4.53 – 4.49 (m, 1H), 3.90 (s, 3H), 3.56 (s, 3H), 3.36 (t, $J = 10.7$ Hz, 1H), 2.41 – 2.29 (m, 2H), 2.03 (dt, $J = 11.5$ Hz, 7.1 Hz, 1H), 1.95 (dt, $J = 15.9$ Hz, 7.9 Hz, 1H), 1.89 (dd, $J = 14.1$ Hz, 7.5 Hz, 1H), 0.54 (t, $J = 7.4$ Hz, 3H).

13C NMR (101 MHz, CDCl$_3$): δ 154.99, 154.20, 141.31, 140.55, 136.66, 132.98, 130.78, 127.98, 127.68, 115.88, 112.67, 110.84, 102.73, 71.23, 56.60, 55.63, 52.86, 33.38, 31.41, 30.00, 23.31, 9.42.

IR (neat, cm$^{-1}$): ν 2925, 1713, 1481, 1362, 1272, 1100, 1045.

HRMS (ESI) m/z Calcd for C$_{24}$H$_{26}$NO$_4$+: 392.1856, Found 392.1854.

tert-Butyl 9-[2-(1,3-dioxo-2,3-dihydro-1H-isoxindol-2-yl)ethyl]-10-methylidene-14-oxa-2-azatetracyclo[9.2.1.0^1,9.0^3,8]tetradeca-3,5,7-triene-2-carboxylate (61f)

A white solid was obtained in 84% yield by following general procedure.

1H NMR (400 MHz, CDCl$_3$): δ 7.80 – 7.76 (m, 3H), 7.72 – 7.65 (m, 2H), 7.36 (dd, $J = 7.5$ Hz, 1.0 Hz, 1H), 7.26 – 7.21 (m, 1H), 7.11 (td, $J = 8.0$ Hz, 2.6 Hz, 1H), 5.10 (s, 1H), 5.01 (s, 1H), 5.00 (s, 1H), 4.54 – 4.48 (m, 1H), 3.90 (s, 3H), 3.56 (s, 3H), 3.36 (t, $J = 10.7$ Hz, 1H), 2.42 – 2.30 (m, 2H), 2.03 (dt, $J = 11.5$ Hz, 7.1 Hz, 1H), 1.95 (dt, $J = 15.9$ Hz, 7.9 Hz, 1H), 1.89 (dd, $J = 14.1$ Hz, 7.5 Hz, 1H), 0.55 (t, $J = 7.4$ Hz, 3H).
4.59 (d, $J = 6.0$ Hz, 1H), 3.45 (td, $J = 12.9$ Hz, 4.1 Hz, 1H), 3.20 (td, $J = 12.6$ Hz, 5.5 Hz, 1H), 3.10 (ddd, $J = 13.5$ Hz, 12.1 Hz, 5.2 Hz, 1H), 2.44 (ddd, $J = 12.4$ Hz, 9.0 Hz, 3.4 Hz, 1H), 2.34 – 2.19 (m, 1H), 1.99 – 1.87 (m, 1H), 1.79 (ddd, $J = 12.3$ Hz, 9.1 Hz, 5.6 Hz, 1H), 1.63 (s, 9H).

13C NMR (101 MHz, CDCl$_3$) δ 168.11, 156.65, 152.32, 143.06, 134.14, 132.18, 132.03, 128.47, 124.12, 123.32, 123.24, 116.26, 105.51, 102.78, 82.85, 58.44, 38.39, 33.93, 30.86, 29.90, 28.59, 23.63.

m.p. 165–167 °C.

IR (neat, cm$^{-1}$): v 2978, 1772, 1713, 1477, 1398.95, 1368, 1247, 1161, 1075.

HRMS (ESI) m/z Calcd for C$_{28}$H$_{29}$N$_2$O$_5$: 473.2071, Found 473.2086.

9-Methyl-2-(4-methylbenzenesulfonyl)-10-methylidene-14-oxa-2-azatetracyclo [9.2.1.0$^{19}.0^{3,8}]$tetradeca-3,5,7-triene (61g)

A colorless oil was obtained in 85% yield by following general procedure.

1H NMR (500 MHz, CDCl$_3$): δ 7.95 – 7.89 (m, 2H), 7.54 (d, $J = 8.2$ Hz, 1H), 7.24 – 7.21 (m, 2H), 7.18 – 7.14 (m, 1H), 7.05 – 6.99 (m, 1H), 5.07 (s, 1H), 4.98 (s, 1H), 4.56 (d, $J = 6.0$ Hz, 1H), 3.04 – 2.93 (m, 1H), 2.36 (s, 3H), 2.20 (ddd, $J = 15.7$ Hz, 8.9 Hz, 3.6 Hz, 2H), 1.78 – 1.70 (m, 1H), 1.23 (s, 3H).

13C NMR (101 MHz, CDCl$_3$): δ 156.36, 144.26, 141.37, 136.65, 136.15, 129.64, 128.08, 127.97, 124.22, 123.29, 114.95, 107.58, 102.61, 77.34, 57.66, 30.39, 25.55, 24.05, 21.79.

IR (neat, cm$^{-1}$): v 2924, 1475, 1458, 1360, 1163, 1094, 1025.

HRMS (ESI) m/z Calcd for C$_{21}$H$_{22}$NO$_3$S$: 368.1315, Found 368.1318.

9-Ethyl-6-methoxy-2-(4-methylbenzenesulfonyl)-10-methylidene-14-oxa-2-azatetracyclo
[9.2.1.0\textsuperscript{1,9,03,8}]tetradeca-3,5,7-triene (61h)

A colorless oil was obtained in 88% yield by following general procedure.

\textbf{1H NMR (500 MHz, CDCl\textsubscript{3}}): δ 7.95 – 7.90 (m, 2H), 7.43 (d, J = 8.9 Hz, 1H), 7.25 – 7.21 (m, 2H), 6.75 (d, J = 2.6 Hz, 1H), 6.70 (dd, J = 8.9 Hz, 2.7 Hz, 1H), 5.02 (s, 1H), 4.95 (s, 1H), 4.53 (d, J = 5.8 Hz, 1H), 3.74 (s, 3H), 3.06 – 2.93 (m, 1H), 2.36 (s, 3H), 2.25 – 2.17 (m, 2H), 1.83 (dq, J = 15.2 Hz, 7.6 Hz, 1H), 1.77 – 1.70 (m, 1H), 1.67 – 1.58 (m, 1H), 0.66 (t, J = 7.5 Hz, 3H).

\textbf{13C NMR (75 MHz, CDCl\textsubscript{3}}) δ 156.63, 156.55, 144.06, 136.83, 136.34, 134.70, 129.56, 129.55, 129.53, 128.20, 128.19, 128.17, 114.71, 112.34, 110.63, 107.49, 102.62, 77.29, 60.95, 55.88, 32.82, 30.41, 24.28, 21.76, 8.74.

\textbf{IR (neat, cm-1}): v 2934, 1475, 1456, 1162, 1099.

\textbf{HRMS (ESI) m/z} Calcd for C\textsubscript{23}H\textsubscript{25}NNaO\textsubscript{4}S+: 434.1397, Found 434.1402.

(10E)-9-ethyl-6-methoxy-2-(4-methylbenzenesulfonyl)-10-(phenylmethylidene)-14-oxa-2-azatetracyclo[9.2.1.0\textsuperscript{1,9,03,8}]tetradeca-3,5,7-triene (6\textsubscript{1i})

A colorless oil was obtained in 64% yield by following general procedure.

\textbf{1H NMR (500 MHz, CDCl\textsubscript{3}}): δ 7.95 – 8.02 (m, 2H), 7.53 (d, J = 8.1 Hz, 1H), 7.41 – 7.25 (m, 5H), 6.67 (dd, J = 8.1 Hz, 2.5 Hz, 1H), 6.15 (t, J = 2.5 Hz, 1H), 5.92 (d, J = 5.0 Hz, 1H), 4.52 – 4.43 (m, 1H), 3.56 (s, 3H), 3.36 (t, J = 10.8 Hz, 1H), 2.42 – 2.26 (m, 2H), 2.23 (s, 3H), 2.04 (dt, J = 11.5 Hz, 7.2 Hz, 2H), 1.95 (dt, J = 15.9 Hz, 7.6 Hz, 1H), 1.89 (dd, J = 14.2 Hz, 7.6 Hz, 1H), 0.54 (t, J = 7.4 Hz, 3H).

\textbf{13C NMR (75 MHz, CDCl\textsubscript{3}}) δ 155.92, 141.24, 140.48, 136.59, 132.91, 130.71, 127.82, 127.61, 126.51, 124.23, 115.81, 112.60, 110.77, 102.66, 71.16, 56.53, 55.56, 52.79, 33.31, 31.34, 29.93, 23.24, 21.78, 9.35.

\textbf{IR (neat, cm-1}): v 2941, 1472, 1456, 1364, 1160, 1099.
HRMS (ESI) m/z Calcd for C$_{29}$H$_{29}$NNaO$_4$: 510.1509, Found 510.1503.

![Chemical Structure](image)

2-{2-[2-(4-methylbenzenesulfonyl)-10-methylidene-14-oxa-2-azatetracyclo[9.2.1.01,9.0.03.8]tetradeca-3,5,7-triene-9-yl|ethyl]-2,3-dihydro-1H-isooindole-1,3-dione (61j)

A colorless oil was obtained in 82% yield by following general procedure.

1H NMR (400 MHz, CDCl$_3$): δ 7.98 (d, $J = 8.4$ Hz, 2H), 7.79 (m, 2H), 7.69 (m, 2H), 7.57 (d, $J = 8.2$ Hz, 1H), 7.32 (dd, $J = 7.5$ Hz, 0.9 Hz, 1H), 7.26 – 7.20 (m, 1H), 7.11 (td, $J = 7.5$ Hz, 1.0 Hz, 1H), 5.06 (s, 1H), 4.98 (s, 1H), 4.57 (d, $J = 5.9$ Hz, 1H), 3.57 – 3.45 (m, 1H), 3.15 (dd, $J = 12.9$ Hz, 5.7 Hz, 1H), 2.60 (td, $J = 9.2$ Hz, 4.5 Hz, 1H), 2.35 – 2.26 (m, 4H), 2.17 (td, $J = 13.1$ Hz, 4.9 Hz, 1H), 1.98 – 1.89 (m, 1H), 1.84 – 1.73 (m, 1H).

13C NMR (101 MHz, CDCl$_3$) δ 168.03, 155.80, 144.36, 142.27, 136.50, 134.17, 132.20, 131.89, 129.68, 128.67, 128.32, 124.62, 123.79, 123.37, 114.50, 106.94, 103.14, 59.44, 38.29, 33.61, 30.51, 29.93, 24.28, 21.77.

IR (neat, cm$^{-1}$): ν 2924, 1772, 1713, 1458, 1399, 1365, 1164, 1090, 1038.

HRMS (ESI) m/z Calcd for C$_{30}$H$_{27}$N$_2$O$_5$: 527.1635, Found 527.1636.

![Chemical Structure](image)

2,14-Dimethyl 9-ethyl-6-methoxy-10-methylidene-2,14-diazatetracyclo[9.2.1.01,9.0.03.8]tetradeca-3,5,7-triene-2,14-dicarboxylate (61k)

A colorless oil was obtained in 78% yield by following general procedure.
H NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 8.3 Hz, 1H), 6.92 (d, J = 2.6 Hz, 1H), 6.79 (dd, J = 8.3 Hz, 2.6 Hz, 1H), 5.95 – 6.45 (br, 1H), 5.27 (s, 1H), 5.16 (s, 1H), 4.75 – 4.83 (br, 1H), 3.90 (s, 3H), 3.81 (s, 3H), 3.69 (s, 3H), 3.00 – 2.85 (m, 1H), 2.01-2.04 (m, 1H), 1.82 (t, J = 7.4 Hz, 2H), 0.78 (t, J = 7.4 Hz, 3H).

13C NMR (101 MHz, CDCl₃) δ 156.65, 155.93, 153.08, 146.44, 144.36, 135.08, 134.42, 116.23, 112.32, 111.87, 108.23, 105.31, 55.85, 53.32, 53.04, 52.46, 48.78, 35.19, 32.60, 29.91, 8.59.

IR (neat, cm⁻¹): ν 3095, 1720, 1442, 1432, 1261, 1105, 1129.

HRMS (ESI) m/z Calcd for C₂₀H₂₅N₂O₅⁺: 373.1758, Found 373.1752.

A colorless oil was obtained in 75% yield by following general procedure.

H NMR (400 MHz, CDCl₃): δ 7.66 (m, 3H), 7.28 – 7.21 (m, 2H), 6.74 (dd, J = 8.9 Hz, 2.7 Hz, 1H), 6.70 (d, J = 2.6 Hz, 1H), 5.92 (s, 1H), 5.20 (s, 1H), 5.10 (d, J = 1.2 Hz, 1H), 4.59 (d, J = 9.0 Hz, 1H), 4.33 (dd, J = 15.1 Hz, 6.2 Hz, 1H), 3.88 (s, 3H), 3.78 (s, 3H), 2.65 (ddd, J = 17.1 Hz, 3.2 Hz, 1H), 2.41 (s, 3H), 2.14 (dt, J = 17.1 Hz, 6.0 Hz, 1H), 1.79 – 1.68 (m, 1H), 1.66 – 1.57 (m, 1H), 0.62 (q, J = 7.1 Hz, 3H).

13C NMR (101 MHz, CDCl₃) δ 155.99, 153.01, 145.45, 144.24, 143.58, 138.12, 134.81, 134.53, 129.84, 127.23, 116.14, 111.99, 111.49, 111.15, 105.17, 60.63, 55.86, 53.06, 52.67, 52.04, 35.90, 32.74, 29.92, 29.59, 21.77, 21.29, 14.42, 8.60.

IR (neat, cm⁻¹): ν 3274, 2923, 1713, 1481.71, 1275, 1158, 1093, 1035.

HRMS (ESI) m/z Calcd for C₂₅H₂₉N₂O₅S⁺: 469.1792, Found 469.1778.
Methyl 9-ethyl-6-methoxy-2-(4-methylbenzenesulfonyl)-10-methylidene-2,14-diazatetracyclo[9.2.1.01,9.03,8]tetradeca-3,5,7-triene-14-carboxylate (61m)

A white solid was obtained in 79% yield by following general procedure.

\textbf{1H NMR} (400 MHz, CDCl\textsubscript{3}): \(\delta\) 7.79 (d, \(J = 8.8\) Hz, 1H), 7.59 (d, \(J = 8.3\) Hz, 2H), 7.51 – 7.44 (m, 1H), 7.19 (d, \(J = 8.1\) Hz, 1H), 6.80 – 6.82 (m, 2H), 6.01 (dd, \(J = 5.3\) Hz, 3.3 Hz, 1H), 5.11 (s, 1H), 5.05 (s, 1H), 4.70 – 4.53 (m, 1H), 3.79 (s, 3H), 3.68 (s, 3H), 2.85 (ddd, \(J = 17.7\) Hz, 7.2 Hz, 3.3 Hz, 1H), 2.35 (s, 3H), 2.11 (dt, \(J = 17.7\) Hz, 6.0 Hz, 1H), 1.35 – 1.27 (m, 1H), 0.60 – 0.53 (m, 3H).

\textbf{13C NMR} (101 MHz, CDCl\textsubscript{3}) \(\delta\) 156.70, 156.56, 145.58, 144.80, 144.61, 135.49, 134.76, 134.63, 129.63, 129.39, 127.46, 116.93, 112.72, 112.05, 108.84, 108.27, 55.83, 54.01, 52.46, 48.54, 34.26, 32.71, 29.93, 21.77, 8.28.

m.p. 129–130 °C.

IR (neat, cm-1): \(\nu\) 2924, 1724, 1525, 1476, 1363, 1252, 1171, 1088, 1037.

HRMS (ESI) m/z Calcd for C\textsubscript{25}H\textsubscript{28}N\textsubscript{2}NaO\textsubscript{5}S+: 491.1611, Found 491.1598.

Methyl 9-ethyl-6-methoxy-10-methylidene-14-(4-nitrobenzenesulfonyl)-2,14-diazatetracyclo[9.2.1.01,9.03,8]tetradeca-3,5,7-triene-2-carboxylate (61n)

A colorless oil was obtained in 70% yield by following general procedure.

\textbf{1H NMR} (400 MHz, CDCl\textsubscript{3}): \(\delta\) 8.05 (dd, \(J = 7.8\) Hz, 1.4 Hz, 1H), 7.70 (td, \(J = 7.6\) Hz, 1.5 Hz, 1H), 7.62 (td, \(J = 7.7\) Hz, 1.4 Hz, 2H), 7.56 (dd, \(J = 7.9\) Hz, 1.4 Hz, 1H), 6.65 (dd, \(J = 8.9\) Hz, 2.7 Hz, 1H), 6.15 (m, 2H), 5.79 (d, \(J = 9.5\) Hz, 1H), 5.32 (s, 1H), 5.18 (s, 1H), 4.55 (dt, \(J = 9.2\) Hz, 2.7 Hz, 1H), 3.89 – 3.78 (m, 1H), 3.75 (s, 3H), 2.46 (dd, \(J = 17.7\) Hz, 7.2 Hz, 3.3 Hz, 1H), 2.35 (s, 3H), 2.11 (dt, \(J = 17.7\) Hz, 6.0 Hz, 1H), 1.35 – 1.27 (m, 1H), 0.60 – 0.53 (m, 3H).
Hz, 4.5 Hz, 1H), 3.92 (s, 3H), 3.74 (s, 3H), 2.65 (ddd, J = 16.6 Hz, 4.9 Hz, 3.1 Hz, 1H), 2.44 (ddd, J = 16.6 Hz, 7.1 Hz, 4.4 Hz, 1H), 1.71 (dq, J = 14.7 Hz, 7.3 Hz, 2H), 1.61 – 1.44 (m, 1H), 0.66 (t, J = 7.3 Hz, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 155.70, 152.94, 147.44, 145.25, 144.76, 135.02, 134.98, 134.63, 133.32, 132.56, 131.25, 125.67, 115.99, 113.80, 111.20, 109.87, 104.89, 60.63, 55.60, 54.88, 53.16, 51.46, 38.10, 29.93, 14.42, 8.91.

IR (neat, cm$^{-1}$): ν 2923, 2852, 1714, 1539, 148, 1363, 1275, 1165.

HRMS (ESI) m/z Calcd for C$_{24}$H$_{26}$N$_{3}$O$_{7}$S$: 500.1486, Found 500.1481.

General preparation of alkynylindoles and characterization data

tert-Butyl 2-(but-3-ynyl)-3-(2-(1,3-dioxoisindolin-2-yl)ethyl)-1H-indole-1-carboxylate (90)

To a solution of aldehyde (4.46 g, 10 mmol) in anhydrous MeOH (20 mL) was added a solution of Ohira-Bestmann Reagent (4.80 g, 25 mmol) in MeOH (5 mL) and K$_2$CO$_3$ (4.15 g, 30 mmol) at 0 °C. The resulting mixture was stirred at room temperature for 3 h before quenched with an aqueous solution of NH$_4$Cl. The aqueous phase was extracted with ethyl acetate, and the combined organic layers were washed with brine, dried over anhydrous Na$_2$SO$_4$, filtered, and concentrated in vacuo to give an oil. Purification by column chromatography (hexanes/ethyl acetate = 3:1) afforded alkyne (3.76 g, 8.5 mmol) as a white solid in 85% yield.
1H NMR (400 MHz, CDCl$_3$): δ 8.13 – 8.07 (m, 1H), 7.89 – 7.82 (m, 2H), 7.73 – 7.68 (m, 3H), 7.26 – 7.20 (m, 2H), 3.96 – 3.85 (m, 2H), 3.32 (t, $J = 7.3$ Hz, 2H), 3.17 – 3.04 (m, 2H), 2.59 (td, $J = 7.3$ Hz, 2.6 Hz, 2H), 1.99 (t, $J = 2.6$ Hz, 1H), 1.69 (s, 9H).

13C NMR (101 MHz, CDCl$_3$) δ 168.43, 150.52, 136.14, 136.09, 134.23, 134.16, 132.33, 129.56, 124.23, 123.44, 122.99, 118.58, 116.39, 115.96, 84.19, 83.70, 69.59, 38.09, 28.43, 26.25, 23.78, 19.62.

m.p. 183–184 °C.

IR (neat, cm$^{-1}$): $\nu = 3305, 2930, 1769, 1712, 1457, 1363, 1165, 1107$.

HRMS (ESI) m/z Calcd for C$_{27}$H$_{36}$N$_2$NaO$_4$+: 465.1785, Found 465.1779.

tert-Butyl 2-(but-3-ynyl)-3-(2-(tert-butoxycarbonylamino)ethyl)-1H-indole-1-carboxylate (86a)

To a solution of phthalimide (3.76 g, 8.5 mmol) in absolute EtOH (20 mL) was added anhydrous hydrazine (3.0 mL, 85 mmol). The resulting mixture was heated to 60 °C for 1 h before it was cooled to room temperature, filtered through a pad of celite. The filtrate was concentrated in vacuo to give 7a-2 as colorless oil, which was used in the next step without purification. To a solution of amine in anhydrous dichloromethane was added triethylamine (2.4 mL, 17.0 mmol) and Boc$_2$O (2.3 g, 10.2 mmol) at 0 °C. The resulting mixture was stirred at room temperature for 3 h before an aqueous solution of NH$_4$Cl was added. The aqueous phase was extracted with ethyl acetate, and the combined organic layers were washed with brine, dried over anhydrous Na$_2$SO$_4$, filtered, and concentrated in vacuo to give an oil. Purification by column chromatography
(hexanes/ethyl acetate = 5:1) afforded alkynylindole (2.84 g, 6.9 mmol) as a colorless oil in 81% yield over 2 steps.

1H NMR (400 MHz, CDCl$_3$): δ 8.10 (d, $J = 7.9$ Hz, 1H), 7.51 (d, $J = 7.6$ Hz, 1H), 7.32 – 7.18 (m, 2H), 4.70 – 4.50 (br, 1H), 3.38 (d, $J = 5.8$ Hz, 2H), 3.24 (t, $J = 7.4$ Hz, 2H), 2.92 (t, $J = 6.8$ Hz, 2H), 2.53 (td, $J = 7.4$ Hz, 2.6 Hz, 2H), 1.96 (t, $J = 2.6$ Hz, 1H), 1.69 (s, 9H), 1.44 (s, 9H) ppm;

13C NMR (101 MHz, CDCl$_3$) δ 156.04, 150.51, 136.15, 136.05, 129.75, 124.20, 122.85, 118.62, 117.11, 115.91, 84.17, 83.75, 79.42, 69.49, 40.74, 28.61, 28.42, 26.25, 24.99, 19.62.

IR (neat, cm$^{-1}$): ν 2976, 2927, 1725, 1367, 1164, 1133.

HRMS (ESI) m/z Calcd for C$_{24}$H$_{33}$N$_2$O$_4$: 413.2435, Found 413.2441.

tert-Butyl 3-(2-(tert-butoxycarbonylamino)ethyl)-2-(4-phenylbut-3-ynyl)-1H-indole-1-carboxylate (86b)

A solution of alkyne (144 mg, 0.35 mmol) and iodobenzene (195 mg, 0.53 mmol) in THF (2 mL) was frozen with liquid nitrogen and thoroughly degassed under high vacuum. Pd(PPh$_3$)$_2$Cl$_2$ (28 mg, 0.04 mmol) was added and the resulting suspension was degassed in the same way. Freshly purified copper(I) iodide (16 mg, 0.08 mmol) was added and degassing was repeated. Previously degassed triethylamine (0.5 mL, 3.5 mmol) was added and the mixture was heated at 70 °C for 2 h. The reaction was allowed to cool to room temperature, saturated aqueous NaHCO$_3$ was added and the mixture was extracted with ethyl acetate. The combined extracts were dried over anhydrous Na$_2$SO$_4$ and concentrated in vacuo to give brown foam, which was purified by
column chromatography (hexanes/ethyl acetate = 10:1) to afford desired product (140 mg, 0.29 mmol) as a colorless oil in 84% yield:

\[^1H \text{NMR (400 MHz, CDCl}_3 \]: \ \delta 8.13 (d, \ J = 8.0 \text{ Hz, } 1\text{H}), 7.52 (d, \ J = 7.4 \text{ Hz, } 1\text{H}), 7.37 – 7.29 (m, 2H), 7.27 – 7.16 (m, 5H), 4.68 – 4.45 (br, 1H), 3.50 – 3.27 (m, 4H), 2.97 (t, \ J = 6.8 \text{ Hz, } 2\text{H}), 2.75 (t, \ J = 7.4 \text{ Hz, } 2\text{H}), 1.71 (s, 9\text{H}), 1.44 (s, 9\text{H}).

\[^{13}C \text{NMR (101 MHz, CDCl}_3 \]: \ \delta 156.05, 150.57, 136.28, 136.20, 136.65, 129.81, 128.39, 127.82, 124.18, 123.89, 122.86, 118.58, 117.13, 115.92, 89.43, 84.17, 81.65, 79.40, 40.75, 28.60, 28.44, 26.51, 24.97, 20.67.

\[\text{IR (neat, cm}^{-1}\]: \ \nu 2974, 2928, 1708, 1476, 1382, 1172.

\[\text{HRMS (ESI)}: \ \text{Calcd for } C_{30}H_{36}N_{2}NaO_{4}^{+}: 511.2567, \text{ Found } 511.2559.

\[\text{t-Butyl 2-(but-3-ynyl)-3-(2-(4-methylphenylsulfonamido)ethyl)-1H-indole-1-carboxylate (86c)}]

A colorless oil was obtained in 88% yield by following general procedure.

\[^1H \text{NMR (400 MHz, CDCl}_3 \]: \ \delta 8.08 (d, \ J = 8.3 \text{ Hz, } 1\text{H}), 7.65 (d, \ J = 8.2 \text{ Hz, } 2\text{H}), 7.34 (d, \ J = 7.7 \text{ Hz, } 1\text{H}), 7.35 – 7.21 (m, 3H), 7.17 (t, \ J = 7.4 \text{ Hz, } 1\text{H}), 4.51 (t, \ J = 6.3 \text{ Hz, } 1\text{H}), 3.24 (q, \ J = 6.9 \text{ Hz, } 2\text{H}), 3.18 (t, \ J = 7.2 \text{ Hz, } 2\text{H}), 2.92 (t, \ J = 7.1 \text{ Hz, } 2\text{H}), 2.49 (td, \ J = 7.2 \text{ Hz, } 2.6 \text{ Hz, } 2\text{H}), 2.40 (s, 3\text{H}), 1.90 (t, \ J = 2.6 \text{ Hz, } 1\text{H}), 1.69 (s, 9\text{H}).

\[^{13}C \text{NMR (101 MHz, CDCl}_3 \]: \ \delta 150.42, 143.63, 136.98, 136.41, 136.18, 129.87, 129.25, 127.25, 124.37, 122.98, 118.25, 116.08, 115.88, 84.44, 83.71, 69.72, 43.14, 28.46, 26.12, 25.07, 21.78, 19.51.

\[\text{IR (neat, cm}^{-1}\]: \ \nu 3291, 2927, 1727, 1457, 1325, 1158.

\[\text{HRMS (ESI)} m/z \ \text{Calcd for } C_{26}H_{30}N_{2}NaO_{4}S^{+}: 489.1819, \text{ Found } 489.1800.

tert-Butyl 2-(but-3-ynyl)-3-(2-(2-nitrophenylsulfonamido)ethyl)-1H-indole-1-carboxylate (86d)

A colorless oil was obtained in 80% yield by following general procedure.

\[^1H \text{ NMR} \ (400 \text{ MHz, CDCl}_3): \delta 8.01 \ (d, J = 8.3 \text{ Hz}, 1H), 7.98 - 7.93 \ (m, 1H), 7.73 - 7.69 \ (m, 1H), 7.58 \ (pd, J = 7.5 \text{ Hz}, 1.7 \text{ Hz}, 2H), 7.32 \ (d, J = 7.8 \text{ Hz}, 1H), 7.24 - 7.18 \ (m, 1H), 7.16 - 7.09 \ (m, 1H), 5.38 \ (t, J = 5.8 \text{ Hz}, 1H), 3.42 \ (dd, J = 13.1 \text{ Hz}, 7.1 \text{ Hz}, 2H), 3.18 \ (t, J = 7.2 \text{ Hz}, 2H), 2.98 \ (t, J = 7.2 \text{ Hz}, 2H), 2.48 \ (td, J = 7.2 \text{ Hz}, 2.6 \text{ Hz}, 2H), 1.91 \ (t, J = 2.6 \text{ Hz}, 1H), 1.68 \ (s, 9H). \]

\[^{13}C \text{ NMR} \ (101 \text{ MHz, CDCl}_3): \delta 150.27, 147.65, 136.50, 136.12, 133.74, 133.56, 132.84, 130.83, 129.01, 125.49, 124.29, 122.90, 118.08, 116.11, 115.58, 84.46, 83.58, 69.68, 43.77, 29.90, 28.41, 26.15, 25.12, 19.54. \]

\[\text{IR (neat, cm}^{-1}) : \nu 3294, 2927, 1726, 1540, 1394, 1164. \]

\[\text{HRMS (ESI) m/z Calcd for } C_{25}H_{27}N_3NaO_6S^+: 520.1513, \text{ Found 520.1531.} \]

tert-Butyl 2-(but-3-ynyl)-3-(2-acetamidoethyl)-1H-indole-1-carboxylate (86e)

A colorless oil was obtained in 74% yield by following general procedure.

\[^1H \text{ NMR} \ (400 \text{ MHz, CDCl}_3): \delta 8.10 \ (d, J = 7.4 \text{ Hz}, 1H), 7.56 - 7.51 \ (m, 1H), 7.33 - 7.26 \ (m, 1H), 7.26 - 7.20 \ (m, 1H), 5.65 - 5.56 \ (br, 1H), 3.52 \ (q, J = 6.8 \text{ Hz}, 2H), 3.25 \ (t, J = 7.3 \text{ Hz}, 2H), 2.94 \ (t, J = 7.0 \text{ Hz}, 2H), 2.54 \ (td, J = 7.3 \text{ Hz}, 2.6 \text{ Hz}, 2H), 1.96 \ (t, J = 2.6 \text{ Hz}, 1H), 1.93 \ (s, 3H), 1.70 \ (s, 9H). \]
13C NMR (101 MHz, CDCl$_3$) δ 170.35, 150.52, 136.14, 136.05, 129.81, 124.32, 122.97, 118.52, 117.12, 116.01, 110.84, 84.31, 83.70, 69.60, 39.95, 28.45, 26.16, 24.46, 23.58, 19.63.

IR (neat, cm$^{-1}$): ν 3290, 2922, 2851, 1726, 1650, 1457, 1341, 1163.

Butyl 3-(3-(2-(tert-butoxycarbonylamino)ethyl)-1H-indol-2-yl)acrylate (86f1)

A colorless oil was obtained in 60% yield by following general procedure.

1H NMR (400 MHz, CDCl$_3$): δ 8.50 – 8.35 (br, 1H), 7.75 (d, $J = 15.9$ Hz, 1H), 7.64 (d, $J = 8.0$ Hz, 1H), 7.33 (d, $J = 8.2$ Hz, 1H), 7.29 – 7.24 (m, 2H), 7.11 (t, $J = 7.5$ Hz, 1H), 6.20 (d, $J = 15.9$ Hz, 1H), 4.65 – 4.52 (br, 1H), 4.22 (t, $J = 6.6$ Hz, 2H), 3.43 – 3.35 (m, 2H), 3.10 – 3.06 (m, 2H), 1.86 – 1.55 (m, 2H), 1.51 – 1.40 (m, 9H), 0.97 (t, $J = 7.3$ Hz, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 167.63, 156.13, 137.76, 132.06, 130.90, 128.48, 125.10, 120.14, 119.63, 114.97, 111.37, 79.40, 64.69, 41.66, 30.92, 28.57, 28.29, 25.03, 19.32, 19.22, 13.92.

IR (neat, cm$^{-1}$): ν 3339, 2961, 1693, 1613, 1513, 1455, 1251, 1171, 1069, 739.

HRMS (ESI) Calcd for C$_{22}$H$_{31}$N$_2$O$_4^+$: 387.2278, Found 387.2289.

Butyl 2-(2-(3-oxopropyl)-1H-indol-3-yl)ethylcarbamate (86f2)
A colorless oil was obtained in 82% yield by following general procedure.

\(^{1}\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 9.88\) (s, 1H), 8.40 – 8.31 (br, 1H), 7.50 (d, \(J = 7.9\) Hz, 1H), 7.30 (d, \(J = 7.8\) Hz, 1H), 7.19 – 7.12 (m, 1H), 7.10 – 7.02 (m, 1H), 4.60 – 4.50 (br, 1H), 3.37 (dd, \(J = 12.6\) Hz, 6.2 Hz, 2H), 3.12 – 2.97 (m, 2H), 2.94 – 2.86 (m, 4H), 1.43 (s, 9H).

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta 202.34, 202.31, 156.13, 135.48, 134.99, 128.11, 121.43, 119.21, 118.20, 110.73, 108.43, 79.19, 44.27, 41.22, 28.50, 24.74, 18.08.

IR (neat, cm\(^{-1}\)): \(\nu 3402, 3055, 2976, 2931, 2727, 1689, 1513, 1462, 1366, 1169, 741\).

tert-Butyl 2-(2-(but-3-ynyl)-1H-indol-3-yl)ethylcarbamate (86f)

A colorless oil was obtained in 87% yield by following general procedure.

\(^{1}\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 8.30\) (s, 1H), 7.53 (d, \(J = 7.8\) Hz, 1H), 7.32 (d, \(J = 7.9\) Hz, 1H), 7.20 – 7.13 (m, 1H), 7.09 (t, \(J = 7.5\) Hz, 1H), 4.70 – 4.56 (br, 1H), 3.38 (d, \(J = 6.4\) Hz, 2H), 2.98 (t, \(J = 6.8\) Hz, 2H), 2.91 (t, \(J = 6.6\) Hz, 2H), 2.55 (td, \(J = 6.8\) Hz, 2.6 Hz, 2H), 2.13 (t, \(J = 2.6\) Hz, 1H), 1.44 (s, 9H).

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta 156.14, 135.67, 135.00, 128.18, 121.77, 119.52, 118.54, 110.79, 109.19, 84.10, 79.29, 70.31, 41.20, 28.63, 25.00, 24.81, 19.47.

IR (neat, cm\(^{-1}\)): \(\nu 3403, 3303, 2975, 2931, 1689, 1511, 1462, 1250, 1166\).

HRMS (ESI) Calcd for C\(_{19}\)H\(_{25}\)N\(_2\)O\(_2\): 313.1911, Found 313.1911.
N-(2-(2-(But-3-ynyl)-1H-indol-3-yl)ethyl)acetamide (86g)

A colorless oil was obtained in 84 % yield by following general procedure.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.46 – 8.31 (br, 1H), 7.52 (d, \(J = 7.7\) Hz, 1H), 7.33 (d, \(J = 7.9\) Hz, 1H), 7.17 (t, \(J = 7.2\) Hz, 1H), 7.10 (t, \(J = 7.4\) Hz, 1H), 5.75 – 5.62 (br, 1H), 3.53 (dd, \(J = 12.9\) Hz, 6.4 Hz, 2H), 3.04 – 2.87 (m, 4H), 2.55 (td, \(J = 6.9\) Hz, 2.6 Hz, 2H), 2.11 (t, \(J = 2.5\) Hz, 1H), 1.93 (s, 3H).

\(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 171.13, 135.67, 135.02, 128.22, 121.94, 119.75, 118.33, 110.95, 108.95, 83.99, 70.48, 40.61, 29.92, 24.93, 24.18, 23.37, 19.46.

HRMS (ESI) m/z Calcd for C\(_{16}\)H\(_{19}\)N\(_2\)O\(^+\): 255.1492, Found 255.1480.

Butyl 3-(3-(2-(1,3-dioxoisidolin-2-yl)ethyl)-1-methyl-1H-indol-2-yl)propanoate (86h2)

To a solution of substrate (1.56 g, 3.0 mmol) in anhydrous dichloromethane (10 mL) was added trifluoroacetic acid (2.3 mL, 30.0 mmol). The resulting mixture was stirred at room temperature for 2 h before the solvents were removed in vacuo to give an oil, which was dissolved in anhydrous DMF (10 mL) and cooled to -50 °C. A solution of NaHMDS (2.0 M in THF, 1.6 mL, 3.2 mmol) was added to the above solution. After 30 min, iodomethane (0.37 mL, 6.0 mmol) was added in one portion and the resulting mixture was slowly warmed to room temperature and
stirred for 2 h before it was quenched with water, and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo to afford a yellow oil, which was purified by column chromatography (hexanes/ethyl acetate = 10:1) to afford N-methyl indole (1.23 g, 2.85 mmol) as a colorless oil in 95% yield over 2 steps.

1H NMR (400 MHz, CDCl₃): δ 7.95 – 7.86 (m, 2H), 7.77 – 7.76 (m, 3H), 7.31 (d, J = 5.8 Hz, 1H), 7.25 – 7.20 (m, 1H), 7.16 – 7.11 (m, 1H), 4.15 (t, J = 6.7 Hz, 2H), 4.00 – 3.88 (m, 2H), 3.76 (s, 3H), 3.28 – 3.20 (m, 2H), 3.20 – 3.12 (m, 2H), 2.77 – 2.63 (m, 2H), 1.64 (dt, J = 14.6 Hz, 7.0 Hz, 2H), 1.46 – 1.34 (m, 2H), 0.99 – 0.92 (m, 3H).

13C NMR (101 MHz, CDCl₃): δ 172.61, 168.48, 136.99, 135.98, 134.03, 132.40, 127.66, 123.33, 121.39, 119.42, 118.54, 109.04, 108.14, 64.85, 38.91, 34.75, 30.78, 29.92, 29.87, 24.02, 20.03, 19.29, 13.91.

IR (neat, cm⁻¹): ν 2957, 1770, 1712, 1470, 1396, 1258, 1171, 1024.

HRMS (ESI) m/z Calcd for C₂₆H₂₈N₂O₄Na⁺: 455.1914, Found 455.1934.

![Chemical structure](image)

4-Methyl-N-(2-(1-methyl-2-(3-oxopropyl)-1H-indol-3-yl)ethyl)benzenesulfonamide (86h3)

To a solution of phthalimide (1.23 g, 2.85 mmol) in absolute EtOH (5 mL) was added anhydrous hydrazine (1.0 mL, 28.5 mmol). The resulting mixture was heated to 60 °C for 1 h before it was cooled to room temperature, filtered through a pad of celite. The filtrate was concentrated in vacuo to give amine as a crude oil, which was used in the next step without purification. To a solution of crude amine in anhydrous dichloromethane was added triethylamine (0.8 mL, 5.7 mmol) and TsCl (0.77 g, 3.42 mmol) at 0 °C. The resulting mixture was stirred at room
temperature for 10 h before quenched with an aqueous solution of NH₄Cl. The aqueous phase was extracted with ethyl acetate, and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo to give an oil, which was purified by column chromatography (hexanes/ethyl acetate=5:1) to afford sulfonamide (1.05 g, 2.3 mmol) as a colorless oil in 81% yield over 2 steps.

1H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 7.9 Hz, 1H), 7.23 (d, J = 6.6 Hz, 2H), 7.21 – 7.15 (m, 2H), 7.07 – 7.00 (m, 1H), 4.45 (t, J = 6.2 Hz, 1H), 4.07 (t, J = 6.7 Hz, 2H), 3.67 (s, 3H), 3.21 (q, J = 6.7 Hz, 2H), 3.08 – 3.03 (m, 2H), 2.95 (t, J = 6.8 Hz, 2H), 2.56 – 2.50 (m, 2H), 2.40 (s, 3H), 1.62 – 1.53 (m, 2H), 1.32 (dt, J = 14.7 Hz, 7.5 Hz, 2H), 0.90 (t, J = 7.4 Hz, 3H).

13C NMR (101 MHz, CDCl₃) δ 172.44, 143.12, 136.91, 136.13, 129.72, 129.57, 127.14, 127.03, 121.30, 119.21, 118.06, 109.00, 107.36, 64.73, 43.58, 34.39, 30.59, 29.73, 29.67, 24.97, 21.53, 21.50, 19.74, 19.11, 13.75.

IR (neat, cm⁻¹): ν 3290, 2958, 2872, 1731, 1471, 1330, 1160.

N-(2-(2-(But-3-ynyl)-1-methyl-1H-indol-3-yl)ethyl)-4-methylbenzenesulfonamide (86h)

Ester (1.05 g, 2.3 mmol) was dissolved in anhydrous dichloromethane and the solution was cooled to -78 °C before the addition of the solution of DIBAL-H (1.0 M in hexane, 2.76 mL, 2.76 mmol) dropwise. The reaction mixture was stirred for 1 h at -78 °C before it was treated with saturated aqueous solution of Rochelle salt (5.0 mL) at -78 °C. After being stirred at room temperature for 1 h, the layers were separated. The aqueous layer was extracted with ether, and...
the combined organic layers were washed with water and brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo to produce aldehyde as a yellow oil, which was used for the next step without further purification. To a solution of aldehyde in anhydrous MeOH (5 mL) was added a solution of Ohira-Bestmann Reagent (1.03 g, 5.75 mmol) in MeOH (5 mL) and K₂CO₃ (0.96 g, 6.9 mmol) at 0 °C. The resulting mixture was stirred at room temperature for 3 h before quenched with an aqueous solution of NH₄Cl. The aqueous phase was extracted with ethyl acetate, and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo to give an oil, which was purified by column chromatography (hexanes/ethyl acetate = 5:1) to afford alkyne (0.70 g, 1.8 mmol) as a white solid in 80% yield over 2 steps:

1H NMR (400 MHz, CDCl₃): δ 7.65 – 7.59 (m, 2H), 7.37 – 7.32 (m, 1H), 7.27 – 7.20 (m, 3H), 7.17 (ddd, J = 8.2 Hz, 7.0 Hz, 1.1 Hz, 1H), 7.02 (ddd, J = 8.0 Hz, 7.0 Hz, 1.1 Hz, 1H), 4.35 (t, J = 6.1 Hz, 1H), 3.68 (s, 3H), 3.23 (q, J = 6.7 Hz, 2H), 3.02 – 2.91 (m, 4H), 2.48 – 2.34 (m, 5H), 1.96 (t, J = 2.7 Hz, 1H).

13C NMR (101 MHz, CDCl₃) δ 143.41, 137.04, 136.90, 136.28, 129.78, 127.19, 127.16, 121.54, 119.39, 118.25, 109.20, 107.59, 82.96, 69.98, 43.63, 30.05, 30.00, 25.18, 23.64, 21.70, 21.67, 19.60.

m.p. 160–161 °C.

IR (neat, cm⁻¹): ν 3287, 2924, 1471, 1324, 1158, 1093.

HRMS (ESI) m/z Calcd for C₂₂H₂₄N₂NaO₂S⁺: 403.1450 , Found 403.1461.

Au(I)-catalyzed tandem cyclization for the synthesis of akuammilines

![Diagram](https://example.com/diagram.png)

The catalyst solution was first prepared by addition of Ph₃PAuCl (2.5 mg, 0.005 mmol) to a suspension of AgSbF₆ (1.7 mg, 0.005 mmol) in anhydrous toluene (0.50 mL) at room
temperature. The suspension was stirred for 20 min at room temperature under Argon atmosphere. The resulting catalyst solution was then added to a solution of substrate (41.2 mg, 0.10 mmol) in anhydrous toluene (0.50 mL) dropwise at room temperature. The resulting mixture was heated at 60 °C until TLC showed that there was no starting material left (about 1-2 h). The reaction mixture was cooled to room temperature, filtered through a short pad of silica gel. The filtrate was concentrated in vacuo, and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to afford cyclized product (23.7 mg, 0.083 mmol) as a colorless oil in 75% yield.

\[^1H \text{ NMR} (400 \text{ MHz, CDCl}_3): \delta 7.68 \text{ (s, 1H), } 7.23 - 7.12 \text{ (m, 2H), } 7.00 \text{ (t, } J = 7.3 \text{ Hz, 1H), } 5.74 - 5.70 \text{ (m, 1H), } 5.60 \text{ (d, } J = 10.0 \text{ Hz, 1H), } 3.53 \text{ (t, } J = 9.1 \text{ Hz, 2H), } 3.00 \text{ (dt, } J = 17.3 \text{ Hz, 8.7 Hz, 1H), } 2.25 \text{ (dd, } J = 13.1 \text{ Hz, 5.9 Hz, 2H), } 2.16 - 2.11 \text{ (m, 1H), } 2.07 - 1.97 \text{ (m, 2H), } 1.57 \text{ (s, 9H), } 1.45 \text{ (s, 9H).} \]

\[^{13}C \text{ NMR} (101 \text{ MHz, CDCl}_3): \delta 142.29, 134.20, 128.15, 128.12, 126.40, 123.17, 122.27, 118.03, 117.95, 117.88, 117.81, 117.61, 87.70, 81.31, 76.75, 56.61, 56.57, 46.27, 33.93, 29.91, 29.58, 29.54, 29.41, 28.76, 28.63, 28.50, 27.99, 27.93, 27.88, 23.21, 22.91. \]

\[\text{IR (neat, cm}^{-1}\text{): } \nu 2973, 2927, 1708, 1477, 1376, 1172, 1144. \]

\[\text{HRMS (ESI) m/z calcd for C}_{23}\text{H}_{32}\text{N}_{2}\text{NaO}_{4}^{+}: 435.2254 \text{, Found: 435.2266.} \]

8,16-Di-tert-butyl 13-phenyl-8,16-diazatetracyclo[7.4.3.0^{1,9}.0^{2,7}]hexadeca-2,4,6,12-tetraene-8,16-dicarboxylate (85b)

A colorless oil was obtained in 84% yield by following general procedure.

\[^1H \text{ NMR} (500 \text{ MHz, CDCl}_3): \delta 7.28 - 7.21 \text{ (m, 3H), } 7.14 - 7.05 \text{ (m, 1H), } 6.97 - 6.92 \text{ (m, 2H), } 6.69 \text{ (t, } J = 7.3 \text{ Hz, 1H), } 6.20 \text{ (d, } J = 6.7 \text{ Hz, 1H), } 5.60 \text{ (d, } J = 3.9 \text{ Hz, 1H), } 3.82 - 3.78 \text{ (m, 1H),} \]
3.65 – 3.55 (m, 1H), 2.92 – 2.82 (m, 1H), 2.47 (dd, $J = 12.3$ Hz, 6.1 Hz, 2H), 2.35 (td, $J = 12.0$ Hz, 8.3 Hz, 1H), 2.26 (d, $J = 18.5$ Hz, 1H), 1.92 – 1.83 (m, 1H), 1.63 (s, 9H), 1.43 (s, 9H).

13C NMR (101 MHz, CDCl$_3$) δ 141.76, 141.17, 139.40, 131.52, 130.41, 129.94, 129.65, 128.10, 127.74, 126.98, 124.67, 122.36, 118.14, 110.31, 88.28, 81.30, 46.12, 33.21, 30.04, 28.89, 28.75, 24.00.

HRMS (ESI) m/z Calcd for C$_{30}$H$_{36}$N$_2$NaO$_4$: 511.2567, Found 511.2577.

1H NMR (500 MHz, CDCl$_3$): δ 7.50 (d, $J = 8.3$ Hz, 2H), 7.20 (d, $J = 7.7$ Hz, 1H), 7.11 (d, $J = 8.0$ Hz, 2H), 7.09 – 7.04 (m, 1H), 6.98 (td, $J = 7.8$ Hz, 1.5 Hz, 1H), 6.93 (dt, $J = 7.4$ Hz, 3.7 Hz, 1H), 5.70 – 5.62 (m, 1H), 5.49 (dt, $J = 9.9$ Hz, 1.9 Hz, 1H), 3.83 – 3.71 (m, 2H), 2.92 (dd, $J = 16.2$ Hz, 10.2 Hz, 1H), 2.42 – 2.31 (m, 4H), 2.26 – 2.15 (m, 1H), 2.15 – 2.08 (m, 2H), 2.01 – 1.87 (m, 1H), 1.61 (s, 9H).

13C NMR (101 MHz, CDCl$_3$) δ 142.70, 141.90, 137.62, 132.88, 129.29, 128.07, 127.96, 127.03, 126.94, 125.83, 123.79, 121.69, 118.14, 89.99, 82.26, 58.02, 48.55, 48.49, 33.07, 31.40, 31.36, 31.30, 29.91, 28.38, 23.63, 21.60.

IR (neat, cm$^{-1}$): v 2924, 1697, 1477, 1365, 1161, 1098, 1043.

HRMS (ESI) m/z Calcd for C$_{26}$H$_{30}$N$_2$NaO$_4$S$: 489.1819, Found 489.1823
tert-Butyl 16-(4-nitrobenzenesulfonyl)-8,16-diazatetracyclo[7.4.3.01,9.02,7]hexadeca-2,4,6,12-tetraene-8-carboxylate (85d)

A colorless oil was obtained in 88% yield by following general procedure.

1H NMR (500 MHz, CDCl₃): δ 7.91 (s, 1H), 7.62 (dd, J = 11.4 Hz, 3.8 Hz, 1H), 7.60 – 7.49 (m, 3H), 7.20 (dd, J = 7.3 Hz, 4.3 Hz, 2.8 Hz, 2H), 7.07 (t, J = 7.4 Hz, 1H), 5.70 – 5.65 (m, 1H), 5.55 (d, J = 10.0 Hz, 1H), 3.93 – 3.82 (m, 1H), 3.66 (d, J = 13.8 Hz, 1H), 3.14 (m, 1H), 2.46 (dd, J = 12.7 Hz, 5.7 Hz, 1H), 2.24 (td, J = 12.1 Hz, 8.2 Hz, 1H), 2.11 – 2.07 (m, 2H), 1.95 – 1.86 (m, 1H), 1.56 (s, 9H).

13C NMR (101 MHz, CDCl₃) δ 151.97, 148.34, 141.89, 135.06, 133.19, 133.11, 131.74, 131.15, 128.67, 128.35, 125.74, 124.12, 122.29, 117.99, 90.61, 82.65, 58.54, 49.55, 32.80, 31.80, 29.91, 28.38, 28.26, 23.41, 22.87, 14.35.

IR (neat, cm⁻¹): ν 2925, 1711, 1544, 1366, 1164, 1035.

HRMS (ESI) m/z Calcd for C₂₅H₂₇N₃NaO₆S⁺: 520.1513, Found 520.1517.

tert-Butyl 16-acetyl-8,16-diazatetracyclo[7.4.3.01,9.02,7]hexadeca-2,4,6,12-tetraene-8-carboxylate (85e)

A colorless oil was obtained in 80% yield by following general procedure.

1H NMR (400 MHz, C₆D₆, 60°C): δ 8.41 – 8.11 (m, 1H), 7.10 – 7.01 (m, 1H), 6.92 – 6.79 (m, 2H), 5.55 – 5.41 (m, 1H), 5.36 (d, J = 10.1 Hz, 1H), 3.69 (d, J = 14.3 Hz, 1H), 2.80 – 2.56 (m, 2H), 2.34 (t, J = 14.4 Hz, 1H), 1.87 (dd, J = 12.3 Hz, 7.4 Hz, 2H), 1.63 – 1.52 (m, 12H).

13C NMR (101 MHz, CDCl₃) δ 169.31, 143.17, 134.44, 134.30, 132.88, 132.20, 129.50, 129.39, 128.61, 128.34, 128.02, 126.41, 124.88, 124.63, 123.06, 122.37, 122.10, 119.44, 117.47, 88.15, 81
tert-Butyl 8,16-diazatetracyclo[7.4.3.0\(^{1,9}.0^{2,7}\)]hexadeca-2,4,6,12-tetraene-16-carboxylate (85f)

A colorless oil was obtained in 87% yield by following general procedure.

\(^1\)H NMR (400 MHz, Toluene-\text{d}_8, 95°C) \(\delta\) 6.90 – 6.82 (m, 2H), 6.62 (t, \(J = 7.4\) Hz, 1H), 6.35 (d, \(J = 7.6\) Hz, 1H), 5.58 – 5.45 (m, 3H), 3.37 (s, 1H), 3.37 (t, \(J = 8.2\) Hz, 1H), 3.10 – 3.02 (m, 1H), 2.80 – 2.68 (br, 1H), 2.23 (ddd, \(J = 16.3\) Hz, 11.1 Hz, 5.1 Hz, 1H), 2.03 (ddd, \(J = 12.4\) Hz, 6.8 Hz, 2.2 Hz, 1H), 1.88 – 1.61 (m, 4H), 1.37 (s, 9H).

\(^{13}\)C NMR (101 MHz, CD\(_3\)OD) \(\delta\) 155.72, 155.68, 150.35, 149.86, 133.85, 133.59, 131.21, 131.20, 129.33, 126.66, 126.58, 124.05, 123.95, 123.92, 120.21, 120.19, 111.14, 111.02, 87.28, 86.91, 82.09, 80.97, 58.22, 57.08, 47.43, 47.38, 47.28, 35.33, 34.89, 30.28, 30.25, 29.30, 29.26, 29.03, 28.90, 23.78.

IR (neat, cm\(^{-1}\)): \(\nu\) 3377, 2972, 2927, 1681, 1609, 1365, 1254, 1169, 951.

HRMS (ESI) m/z Calcd for C\(_{21}\)H\(_{26}\)N\(_2\)O\(_3\): 377.1835, Found 377.1846.

1-{8,16-diazatetracyclo[7.4.3.0\(^{1,9}.0^{2,7}\)]hexadeca-2,4,6,12-tetraen-16-yl}ethan-1-one (85g)

A colorless oil was obtained in 83% yield by following general procedure.
H NMR (500 MHz, CDCl₃): δ 7.16 – 7.03 (m, 2H), 6.75 (dd, J = 7.4, 6.5 Hz, 1H), 6.62 (d, J = 7.7, 1H), 5.79 (s, 1H), 5.76 – 5.59 (m, 2H), 3.59 (t, J = 8.5 Hz, 1H), 3.29 – 3.17 (m, 1H), 2.92 (dd, J = 13.6 Hz, 3.2 Hz, 1H), 2.45 (dd, J = 12.7 Hz, 5.5 Hz, 1H), 2.41 – 2.26 (m, 2H), 2.23 – 2.11 (m, 1H), 1.97 (s, 3H), 1.78 – 1.67 (m, 1H).

13C NMR (101 MHz, CDCl₃): δ 170.56, 149.24, 131.90, 129.60, 128.58, 126.37, 123.04, 119.17, 110.61, 87.38, 55.46, 47.58, 34.49, 29.92, 27.70, 27.66, 23.91, 22.87.

IR (neat, cm⁻¹): ν 3387, 2924, 1660, 1457, 1401, 1311, 1127 cm⁻¹; **HRMS** (ESI) m/z Calcd for C₁₆H₁₉N₂O⁺: 255.1492, Found 255.1483.

8-methyl-16-(4-methylbenzenesulfonyl)-8,16-diazatetracyclo[7.4.3.0¹.⁹.0².⁷]hexadeca-2,4,6,12-tetraene (85h)

A colorless oil was obtained in 86% yield by following general procedure.

H NMR (400 MHz, CDCl₃): δ 7.63 – 7.59 (m, 2H), 7.19 (d, J = 8.0 Hz, 2H), 7.12 (td, J = 7.7 Hz, 1.3Hz, 1H), 7.02 (dd, J = 7.2 Hz, 0.9 Hz, 1H), 6.69 (td, J = 7.4 Hz, 0.9 Hz, 1H), 6.36 (d, J = 7.8 Hz, 1H), 5.73 – 5.61 (m, 2H), 3.49 (td, J = 7.7 Hz, 3.8 Hz, 1H), 3.15 (d, J = 6.5 Hz, 1H), 3.01 (s, 3H), 3.00 – 2.92 (m, 1H), 2.38 (s, 3H), 2.36 – 2.29 (m, 1H), 2.10 – 1.95 (m, 4H) ppm;

13C NMR (101 MHz, CDCl₃): δ 149.45, 142.89, 138.22, 131.22, 129.54, 129.49, 128.80, 127.02, 125.28, 122.00, 118.05, 106.57, 93.71, 57.62, 48.10, 34.80, 29.73, 29.70, 28.18, 22.65, 21.64, 21.62.

IR (neat, cm⁻¹): ν 2923, 1605, 1491, 1332, 1153, 1094, 920.

HRMS (ESI) m/z Calcd for C₂₂H₂₄N₂Na₂O₂S⁺: 403.1450, Found 403.1464.
To a solution of the substrate 85f (31 mg, 0.1 mmol) in anhydrous dichloromethane (0.5 mL) was added pyridine (40 μL, 0.5 mmol) and a solution of triphosgene (89 mg, 0.3 mmol) in dichloromethane (0.2 mL) at -10 °C. The reaction was slowly warmed to room temperature and stirred for 30 min. MeOH (40 μL, 1 mmol) was added to the above solution and the reaction was stirred for another 2 h before the solvents were removed in vacuo to give a crude oil, which was purified by column chromatography (petroleum ether/ethyl acetate=10:1) to produce 95 (29.6 mg, 0.08 mmol) as a colorless oil in 80% yield.

\begin{align*}
\text{1H NMR} (400 MHz, C_6D_6, 60 ^\circ C): & \delta 8.16 (d, J = 7.6 Hz, 1H), 7.12 – 7.05 (m, 1H), 6.97 – 6.83 (m, 2H), 5.59 – 5.51 (m, 1H), 5.47 (d, J = 10.0 Hz, 1H), 3.64 (s, 3H), 3.50 – 3.47 (m, 1H), 3.18 – 2.98 (m, 2H), 2.42 – 2.35 (m, 1H), 2.15 – 1.95 (m, 1H), 2.06 – 1.96 (m, 1H), 1.90 – 1.78 (m, 1H), 1.74 – 1.63 (m, 1H), 1.42 (s, 9H). \\
\text{13C NMR} (101 MHz, C_6D_6, 60 ^\circ C): & \delta 154.54, 153.76, 142.55, 135.21, 129.01, 128.89, 128.27, 127.04, 123.63, 122.61, 117.82, 89.34, 79.72, 56.92, 52.35, 52.29, 47.13, 35.35, 28.94, 28.73, 23.53. \\
\text{IR} (\text{neat, cm}^{-1}): & \nu 2927, 1708, 1479, 1439, 1378, 1242, 1169, 752. \\
\text{HRMS} (\text{ESI}) m/z & \text{calcd for C}_{21}H_{27}N_2O_4^+: 371.1965, \text{Found: 371.1958.}
\end{align*}

2.8 References

15. (a) Toullec, P. Y.; Genin, E.; Leseurre, L.; Genet, J. P.; Michelet, V. Angew. Chem., Int.

Chapter 3

Construction of Bridged Tetracyclic Indolenine Skeleton through
Gold Carbene-Catalyzed Desilylative Cyclization

3.1 Background of Bridged Tetracyclic Indolenine Alkaloids

Bridged tetracyclic indolenine skeletons 1 (Figure 3.1) are prevalent core motifs in several families of indole alkaloids, many of which possess interesting biological activities. (E)-16-formyl-5α-methoxy-strictamine, scholarisin VII, perakine N₄-oxide, raucaffrinoline N₄-oxide, and vinorine N₄-oxide exhibit significant cytotoxic and anti-inflammatory activity. Strictamine was reported to inhibit herpes simplex virus (HSV) and adenovirus (ADV).

![Diagram of Bridged Indolenine Containing Natural Products](image)

Figure 3.1 Representative Bridged Indolenine-Containing Natural Products
3.2 Reported Methodology of Construction of Indolenine Skeleton

3.2.1 Oxidation of Indole or Indoline Derivative

As shown in Scheme 3.1, oxidation of substituted indole 2 with t-BuOCl afforded 3-chloro-indolenine 3 in 93% yield. For indoline derivative 4, indolenine 5 was obtained in 76% yield when treated with Pb(OAc)$_4$.

![Scheme 3.1 Formation of Indolenine by Oxidation](image)

3.2.2 Palladium-Catalyzed Allylation or Benzylation

Rawal and co-workers reported the palladium-catalyzed decarboxylative C3-allylations and -benzylations of indoles 6, 7 to indolenines 8, 9 respectively (Scheme 3.2). For both intermolecular and intramolecular benzylation reactions, boron Lewis acids, such as triethylborane, were added to accelerate the disruption of aromaticity in the formation of the corresponding η3-palladium complexes 12.
Scheme 3.2 Pd-Catalyzed Decarboxylative Allylation and Benzylation
3.2.3 Interrupted Fischer Indolization

Garg and co-workers reported the first total synthesis of picrinine in 2014. One of the key steps is the formation of indolenine intermediate 17 (Scheme 3.3) through interrupted Fischer indolization of hydrazine 15 and ketone 16 under acidic condition.

![Scheme 3.3 Interrupted Fischer Indolization Applied to Total Synthesis of Picrinine](image)

3.2.4 Others

The intramolecular cyclization of compound 18 occurred in the presence of Ac₂O and HCl (g) to give indolenine 19 in 78% yield with >2:1 diastereomeric ratio at C17 (Scheme 3.4). Activation of the aldehyde moiety of 18 by acylium ion 20, which was generated from Ac₂O and HCl (g), facilitated the nucleophilic addition process afforded the cyclized product 19 after aqueous workup.
Bridged indolenine 26 was synthesized by intramolecular cyclization of 25b, which was prepared from base-mediated coupling of 23 and 24 (Scheme 3.5). During the cyclization process, tosyl group was migrated from N of indole to O in the presence of $KOT-Bu$ and the following substitution reaction afforded the cyclized indolenine 26.
Scheme 3.5 Preparation of Indolenine by Base-Mediated Cyclization

For all these reported methods, either limited reagents, tedious steps of substrate preparation or harsh reaction conditions limit their applications to complex molecular syntheses. Thus, the development of new strategies for the convenient construction of bridged indolenine skeleton is in great demand.

3.3 Initial Attempt to Construct Bridged Tetracyclic Indolenine

We started the study of construction of bridged tetracyclic indolenine from the cyclization reactions of alkynylindoles 30-32 under the catalysis of Au(I) cation (Figure 3.2).
3.3.1 Substrate Preparation

The synthesis of alkynylindole 30 (Scheme 3.6) was initiated by condensation of tryptamine 33 and aldehyde 34a, and trifluoroacetic acid-mediated Pictet-Spengler reaction afforded the tetrahydrocarboline 35a in 44% yield.\(^\text{14}\) We reasoned that the low yield was due to poor solubility of tryptamine 33 in ethyl acetate and lability of the alkynal 34a under acidic condition. Thus, aldehyde 34a was replaced by silylated alkynal 34b. In the presence of trifluoroacetic acid, 34b reacted with tryptamine 33 in ethyl acetate to afford cyclized amine 35b in 81% yield. Removal of TMS by TBAF was quantitative. Acylation of the secondary amine 35b with TFAA in the presence of NEt\(_3\) afforded 30 in 74% yield.

![Scheme 3.6 Preparation of 30](image)

To prepare 31 and 32, D-tryptophan methyl ester 36 was condensed with aldehyde 34a under acidic condition, and Pictet-Spengler cyclization of the imine generated in situ afforded the
tetrahydrocarboline 37 in 64% yield with 2:1 diastereoselectivity (Scheme 3.7). These two diastereomers cannot be separated by flash chromatography due to their similar polarity. Acylation of 37 with TFAA in the presence of NEt₃ gave cis-tetrahydrocarboline 31 in 50% isolated yield and trans-tetrahydrocarboline 32 in 13% isolated yield.

![Scheme 3.7 Preparation of 31, 32](image)

3.3.2 Gold-Catalyzed Cyclization

Tetrahydrocarboline 30 was subjected to 10 mol% Ph₃PAuBF₄ in DCE at room temperature. Enamine 38 and ketone 39 were obtained in 36% and 53% yields respectively (Equation 1, Scheme 3.8). However, no desired indolenine was formed. When diastereomers 31, 32 were subjected to 10 mol% Ph₃PAuSbF₆ in toluene, no reaction occurred at room temperature. When the temperature of both reactions was increased to 85 °C, cis-tetrahydrocarboline 31 was converted to enamine 40 in 82% yield (Equation 2, Scheme 3.8) while trans 32 yielded bridged indolenine 41 and enamine 42 in 70% and 30% yields respectively (Equation 3, Scheme 3.8).
3.4 Construction of Bridged Tetracyclic Indolenine through Gold-Catalyzed Desilylative Cyclization

3.4.1 Background of Metal-Catalyzed Desilylative Cyclization of Acetylenic Silyl Enol Ether

The transition metal-catalyzed desilylative cyclization through nucleophilic addition of silyl enol ether to alkyne is a powerful method for the construction of carbocyclic compounds. Until now, various metal catalysts, such as mercuric, palladium, tungsten, rhodium, rhenium, platinum, silver and gold, have been reported. Especially for gold catalysts, the soft Lewis acidic nature allows conversion of acetylenic silyl enol ethers into rigid frameworks under mild conditions in the presence of silyl scavengers.

Toste and co-workers reported a Au(I)-catalyzed cyclization of silyl enol ethers (Scheme 3.9). In the presence of water or MeOH as silyl scavengers, enynes 43 were cyclized to compounds 44 in 83-94% yield under Ph3PAuBF4 catalysis in DCM at 40 °C. TBS and TIPS...
enol ethers were used as "frozen enol equivalents". Both 5 and 6-member rings were formed under mild conditions.

Scheme 3.9 Au(I)-Catalyzed Desilylative Cyclization

This methodology has been applied to the total synthesis of (+)-lycopladine A 47\(^{16}\) and (+)-fawcettimine 50\(^{17}\) (Scheme 3.10). Isolated from Lycopodium complantum, 47 shows modest but selective cytotoxicity against murine lymphoma L1210 cells.\(^{18}\) Iodoacetylene 45 underwent Au(I)-catalyzed 5-endo-dig cyclization to give 46 in 95% yield and further modifications in 3 steps furnished the total synthesis of (+)-lycopladine A (47). The terminal alkene moiety of enyne 48 was tolerated in the desilylative cyclization of 48 to compound 49, which was efficiently converted to (+)-fawcettimine 50 over 7 steps.

Scheme 3.10 Total Syntheses of (+)-lycopladine A and (+)-fawcettimine
Barriault and co-workers reported a Au(I)-catalyzed synthesis of fused carbocycles 52, 53 (Table 3.1). The regioselectivity can be modulated by the steric and electronic properties of Au(I) complexes. 5-exo-dig process was most favored for [L9AuNCMe]SbF₆-catalyzed cyclization while 6-endo-dig process for [L3AuNCMe]SbF₆ catalysis.

Table 3.1 Au(I)-Catalyzed Cyclization Reactions

<table>
<thead>
<tr>
<th>Entry</th>
<th>LAuX</th>
<th>Ratio (52/53/54)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph₃PAuSbF₆</td>
<td>22:3:75</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>Ph₃PAuBF₄</td>
<td>43:15:58</td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td>Et₃PAuSbF₆</td>
<td>66:9:25</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>(4-CF₃C₆H₄)₃PAuBF₄</td>
<td>50:15:35</td>
<td>93</td>
</tr>
<tr>
<td>5</td>
<td>[L1AuNCMe]SbF₆</td>
<td>64:36:0</td>
<td>87</td>
</tr>
<tr>
<td>6</td>
<td>[L2AuNCMe]SbF₆</td>
<td>37:63:0</td>
<td>89</td>
</tr>
<tr>
<td>7</td>
<td>[L3AuNCMe]SbF₆</td>
<td>29:71:0</td>
<td>82</td>
</tr>
<tr>
<td>8</td>
<td>[L4AuNCMe]SbF₆</td>
<td>38:62:0</td>
<td>86</td>
</tr>
</tbody>
</table>
Shen and co-workers reported Au(I)-catalyzed cyclization reactions of silyl ketene amides 55 and 57 (Scheme 3.11).20 Both 5-\textit{exo-dig} and 6-\textit{endo-dig} processes were observed for desilylative cyclizations in the presence of MeOH as a silyl scavenger.

\textbf{Scheme 3.11} Au(I)-Catalyzed Cyclizations of Silyl Ketene Amides

Sawamura and co-workers reported the construction of highly strained methylenecycloheptane and methylenecyclooctane frameworks through cyclizations of acetylenic silyl enol ethers catalyzed by triethynylphosphine (L3, L4)-coordinated gold complexes (Scheme 3.12).21 \textit{t}-BuOH was used as the silyl scavenger and additon of 4 Å MS minimized the side reaction.
Scheme 3.12 Au(I)-Catalyzed Formation of Bridged Cycloheptanes and Cyclooctanes

3.4.2 Proposed Approach

Based on our initial study of construction of indolenine and the reported gold-catalyzed desilylative reactions, we proposed an approach to the bridged indolenine 66 under the catalysis of noble metal catalysts (Scheme 3.13). Installation of a blocking group (BG) was anticipated to minimize the formation of C-N product. TBS (t-butyldimethylsilyl) group was chosen considering its bulkiness and feasible cleavage with alcohol. Based on the results of MM2 energy minimization calculation, the alkynyl chain of alkynylindole 62 was found to be at pseudoaxial position. Upon activation by catalyst (gold or platinum), 62 might be cyclized to intermediate 64, which would undergo removal of blocking group of N^in and proto-deauration to give the tetracyclic indolenine 66.
3.4.3 Preparation of N-silyl Indole Substrate

As shown in Scheme 3.14, TBS was installed on the N of indole under basic condition in 70% yield (85% based on recovery of starting material). Other bases, such as NaHMDS, LiHDMS and LDA, gave lower conversions and yields.
3.4.4 Gold-Catalyzed Desilylative Approach to Tetracyclic Indolenine

Catalyst Screening

N-TBS indole 62 was tested for cyclization using various catalysts in the presence of methanol as silyl scavenger (Table 3.2).

Table 3.2 Screening of Au-Catalyzed Desilylative Cyclization

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Catalyst</th>
<th>HA</th>
<th>Solvent</th>
<th>Temp °C</th>
<th>Consumption of Substrate (%)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>Ph₃PAuBF₄</td>
<td>MeOH</td>
<td>DCE</td>
<td>25</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>TBS</td>
<td>AuCl₃</td>
<td>MeOH</td>
<td>DCE</td>
<td>95</td>
<td>51</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>TBS</td>
<td>PtCl₂</td>
<td>MeOH</td>
<td>DCE</td>
<td>95</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>TBS</td>
<td>(Ph₃PAu)₃OBF₄</td>
<td>MeOH</td>
<td>DCE</td>
<td>95</td>
<td>45</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>TBS</td>
<td>Ph₃PAuNTf₂</td>
<td>MeOH</td>
<td>DCE</td>
<td>95</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>TBS</td>
<td>Ph₃PAuNTf₂</td>
<td>i-PrOH</td>
<td>DCE</td>
<td>95</td>
<td>97</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>TBS</td>
<td>IMesAuBF₄</td>
<td>MeOH</td>
<td>DCE</td>
<td>95</td>
<td>52</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>TBS</td>
<td>IPrAuBF₄</td>
<td>MeOH</td>
<td>DCE</td>
<td>95</td>
<td>82</td>
<td>67</td>
</tr>
<tr>
<td>9</td>
<td>TBS</td>
<td>IPrAuCl</td>
<td>MeOH</td>
<td>DCE</td>
<td>95</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>TBS</td>
<td>IPrAuOTf</td>
<td>MeOH</td>
<td>DCE</td>
<td>95</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>TBS</td>
<td>IPrAuSbF₆</td>
<td>MeOH</td>
<td>DCE</td>
<td>95</td>
<td>43</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>TBS</td>
<td>IPrAuBF₄</td>
<td>i-PrOH</td>
<td>DCE</td>
<td>95</td>
<td>64</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>TBS</td>
<td>IPrAuBF₄</td>
<td>EtOH</td>
<td>DCE</td>
<td>95</td>
<td>60</td>
<td>35</td>
</tr>
<tr>
<td>14</td>
<td>TBS</td>
<td>IPrAuBF₄</td>
<td>H₂O</td>
<td>DCE</td>
<td>95</td>
<td>63</td>
<td>27</td>
</tr>
<tr>
<td>15</td>
<td>TBS</td>
<td>IPrAuBF₄</td>
<td>4-NO₂-PhOH</td>
<td>DCE</td>
<td>95</td>
<td>60</td>
<td>22</td>
</tr>
<tr>
<td>16</td>
<td>TBS</td>
<td>IPrAuBF₄</td>
<td>TES</td>
<td>DCE</td>
<td>95</td>
<td>100</td>
<td>12</td>
</tr>
</tbody>
</table>
1 eq DMAP was added as internal standard before taking NMR. Conversion and yield were calculated based on NMR integration.

5 mol% catalyst was used.

40% 38, 25% 39.

13% 38, 44% 39.

After stirring at 95 °C in DCE for 12 h, 6% yield of desired indolenine 66 (entry 2) was obtained under the catalysis of AuCl₃ and 49% of starting material 62 remained unreacted. PtCl₂ catalysis led to partial decomposition and no product 66 was found (entry 3). When trigoldoxonium salt was used, 25% yield of 66 was obtained (entry 4). C-N cyclization product 38 and ketone 39, instead of desired indolenine 66, were generated under the catalysis of Ph₃PAuNTf₂ (entry 5). Probably silyl group was removed first and either nucleophilic addition of N-indole or methanol to alkyne under the catalysis of gold gave rise to the side products 38 and 39. Replacement of MeOH with i-PrOH made no difference to the results (entry 6). Various other phosphine-gold catalysts were screened but none gave satisfactory results.

Gold carbene complexes have been reported to show unique steric and electronic attributes compared to phosphine ligands.²² IMes and IPr ligands were investigated for the proposed desilylative cyclization. IMesAuBF₄ gave 52% consumption of starting material and 27% yield of product 66 (entry 7). The other gold-carbene catalyst, IPrAuBF₄, afforded 67% yield and 82% yield based on recovered starting material (entry 8). Compared to IPrAuCl, IMesAuCl is more hydroscopic and the moisture might be involved into the reaction which could give rise to a lower yield (entry 7 versus 8).

Counterions Screening

Without AgBF₄, IPrAuCl itself did not catalyze the formation of indolenine and only 13% decomposition occurred at 95 °C in the presence of MeOH (entry 9), which underlined the
crucial role of silver salt. Counterions OTf$^-$ and SbF$_6^-$ gave little desired product 66, which might be due to the weak stability of gold cations under reaction conditions (entries 10 and 11). Of all these counterions, BF$_4^-$ afforded the best result (entry 8).

Silyl Scavenger Screening

When MeOH was replaced by bulky i-PrOH as the silyl scavenger, conversion of substrate 62 and yield of product 66 were significantly lower than those of MeOH (entry 12 versus 8). EtOH afforded 58% yield based on recovery of 40% unconsumed s.m. (entry 13). Lower yield and lower conversion were obtained in the presence of water which could be rationalized by the water-induced decomposition and precipitation of gold-carbene catalyst (entry 14 versus 8). Acidic 4-nitro-phenol gave similar results as i-PrOH (entry 15).

Silyl Group Screening

TBS group was proved to be stable under gold carbene-catalyzed reaction condition (entry 9), and complete conversion of substrate 62 was very difficult (entry 8). Extended reaction time ensured the consumption of all the starting material 62, but the yield of indolenine 69 decreased slightly to 60%. Labile N-TES indole 67 was tested for the cyclization. No reaction occurred at room temperature. At 95 °C, 66 was obtained in only 12% yield and no starting material was recovered (entry 16 versus 8).

Based on all these experimental data, TBS was found to be the optimal blocking group, which is stable under the reaction condition and can be efficiently removed by the silyl scavenger MeOH during the process of cyclization under the catalysis of IPrAuBF$_4$ in DCE at 95 °C (entry 8).
3.4.5 Substrate Scope

With the optimized reaction condition in hand, we set out to explore the scope of this desilylative cyclization. Substrates \textbf{68} (Table 3.3A) and \textbf{70} (Table 3.3B) bearing different substitutions on the benzene (R\textsubscript{1}), protecting groups (R\textsubscript{2}) and lengths of alkynyl chain, are to be tested. The expected cyclized products \textbf{69} and \textbf{71} share the skeleton of natural products shown in Figure 3.1. The preparation of substrates \textbf{68} and \textbf{70} is similar to that of \textbf{62} as described in Scheme 3.14. The syntheses are in progress and the cyclization will be investigated in the near future.
Table 3.3 Gold Carbene-Catalyzed Desilylative Cyclization

A

\[
\begin{align*}
68 & \quad \xrightarrow{\text{IPrAuBF}_3 \text{ MeOH}} \quad 69 \\
68a & \\
68b & \\
68c & \\
68d & \\
68e & \\
68f & \\
68g & \\
68h & \\
68i & \\
\end{align*}
\]

B

\[
\begin{align*}
70 & \quad \xrightarrow{\text{IPrAuBF}_3 \text{ MeOH}} \quad 71 \\
70a & \\
70b & \\
70c & \\
\end{align*}
\]
3.5 Experimental

Unless otherwise noted, reagents were obtained commercially and used without further purification. CH$_2$Cl$_2$ was distilled from CaH$_2$ under a nitrogen atmosphere. THF was distilled from sodium-benzophenone under a nitrogen atmosphere. Toluene was distilled from sodium under a nitrogen atmosphere. Thin-layer chromatography (TLC) analysis of reaction mixtures was performed on Dynamicadsorbents silica gel F-254 TLC plates. Flash chromatography was carried out on Zeoprep 60 ECO silica gel. 1H and 13C NMR spectra were recorded with Varian INOVA 400, 500 and Bruker Avance-III 300 spectrometers. Mass spectral and analytical data were obtained via the PE SCIEX/ABI API QSTAR Pulsar i Hybrid LC/MS/MS, Applied Biosystems operated by the Central Analytical Laboratory, University of Colorado at Boulder. Infrared (IR) spectra were recorded on a Thermo Nicolet Avatar 370 FT-IR spectrometer. Melting point (mp) determinations were performed by using a Thomas Hoover capillary melting point apparatus and are uncorrected. High performance liquid chromatography (HPLC) analyses of chiral compounds were performed using a ChiralCel OD column (250 x 4.6 mm) and ChiralPak IA column (250 x 4.6 mm). Compounds were detected by monitoring UV absorbance at 254 nm. Optical rotations were determined on a JASCO 1030 polarimeter at 25 °C.

1-(4-(Trimethylsilyl)but-3-ynyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (35b)

General Procedure of Pictet-Spengler Reaction: To tryptamine (2 g, 12.48 mmol) in dry EtOAc (25 mL) at 0 °C was added aldehyde 34b (0.96 g, 6.24 mmol) followed by slow addition of TFA (1.49 mL, 24.97 mmol). Another portion of aldehyde (2.89 g, 18.73 mmol) was added within 3 h through syringe pump. The resulting mixture was stirred at 25 °C for 12 h before cooled to 0 °C.
The solution was basified with 2 M NaOH (13 mL). The aqueous layer was extracted with DCM (50 ml×3). The combined organic phases were dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (20:1 DCM/MeOH) provided the pure product 35b (3 g, 81 %) as a yellowish solid.

1H NMR (500 MHz, CDCl₃): δ 8.28 (s, 1H), 7.49 (d, J = 7.7 Hz, 1H), 7.32 (dd, J = 8.0, 1.0 Hz, 1H), 7.20 – 7.14 (m, 1H), 7.11 (t, J = 7.4 Hz, 1H), 4.37 – 4.30 (m, 1H), 4.14 (s, 1H), 3.33 (dt, J = 12.9, 5.4 Hz, 1H), 3.12 (ddd, J = 12.6, 6.8, 5.4 Hz, 1H), 2.86 – 2.72 (m, 2H), 2.57 – 2.40 (m, 2H), 2.09 (dt, J = 14.3, 7.2, 4.9 Hz, 1H), 2.00 (dt, J = 14.0, 6.9 Hz, 1H), 0.19 (s, 9H).

13C NMR (101 MHz, CDCl₃): δ 135.79, 134.95, 127.29, 121.67, 119.37, 118.12, 110.97, 108.81, 106.86, 86.31, 51.50, 41.60, 33.06, 22.28, 16.77, 0.23.

IR (neat, cm⁻¹): 3287, 2957, 2171, 1678, 1454, 1454, 1251, 1143, 842.

HRMS (ESI) m/z calcd for C₁₈H₂₄N₂SiH⁺: 297.1782, found: 297.1787.

1-(But-3-ynyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (35a)

General Procedure of Desilylation by TBAF: To substrate 35b (3 g, 10.12 mmol) in THF (33 mL) at 0 °C was added 1 M TBAF (12 mL, 12 mmol). The reaction solution was warmed to 25 °C and stirred at 25 °C for 1 h before quenched with water (15 mL). The aqueous layer was extracted EtOAc (40 mL×3), dried over Na₂SO₄, decanted and concentrated. Purification by flash chromatography (20:1 DCM/MeOH) provided the pure product 35a (2.27 g, 100 %) as a yellow oil.
1H NMR (500 MHz, CDCl$_3$): δ 7.86 (s, 1H), 7.49 (d, $J = 7.5$ Hz, 1H), 7.33 (d, $J = 8.1$ Hz, 1H), 7.16 (ddd, $J = 8.2$, 7.1, 1.3 Hz, 1H), 7.13 – 7.07 (m, 1H), 4.24 (dd, $J = 9.1$, 4.2 Hz, 1H), 3.28 (dt, $J = 13.0$, 5.3 Hz, 1H), 3.08 (ddd, $J = 12.8$, 6.8, 5.4 Hz, 1H), 2.81 – 2.65 (m, 2H), 2.58 – 2.37 (m, 2H), 2.11 – 2.02 (m, 1H), 2.06 (dt, $J = 2.6$ Hz, 1H), 1.98 – 1.86 (m, 1H).

13C NMR (101 MHz, CDCl$_3$): δ 135.77, 135.64, 127.45, 121.59, 119.36, 118.14, 110.94, 109.10, 84.20, 69.74, 51.12, 41.63, 33.35, 22.71, 15.27.

IR (neat, cm$^{-1}$): 3291, 3058, 2928, 2116, 1685, 1441, 1197, 1130.

HRMS (ESI) m/z calcd for C$_{15}$H$_{16}$N$_2$H$^+$: 225.1387, found: 225.1394.

6-Chloro-1-(4-(trimethylsilyl)but-3-ynyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (68e.1)

Prepared by the same procedure as compound 35b. Purification by flash chromatography (20:1 DCM/MeOH) provided the title product (0.16 g, 31%) as a yellowish oil.

1H NMR (500 MHz, CDCl$_3$): δ 8.18 (s, 1H), 7.44 (d, $J = 2.0$ Hz, 1H), 7.23 – 7.17 (m, 1H), 7.09 (dd, $J = 8.5$, 2.0 Hz, 1H), 4.25 – 4.16 (m, 1H), 3.26 (dt, $J = 13.1$, 5.3 Hz, 1H), 3.06 (ddd, $J = 12.7$, 6.6, 5.5 Hz, 1H), 2.69 (ttdd, $J = 5.2$, 3.2, 1.6 Hz, 2H), 2.59 – 2.38 (m, 2H), 2.04 (dt, $J = 14.6$, 7.3, 4.7 Hz, 1H), 2.04 – 1.83 (br, 1H), 1.98 – 1.83 (m, 1H), 0.17 (s, 9H).

13C NMR (101 MHz, CDCl$_3$): δ 137.00, 134.03, 128.50, 124.85, 121.62, 117.60, 111.76, 108.81, 106.68, 86.37, 51.37, 41.52, 33.13, 22.37, 16.76, 0.16.

IR (neat, cm$^{-1}$): 2956, 2177, 1443, 1311, 1251, 842, 756.

HRMS (ESI) m/z calcd for C$_{18}$H$_{23}$ClN$_2$Si$^+$: 331.1392, found: 331.1392.

1-(1-(But-3-ynyl)-3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)-2,2,2-trifluoroethanone (30)
The substrate 35a (0.138 g, 0.46 mmol) was dissolved in THF (4.5 mL) and the resulting reaction solution was cooled to -78 °C. TEA (0.39 mL, 2.77 mmol) and TFAA (0.19 mL, 1.38 mmol) were added. After stirring at -78 °C for 2 h, the reaction solution was diluted with EtOAc (50 mL), warmed to 25 °C, then washed with saturated NH₄Cl (5 mL), brine (5 mL), dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (10:1 Hexanes/EtOAc) provided the pure product 30 (0.11 g, 74 %) as a white solid.

1H NMR (500 MHz, CDCl₃; mixture of two rotamers of 10:1 ratio) δ 8.07 (s, 1H), 7.48 (dd, $J = 8.0, 1.2$ Hz, 1H), 7.36 (d, $J = 8.3$ Hz, 1H), 7.21 (ddd, $J = 8.2, 7.2, 1.2$ Hz, 1H), 7.16 – 7.10 (m, 1H), 5.85 (t, $J = 7.3$ Hz, 1H), 4.33 – 4.17 (m, 1H), 3.60 (ddd, $J = 13.9, 11.8, 4.4$ Hz, 1H), 3.02 – 2.92 (m, 1H), 2.88 (ddd, $J = 15.7, 4.5, 1.5$ Hz, 1H), 2.50 (dtd, $J = 17.3, 6.7, 2.7$ Hz, 1H), 2.40 (dtd, $J = 17.3, 7.5, 2.7$ Hz, 1H), 2.23- 2.09 (m, 1 H), 2.16 (t, $J = 2.3$ Hz, 1H).

13C NMR (101 MHz, CDCl₃; mixture of two rotamers of 10:1 ratio) δ 156.91, 136.21, 131.72, 126.28, 122.40, 119.85, 118.23, 116.16, 111.32, 107.48, 82.99, 70.00, 50.84, 40.70, 32.59, 22.25, 15.72.

IR (neat, cm⁻¹): 3330, 3272, 1676, 1454, 1274, 1179, 1140.

HRMS (ESI) m/z calcd for C₁₇H₁₅F₃N₂O⁺: 321.1210, found: 321.1211.

1-(1-(But-3-ynyl))-9-(tert-butyldimethylsilyl)-3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)-2,2,2-trifluoroethanone (62)
To NaH (2.32 g, 58.1 mmol, 60 % in mineral oil) in THF (240 mL) at 0 °C was slowly added the solution of substrate 30 (15.5 g, 48.4 mmol) in THF (60 mL). The reaction mixture was stirred at 25 °C for 30 min before cooled to 0 °C. The solution of TBSCl (8.75 g, 58.1 mmol) in THF (60 mL) was slowly added. The mixture was warmed to 25 °C and stirred for 12 h before quenched with water (50 mL). The aqueous layer was extracted with EtOAc (150 mL×3), washed with brine (50 mL), dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (10:1, then 10:1 Hexanes/EtOAc) provided the pure product 62 (15.25 g, 73 %) as a white solid and unreacted starting material 30 (2.16 g, 14 %) as a yellowish solid.

1H NMR (500 MHz, CDCl₃; mixture of two rotamers of 17:1 ratio) δ 7.61 – 7.52 (m, 1H), 7.42 (dd, J = 7.5, 1.7 Hz, 1H), 7.18 – 7.09 (m, 2H), 6.03 (dd, J = 11.4, 2.3 Hz, 1H), 4.20 (dd, J = 14.7, 6.4 Hz, 1H), 3.70 (ddd, J = 14.3, 11.9, 5.2 Hz, 1H), 3.02 (ddd, J = 15.3, 11.9, 6.4 Hz, 1H), 2.90 (ddd, J = 15.5, 5.3 Hz, 1H), 2.34 (dt, J = 13.3, 10.4, 9.6, 3.3 Hz, 1H), 2.30 – 2.20 (m, 2H), 2.16 – 2.04 (m, 1H), 1.98 (t, J = 2.5 Hz, 1H), 0.84 (s, 9H), 0.82 (s, 3H), 0.69 (s, 3H).

13C NMR (101 MHz, CDCl₃; mixture of two rotamers of 17:1 ratio) δ 156.65, 142.48, 139.00, 129.76, 121.98, 120.31, 117.91, 116.56, 115.08, 110.98, 82.54, 69.35, 51.25, 38.35, 33.31, 27.34, 22.20, 20.98, 15.38, -0.39, -0.67.

IR (neat, cm⁻¹): 3270, 2933, 1683, 1452, 1199, 1140, 812.

HRMS (ESI) m/z calcd for C₂₃H₂₉F₃N₂OSiH⁺: 435.2074, found: 435.2074.

1-(1-(But-3-ynyl)-9-(triethylsilyl)-3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)-2,2,2-trifluoroethanone (67)
Prepared by the same procedure as compound 62. Purification by flash chromatography (1:1 hexanes/EtOAc) provided the title product 67 (0.14 g, 66%) as a colorless oil.

\[^{1}H \text{NMR} \ (400 \text{ MHz, } \text{CDCl}_3; \text{mixture of two rotamers of 6.7:1 ratio}): \delta 7.55 \ (d, J = 7.6 \text{ Hz, } 1\text{H}), \ 7.45 \ (d, J = 7.8 \text{ Hz, } 1\text{H}), \ 7.23 \text{ – } 7.11 \ (m, 2\text{H}), \ 5.99 \ (dd, J = 11.2, 3.2 \text{ Hz, } 1\text{H}), \ 4.21 \ (dd, J = 14.7, 6.0 \text{ Hz, } 1\text{H}), \ 3.70 \text{ – } 3.58 \ (m, 1\text{H}), \ 3.01 \ (ddd, J = 17.8, 12.0, 6.1 \text{ Hz, } 1\text{H}), \ 2.89 \ (dd, J = 15.6, 4.9 \text{ Hz, } 1\text{H}), \ 2.44 \text{ – } 2.25 \ (m, 2\text{H}), \ 2.15 \ (dtdd, J = 23.3, 16.8, 12.8, 7.8 \text{ Hz, } 2\text{H}), \ 2.02 \ (q, J = 2.2 \text{ Hz, } 1\text{H}), \ 1.32 \text{ – } 1.08 \ (m, 6\text{H}), \ 1.04 \text{ – } 0.95 \ (m, 9\text{H}). \]

\[^{13}C \text{NMR} \ (101 \text{ MHz, } \text{CDCl}_3; \text{mixture of two rotamers of 6.7:1 ratio}): \delta 156.74, \ 141.36, \ 138.39, \ 129.56, \ 121.83, \ 120.09, \ 118.02, \ 113.69, \ 110.15, \ 82.50, \ 69.23, \ 50.93, \ 38.61, \ 33.66, \ 22.29, \ 15.32, \ 7.02, \ 5.04. \]

\[\text{IR (neat, cm}^{-1}): \ 3283, \ 2963, \ 1678, \ 1454, \ 1177, \ 1141, \ 1000. \]

\[\text{HRMS (ESI) m/z calcd for C}_{23}\text{H}_{29}\text{F}_{3}\text{N}_{2}\text{O}\text{SiLi}^{+}: \ 441.2157, \ \text{found: 441.2163}. \]

1-(But-3-ynyl)-9-(tert-butyldimethylsilyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (72)

Prepared by the same procedure as compound 62. Purification by flash chromatography (30:1 DCM/MeOH) provided the title product 72 (3 g, 60%) as a yellowish oil.

\[^{1}H \text{NMR} \ (500 \text{ MHz, } \text{CDCl}_3): \delta 7.61 \text{ – } 7.53 \ (m, 1\text{H}), \ 7.47 \text{ – } 7.39 \ (m, 1\text{H}), \ 7.14 \text{ – } 7.06 \ (m, 2\text{H}), \ 4.21 \ (dd, J = 10.7, 3.7 \text{ Hz, } 1\text{H}), \ 3.22 \text{ – } 3.05 \ (m, 2\text{H}), \ 2.82 \ (ddd, J = 17.1, 10.2, 7.3 \text{ Hz, } 1\text{H}), \ 2.72 \ (ddd, J = 15.9, 5.4, 2.1 \text{ Hz, } 1\text{H}), \ 2.47 \ (ddddd, J = 17.0, 14.3, 10.4, 7.6 \text{ Hz, } 2\text{H}), \ 2.02 \ (t, J = 2.7 \text{ Hz, } 1\text{H}), \ 1.97 \ (dtd, J = 14.6, 9.4, 8.7, 3.4 \text{ Hz, } 2\text{H}), \ 0.86 \ (s, 9\text{H}), \ 0.78 \ (s, 3\text{H}), \ 0.64 \ (s, 3\text{H}). \]
13C NMR (101 MHz, CDCl$_3$): δ 143.69, 142.07, 130.86, 121.14, 119.66, 117.58, 114.71, 112.12, 84.02, 69.09, 51.47, 36.48, 32.28, 27.45, 22.71, 20.97, 15.56, -0.11, -0.47.

IR (neat, cm$^{-1}$): 3296, 2926, 2114, 1454, 1255, 1147.

HRMS (ESI) m/z calcd for C$_{21}$H$_{30}$N$_2$SiH$^+$: 339.2251, found: 339.2255.

1-(1-(But-3-ynyl)-9-(tert-butyldimethylsilyl)-3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)ethanone (68a)

![Compound 68a](image)

Prepared by the same procedure as compound 30. Purification by flash chromatography (5:1 hexanes/EtOAc) provided the title product 68a (0.17 g, 72%) as a yellowish oil.

1H NMR (400 MHz, CDCl$_3$; mixture of two rotamers of 3:1 ratio): δ 7.64 – 7.52 (m, 1H), 7.45 – 7.36 (m, 1H), 7.16 – 7.07 (m, 2H), 6.11 (dd, $J = 11.6, 2.7$ Hz, 1H), 4.02 – 3.89 (m, 1H), 3.61 (ddd, $J = 14.2, 11.6, 5.3$ Hz, 1H), 3.05 – 2.87 (m, 1H), 2.83 (ddd, $J = 15.5, 5.3, 1.5$ Hz, 1H), 2.43 – 2.23 (m, 2H), 2.21 (s, 3H), 2.19 – 1.97 (m, 2H), 1.96 (t, $J = 2.6$ Hz, 1H), 0.91 (s, 3H), 0.84 (s, 9H), 0.69 (s, 3H).

13C NMR (101 MHz, CDCl$_3$; mixture of two rotamers of 3:1 ratio): δ 169.69, 142.31, 141.04, 129.99, 121.41, 119.92, 117.58, 114.95, 111.13, 83.67, 68.43, 48.69, 38.85, 33.71, 27.36, 21.89, 21.84, 20.90, 15.52, -0.36, -0.71.

IR (neat, cm$^{-1}$): 3237, 2929, 1635, 1425, 1235, 1151, 1026.

HRMS (ESI) m/z calcd for C$_{23}$H$_{32}$N$_2$O$^+$: 381.2357, found: 381.2353.

1-(But-3-ynyl)-9-(tert-butyldimethylsilyl)-2-(4-nitrophenylsulfonyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (68c)
Prepared by the same procedure as compound 30. Purification by flash chromatography (3:4 hexanes/DCM) provided the title product 68c (0.13 g, 60%) as a yellowish solid.

^1H NMR (500 MHz, CDCl₃): δ 8.07 (d, J = 8.9 Hz, 2H), 7.90 (d, J = 8.8 Hz, 2H), 7.53 (d, J = 8.4 Hz, 1H), 7.20 (d, J = 7.7 Hz, 1H), 7.11 (ddd, J = 8.3, 7.1, 1.4 Hz, 1H), 7.04 (t, J = 7.4 Hz, 1H), 5.36 (dd, J = 11.7, 2.9 Hz, 1H), 4.16 – 4.02 (m, 1H), 3.50 (ddd, J = 15.0, 11.0, 6.7 Hz, 1H), 2.68 – 2.53 (m, 2H), 2.46 (dddd, J = 16.7, 8.2, 4.8, 2.6 Hz, 1H), 2.32 (dt, J = 16.9, 7.9, 2.6 Hz, 1H), 2.25 – 2.14 (m, 1H), 2.04 (t, J = 2.6 Hz, 1H), 2.04 – 1.96 (m, 1H), 0.92 (s, 9H), 0.83 (s, 3H), 0.72 (s, 3H).

^13C NMR (101 MHz, CDCl₃): δ 149.56, 146.22, 141.64, 138.96, 129.57, 127.97, 123.82, 121.96, 120.11, 117.61, 115.03, 110.93, 82.76, 69.75, 53.57, 37.39, 33.85, 27.68, 20.85, 19.99, 15.57, -0.57, -0.77.

IR (neat, cm⁻¹): 3304, 2939, 1525, 1452, 1348, 1164, 1095.

Methyl (1R,3R)-1-(but-3-yn-1-yl)-2-(trifluoroacetyl)-1H,2H,3H,4H,9H-pyrido[3,4-b]indole-3-carboxylate (31)

Prepared by the same procedure as compound 30. Purification by flash chromatography (6:1 hexanes/EtOAc) provided the title product 31 (0.119 g, 50%) as a yellowish solid.
1H NMR (500 MHz, Chloroform-d) δ 8.55 (s, 1H), 7.55 – 7.50 (m, 1H), 7.37 – 7.32 (m, 1H), 7.24 – 7.19 (m, 1H), 7.14 (ddd, $J = 7.9$, 7.1, 1.0 Hz, 1H), 5.56 (t, $J = 6.1$ Hz, 1H), 5.12 (dd, $J = 6.4$, 1.5 Hz, 1H), 3.78 (s, 1H), 3.68 (s, 3H), 3.63 (dd, $J = 15.9$, 1.5 Hz, 1H), 3.10 (ddd, $J = 15.8$, 6.4, 2.0 Hz, 1H), 2.81 – 2.72 (m, 1H), 2.57 (dtd, $J = 17.2$, 6.0, 2.7 Hz, 1H), 2.34 – 2.26 (m, 1H), 2.25 (t, $J = 2.7$ Hz, 1H).

Methyl (1S,3R)-1-(but-3-yn-1-yl)-2-(trifluoroacetyl)-1H,2H,3H,4H,9H-pyrido[3,4-b]indole-3-carboxylate (32)

![Image of the compound](image)

Prepared by the same procedure as compound 30. Purification by flash chromatography (5:1 hexanes/EtOAc) provided the title product 32 (0.031 g, 13%) as a yellowish solid.

1H NMR (400 MHz, Chloroform-d) δ 8.56 (s, 1H), 7.52 (d, $J = 8.0$ Hz, 1H), 7.34 (d, $J = 7.8$ Hz, 1H), 7.24 – 7.18 (m, 1H), 7.17 – 7.11 (m, 1H), 5.56 (t, $J = 6.1$ Hz, 1H), 5.12 (dd, $J = 6.4$, 1.5 Hz, 1H), 3.78 (s, 1H), 3.69 (s, 3H), 3.63 (dd, $J = 15.9$, 1.5 Hz, 1H), 3.11 (ddd, $J = 15.9$, 6.4, 2.0 Hz, 1H), 2.85 – 2.71 (m, 1H), 2.57 (dtd, $J = 17.2$, 6.1, 2.9 Hz, 1H), 2.34 – 2.27 (m, 1H), 2.25 (t, $J = 2.6$ Hz, 1H).

Representative Procedure of gold-catalyzed cyclization: Mixture of PPh$_3$AuCl (2.6 mg, 5 µmol) and AgSbF$_6$ (1.8 mg, 5 µmol) in 0.5 mL DCM was stirred for 5 min. The solution was added to
the alkynylindole 31 (10 mg, 26 µmol) in 3 mL toluene. Then the reaction solution was heated to 85 °C and stirred at 85 °C for 4 h. The reaction was cooled to room temperature and the solution was filtered through a plug of silia gel, then concentrated. Purification by flash chromatography (15:1, hexanes/EtOAc) afforded 40 (8 mg, 82% yield) as a colorless oil.

Methyl (5R,7R)-2-methyl-6-(trifluoroacetyl)-1,6-diazatetracyclo[7.6.1.0^5,16.0^10,15]hexadeca-2,9(16),10,12,14-pentaene-7-carboxylate (40)

![Chemical structure](image)

^1H NMR (500 MHz, Chloroform-d): δ 7.66 (d, J = 8.6 Hz, 1H), 7.53 – 7.49 (m, 1H), 7.19 (ddd, J = 8.5, 7.1, 1.4 Hz, 1H), 7.16 – 7.11 (m, 1H), 5.24 – 5.14 (m, 1H), 5.10 (dd, J = 5.6, 1.8 Hz, 1H), 5.05 (dd, J = 6.7, 1.6 Hz, 1H), 3.66 (dd, J = 15.7, 1.9 Hz, 1H), 3.60 (s, 3H), 3.10 (ddd, J = 15.7, 5.5, 2.2 Hz, 1H), 3.06 – 2.95 (m, 1H), 2.52 (s, 3H), 2.57 – 2.47 (m, 1H).

Methyl (5S,7R)-2-methyl-6-(trifluoroacetyl)-1,6-diazatetracyclo[7.6.1.0^5,16.0^10,15]hexadeca-2,9(16),10,12,14-pentaene-7-carboxylate (42)

![Chemical structure](image)

Prepared by the same procedure as compound 40. Purification by flash chromatography (15:1 hexanes/EtOAc) provided the title product 42 (0.17 g, 72%) as a yellowish oil.

^1H NMR (500 MHz, Chloroform-d) δ 7.64 (d, J = 8.3 Hz, 1H), 7.51 (dd, J = 7.8, 1.3 Hz, 1H), 7.22 – 7.18 (m, 1H), 7.17 – 7.13 (m, 1H), 5.12 (s, 1H), 5.06 (d, J = 7.5 Hz, 1H), 4.99 (d, J = 12.8 Hz, 1H), 3.71 (s, 3H), 3.58 (t, J = 11.8 Hz, 2H), 3.24 (ddd, J = 15.9, 6.0, 2.5 Hz, 1H), 2.51 (t, J = 1.9 Hz, 3H), 2.04 (d, J = 12.6 Hz, 1H).
Methyl (1R,10S,12R)-14-methylidene-11-(trifluoroacetyl)-8,11-diazatetracyclo[8.3.3.0^1,9.0^2,7]hexadeca-2,4,6,8-tetraene-12-carboxylate (41)

![Chemical Structure]

Prepared by the same procedure as compound 40. Purification by flash chromatography (5:1 hexanes/EtOAc) provided the title product 41 (0.17 g, 72%) as a yellowish oil.

\[^1\text{H} \text{NMR} \ (500 \text{ MHz, Chloroform-}d) \delta \ 7.67 \ (\text{dt, } J = 7.8, 0.8 \text{ Hz, } 1\text{H}), 7.53 - 7.49 \ (\text{m, } 1\text{H}), 7.41 \ (\text{td, } J = 7.6, 1.4 \text{ Hz, } 1\text{H}), 7.36 \ (\text{td, } J = 7.4, 1.2 \text{ Hz, } 1\text{H}), 5.34 \ (\text{s, } 1\text{H}), 4.75 - 4.73 \ (\text{m, } 1\text{H}), 4.72 \ (\text{d, } J = 1.5 \text{ Hz, } 1\text{H}), 4.71 \ (\text{d, } J = 1.6 \text{ Hz, } 1\text{H}), 3.44 \ (\text{s, } 3\text{H}), 3.01 \ (\text{dd, } J = 14.6, 1.5 \text{ Hz, } 1\text{H}), 2.87 - 2.79 \ (\text{m, } 1\text{H}), 2.74 \ (\text{dd, } J = 14.6, 6.3 \text{ Hz, } 1\text{H}), 2.65 \ (\text{ddd, } J = 13.4, 10.6, 5.0 \text{ Hz, } 1\text{H}), 2.33 \ (\text{ddd}, J = 14.9, 5.0, 1.7 \text{ Hz, } 1\text{H}), 1.71 \ (\text{tdd, } J = 13.7, 5.0, 2.4 \text{ Hz, } 1\text{H}).

2,2,2-Trifluoro-1-[14-methylidene-8,11-diazatetracyclo[8.3.3.0^1,9.0^2,7]hexadeca-2,4,6,8-tetraen-11-yl]ethan-1-one (66)

![Chemical Structure]

To 100 mL sealed tube were added IPrAuCl (0.114 g, 0.18 mmol) and AgBF₄ (36 mg, 0.18 mmol) followed by DCM (1.5 mL) and the resulting mixture was stirred for 5 min. The solution of substrate 62 (1 g, 2.30 mmol) in DCE (11.5 mL) was added followed by methanol (1.87 mL, 46 mmol). The reaction solution was stirred at 95 °C for 12 h before cooled to 25 °C. The mixture was filtered through a short plug of silica gel and the solution was concentrated. Purification by flash chromatography (50:1, then 7:1 Hexanes/EtOAc) provided the pure product.
66 (486 mg, 66 %) as a white solid and unreacted starting material 62 (80 mg, 8 %) as a white solid.

\[\text{H NMR (500 MHz, CDCl}_3; \text{mixture of two rotamers of 4:1 ratio)} \delta 7.72 (d, J = 7.8 Hz, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.46 – 7.40 (m, 1H), 7.34 (td, J = 7.5, 1.1 Hz, 1H), 5.45 (t, J = 3.1 Hz, 1H), 4.89 (s, 1H), 4.86 (s, 1H), 3.98 – 3.84 (m, 1H), 3.13 (ddd, J = 13.8, 10.4, 4.9 Hz, 1H), 2.80 – 2.63 (m, 2H), 2.59 (ddd, J = 13.9, 10.5, 4.9 Hz, 1H), 2.38 – 2.24 (m, 1H), 2.09 (dt, J = 14.1, 4.9 Hz, 1H), 1.91 – 1.82 (m, 1H).

\[\text{C NMR (101 MHz, CDCl}_3; \text{mixture of two rotamers of 4:1 ratio)} \δ 181.53, 156.21, 154.77, 147.25, 142.34, 128.39, 125.95, 124.08, 121.91, 116.36, 110.96, 59.90, 54.18, 41.98, 35.11, 31.49, 27.64.

\[\text{IR (neat, cm}^{-1}); 2952, 1691, 1626, 1447, 1378, 1208, 1141, 909.

\[\text{HRMS (ESI)} m/z \text{calcd for C}_{17}H_{15}F_3N_2O_H: 321.1210, \text{found: 321.1199.}

14-Methylidene-8,11-diazatetracyclo[8.3.3.0^{1,9}.0^{2,7}]hexadeca-2,4,6,8-tetraene (73)

To substrate 66 (40 mg, 0.13 mmol) in MeOH/H}_2O (1.2 mL, 1:1) was added K_2CO_3 (80 mg, 0.58 mmol). After stirring at 25 °C for 12 h, the solvent was evaporated and water was added. The aqueous layer was extracted with chloroform (10 ml×3) and the combined organic phases were dried over Na_2SO_4, decanted and concentrated. Purification by flash chromatography (12:1 DCM/MeOH) provided the pure product 73 (27 mg, 96 %) as a yellowish solid.

\[\text{H NMR (500 MHz, CDCl}_3) \delta 7.67 (d, J = 7.7 Hz, 1H), 7.49 (dd, J = 7.6, 1.3 Hz, 1H), 7.37 (td, J = 7.6, 1.3 Hz, 1H), 7.26 – 7.22 (m, 1H), 5.13 (s, 1H), 5.00 (s, 1H), 4.22 (dd, J = 6.3, 3.3 Hz,
1H), 3.35 (ddd, J = 14.2, 12.2, 3.7 Hz, 1H), 2.77 (ddd, J = 14.4, 5.7, 2.0 Hz, 1H), 2.74 – 2.67 (m, 1H), 2.67 – 2.62 (m, 1H), 2.28 – 2.18 (m, 2H), 2.24 – 2.18 (br, 1H), 2.07 (dtt, J = 15.2, 7.5, 1.4 Hz, 1H), 1.60 (td, J = 12.6, 5.6 Hz, 1H).

13C NMR (101 MHz, CDCl$_3$) δ 188.08, 155.01, 149.05, 143.57, 127.89, 125.03, 123.24, 121.11, 111.25, 59.40, 51.79, 46.88, 39.07, 31.78, 31.63.

IR (neat, cm$^{-1}$): 3263, 2929, 1678, 1594, 1434, 1184, 1121, 897.

HRMS (ESI) m/z calcd for C$_{15}$H$_{16}$N$_2$H$: 225.1387, found: 225.1390.
3.6 References

1. Isolation of indolenine alkaloids:

Chapter 4

Studies Towards the Total Synthesis of Strictamine:
Application of Gold Carbene-Catalyzed Desilylative Cyclization

4.1 Background of Strictamine

Strictamine 1 (Figure 4.1) was isolated from Rhazya stricta in 1966 by Biemann, Chatterjee and co-workers.\(^1\) Its structure was determined by ultraviolet absorbance, infrared bands, NMR and mass spectroscopy. Subsequent experiments confirmed the skeleton of strictamine and it was found to undergo rearrangement to akuammicine under treatment of strong base, such as KO'Bu. In 1976, strictamine 1 and strictalamine were isolated by Ahmad and the absolute configuration was resolved by X-ray crystallography (Figure 4.1).\(^2\)

In 2014, strictamine 1 was reported to exhibit inhibitory activity against herpes simplex virus (HSV) and adenovirus (ADV) with EC50 value of 0.36 µg/ml for HSV and 0.28 µg/ml for ADV.\(^3\)

![Structures of Strictamine 1 and Strictalamine](image)

Figure 4.1 Structures of Strictamine 1 and Strictalamine
4.2 **Previous Attempted Syntheses of Strictamine**

Until now, the densely fused pentacyclic skeleton and related bioactivity of strictamine (1) have attracted considerable interest from organic synthetic groups.

4.2.1 **Synthetic Study Reported by the Bosch Group**

In 1988 and 1996, synthetic efforts to form ring C of strictamine 1 (Figure 4.2) were reported by the Bosch group.4,5

![Figure 4.2 Synthetic Strategy of Strictamine by the Bosch Group](image)

The tandem nucleophilic addition of enolate of ester 2 (Scheme 4.1) to a pyridinium salt 3 was applied to the synthesis of bridged indole alkaloids. After several steps of functional group transformation, key intermediate 5 was prepared before attempting the closure of the six-member ring.4
Upon minor modification from compound 5, compound 6 (Scheme 4.2) was subjected to various cyclization conditions. No desired product 1 was found. Instead, C-N bond was formed intramolecularly or intermolecularly. Further study afforded either dealkylated indole or C-R₂ bond-cleaved product of tetracycle 6.⁵

<table>
<thead>
<tr>
<th>R₁ & R₂</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₁ = H</td>
<td>No 1 was formed.</td>
</tr>
<tr>
<td>R₁ = Me, CO₂Me;</td>
<td>No 1 was formed.</td>
</tr>
<tr>
<td>R₂ = SePh, SOPh, (SMe)₂</td>
<td>C-R₂ bond was cleaved.</td>
</tr>
</tbody>
</table>

Scheme 4.2 Results of Attempted Cyclization
4.2.2 Synthetic study reported by the Cook group

In 2012, the Cook group reported their strategy of rhodium-catalyzed cyclization of diazonium salt to construct ring D of strictamine 1 (Figure 4.3).^6

![Figure 4.3 Synthetic Strategy of Strictamine by the Cook Group](image)

Condensation of D-(+)-N^b-benzyltryptophan methyl ester 7 (Scheme 4.3) and readily accessible Michael acceptor 8 furnished enaminone, which was subjected to acid-mediated cyclization condition to afford the β-keto ester 10. Under standard diazo transfer condition, the α-diazo β-keto ester 11 was prepared from compound 10.

![Scheme 4.3 Synthesis of Diazonium Salt](image)

Under the catalysis of Rh_2(OAc)_4, diazo compound 11 (Scheme 4.4) was converted into enone 14 through cyclization and ring-opening of cyclobutanone 13 in 75% yield.
4.2.3 Synthetic Study Reported by the Tokuyama Group

In 2013, the Tokuyama group reported their strategy of constructing ring D by rearrangement of lactone and forming ring E by ring-closing olefin metathesis (RCM) of diene (Figure 4.4).\(^7\)

![Figure 4.4 Synthetic Strategy of Strictamine by the Tokuyama Group](image)

Starting from the literature-known tetrahydro-β-carboline derivative 15 (Scheme 4.5), the quaternary carbon center of indolenine 16 was constructed by the palladium-catalyzed allylation. After several steps of modification, diene 17 was subject to RCM condition. Desired cyclized product 18 was formed in 16% yield and several side products were identified as isomerized alkene and oxidized enamine 19 from tertiary amine. Extensive optimization gave
rise to 52% yield under microwave irradiation. For the rearrangement of lactone 18 to construct ring D, no further progress has not been published until now.

Scheme 4.5 Tokuyama’s Synthetic Route

3.2.4 Synthetic Study Reported by the Zhu Group

In 2013, the Zhu group exploited their designed approach of intramolecular oxidative coupling of a dianion to construct ring D of strictamine 1 (Figure 4.5). 8

Figure 4.5 Synthetic Strategy of Strictamine by the Zhu Group
Tetrahydocarboline 20 was treated with various bases and oxidants to give no desired product (Scheme 4.6). Instead, degradation was observed and a small amount of retro-Michael reaction product 21 was isolated. Elongated dimethyl malonate derivative 22 was cyclization into tetracyle 23 after deprotonation with LiHMDS at −78 °C followed by oxidation by iodine at room temperature. Based on their rationalization, the failure of formation of desired C-C bond is due to the ring strain within the bridged ring system of 1.

Scheme 4.6 Attempted Oxidative Cyclization

4.3 Retrosynthetic Analysis of Strictamine

Until now, several synthetic studies have been published as described as above, but no total synthesis of strictamine has been reported or accomplished. Due to the challenging rigid skeleton, interesting bioactivity and biogenetic relationship with many bioactive alkaloids, such as 17-nor-excelsinidine and akuammicine, we are motivated to work on the synthesis of strictamine.

Retrosynthetically, strictamine 1 was envisioned to arise from a transition metal-catalyzed reductive intramolecular cyclization of 24 (Scheme 4.7), which would be obtained from compound 25 by deprotection and alkylation. Ester 25 may be prepared from oxidation of the indolene 26.
Following the procedure described in the previous chapter, silylated tetrahydrocarboline 27 underwent a gold-catalyzed desilylative cyclization using MeOH as TBS scavenger to give indolenine 26 in 66% isolated yield in 6.7 g scale (70% based on recovered starting material).

Converting the \textit{exo} alkene of compound 26 to conjugated ester 25 while keeping the imine intact proved to be difficult. Riley oxidation with SeO$_2$ gave no reaction at room temperature and decomposition occurred at 60 °C.11 Various boron reagents, such as BH$_3$•SMe$_2$, 9-BBN and catecholborane, were exploited for Brown reaction.12 However, the imine moiety was reduced at the same time as hydroboration of alkene moiety. To achieve the oxidation without destroying the imine moiety, mild and efficient transformation conditions were investigated.
Epoxidation of alkene has been widely applied in organic synthesis especially complex natural product synthesis.13 Exposed to Lewis acid or Brønsted acid, epoxides can be isomerized into allylic alcohol or aldehyde,14 which may be converted into conjugated ester 25.

After screening various oxidants, dimethyldioxirane (DMDO) was found to be efficient and selective for epoxidation of 26 into epoxides 28 (Table 4.1). At room temperature, oxidation by mCPBA led to decomposition of starting material (entry 1). Methyl trifluoromethyl dioxirane15 (entry 2) gave lower yield of epoxides than in situ generated DMDO (entry 4). Although dioxirane generated from tetrahydrothiopyran-4-one-1,1-dioxide16 (entry 3) afforded reasonable yield considering recovery of starting material 26, the diastereoselective ratio (d.r.) was unsatisfactory (entry 4). Thus, distilled DMDO was chosen and lower temperature was tested. Yield remained unchanged while d.r. increased to 4.6:1 from 2.7:1 when the reaction was carried out at 0 °C (entry 5). Even lower temperature (-20 °C) afforded 79\% yield with 7:1 ratio of diastereoselectivity. Indeed, oxidation of the imine moiety was not ceased but slower when DCM was used as co-solvent with acetone (entries 5, 7; 6, 8). The optimized epoxidation condition, carried out in co-solvents of acetone and DCM using distilled DMDO as the oxidant, gave 90\% yield with 7:1 d.r. based on recovery of starting material (entry 8). The two epoxides can be separated by flash chromatography on silica gel, but the stereochemistry cannot be assigned due to the absence of long-distance nOe signal. Thus, the major isomer is labeled as compound 28a and the minor as compound 28b.
Table 4.1 Screening for Epoxidation

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reagents</th>
<th>Solvents</th>
<th>Temperature °C</th>
<th>Conversion %</th>
<th>Yield % ((28a : 28b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>mCPBA</td>
<td>DCM</td>
<td>23</td>
<td>100</td>
<td>decomposition</td>
</tr>
<tr>
<td>2</td>
<td>oxone ketone I (^a)</td>
<td>MeCN/0.4 mM</td>
<td>23</td>
<td>73</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>NaHCO(_3)</td>
<td>Na(_2)EDTA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>oxone ketone II (^b)</td>
<td>MeCN/0.4 mM</td>
<td>23</td>
<td>68</td>
<td>54 (1:1)</td>
</tr>
<tr>
<td></td>
<td>NaHCO(_3)</td>
<td>Na(_2)EDTA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>oxone</td>
<td>Acetone/H(_2)O</td>
<td>23</td>
<td>100</td>
<td>70 (2.7:1)</td>
</tr>
<tr>
<td></td>
<td>NaHCO(_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DMDO (distilled)</td>
<td>Acetone</td>
<td>0</td>
<td>100</td>
<td>70 (4.6:1)</td>
</tr>
<tr>
<td>6</td>
<td>DMDO (distilled)</td>
<td>Acetone</td>
<td>-20</td>
<td>97</td>
<td>79 (7:1)</td>
</tr>
<tr>
<td>7</td>
<td>DMDO (distilled)</td>
<td>Acetone/DCM</td>
<td>0</td>
<td>100</td>
<td>80 (5:1)</td>
</tr>
<tr>
<td></td>
<td>(1:1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>DMDO (distilled)</td>
<td>Acetone/DCM</td>
<td>-20</td>
<td>87</td>
<td>78 (7:1)</td>
</tr>
<tr>
<td></td>
<td>(1:1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) ketone I:
\[^b\] ketone II:

Based on the result of MM2 energy minimization calculation, the conformation of indolenine \(26\) is shown in Figure 4.6. Epoxidation could proceed in path a and b. Due to the
interaction between DMDO and the hydrogens around olefin, path a is preferred and epoxide 28a should be the major product.

With epoxides in hand, isomerization of epoxides was investigated. Initial study showed the major epoxide 28a was isomerized into allylic alcohol and aldehyde, while aldehyde was the only product of the minor epoxide 28b. As the result of MM2 energy minimization calculation shown in Figure 4.6, the conformation of 28a allowed both C2 and C3 β-elimination processes to afford allylic alcohol 29 and aldehyde 30. For conformation of 28b, only C3 β-elimination process was allowed to give aldehyde 30.

Figure 4.6 Formation and Isomerization of Epoxides
Compared to aldehyde, allylic alcohol is preferred since it can be easily oxidized into α,β-unsaturated ester. Thus, various conditions were screened for isomerization of epoxide 28b into allylic alcohol as shown in Table 4.2. Treated with diethylaluminum 2,2,6,6-tetramethylpiperidide (DATMP), CSA or TMSI, epoxide was decomposed or converted into messy mixture. Al(Oi-Pr)₃ was found to reduce the imine moiety before inducing isomerization. Allylic alcohol was obtained in 15% yield with aldehyde in 41% yield in the presence of TBSOTf and DBU after workup with TBAF.

Table 4.2 Reagent Screening for Isomerization of Epoxide

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Solvent</th>
<th>Temperature °C</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Decomposition</td>
</tr>
<tr>
<td>CSA</td>
<td>MeCN/DMSO</td>
<td>25</td>
<td>messy mixture was isolated</td>
</tr>
<tr>
<td>TMSI, DBU</td>
<td>MeCN</td>
<td>75</td>
<td>messy mixture was isolated</td>
</tr>
<tr>
<td>Al(Oi-Pr)₃</td>
<td>Toluene</td>
<td>100</td>
<td>imine was reduced before isomerization</td>
</tr>
<tr>
<td>DBU, TBSOTf</td>
<td>DCM</td>
<td>-78 to 25</td>
<td>15% 28a</td>
</tr>
<tr>
<td>(workup with TBAF)</td>
<td></td>
<td></td>
<td>15% 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41% 30</td>
</tr>
</tbody>
</table>

The reaction was further optimized as shown in Table 4.3. Replacement of TBSOTf with TMSOTf improved the yield of allylic alcohol 29 from 15% into 33% and all starting
material 28a was consumed probably due to the less bulky environment (entry 1, 2). Solvent screening gave no better result (entry 2-5). Co-solvent of toluene afforded slightly better yield, but it exhibited no preference in selectivity (entry 7). For hexanes, poor solubility of the complex of TMSOTf and DBU might be used for elucidating the decrease of yield (entry 6). Other than DBU, different bases, such as NEt3 (entry 8), gave rise to decomposition, while addition of 2,6-lutidine made no difference (entry 9). In the end, the optimized isomerization condition afforded 40% allylic alcohol and 40% aldehyde in the presence of TMSOTf and DBU (entry 7). Bulky environment surrounding the epoxide 28a gives rise to no selectivity of C2 and C3 β-elimination (Figure 4.6), which probably explains 1:1 ratio of isomerized products 29 and 30.

Table 4.3 Optimization of Epoxide Isomerization

<table>
<thead>
<tr>
<th>Entry</th>
<th>Lewis acid</th>
<th>Base</th>
<th>Solvent</th>
<th>Conversion %</th>
<th>Yield % 29 : 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TBSOTf</td>
<td>DBU</td>
<td>DCM</td>
<td>85</td>
<td>15 : 41</td>
</tr>
<tr>
<td>2</td>
<td>TMSOTf</td>
<td>DBU</td>
<td>DCM</td>
<td>100</td>
<td>33 : 35</td>
</tr>
<tr>
<td>3</td>
<td>TMSOTf</td>
<td>DBU</td>
<td>Toluene</td>
<td>100</td>
<td>0 : 0</td>
</tr>
<tr>
<td>4</td>
<td>TMSOTf</td>
<td>DBU</td>
<td>MTBE</td>
<td>100</td>
<td>0 : 0</td>
</tr>
<tr>
<td>5</td>
<td>TMSOTf</td>
<td>DBU</td>
<td>DCE</td>
<td>100</td>
<td>29 : 27</td>
</tr>
<tr>
<td>6</td>
<td>TMSOTf</td>
<td>DBU</td>
<td>DCM/hexanes (1:1)</td>
<td>100</td>
<td>25 : 20</td>
</tr>
<tr>
<td>7</td>
<td>TMSOTf</td>
<td>DBU</td>
<td>DCM/toluene (1:1)</td>
<td>100</td>
<td>40 : 40</td>
</tr>
<tr>
<td>8</td>
<td>TMSOTf</td>
<td>2,6-lutidine</td>
<td>DCM/toluene (1:1)</td>
<td>100</td>
<td>40 : 40</td>
</tr>
<tr>
<td>9</td>
<td>TMSOTf</td>
<td>Net3</td>
<td>DCM/toluene (1:1)</td>
<td>100</td>
<td>0 : 0</td>
</tr>
</tbody>
</table>
a 10 eq DBU and 9 eq TMSOTf was added to epoxide in soln at -78 °C, then slowly warmed to rt stirred for overnight before general workup. After that, TBAF was added to the crude in THF for desilylation.

b 5 eq DBU and 4 eq 2,6-lutidine were used.

For aldehyde 30 isomerized from epoxide 28a, various conditions were tested for conversion of aldehyde into α,β-unsaturated aldehyde. IBX oxidation in DMSO/toluene led to decomposition of starting material; silyl enol ether of 30 was subjected to a Saegusa condition using Pd(OAc)$_2$ as the oxidant in acetonitrile to afford messy mixture. Preparation of α-selenide of aldehyde 30 turned out to be inefficient (<10% yield) while decomposition occurred under harsh condition.

Subsequently, allylic alcohol 29 was quantitatively oxidized into aldehyde 30 by IBX in ethyl acetate under reflux. Further oxidation into ester with MnO$_2$ in the presence of KCN, MeOH and acetic acid afforded ring-opened alkene 32 (Scheme 4.8). It can be rationalized in terms of releasing the internal strain of the bridged ring system.

Scheme 4.8 Ring Opening Under Acidic Oxidative Condition.

The synthetic sequence was altered then (Scheme 4.9). Indolenine 29 was deprotected with K$_2$CO$_3$ in wet methanol. Following alkylation with vinyl bromide 34 afforded allylic alcohol 35. After oxidation by IBX, Pinnick oxidation and esterification with trimethylsilyldiazomethane, compound 35 was converted to cyclization precursor 37 of strictamine 1.
4.5 Attempted Cyclization

Various conditions were exploited for cyclization of compound 37 (Table 4.4). Reductive Pd-catalyzed cyclization\(^\text{28}\) afforded deallylated product 39. Radical cyclization condition\(^\text{29}\) reduced the vinyl iodide into alkene 40. Conjugate addition\(^\text{30}\) and Ni(COD)\(_2\)-mediated reductive cyclization\(^\text{31}\) led to decomposition.
Table 4.4 At tempted Cyclization

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reaction condition</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd$_3$dba$_3$, NaOCOH; DMF 85 °C</td>
<td>deallylated product 40 was found; no product or sm existed.</td>
</tr>
<tr>
<td>2</td>
<td>AIBN, Bu$_3$SnH; toluene, 80 °C</td>
<td>reduced compound 39 was found; no product or sm existed.</td>
</tr>
<tr>
<td>3</td>
<td>t-BuLi, THF, -78 °C, then 23 °C</td>
<td>no rxn occurred at -78 °C, then warmed to 23 °C, decomposition occurred.</td>
</tr>
<tr>
<td>4</td>
<td>Ni(COD)$_2$, NEt$_3$; MeCN/DMF, 60 °C</td>
<td>no rxn occurred at 23 °C. At 60 °C, decomposition occurred.</td>
</tr>
</tbody>
</table>

4.6 Conclusion

Our strategy (Scheme 4.10) utilized the gold-catalyzed desilylative cyclization of TBS-protected indole substrate 27 to construct the tetracyclic indolenine 26, which was further modified into precursor 24 of final cyclization. Unfortunately, either transition metal-catalyzed reductive reaction condition or radical process didn’t afford the desired strictamine 1. Further investigation of cyclization is in progress.
Scheme 4.10 Our Route of Synthetic Study of Stricatmine.

4.7 Experimental

2,2,2-Trifluoro-1-[14-methylidene-8,11-diazatetracyclo[8.3.3.0^19.0^27]hexadeca-2,4,6,8-tetraen-11-yl]ethan-1-one (26)

1 gram-scale preparation of desilylative cyclized product 26: To 100 mL sealed tube were added IPrAuCl (0.114 g, 0.18 mmol) and AgBF₄ (36 mg, 0.18 mmol) followed by DCM (1.5 mL), and the resulting mixture was stirred for 5 min. The solution of substrate 26 (1 g, 2.30 mmol) in DCE (11.5 mL) was added followed by methanol (1.87 mL, 46 mmol). The reaction solution was stirred at 95 °C for 12 h before cooled to 25 °C. The mixture was filtered through a short plug of silica gel and the solution was concentrated. Purification by flash chromatography (50:1, then 7:1 Hexanes/EtOAc) provided the pure product 27 (486 mg, 66 %) as a white solid and unreacted starting material 26 (80 mg, 8 %) as a white solid.
\textbf{1H NMR} (500 MHz, CDCl\textsubscript{3}; mixture of two rotamers of 4:1 ratio) \(\delta 7.72\) (d, \(J = 7.8\) Hz, 1H), 7.51 (d, \(J = 7.6\) Hz, 1H), 7.46 – 7.40 (m, 1H), 7.34 (td, \(J = 7.5, 1.1\) Hz, 1H), 5.45 (t, \(J = 3.1\) Hz, 1H), 4.89 (s, 1H), 4.86 (s, 1H), 3.98 – 3.84 (m, 1H), 3.13 (ddd, \(J = 13.8, 10.4, 4.9\) Hz, 1H), 2.80 – 2.63 (m, 2H), 2.59 (ddd, \(J = 13.9, 10.5, 4.9\) Hz, 1H), 2.38 – 2.24 (m, 1H), 2.09 (dt, \(J = 14.1, 4.9\) Hz, 1H), 1.91 – 1.82 (m, 1H).

\textbf{13C NMR} (101 MHz, CDCl\textsubscript{3}; mixture of two rotamers of 4:1 ratio) \(\delta 181.53, 156.21, 154.77, 147.25, 142.34, 128.39, 125.95, 124.08, 121.91, 116.36, 110.96, 59.90, 54.18, 41.98, 35.11, 31.49, 27.64.

\textbf{IR} (neat, cm-1): 2952, 1691, 1626, 1447, 1378, 1208, 1141, 909.

\textbf{HRMS} (ESI) m/z calcd for C\textsubscript{17}H\textsubscript{15}F\textsubscript{3}N\textsubscript{2}O\textsubscript{H}+: 321.1210, found: 321.1199.

\textbf{1-\{8',16'-diazaspiro[oxirane-2,13'-tetracyclo[8.3.3.0\textsubscript{1},9.0\textsubscript{2},7]hexadecane]-2',4',6',8'-tetraen-16'-yl\}-2,2,2-trifluoroethan-1-one (28)}

\begin{align*}
26 \quad \xrightarrow{\text{DMDO}} \quad 28
\end{align*}

To a 250 ml round bottom flask were loaded substrate \textbf{26} (0.5 g, 1.56 mmol) and DCM (71 mL). The solution was cooled to -20 °C before addition of the solution of DMDO (71 mL, 0.033 M in acetone). The reaction solution was stirred at -20 °C for 12 h before concentration. Purification by flash chromatography (10:1, then 5:1 Hexanes/EtOAc) provided the pure major epoxide \textbf{28a} (337 mg, 64 %) as a yellowish solid, minor epoxide \textbf{28b} (49 mg, 9 %) and unreacted starting material \textbf{26} (71 mg, 14 %) as a yellowish solid.

\textbf{Major isomer 28a}
\textbf{1H NMR} (500 MHz, CDCl\textsubscript{3}; mixture of two rotamers of 10:1 ratio) \(\delta 7.71 - 7.68\) (m, 1H), 7.42 (td, \(J = 7.7, 1.3\) Hz, 1H), 7.39 (dt, \(J = 7.6, 0.9\) Hz, 1H), 7.28 – 7.24 (m, 1H), 5.35 (t, \(J = 3.0\) Hz, 1H), 4.00 (dd, \(J = 14.0, 5.0\) Hz, 1H), 3.00 (td, \(J = 12.7, 4.2\) Hz, 1H), 2.96 – 2.91 (m, 1H), 2.89 – 2.83 (m, 1H), 2.57 – 2.45 (m, 1H), 2.34 (d, \(J = 4.7\) Hz, 1H), 2.16 – 2.10 (m, 1H), 2.08 (dd, \(J = 4.7, 1.9\) Hz, 1H), 1.71 (tdd, \(J = 14.1, 4.9, 2.7\) Hz, 1H), 1.39 (ddd, \(J = 14.5, 5.0, 2.1\) Hz, 1H)

\textbf{13C NMR} (101 MHz, CDCl\textsubscript{3}; mixture of two rotamers of 10:1 ratio) \(\delta 180.17, 156.46, 155.34, 141.09, 128.88, 126.54, 123.22, 121.93, 116.02, 64.21, 57.23, 54.55, 52.34, 42.52, 30.94, 27.33, 25.90.

\textbf{IR} (neat, cm-1): 2967, 1687, 1447, 1276, 1141.

\textbf{HRMS} (ESI) m/z calcd for C\textsubscript{17}H\textsubscript{15}F\textsubscript{3}N\textsubscript{2}O\textsubscript{2}H+: 337.1159, found: 337.1156.

\textbf{Minor isomer 28b}

\textbf{1H NMR} (500 MHz, CDCl\textsubscript{3}; mixture of two rotamers of 10:1 ratio) \(\delta 7.69\) (d, \(J = 7.8\) Hz, 1H), 7.42 (td, \(J = 7.6, 1.3\) Hz, 1H), 7.31 – 7.28 (m, 1H), 7.26 – 7.22 (m, 1H), 5.37 (t, \(J = 3.0\) Hz, 1H), 3.98 (d, \(J = 14.0\) Hz, 1H), 3.03 – 2.94 (m, 1H), 2.97 (d, \(J = 4.3\) Hz, 1H), 2.89 – 2.81 (m, 1H), 2.76 – 2.64 (m, 1H), 2.69 (d, \(J = 4.2\) Hz, 1H), 2.60 (dd, \(J = 14.6, 5.1\) Hz, 1H), 2.23 (ddd, \(J = 14.4, 4.6, 2.6\) Hz, 1H), 2.06 (tdd, \(J = 11.8, 10.9, 5.3, 2.7\) Hz, 1H), 1.32 (ddd, \(J = 15.2, 5.2, 1.9\) Hz, 1H).

\textbf{13C NMR} (101 MHz, CDCl\textsubscript{3}; mixture of two rotamers of 10:1 ratio) \(\delta 181.11, 156.47, 156.14, 140.25, 129.10, 125.90, 122.31, 121.84, 116.10, 63.53, 57.44, 55.63, 49.77, 42.75, 31.66, 28.30, 25.75.

\textbf{IR} (neat, cm-1): 2933, 1689, 1445, 1384, 1208, 1138.

\textbf{HRMS} (ESI) m/z calcd for C\textsubscript{17}H\textsubscript{15}F\textsubscript{3}N\textsubscript{2}O\textsubscript{2}H+: 337.1159, found: 337.1156.

\textbf{2,2,2-trifluoro-1-[14-(hydroxymethyl)-8,11-diazatetracyclo[8.3.3.0\textsuperscript{19,027].012,7]hexadeca-2,4,6,8,14-pentaen-11-yl]ethan-1-one} (29)
To a stirred solution of epoxide 28a (350 mg, 1.04 mmol) in DCM/toluene (12 mL, 1:1) at -78 °C was added DBU (0.63 mL, 4.22 mmol) followed by dropwise addition of TMSOTf (0.96 mL, 5.28 mmol) over 5 min under argon atmosphere. The reaction was slowly to warm to 25 °C. After 12 h, the reaction was quenched with water (5 mL) and the aqueous layer was extracted with diethyl ether (15 mL×3). The combined organic phases were washed with saturated NH₄Cl (5 mL), brine (5 mL), dried over Na₂SO₄, decanted and concentrated. The crude was dissolved in THF (5 mL) at 0 °C, followed by addition of 1 M TBAF in THF (1.06 mL, 1.06 mmol). The solution was stirred at 0 °C for 10 min before quenched with saturated NH₄Cl (5 mL). The aqueous layer was extracted with EtOAc (15 mL×3), then the combined organic phases were washed with saturated NaHCO₃ (5 mL), brine (5 mL), dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (1:1 Hexanes/EtOAc) provided the pure product 29 (0.14 g, 40 %) as a yellowish oil.

1H NMR (500 MHz, CDCl₃; mixture of two rotamers of 1.3:1 ratio) δ 7.74 – 7.70 (m, 2H), 7.44 (td, J = 7.6, 1.3 Hz, 1H), 7.34 – 7.29 (m, 1H), 6.07 (d, J = 3.7 Hz, 1H), 5.91 (d, J = 5.9 Hz, 1H), 4.43 – 4.33 (m, 1H), 4.22 (dd, J = 13.3, 3.0 Hz, 1H), 3.97 (d, J = 13.2 Hz, 1H), 3.81 (td, J = 13.5, 3.2 Hz, 1H), 2.95 (t, J = 19.8 Hz, 1H), 2.78 (d, J = 19.7 Hz, 1H), 2.75 – 2.66 (m, 1H), 1.55 – 1.37 (m, 1H).

13C NMR (101 MHz, CDCl₃; mixture of two rotamers of 1.3:1 ratio) 181.15, 155.90, 154.86, 139.10, 135.64, 128.80, 126.14, 125.38, 124.58, 121.44, 116.21, 64.85, 56.05, 49.67, 39.01, 36.12, 35.68.

IR (neat, cm⁻¹): 3300, 3028, 1685, 1445, 1136, 1017.

HRMS (ESI) m/z calcd for C₁₇H₁₅F₃N₂O₂H⁺: 337.1159, found: 337.1152.
{11-[2Z]-2-iodobut-2-en-1-yl}-8,11-diazatetracyclo[8.3.3.0^1,9.0^5,7]hexadeca-2,4,6,8,14-pentaen-14-yl}methanol (35)

To substrate 29 (15 mg, 45 µmol) in MeOH/H₂O (0.4 mL, 1:1) was added K₂CO₃ (30 mg, 0.22 mmol). After stirring at 25 °C for 1 h, the solvent was evaporated under rotavap before chloroform was added to the solid. The slurry was filtered through celite and concentrated. Mixture of the yellowish crude oil, bromide (22 mg, 83 µmol) and K₂CO₃ (29 mg, 0.21 mmol) in DMF (0.55 mL) was stirred at 90 °C for 12 h before concentration. The crude was dissolved in EtOAc (25 mL), washed with water (5 mL), brine (5 mL), dried over Na₂SO₄, decanted and concentrated. Purification by flash chromatography (3:2 Hexanes/EtOAc) provided the pure product 30 (18 mg, 96% for 2 steps) as a yellowish oil.

¹H NMR (500 MHz, Benzene-d₆) δ 7.88 (d, J = 7.7 Hz, 1H), 7.63 – 7.57 (m, 1H), 7.21 (td, J = 7.6, 1.3 Hz, 1H), 7.10 (t, J = 7.4 Hz, 1H), 5.62 (q, J = 6.4 Hz, 1H), 5.49 – 5.43 (m, 1H), 3.92 (d, J = 6.7 Hz, 2H), 3.57 (d, J = 13.4 Hz, 1H), 3.24 (d, J = 14.0 Hz, 1H), 3.02 (td, J = 13.3, 3.1 Hz, 1H), 2.97 – 2.90 (m, 1H), 2.50 – 2.42 (m, 1H), 2.34 – 2.27 (m, 1H), 2.27 – 2.17 (m, 1H), 2.13 (d, J = 13.0 Hz, 1H), 1.62 (d, J = 6.3 Hz, 3H), 1.34 (td, J = 12.9, 4.3 Hz, 1H).

¹³C NMR (101 MHz, Benzene-d₆) δ 184.46, 156.60, 141.07, 135.00, 132.21, 128.11, 126.01, 124.71, 124.23, 121.26, 109.31, 65.09, 64.80, 56.39, 54.88, 42.74, 36.64, 33.46, 21.35.

methyl 11-[2Z]-2-iodobut-2-en-1-yl]-8,11-diazatetracyclo[8.3.3.0^1,9.0^5,7]hexadeca-2,4,6,8,14-pentaene-14-carboxylate (37)
To substrate 35 (58 mg, 0.139 mmol) in reagent-grade EtOAc (2 mL) was added IBX (0.2 g). The reaction mixture was stirred at 80 °C for 2 h before concentration. Mixture of hexanes and EtOAc (2:1) was added to the crude and the slurry was filtered through a short plug of silica gel. The solution was concentrated to give 58 mg pure product as a yellowish oil without further purification. The yellowish oil was dissolved in MeCN/tBuOH (5.4 mL, 1:1), then to the solution were added NaH2PO4 monohydrate (96 mg, 0.69 mmol), 2-methyl-2-butene (0.74 mL, 6.93 mmol) and NaClO2 (75 mg, 0.83 mmol) in water (1.8 mL). The mixture was stirred at 25 °C for 4 h before cooled to 0 °C. 10 % Na2S2O3 (0.83 mL) was added and the mixture was stirred at 25 °C for 5 min before concentration. The solid was dissolved in DCM/MeOH (10:1) and the slurry was filtered through a short plug of silica gel. After concentration, the crude acid was dissolved in toluene/MeOH (1:1) before cooled to 0 °C. The solution of trimethylsilyldiazomethane solution in THF (0.28 mL, 2 M) was added dropwise. The solution was allowed to warm to 25 °C and stirred for 12 h before concentration. Purification by flash chromatography (6:1 Hexanes/EtOAc) provided the pure product 37 (50 mg, 80 % for 3 steps) as a yellowish oil.

1H NMR (500 MHz, CDCl3) δ 7.91 (d, J = 7.5 Hz, 1H), 7.66 (d, J = 7.7 Hz, 1H), 7.42 – 7.35 (m, 1H), 7.23 (t, J = 7.6 Hz, 1H), 7.05 (t, J = 3.5 Hz, 1H), 5.89 (q, J = 6.3 Hz, 1H), 3.95 (d, J = 6.2 Hz, 1H), 3.76 (s, 3H), 3.39 (d, J = 14.0 Hz, 1H), 3.23 (d, J = 14.0 Hz, 1H), 3.06 (t, J = 13.8 Hz, 1H), 2.99 – 2.85 (m, 1H), 2.78 (ddd, J = 20.6, 6.4, 3.0 Hz, 1H), 2.73 – 2.60 (m, 2H), 1.79 (d, J = 6.3 Hz, 3H), 1.57 (td, J = 12.9, 4.2 Hz, 1H).

13C NMR (75 MHz, CDCl3) δ 183.00, 165.76, 155.96, 141.12, 140.09, 132.92, 129.73, 128.35, 126.27, 125.49, 120.78, 108.49, 65.06, 55.22, 54.72, 51.68, 43.13, 35.83, 33.86, 21.76.

IR (neat, cm⁻¹): 2948, 1715, 1438, 1283, 1229, 1065, 914.

HRMS (ESI) m/z calcd for C20H21N2O2H+: 449.0721, found: 449.0719.
4.8 Reference

10. Pd or Ni-catalyzed reductive intramolecular cyclization:

26. Jeffery condition for intramolecular cyclization:

27. general Pd-mediated cyclization:

28. reductive Pd-catalyzed cyclization:

29. radical cyclization:
 (a) Yu, J.; Wang, T.; Liu, X.; Deschamps, J.; Flippen-Anderson, J.; Liao, X.; Cook, J.

Chapter 5

Quantitative Analysis of Histone Demethylase Probes Using Fluorescence Polarization

5.1 Background

Methylation of histone proteins is one of the most important epigenetic modifications.1 These reversible modifications recruit effector proteins and trigger a wide range of cellular events, including regulation of gene expression, proliferation, and differentiation. Histone methylations are closely regulated by histone methyltransferases and histone demethylases. Since 2004, two families of enzymes have been reported to exhibit demethylation activities: flavin adenine dinucleotide (FAD)-dependent monoamine oxidases (LSD1 and 2) and jumonji C domain-containing histone demethylases (JHDMs).2 Compared with LSDs, JHDMs have a much broader substrate scope and can modify lysine residues at all methylation states.

Expression of JHDMs plays critical roles in both development and diseases such as cancer and mental retardation.3 Overproduction of 2-hydroxy-glutarate, a natural JHDM inhibitor, due to mutation of isocitrate dehydrogenases, has been identified in multiple cancers.4 This development has led to numerous efforts to develop chemical probes targeting JHDMs. Several classes of α-ketoglutarate (αKG) mimics have been developed to inhibit JHDM activity5 because all JHDMs use αKG as a cofactor. In addition, a substrate-mimicking small molecule was recently reported to selectively inhibit H3K9-demethylase KIAA1718.6 Our group recently discovered a selective, cell-permeable, small-molecule inhibitor methylstat (1, Figure 5.1), which was designed as a bivalent substrate-cofactor conjugate.7 Its corresponding acid, 2 (Figure 5.1), selectively inhibits JHDMs in vitro. This bivalent strategy has also proven successful in two very recent reports on JMJD2 class-selective peptidic inhibitors.8
Although several classes of JHDM inhibitors have been discovered, determining the selectivity of these inhibitors against various JHDM classes remains a major challenge. This is mainly due to the lack of a uniform biochemical assay for various JHDM isoforms. Most established JHDM biochemical assays are enzyme inhibition assays.\(^5\) Because of the self-destructive nature of JHDMs under biochemical reaction conditions,\(^1\) these assays typically require optimization for different JHDM isoforms. In addition, they do not allow for accurate measurement of the dissociation constants of the JHDM probes. Thus, the IC\(_{50}\) values derived from these assays cannot be compared directly. Thus, we are motivated to design a fluorescent JHDM probe, 3 (Scheme 5.1), and develop a fluorescence polarization (FP)-based binding assay. This assay will allow us not only to quantitatively measure the dissociation constants of several JHDM probes but also to validate the inhibitory mechanism of methylstat.

5.2 Synthesis of Methylstat\(^{\text{fluor}}\)

The synthesis of fluorophore 3 was started from conversion of commercially available 4-cyanobenzaldehyde to aldehyde 4 (Scheme 5.1),\(^1\) which then underwent a reductive amination with amine 5\(^7\) to afford secondary amine 6. The tertbutoxycarbonyl (Boc) protecting group of 6
was then removed by trifluoroacetic acid (TFA) and ester was hydrolyzed under basic conditions. The resulting diamine \(7\) was then treated with fluorescein isothiocyanate (FITC) to afford \(3\) as the major product.

![Scheme 5.1 Synthesis of Fluorophore 3](image)

5.3 **Application of Methylstatfluor(3) as A Probe to Fluorescence Polarization Binding and Competition Assays**

Binding of 3 to Various JHDMs

Since fluorophore 3 closely resembles the structure of methylstat acid 2, and it has favorable fluorescent properties for use in a variety of instruments, we envisioned that it could be used as a tracer in a fluorescence polarization binding assay. Three cloned JHDM enzymes (JHDM1A, JMJD2A, and JMJD3) were tested for their binding ability to 3. These three demethylases were chosen because of their differing substrate specificity. Members of the Wang lab (Xuang Dong and Jessica Podoll) thus set out to develop and optimize an FP binding assay to determine the affinity of fluorophore 3 to these three JHDMs. The initial binding experiment was adapted from an FP binding procedure reported previously. Preliminary
results indicated that only the binding of JHDM1A and 3 reached saturation at the concentration of 5 nM 3 in assay (Figure 5.2); therefore, JHDM1A was used for assay optimization.

![Graph of binding affinity](image)

Figure 5.2 Assessment of Binding of fluorophore 3 to JHDM1A, JMJD2A, and JMJD3

Optimized FP Assay

Optimization of the FP assay included optimizing the assay buffer and addition of metal ions, which was carried out by Xuang Dong and Jessica Podoll. The assay buffer was adapted from previous reports on JHDM enzyme activity assays. As for addition of metal ions (Figure 5.3A), Fe$^{2+}$ and Ni$^{2+}$ afforded best binding affinity (K_d: 8.2 nM for Fe$^{2+}$, 9.3 nM for Ni$^{2+}$). Although binding was quantifiable using of Fe$^{2+}$ (sodium ascorbate was added), P$_{\text{max}}$ was found to be increased by at least 200 mP by using Ni$^{2+}$ instead of Fe$^{2+}$ (Figure 5.3A). Besides, binding of fluorophore 3 to JHDM1A in the presence of Ni$^{2+}$ was highly stable over time (Figure 5.3B). Once binding reached equilibrium (approximately 4 hours), signals stayed stable over the course of at least 20 hours.
Figure 5.3 Optimization of Binding of fluorophore 3 to JHDM1A in the presence of Ni2+: (A) addition of various metal ions. (B) Stablized FP signals over the course of at least 20 hours

Quantification of Binding Affinity of JHDM ligands to JHDM1A

With optimized FP assay in hand, Xuang Dong and Jessica Podoll performed a competition assay using 3 as a tracer in order to confirm its binding at the JHDM active site and to quantify the binding affinity of known JHDM ligands: methylstat acid 2, αKG, N-oxalylglycine (NOG, an αKG mimic), 2,3-Pyridinedicarboxylic Acid (PDCA) and H3K36me2.5a,14 The results (Figure 5.4) showed that all of the above molecules can displace 3 from JHDM1A. Methylstat acid 2 was proved to be a competitive JHDMs inhibitor with IC\textsubscript{50} value of 135 nM and K\textsubscript{i} value of 11.3 nM.

Figure 5.4 Determination of IC\textsubscript{50} and K\textsubscript{i} values for known JHDM probes using our FP competition assay.
This competition assay also allowed quantification of the binding affinities of multiple JHDM active site binding molecules including αKG, for which a K_d has never previously been reported due to its role in JHDM catalysis. Since this FP-binding and competition assays were able to elucidate binding affinity constants, it may identify specific binders of a JHDM isoform. Further expansion of our FP binding assay to other JHDM isoforms may be extremely useful for assessing the specificities as well as the inhibitory mechanism of various JHDM probes.

Application to High-Throughput Screening

The FP competition assay was also reformatted by Xuan Dong for high-throughput screening (HTS) using methylstat acid 2 (100 μM in DMSO) and DMSO as positive and negative controls respectively (Figure 5.5). The Z’-score, a characteristic parameter for the quality of the assay without intervention of test compounds, was calculated to be 0.78, indicating the this assay is suitable for HTS of JHDM active site binders and could be used to screen small molecule libraries for novel JHDM inhibitors in the future.

![Figure 5.5](image.png)

Figure 5.5 Application of Fluorophore 3 to High-Throughput Screening of JHDM inhibitors

5.4 Conclusion

A fluorescent analog 3 of methylstat was designed and synthesized and used to develop novel FP-based binding and competition assays for JHDM1A. By adjusting catalytic assay
conditions, highly stable binding assay conditions were developed that have allowed quantification of 3 to JHDM1A as well as known JHDM inhibitors and native substrates. Additionally, the FP assay allowed development of a highly robust and miniaturized assay appropriate for high-throughput screening of large compound libraries (Z': 0.78).

5.5 Outlook

Recently, fluorescent probe 8 was synthesized and used to perform FP binding assay with JMJD2A. The K_d of this interaction is 85 nM. This probe might be used for the FP competition assay using JMJD2A to determine the K_i values for known JHDM active site binders including PDCA and αKG (Figure 5.6).

![Figure 5.6](image.png)

Figure 5.6 (A) Structure of fluorophore 8 (B) Binding of 8 to JMJD2A. (C) FP competition assay for determination of IC$_{50}$ and K_i values for known probes
5.6 Experimental

Unless otherwise noted, reagents were obtained commercially and used without further purification. Solvents were dried using standard procedures. TLC analysis of reaction mixtures was performed on Dynamic adsorbents gel F-silica 254 TLC plates. Flash chromatography was carried out on Zeoprep 60 ECO silica gel. 1H and 13C NMR spectra were recorded with Varian INOVA 400, 500 and VXRs-300 spectrometers. Mass spectral and analytical data were obtained via the PE SCIEX/ABI API QSTAR Pulsar iHybrid LC/MS/MS. Infrared (IR) spectra were recorded on a Thermo Nicolet Avatar 370 FT-IR spectrometer. The purity was determined by Agilent Technologies 6120 Quadrupole LC/MS with 1260 Series HPLC System from the integration of the area under the UV absorption curve at $\lambda = 254$ or 210 nm signals. The system was eluted at 0.5 ml/min with a gradient water/acetonitrile in 0.1% formic acid: 0-5min, linear gradient of 5-95% acetonitrile + 0.1% formic acid; 5-7 min, 95% acetonitrile + 0.1% formic acid; 7-7.25 min, linear gradient of 95-5% acetonitrile + 0.1% formic acid; 7.25-8.5 min, 5% acetonitrile + 0.1% formic acid.

t-Butyl 4-formylbenzylcarbamate (4)

\[\text{NC} \quad \text{O} \quad \text{LiAlH}_4 \quad \text{Boc}_2\text{O}, \text{NEt}_3 \quad \text{DMP} \quad 72\% \text{ for 3 steps} \]

A solution of 4-cyanobenzaldehyde (0.086 g, 0.66 mmol) in 4 mL THF was added dropwise to the solution of LiAlH$_4$ (1 M in THF, 1.65 mL) at 0 °C under N$_2$. The light yellow-green solution was stirred at 0 °C for 3 h and refluxed under N$_2$ for 12 h. After cooling down to room temp, MeOH (0.35 mL) was added to the suspension to quench the reaction. The suspension generated
foams while being stirred and cooled in an ice-bath. When no more bubble formation was observed, NaOH (2 M, 2.1 ml) solution was added into the suspension. The solution became colorless while white precipitate was observed. The solution was concentrated in vacuo and the residue was suction filtered. The solid was repeatedly washed with ethyl acetate. The filtrate was combined and washed with water. The organic phase was separated, dried over sodium sulfate and concentrated to give 0.08 g white solid. The solid was dissolved in 0.8 mL THF and triethylamine (0.089 mL, 0.64 mmol) was added followed by the addition of di-tert-butyl dicarbonate (0.14 g, 0.64 mmol) in 0.8 mL dry THF dropwise. The reaction solution was stirred at room temp for 12 h before concentration on a rotavap. The residue was dissolved in 50 mL ethyl acetate. The solution was sequentially washed with 2 M HCl, saturated NaHCO₃ and brine, and then dried over sodium sulfate. Filtration and solvent evaporation yielded 0.14 g white powder. The powder was dissolved in 3 mL CH₂Cl₂ and the solution was cooled to 0 °C, to which was added Dess-Martin periodinane (0.310 g, 0.71 mmol). The resulting mixture was stirred at 0 °C for 30 min before addition of 5 mL hexanes. The white precipitate was filtered through silica gel and concentrated in vacuo. The residue was purified over silica gel using hexanes : ethyl acetate = 4 : 1 as eluent to give 4 (0.112 g, 72%) as a white solid. Data is consistent with that reported in the literature.¹⁸

(E)-Methyl 4-((4-((tert-butoxycarbonylamino)methyl)benzylamino)butyl)(hydroxy)amino)-4-oxobut-2-enoate (5)
To the mixture of aldehyde 4 (0.094 g, 0.4 mmol) and amine 5 (0.079 g, 0.37 mmol) in 3.6 mL methanol at 0 °C was added acetic acid (0.062 mL, 1.1 mmol). After 30 min, sodium cyanoborohydride (0.12 g, 1.82 mmol) was added at 0 °C and the resulting mixture was stirred at 25 °C for 12 h before concentration. Water was added and aqueous layer was extracted with ethyl acetate 3 times. The combined organic phases were washed with saturated NaHCO₃ and brine, dried over sodium sulfate, filtered and concentrated in vacuo. The residue was purified over silica gel using CH₂Cl₂: MeOH = 10 : 1 as eluent to give 6 (0.094 g, 59%) as a yellowish oil.

¹H-NMR (CD₃OD, 500 MHz): δ = 7.65 (d, J=15.7 Hz, 1H), 7.43 (d, J=8.1 Hz, 2H), 7.37 (d, J=8.1 Hz, 2H), 6.75 (d, J=15.7 Hz, 1H), 4.25 (s, 2H), 4.16 (s, 2H), 3.80 (s, 3H), 3.76 (t, J=6.3 Hz, 2H), 3.11 – 3.01 (m, 2H), 1.85 – 1.64 (m, 4H), 1.44 (s, 9H).

¹³C-NMR (CD₃OD, 75 MHz): δ = 167.14, 165.64, 158.23, 142.39, 133.70, 131.69, 131.00, 130.90, 128.67, 80.26, 52.86, 51.98, 48.48, 48.10, 44.46, 28.78, 24.52, 24.12.

IR (neat, cm⁻¹): 3382, 2974, 2337, 2173, 1699, 1520, 1274, 943, 812.

HRMS (ESI) (m/z) [M+H]⁺ 436.2419 (calcd for C₂₂H₃₄N₅O₆: 436.2443).

(E)-4-((4-(4-(Aminomethyl)benzylamino)butyl)(hydroxy)amino)-4-oxobut-2-enoic acid (6)

To compound 6 (0.023 g, 0.34 mmol) in 0.2 mL CH₂Cl₂ at 0 °C was added 0.1 mL trifluoroacetic acid. The reaction solution was stirred at 0 °C for 0.5 h before concentration in vacuo. The oil
was dissolved in 0.5 mL THF, to which was added the solution of LiOH monohydrate (0.022 g, 0.53 mmol) in 0.5 mL water. The resulting mixture was stirred at 25 °C for 2 h. The solution was cooled to 0 °C and HCl in dioxane (4 M, 0.11 mL) was added. After 5 min, the solvents were removed in vacuo. The residue was purified over silica gel using MeOH : H2O = 3 : 1 as eluent to give 7 (0.016 g, 94%) as a white solid.

1H NMR (CD3OD, 400 MHz) δ = 7.40 (s, 4H), 7.24 (d, J=15.7 Hz, 1H), 6.76 (d, J=15.7 Hz, 1H), 3.98 (s, 2H), 3.87 (s, 2H), 3.69 (t, J=6.2 Hz, 2H), 2.74 (t, J=7.1 Hz, 2H), 1.79 – 1.68 (m, 2H), 1.67 – 1.55 (m, 2H).

13C NMR (CD3OD, 75 MHz) δ = 173.96, 167.64, 140.35, 138.84, 137.91, 130.61, 129.71, 128.51, 53.36, 45.21, 26.48, 25.34.

IR (neat, cm⁻¹): 3354, 2970, 2976, 1454, 1380, 1160, 1127, 951, 812.

HRMS (ESI) (m/z) [M+H]^+ 322.1794 (calcd for C16H24N3O4: 322.1762).

Sodium (E)-4-((4-((3-(carboxy-4-(6-hydroxy-3-oxo-3H-xanthen-9-yl)phenyl)thiourea-dio)methyl)benzylamino)butyl)(hydroxy)amino)-4-oxobut-2-enoate (3)

To the mixture of fluorescein isothiocyanate isomer I (0.01 g, 0.025 mmol) and amine 7 (0.016 g, 0.05 mmol) in 0.2 mL THF was added 0.2 mL sat NaHCO3 at 0 °C The solution was warmed

158
to 25 °C and stirred for 12 h. NaOH (2 M, 0.12 mL) solution was added and the mixture was stirred at 25 °C for 5 min before concentration. The residue was purified over silica gel using CHCl₃ : MeOH : H₂O = 6 : 4 : 0.5 as eluent to give 3 (0.007 g, 37%) as an orange solid.

¹H NMR (CD₃OD, 300 MHz) δ = 7.73 (s, 1H), 7.67 (dd, J=8.3 Hz, 2.1 Hz, 1H), 7.43 (s, 4H), 7.26 (d, J=16.0 Hz, 1H), 7.21 – 7.12 (m, 3H), 6.74 (d, J=15.6 Hz, 1H), 6.62 – 6.53 (m, 4H), 5.20 (s, 2H), 4.05 (s, 2H), 3.86 (s, 2H), 3.73 (t, J=5.4 Hz, 2H), 1.88 – 1.61 (m, 4H).

¹³C NMR (CD₃OD, 75 MHz) δ = 183.57, 179.92, 173.95, 173.50, 167.98, 159.86, 143.15, 141.25, 140.74, 139.39, 134.80, 132.79, 132.19, 130.56, 130.35, 129.14, 128.88, 128.28, 128.21, 123.07, 114.46, 104.31, 55.35, 51.89, 44.41, 25.54, 24.94.

IR (neat, cm⁻¹): 3387, 3240, 2615, 2361, 1576, 1388, 1458, 1204, 1102, 910.

5.7 References

Bibliography

Li, J. J. Alkaloids: Chemical and Biological Perspectives 1999, 14, 437-503.

Kutney, J. P. Heterocycles 1977, 7, 593-614.

Li, Z.; Liang, G. *Tetrahedron Lett.* 2013, 54, 242-244.

