Causes and Correlates of Apparent Failures to Delay Gratification in Children and Adults

Laura Elizabeth Michaelson
University of Colorado at Boulder, laura.michaelson@colorado.edu

Follow this and additional works at: https://scholar.colorado.edu/psyc_gradetds
Part of the Cognitive Psychology Commons, and the Quantitative Psychology Commons

Recommended Citation
Michaelson, Laura Elizabeth, "Causes and Correlates of Apparent Failures to Delay Gratification in Children and Adults" (2017). Psychology and Neuroscience Graduate Theses & Dissertations. 127.
https://scholar.colorado.edu/psyc_gradetds/127

This Dissertation is brought to you for free and open access by Psychology and Neuroscience at CU Scholar. It has been accepted for inclusion in Psychology and Neuroscience Graduate Theses & Dissertations by an authorized administrator of CU Scholar. For more information, please contact cuscholaradmin@colorado.edu.
CAUSES AND CORRELATES OF APPARENT FAILURES TO DELAY
GRATIFICATION IN CHILDREN AND ADULTS

by

LAURA ELIZABETH MICHAELSON

B.A., Vassar College, 2009

M.A., University of Colorado Boulder, 2013

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirement for the degree of
Doctor of Philosophy
Department of Psychology and Neuroscience

2017
This thesis entitled:

Causes and Correlates of Apparent Failures to Delay Gratification in Children and Adults

written by Laura Elizabeth Michaelson

has been approved for the Department of Psychology and Neuroscience

Yuko Munakata, Committee Chair

Allison Atteberry, Committee Member

McKell Carter, Committee Member

Phil Fernbach, Committee Member

Naomi Friedman, Committee Member

Date

The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline.
Delaying gratification for long-run goals in the face of short-run costs and temptations predicts a wide array of important outcomes, including academic achievement, financial stability, and physical health. Therefore, understanding the development of delay of gratification—how it changes within and across children, and the causes and correlates of those changes—carries substantial implications for individuals and societies. This dissertation seeks to investigate the conventional assumption that apparent “failures” to delay gratification reflect limitations in self-control, and to test for a causal role of social trust in driving future-oriented decisions and behaviors. Five studies using a combination of experimental, quasi-experimental, and quantitative modeling methods provide converging evidence that trust influences delay of gratification and may drive the life outcomes associated with willingness to delay. These findings demonstrate that manipulations of social trust influence delaying gratification, and highlight intriguing alternative reasons for individual differences in delaying gratification and associated life outcomes.
CONTENTS

CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW .. 1
 Dissertation Goals and Organization .. 1
 Literature Review .. 2

CHAPTER 2: CAUSAL EFFECTS OF TRUST ACROSS TWO RANDOMIZED EXPERIMENTS WITH ADULTS ... 7
 Introduction .. 7
 Experiment 1 .. 7
 Methods ... 7
 Results and Discussion ... 9
 Experiment 2 ... 12
 Methods .. 12
 Results and Discussion ... 14
 General Discussion ... 16

CHAPTER 3: CAUSAL EFFECTS OF TRUST IN A RANDOMIZED EXPERIMENT WITH PRESCHOOLERS .. 18
 Introduction ... 18
 Methods .. 19
 Results .. 22
 Discussion ... 25

CHAPTER 4: GROUP DIFFERENCES IN TRUST AND DELAY OF GRATIFICATION AMONG INCARCERATED CRIMINAL OFFENDERS 27
 Methods ... 28
Appendix A: Questionnaire items used in Chapter 5 .. 85

Appendix B: Measures and corresponding SECCYD codes included in Chapter 6 composite variables .. Error! Bookmark not defined.

Appendix C: Measures, subscales, and indices included in Chapter 6 composite variables ... 89
TABLES

Table 1. Sociodemographic Characteristics of the MIDUS Sample ..37

Table 2. Relationships Between Trust and Life Outcomes Across Three Different Estimation Methods ...39

Table 3. Interactions Between Trust and Zygosity ..40

Table 4. Search Terms Used to Identify Relevant Measures from the SECCYD Documentation ...47

Table 5. Descriptive Statistics for RQ1 Measured Variables ...49

Table 6. Correlations With Age 4 Delay of Gratification ..50

Table 7. Predicting Adolescent Outcomes from Preschool Delay of Gratification51

Table 8. Random Intercept Model Results ...53

Table 9. Unconditional Random Linear Time Model Results ...55

Table 10. Cross-Level Interaction Models ...58

Table 11. Intercepts-As-Outcomes Models ...60

Table 12. Summary of Model Comparisons ..61
FIGURES

Figure 1 ..11
Figure 2 ..12
Figure 3 ..15
Figure 4 ..23
Figure 5 ..31
Figure 6 ..54
Figure 7 ..56
CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

Dissertation Goals and Organization

Delaying gratification, or resisting temptation in favor of long-term goals, predicts nearly every aspect of psychosocial well-being and life success. Everyone sometimes struggles to hold out for delayed rewards, but certain populations face particular difficulties, including addicts, criminals, obese individuals, depressed individuals, adolescents, and children (Anokhin, Goloshchekin, Grant, & Health, 2011; Casey et al., 2011; Hongwamishkul, Happaney, Lee, & Zelazo, 2005; Johnson, Bickel, & Baker, 2007; Wulfert, Block, Santa Ana, Rodriguez, & Colsman, 2002). The tendency to treat future rewards as worth less than immediate rewards may therefore lead to undesirable consequences, both for the individual and for society at large. However, the skills and motivations that support delay of gratification and drive its predictive power across development are not well understood.

The main goals of this dissertation are to investigate the conventional assumption that apparent “failures” to delay gratification are driven by limitations in self-control, and to test for a causal role of social trust in driving future-oriented decisions and behaviors. Chapter 1 reviews existing literature on delay of gratification and associated life outcomes in children and adults. In Chapters 2 and 3, laboratory-based trust manipulations influence willingness to delay gratification in adults and children, providing strong support for the hypothesis that trust plays a causal role. Chapter 4 explores implications of these findings for understanding group differences in delay of gratification among a sample of notoriously-impulsive incarcerated criminal offenders. Chapter 5 explores implications for understanding individual differences in delay of gratification among a sample of twins who differ in trust but are matched on nearly every other aspect of the environment. Finally, Chapter 6 tests the replicability of and reasons
behind the link between early delay of gratification and later life outcomes. Overall conclusions and a general discussion are presented in Chapter 7.

Literature Review

Introduction

What factors are most important for promoting positive development in children? Delaying gratification is a strong contender. Holding out for a preferred reward (e.g., two marshmallows later) in the face of a less-preferred option (e.g., one marshmallow now) during childhood predicts a wide array of important later life outcomes (Mischel & Ebbeson, 1970; Mischel, Shoda, & Peake, 1988), including academic achievement, career advancement, financial stability, and physical health (Ayduk et al., 2000; Mischel, Shoda, & Peake, 1989; Schlam et al., 2013; Shoda, Mischel, & Peake, 1990; Moffitt et al., 2011). As evidence continues to accumulate for the predictive power of this simple behavioral task, delay of gratification is increasingly recognized as an early diagnostic marker of later life outcomes, with substantial potential implications for efforts to reduce social problems such as obesity, poverty, addiction, and violence.

Unfortunately, that “one simple thing” that supports delaying gratification is comparatively lacking in consensus. Many explanations focus on self-control (often used interchangeably with related concepts of ‘cognitive control’, ‘willpower’, ‘impulsivity’, and ‘inhibition’; e.g. Casey, Somerville, Gotlib, Ayduk, Franklin, et al., 2011; Duckworth, Tsukayama & Kirby, 2013; Eigsti, Zayas, Mischel, Shoda, Ayduk et al., 2006; Mischel & Ayduk, 2004). Self-control refers to a family of functions that support the ability to override impulsive actions in the service of goal-relevant behavior (Allport, 1987; Banich, 2009; Braver & Cohen, 2001; Miller & Cohen, 2001). Delaying gratification has been associated with
performance on behavioral tasks tapping processes related to self-control, such as selective attention, response inhibition, and affective regulation (Eigsti et al., 2006; Hofmann, Friese & Roefs, 2009; Nederkoorn, Braet, van Eijs, Tanghe & Jansen, 2006; Rodriguez, Mischel, & Shoda, 1989). In addition, neural processes associated with self-control in the ventral medial and ventral striatal cortex are activated when making decisions to delay reward (Figner, Knoch, Johnson, Krosch, Lisanby et al., 2010; McClure, Laibson, Loewenstein & Cohen, 2004), and the neuromaturation of this frontostriatal circuitry tracks developmental improvements in the ability to delay gratification (Achterberg, Peper, van Duijvenvoorde, Mandl, & Crone, 2016).

From this perspective, the predictive validity of group and individual differences in delaying gratification derive from its assessment of lifelong individual differences in self-control (Duckworth, Tsukayama, & Kirby, 2013; Mischel et al., 2011). However, self-control and delay of gratification do not always coincide: delay of gratification shows no change over a developmental period where children improve substantially on measures of self-control (Beck, Schaefer, Pang & Carlson, 2011; Carlson, 2005), and training programs that improve self-control in 4–12-year-old children show no effects on delay of gratification (Diamond & Lee, 2011).

What drives delay of gratification when it diverges from self-control?

One possibility is trust. All future outcomes are uncertain; even with perfect self-control, delaying gratification for a future reward only makes sense if the future outcome is likely to actually materialize (Kidd, Palmeri & Aslin, 2013; Mahrer, 1956; Michaelson, de la Vega, Chatham & Munakata, 2013; Michaelson & Munakata, 2016; Mischel & Ayduk, 2004). Decisions to delay gratification are often rife with social expectations (e.g., that parents will deliver that promised bowl of ice cream if other sweets are avoided until after dinner; that portfolio managers will responsibly manage and grow clients’ savings if provided with a portion
of their monthly income), and social competencies during childhood are as important as
cognitive abilities for predicting later life success (Bronfenbrenner & Morris, 1998; Raver &
Zigler, 1997). Thus, apparent “failures” to delay gratification may be driven by a lack of social
trust, as opposed to limitations in self-control.

Trust in others is dynamically updated through experience (King-Casas, Tomlin, Anen,
Comerer, Quartz, & Montague, 2005), and can be modulated by information about others’
prior behavior (Delgado, Frank, & Phelps, 2005) and perceptions of their ability to regulate their
own behavior (Righetti & Finkenauer, 2011), as well as by motivational and affective states
(Dunn & Schweitzer, 2005; van den Bos, van Dijk, & Crone, 2011). Although early accounts of
delaying gratification emphasized the importance of trust in the person promising a reward
(Mischel, 1961b; Mischel et al., 1972), and studies have established the role of the
trustworthiness of adults in what children will learn from them (e.g. Koenig, Clement & Harris,
2004), few studies of delaying gratification have controlled for trust or tested the importance of
trust experimentally. Relevant studies have been limited by being correlational, examining trust
in only adults, or focusing on the role of reward expectations, leaving ambiguous the possible
role of trust.

Some early correlational accounts of delay of gratification emphasized the importance of
trust in the person promising a reward (Mischel, 1961b; Mischel et al., 1972). For example,
children with absent fathers (who tend to be less trusting than children in two-parent families;
Wentzel, 1991) preferred smaller immediate rewards over larger delayed options (Mischel,
1961b). In addition, adolescents who reported uncertainty about receiving promised delayed
rewards from their parents, as well as adults who were less trusting in a behavioral economics
game, more rapidly devalued delayed rewards when making hypothetical choices between them
and smaller immediately available rewards (Harris & Madden, 2002; Schneider, Peters, Peth & Büchel, 2014). However, such correlations could be driven by other factors. Low social trust could be associated with low self-control, which could drive the relationships between social trust and willingness to delay. Alternatively, such correlations could be driven by a causal relationship in the reverse direction, such that social trust requires the ability to delay gratification (Harris & Madden, 2002).

Some experimental work suggests a causal role of social trust in delaying gratification, but could alternatively be interpreted in terms of more general reward effects. For example, when rewards are promised by an experimenter but never provided, or are delivered inconsistently, preferences for immediate gratification increase in humans and other animals (Kidd et al., 2013; Mahrer, 1956; Stevens, Rosati, Heilbronner, & Muhloff, 2011). This effect could arise from reduced trust that a delayed reward will be provided, but might alternatively arise from the changes to subjective wellbeing, motivation, and willpower that accompany reward provision/omission (Gomez & McLaren, 1997) and are known to influence self-control (Vansteenkiste & Deci, 2003; Ifcher & Zarghamee, 2011; Lerner, Li, & Weber, 2012; Pyone & Isen, 2011). That is, participants may have been less able to delay gratification because rewards that were inconsistent or withheld led to reduced self-control, rather than to reduced social trust.

The studies reported in Chapters 2 and 3 thus constitute an initial test of whether social trust, manipulated in the absence of rewards, influences choices about whether to delay gratification. In Chapter 1, hypothetical trust manipulations influenced adults’ decisions about whether to delay gratification for hypothetical monetary rewards in a temporal discounting task. In Chapter 2, manipulating children’s real impressions of the trustworthiness of the experimenter in a laboratory-based delay of gratification task influenced their time spent waiting for a delayed
reward promised by that experimenter. These studies provide the first targeted evidence that trust causally impacts willingness to wait for delayed rewards.
CHAPTER 2: CAUSAL EFFECTS OF TRUST ACROSS TWO RANDOMIZED EXPERIMENTS WITH ADULTS

Introduction

Two experimental studies were conducted to test whether the trustworthiness of the person providing a choice between immediate and delayed rewards influences adult preferences in a modified intertemporal choice task. Trust was manipulated using short vignettes about fictional characters that conveyed information about their trustworthiness (Experiment 1) and accompanying faces that varied in perceived trustworthiness (Experiment 2). Participants were then asked to complete a series of intertemporal choices in which they selected between a series of smaller, immediate rewards and a larger, delayed rewards from the characters they read about. Adults were tested to build on prior manipulations of trust in the absence of rewards (Delgado, Frank, & Phelps, 2005; Fareri, Chang, & Delgado, 2012; Oosterhof & Todorov, 2008), and to obtain more precise estimates of willingness to delay. This research was completed along with co-authors Alejandro de la Vega, Ph.D., Christopher H. Chatham, Ph.D., and Professor Yuko Munakata, and the resulting manuscript published in Frontiers in Psychology in 2013.

Experiment 1

Methods

Participants. Seventy-eight participants (34 male, 39 female, five who preferred not to indicate gender) between 18 and 64 years of age ($M_{age} = 31.1$ years, $SD = 11.1$ years) were paid $1.00 for completing the experiment, which lasted 10-15 min. Participants were recruited via Amazon’s Mechanical Turk, a website that allows users to complete small tasks for pay, and had an average approval rating of at least 99% from previous jobs. Participants lived in the United
States, and were normally distributed in terms of socioeconomic status, with the average participant having completed some college and receiving a financial income between $37,500 - $49,999 per year. All participants were included in the analyses; results were identical when excluding participants based on null discounting (i.e., all later responses in at least one condition, n = 2; as in Kirby and Marakovic, 1996).

Materials and Procedure. All participants read three vignettes depicting trustworthy, untrustworthy, and neutral characters, then considered each character in delay of gratification situations. The experiment was presented in an online survey format and began with a short list of demographic questions. Then, as in Delgado, Frank, & Phelps (2005), participants read the vignettes in a fixed order (trustworthy, untrustworthy, neutral) and completed trustworthiness ratings, using a scale of 1-7 to rate each individual on trustworthiness, likability, approachability, and likelihood of sharing. Next, participants completed intertemporal choice questions (as in Kirby & Marakovic, 1996), which varied in immediate reward values ($15-83), delayed reward values ($30-85), and length of delays (10-75 days). Each question was modified to mention an individual from one of the vignettes (e.g., “If [trustworthy individual] offered you $40 now or $65 in 70 days, which would you choose?”). Participants completed 63 questions in total, with 21 different questions that occurred once with each vignette, interleaved in a single fixed but random order for all participants. The 21 choices were classified into 7 ranks (using the classification system from Kirby & Marakovic, 1996), where higher ranks should yield higher likelihood of delaying, allowing a rough estimation of a subject’s willingness to delay using a small number of trials. Rewards were hypothetical, given that hypothetical and real rewards elicit equivalent behaviors (Madden, Begotka, Raiff & Kastern, 2003) and brain activity (Bickel, Pitcock, Yi, & Angtuaco, 2009), and were preceded by instructions asking participants to
consider each choice as if they would actually receive the option selected. Participants took as much time as they needed to complete the procedures.

Results and Discussion

Trust manipulated in the absence of reward, within subjects, influenced participants’ willingness to delay gratification, with perceived trustworthiness predicting willingness to delay.

Approach and Preliminary Analyses. The effect of condition and rank on choice was analyzed with generalized linear mixed effect (lmer) models with a logit link function using the lme4 package (Bates & Sarkar, 2006) in the R statistics package (R Development Core Team, 2006). Subjects’ intercepts were modeled as random effects, allowing us to model individual trial data to predict the probability of choosing the delayed option (“probability of delaying”) without averaging within individuals or rank. Validating the short temporal discounting assessment, the probability of delaying increased with rank, $b = 0.81, SE = 0.15, z = 54.12, p < .001$. Additionally, perceived trustworthiness was predicted by condition (untrustworthy < neutral < trustworthy), $b = 1.41, SE = .02, t = 90.9, p < .0001$, suggesting our trust manipulation was effective (Figure 1A). The difference between untrustworthy and neutral conditions was not significantly different from the difference between neutral and trustworthy conditions, $b = .18, SE = .27, t = 0.65, p > .51$.

Effects of Trust on Delaying Gratification. Participant preferences for delayed rewards, as indexed by probability of delaying, was predicted by condition, $b = .76, SE = .04, z = 17.72, p < .0001$; both untrustworthy ($b = 1.48, SE = 0.23, z = 6.35, p < .001$) and trustworthy ($b = 0.49, SE = 0.08, z = 5.93, p < .001$) conditions were significantly different from the neutral condition. In addition, the difference between untrustworthy and neutral conditions was significantly different from the difference between neutral and trustworthy conditions, $b = .87, SE = .17, t =$
5.18, \(p < .001 \), (Figure 1B); thus, our trust manipulation had a larger effect on delaying gratification at lower levels of trust, consistent with prior work showing nonlinear effects of trust manipulations on other behaviors (Fareri, Chang, & Delgado, 2012). There was also an interaction between condition and rank, \(b = .11, SE = .02, z = 6.1, p < .001 \), such that the increase in delay choices with rank was smaller in the untrustworthy condition relative to the trustworthy and neutral conditions. This suggests that as the delayed option became more appealing, those in the untrustworthy condition were more likely to continue to choose the immediate option.

Importantly, perceived trustworthiness predicted probability of delaying, \(b = .49, SE = 0.03, z = 18.53 p < 0.0001 \), such that less perceived trustworthiness predicted lower willingness to delay gratification (Figure 1C). In addition, there was an interaction between condition and trustworthiness (\(b = .21, SE = .03, z = 6.30, p < .001 \)), such that trustworthiness predicted probability of delaying within only the untrustworthy condition, consistent with a non-linear effect of trust on delay of gratification.
Figure 1. (A) Perceived trustworthiness increased as a function of trust condition. Error bars are standard error. (B) Probability of delaying gratification was lower in the untrustworthy condition (red) compared to the neutral (blue) and trustworthy conditions (green), reflecting reduced willingness to delay gratification with untrustworthy individuals. (C) Perceived trustworthiness correlates positively with probability of delay across conditions. Residuals after regressing out mean probability of delay for each subject is plotted on the y-axis. Individual data points are jittered 0.2 units on the x-axis.

These results suggest that reducing social trust, in the absence of rewards, can decrease willingness to delay gratification. However, participants read all three vignettes and were asked to rate trustworthiness (to replicate Delgado, Frank, & Phelps, 2005) before making intertemporal choices, raising the possibility that they realized the study was investigating the role of trust in their choices, and responded based on their belief that trust should increase their willingness to delay. The fixed order of the vignettes also leaves open the possibility that perceived trustworthiness, willingness to delay, and their relationship were somehow driven by the order of vignettes. Experiment 2 addresses these issues by manipulating social trust between participants, and tests the replicability of the effects of social trust in the absence of rewards on delaying gratification.
Experiment 2

Methods

All details were identical to Experiment 1 except where noted. Participants were randomly assigned to trustworthy, untrustworthy, or neutral conditions, rather than reading all three vignettes, and personality ratings were moved to the end of the survey, to minimize demand characteristics. To enhance the manipulation of social trust, each vignette was accompanied by a trustworthy, untrustworthy, or neutral computer-generated face. These faces were drawn from a larger database of faces manipulated to vary in trustworthiness (Oosterhof & Todorov, 2008) and known to influence trusting behavior (e.g., Oosterhof & Todorov, 2009; Todorov, Pakrashi, & Oosterhof, 2009).

Figure 2. Faces were paired with vignettes in Experiment 2, matching the condition to enhance the manipulation of trust. Faces varied in trustworthiness from untrustworthy (left), neutral (middle), to trustworthy (right). Three different faces were used, each with untrustworthy, neutral, and trustworthy versions, yielding nine different faces overall.

The between-subjects design of Experiment 2 allowed us to use a larger set of intertemporal choice questions, in a procedure similar to standard intertemporal choice tasks (Richards, Zhang, Mitchell, & de Wit, 1999; Ballard & Knutson, 2009), so that we could calculate discounting rates (k-values). A much larger sample of participants was tested, to yield a more precise estimate of discounting rates and of the influence of our trust manipulation.
Participants. One hundred and seventy two participants (65 male, 60 female, 13 who preferred not to indicate gender) between 18 and 61 years of age ($M_{age} = 28$ years, $SD = 8.9$ years) participated in this study. Participants were paid $0.25 for completing this study, which took approximately 10 mins. This lower pay rate was chosen given the larger sample size, and because compensation rates on Mechanical Turk only influence enrollment rate, not quality of the data (Buhrmester, Kwang, & Gosling, 2011). All participants lived in the United States, and were normally distributed in terms of socioeconomic status, with the average participant having completed some college and receiving a financial income between $37,500 - $49,999 per year.

To maintain the between subjects design, we only included data collected on the first visit from any IP address; this resulted in the exclusion of 34 participants who completed surveys from more than one condition from the same IP address. All remaining participants were included in the analyses; results were identical when excluding subjects based on null or inconsistent temporal discounting behavior (as defined as in Johnson & Bickel, 2008, $N = 22$), or for completing the survey too quickly (< 3 mins, $n = 3$) as has been done in some studies (Bucholz & Latorre, 2011; Lee, 2010), but did not occur in Experiment 1. Final analyses included 46 participants in the trustworthy condition, 49 in the untrustworthy condition, and 43 in the neutral condition.

Materials and Procedure. Participants read one vignette, accompanied by a face. Three faces were selected from a database of 100 white male faces developed by Oosterhof and Todorov (2008) and implemented in the FaceGen Modeller program (Singular Inversions, Toronto, Ontario, Canada). Three faces were used to minimize effects of stimulus-specific variances related to the faces. Three variations – trustworthy, untrustworthy, and neutral – of each of the three faces were used, resulting in nine faces total (Figure 2). These variations
differed in terms of characteristics that had been determined to be optimal in representing
trustworthiness, based on principle component analysis of 300 emotionally neutral computerized
faces that had been rated on a variety of social dimensions (Oosterhof & Todorov, 2008). For
example, increasing the distance between the eyes and the eyebrows was associated with ratings
of increased trustworthiness. Face images were 400 x 477 pixels in size.

Participants then completed the intertemporal choice task, which consisted of 49 binary
choice questions between a smaller immediate reward ($5) and a larger delayed reward that
varied in delay (4-150 days) and value ($11-34). The face from the vignette appeared three
times across the intertemporal choice questions, to reinforce the character that the questions
pertained to. Lastly, participants completed the personality ratings. Three participants had some
missing rating scores and were excluded from rating analyses.

Results and Discussion

Trust manipulated in the absence of reward, between subjects, influenced participants’
willfulness to delay gratification, with perceived trustworthiness again predicting willingness to
delay.

Approach and Preliminary Analyses. A k-parameter was estimated for each participant
(as in Ballard & Knutson, 2009), with lower k-values indicating increased preference for delayed
rewards. Indifference points were calculated at each delay using logistic regression to determine
the later value at which there was an equal probability of each response. When estimates were
outside of the range of displayed later values (e.g. participants gave all later or now responses or
gave inconsistent responses), indifference points were assume to be just outside the range of
values presented (34.5 for all “now” and 10.5 for all “later” responses). Discounted value (DV)
was calculated at each delay (DV=$5/indifference point) and a hyperbolic discounting function
was fit to all DVs using nonlinear least squares: DV=1/(1+k*delay), where k is the unknown discounting parameter. As in previous research, this hyperbolic model provided a good fit for the data, as assessed using visual inspection and model comparison with an exponential function. There were no significant main effects or interactions with the different versions of trustworthy, untrustworthy, and neutral faces, so subsequent analyses collapse across faces within each trust condition. All analyses were completed using linear model (lm) in the R statistical package. All results were confirmed using bootstrapping, as k-values are not normally distributed.

Perceived trustworthiness was again predicted by condition (untrustworthy < neutral < trustworthy), $b = 0.85$, $SE = 0.16$, $t(130) = 5.34$, $p < .0001$, Cohen’s $d = 0.45$, suggesting that our trust manipulation was effective (Figure 3A). The difference between trustworthy and neutral conditions was not significantly different from the difference between neutral and untrustworthy conditions, as evidenced by overlapping 95% confidence intervals of parameter estimates for trustworthy-neutral (0.32, 1.52) and neutral-untrustworthy (0.12, 1.38).

Figure 3. (A) Perceived trustworthiness increased as a function of trust condition. Error bars are standard error. (B) Discounting rates were higher in the untrustworthy condition (red) compared to the neutral (blue) and trustworthy conditions (green), reflecting reduced willingness to delay gratification with untrustworthy individuals. (C) Perceived trustworthiness correlates positively with discounting rates. Correlation (95 % confidence interval of r: 0.02 – 0.36) was verified using non-parametric bootstrapping due to positive skew in discounting values. Individual data points are jittered 0.2 units on the x-axis.
Effects of Trust on Delaying Gratification. Findings were largely consistent with Experiment 1. Participants’ preferences for delayed rewards, as indexed by k, was predicted by condition, \(b = -.03, SE = 0.01, t(136) = -3.31, p < .005 \); participants were less willing to delay gratification in the untrustworthy condition than in the trustworthy and neutral conditions, \(b = .02, SE = 0.01, t(136) = -4.13, p < .001 \), with no difference between trustworthy and neutral conditions, \(b = .01, SE = 0.02, t(87) = 0.59, p = .55 \) (Figure 3B). The difference between untrustworthy and neutral conditions was greater than the difference between neutral and trustworthy conditions, as evidenced by non-overlapping 95% confidence intervals of parameter estimates for trustworthy-neutral (0.01, -0.02) and neutral-untrustworthy (0.03, 0.10); thus, as in Experiment 1, our trust manipulation had a larger effect on delaying gratification at lower levels of trust. The same pattern was observed across a model free, but less precise measure of delay of gratification: percentage of delayed choices across the experiment (trustworthy/neutral vs. untrustworthy: \(b = 0.07, SE = 0.2, t(133) = 3.83, p < .001 \); trustworthy vs. neutral: \(p > .3 \)).

Finally, perceived trustworthiness predicted k-values (using non-parametric bootstrapping due to positive skew in discounting values, 95% CI: -0.001, -0.02, and using parametric analyses, \(b = -0.011, SE = 0.005, t(135) = 2.4, p < .025 \)), such that participants were less willing to delay gratification with characters perceived to be less trustworthy.

General Discussion

These experiments provide the first targeted manipulations of trust while avoiding manipulations of reward. Whether contemplating a single interaction with one individual or multiple interactions with different individuals, people are less willing to wait for rewards with individuals they see as less trustworthy, when there is reason to doubt that an individual would actually deliver the delayed reward in the future. Directly experiencing the unreliability of an
individual was unnecessary; here, impressions of trustworthiness from vignettes and faces produced powerful effects. This work complements prior correlational work, which suggested a link between trust and delaying gratification but did not establish causality (Harris & Madden, 2002; Mischel, 1961b), and prior experimental work, which suggested that trust could influence delaying gratification but did not manipulate trust independent of rewards that can influence self-control (Kidd et al., 2013; Mahrer, 1956).
CHAPTER 3: CAUSAL EFFECTS OF TRUST IN A RANDOMIZED EXPERIMENT WITH PRESCHOOLERS

Introduction

Across two experiments in Chapter 2, adults displayed steeper discounting of delayed rewards for individuals they perceived to be untrustworthy relative to trustworthy and neutral individuals. This constitutes strong causal evidence for the importance of trust in driving delay of gratification, independent of other relevant factors, such as self-control or reward reliability. However, trust might play less of a role when dominated by other factors, such limitations in self-control. This chapter will evaluate this hypothesis by testing trust manipulations with preschoolers, for whom ongoing developmental and neuromaturational processes lead to well-established limitations in self-control and self-regulation (e.g., Eigsti, et al., 2006; Zelazo, Craik & Booth, 2004).

Trust was manipulated via interactions that the child observed between the experimenter and another adult, unrelated to rewards or delaying gratification. Children were then were tested in the classic delay of gratification task by that experimenter. We predicted that children would be less willing to forgo an immediate reward in favor of a delayed reward when the rewards were promised by an untrustworthy individual compared to a trustworthy one (Michaelson et al., 2013). Alternatively, effects of trust may only be observable when limitations in cognitive control are not as influential, in which case trust could play less of a role in children’s delaying gratification relative to adults. This study was conducted along with co-author Yuko Munakata, Professor of Psychology of Neuroscience at the University of Colorado Boulder, and was published in the journal Developmental Science in 2016.
Methods

Participants

Participants were 34 typically developing children ($M_{age} = 4$ years 5 months, range = 3 years 6 months to 5 years 10 months as in Kidd et al., 2013). This sample size was based on having 80% power to detect $d = 1.04$, which was the effect size obtained from a planned interim analysis of these data at $n = 19$ subjects.\(^1\) Data from nine additional participants were not included in the analyses because they did not complete all of the tasks due to uncooperativeness ($n = 8$), or because the parent informed the child that she would be watching the child’s behavior via webcam during the Marshmallow Test (altering the conditions of the study and potentially influencing child behavior, $n = 1$).

Children were randomly assigned to one of two experimental conditions (Trustworthy and Untrustworthy) such that each group was age and gender balanced (nine females, eight males). Informed consent was obtained for all children, and children received a small prize for participating. Parents were paid $5 for travel expenses.

Materials and Procedure

Children observed the experimenter behave in either a trustworthy or untrustworthy manner toward another adult during a series of art projects (adapted from Vaish, Carpenter &

We conducted this planned interim analysis given the exploratory nature of this study, and the fact that the only recent similar experiment to our knowledge produced an extremely large effect size of $d = 1.82$ from only 28 participants (Kidd et al., 2013). We used G*Power to determine that we required only seven participants in each condition to have 80% power to detect such a large effect, but we also recognized the reasonable possibility that the effects of interest for the present study might be considerably smaller. Thus, we conducted a planned interim analysis at $n = 19$ subjects to estimate the effect size to determine the number of subjects to include in our study. (We initially targeted $n = 20$ for this interim analysis as many researchers do, but ended up doing it at $n = 19$ for practical reasons related to confederate planning.) We then proceeded with data collection without additional analyses until reaching the sample size determined by our planned interim analysis. Importantly, the there is little impact on the Type I error rate under the approach that we adopted, of ‘data-peeking’ with a commitment to continue data collection regardless of what the peek reveals, rather than making a conditional decision to continue or to stop data collection based on what the peek revealed (Sagarin, Ambler & Lee, 2014).
Tomasello, 2010), then engaged in the classic marshmallow task (adapted from Mischel, 1958) with that experimenter. We obtained children’s pre- and post-experiment mood ratings to assess the possibility that the trust manipulation affected mood. Three adults were involved in the procedures: an experimenter, a recipient (confederate who was the target of the trustworthy and untrustworthy behavior), and a neutral adult (confederate who was involved in the preference checks). All adults spent ten minutes warming up with the child before beginning the experiment.

Mood Ratings (adapted from Pothmann & Goepel, 1984). The child, experimenter, and recipient sat around a small table. The neutral adult sat in an adjacent chair reading a magazine, visible to the child but inattentive to the activities at the table. The recipient asked the child to rate their mood using a six-item smiley face scale including one ‘sad’ (frowning) face, one neutral face, and four levels of ‘happy’ faces depicting increasing levels of smiling (adapted from Pothmann & Goepel, 1984).

Trust Manipulation (adapted from Vaish et al., 2010). The recipient guided the child through the creation of a drawing of a tree and a clay bird. The experimenter did not make art projects but observed the child and recipient with interest. After each art project, the recipient momentarily excused herself from the testing room. In her absence, the experimenter damaged the recipient’s art project in front of the child, and then either lied or was honest about the incident. In the trustworthy condition, the damage was accidental, while in the untrustworthy condition, the damage was intentional. Upon returning to the room, the recipient confronted the experimenter. In the trustworthy condition, the experimenter answered honestly (‘Yes, I tore/broke your drawing/bird. It was an accident. I’m sorry’), while in the untrustworthy
condition, the experimenter lied (‘No, I didn’t tear/break your drawing/bird. I don’t know how it got torn/broken’).

Initial Preference Check. The recipient then conducted an exploratory check of children’s preferences for the experimenter versus the neutral adult in two forced choice scenarios involving the art projects: ‘We’re all done with art projects for now, but we should bring the art projects you made to your [parent/guardian] to hold while we play the rest of our games! Who would you like to bring your drawing to your [parent/guardian]? Her [motioned toward experimenter] or her [motioned toward neutral adult]?’ The child chose between the experimenter and neutral adult twice (once for each of the two art projects).

Delay of Gratification. The recipient and neutral adult then excused themselves from the room, and the experimenter administered the marshmallow test (non-bell version, as in Kidd *et al.*, 2013). The experimenter cleared the art supplies from the table, then provided the child with a single marshmallow: ‘Okay, now it’s snack time! Do you like marshmallows? You have a choice for your snack today. You can either have this one marshmallow to eat right now, or if you wait for me to get more marshmallows from the other room, you can have two marshmallows to eat instead. How does that sound? You stay right there in that chair. I’ll leave this right here, and if you haven’t eaten it when I get back, you can have two to eat instead.’ The experimenter monitored the child’s behavior from the observation room for a maximum of 15 min. In both conditions, if the child ate the marshmallow before 15 min, all adults returned to the room. If the child waited the full 15 min without eating the marshmallow, all adults returned to the room, and the experimenter delivered the second marshmallow.

Final Preference Check. The final preference check required children to make a forced choice to help either the experimenter or the neutral adult complete a color-matching game (as in
Vaish et al., 2010). Both adults simultaneously played separate but identical color-matching games and required a blue ball to complete their games, but only one blue ball was present, which had been placed directly in front of the child (and out of reach of the adults). Both adults simultaneously reached for the single blue ball, and if the child did not act within 15 s, the recipient instructed him/her to ‘give the ball’. After the child selected one of the two adults, he/she was provided with a second blue ball, giving him/her the opportunity to help both adults.

Mood Ratings. Finally, the recipient asked the child to rate their post-experiment mood. Children in the untrustworthy condition watched a staged reconciliation between the experimenter and recipient.

Results

A naive coder reviewed blinded videos and recorded when each child’s first taste (a lick or bite) occurred (as in Kidd et al., 2013). Judgments were checked against a second naïve coder to ensure reliability, $r(32) = .99, p < .001$, with coders differing by more than 1 s on only one of 34 judgments (less than 3%). All analyses were conducted using the R statistical package (R Development Core Team, 2006).

Delay of Gratification

Wait times across the delay period were not normally distributed because data for children who waited the full 15 min were right-censored (amounting to 38% of the total number of responses). Therefore, the Mantel-Cox log-rank test was used to test the null hypothesis that there was no difference in the probability of resisting the marshmallow at any time point across the delay period between conditions. Survival functions reflecting the proportion of children resisting the marshmallow as a function of time are depicted in Figure 4. Children who had been tested by a trustworthy experimenter waited longer in the marshmallow test (median wait time =
15.00 min, nonparametric bootstrapped 95% confidence intervals (CI) = [1.24 to 15.00]) than children tested by an untrustworthy experimenter (median wait time = 4.73 min, 95% CI = [0.10 to 6.90]), Mantel-Cox $\chi^2(1) = 5.2, p = .02$. The rate of first tastes of the marshmallow in the untrustworthy condition was nearly three times that in the trustworthy condition (hazard ratio = 2.78, 95% CI = [1.11 to 6.98]). In addition, fewer children waited the full 15 min in the untrustworthy condition (3/17, 18%) than in the trustworthy condition (10/17, 59%), $\chi^2(1) = 4.48, p = .03$. Results are similar using more conventional methods for testing differences between groups (independent samples t-test, $t(32) = 2.10, p = .04$; Wilcoxon rank-sum test [also

Figure 4. Survival functions reflecting the risk of consuming the marshmallow across the delay period for each condition. As predicted, children in the trustworthy condition waited longer and were more likely to wait the full 15 min delay period, compared to children in the untrustworthy condition. Dots on the survival functions display median wait times for each condition.
known as a Mann-Whitney U-test, \(W = 90, p = .055 \).

Although males waited marginally longer than females, Mantel-Cox \(\chi^2(1) = 3.7, p = .05 \), there was no significant interaction between gender and condition, \(p > .6 \), and the effect of condition on wait times persisted when controlling for gender, \(\chi^2(2) = 8.6, p = .01 \). Wait times were unrelated to age, \(p > .3 \).

Mood

Mood did not significantly change over the course of the experiment (pre-experiment mood rating: \(M_{\text{trustworthy}} = 5.3, SD = 1.1, M_{\text{untrustworthy}} = 5.5, SD = 0.6 \); post-experiment: \(M_{\text{trustworthy}} = 5.0, SD = 1.2, M_{\text{untrustworthy}} = 4.4, SD = 1.5 \), and conditions did not differ in pre- or post-experiment mood ratings, or in the difference between them, as indicated by Wilcoxon rank sum tests and independent samples t-tests, all \(p > .1 \). The difference between pre- and post-experiment mood ratings did not predict wait times in a Cox proportional hazards regression model, \(p > .6 \), or a simple linear regression model, \(p > .7 \). Although null results should not be over-interpreted, these patterns are thus consistent with the interpretation that differences in delaying gratification were not driven by differences in mood.

Preference Checks

Children showed no significant preferences for the experimenter versus the neutral adult (\(ps > .1 \), although children’s choices showed some consistency with the expectation that children should prefer the trustworthy experimenter to the untrustworthy experimenter. (The numbers of children preferring the experimenter to a neutral adult were: initial preference check: 12/17 children in trustworthy condition, 9/17 in untrustworthy; final preference check: 8/17 in trustworthy condition, 4/17 in untrustworthy.) The lack of significant preferences may reflect
insensitivity in our initial preference check (which was developed for this study and has not been validated in other work, and in fact required children to trust their artwork with an experimenter who had just damaged the recipient’s art works, whether accidentally or intentionally), the considerable delay between the trust manipulation and the final preference check (taken from Vaish et al., 2010, who administered it immediately), and the variability across children in the length of this delay and the way they spent it.

Discussion

Manipulating children’s perceptions of the trustworthiness of an adult influenced their willingness to delay gratification for rewards promised by that adult. This was true even without children directly experiencing the consequences of an adult’s untrustworthy behavior, and even when trust manipulations were unrelated to rewards. Although this initial evidence should be replicated in larger-scale confirmatory studies to obtain more accurate estimates of the magnitude of effects (e.g. Asendorpf, Conner, Fruyt, Houwer, Denissen et al., 2013; Sakaluk, 2016), these findings provides compelling causal evidence that trust influences children’s delay of gratification.

These conclusions are based on experimental manipulations of trustworthiness in order to isolate causal factors, and so can only speak to contexts in which trust is manipulated. However, these findings also highlight intriguing possibilities about group differences and individual differences in delaying gratification. First, certain groups may delay gratification less than others because they have less trust that delayed rewards will be delivered as promised. For example, although children may be biased towards accepting information from adults as true (e.g. Jaswal, Croft, Setia & Cole, 2010; Mills, 2013; Vanderbilt, Liu & Heyman, 2011), compared to adults, children show lower levels of trust about how others will behave (Harbaugh,
Krause, Liday & Vesterlund, 2003; Sutter & Kocher, 2007) and greater sensitivity to violations of trust (van den Bos, van Dijk & Crone, 2011) in economic exchanges. Such reluctance and sensitivity to trusting what others will do may lead to children’s corresponding preferences for immediate over delayed rewards. Other groups who show lower levels of delaying gratification, such as addicts (e.g. Hoffman, Moore, Templin, McFarland, Hitzemann et al., 2006; Johnson, Bickel & Baker, 2007) and criminals (e.g. Arantes, Berg, Lawlor & Grace, 2013; Petry, 2002), might also be driven in part by their difficulties with trusting others (Wright & Kirimani, 1977; Mischel, 1961a; Mischel & Gilligan, 1964). The latter possibility will be tested in Chapter 4.

Second, certain individuals may delay gratification less than others because they have less trust that delayed rewards will be delivered as promised (consistent with correlational findings; Harris & Madden, 2002; Schneider et al., 2014). These differences in social trust could contribute to differences in life outcomes, given the stability of social trust across development (Harbaugh et al., 2003; Rotter, 1971). Being more trusting is associated with many positive outcomes that have also been linked to delaying gratification, including better academic performance (Imber, 1973), higher educational attainment (Paxton, 2007), higher income (Li, Pickles & Savage, 2005), lower divorce rates (Patterson, 1999), and better physical health (Kawachi, Kennedy & Glass, 1999; Kawachi, 1997). These possibilities will be explored in Chapters 5 and 6.
CHAPTER 4: GROUP DIFFERENCES IN TRUST AND DELAY OF GRATIFICATION AMONG INCARCERATED CRIMINAL OFFENDERS

This chapter reports an initial test of the hypothesis that certain groups or populations may delay gratification less than others because they are less trusting that delayed rewards will be delivered. A group of incarcerated criminal offenders and a group non-offending controls were surveyed on their preferences for immediate gratification and their dispositional trust. Criminal offenders were selected as the population of interest due to their characteristic preferences for immediate gratification, even after controlling for third-variable confounds (Arantes, Berg, Lawlor, & Grace, 2012; Cherek, Moeller, Dougherty, & Rhoades, 1997; Newman, Kossen, & Patterson, 1992), and given well-established correlations between neighborhood-level measures of social capital and crime (Kawachi, Kennedy, & Wilkinson, 1999; Kennedy, Kawachi, Prothrow-Stith, Lochner, & Gupta, 1998; Sampson, Raudenbush, & Earls, 1997). Results were evaluated using a mediation model to quantify the direct and indirect “effects” of being a criminal offender. Importantly, although mediation is a causal phenomenon, the cross-sectional nature of this study precludes any direct assessment of causality among these three variables. Instead, our primary aim is to evaluate patterns of group differences and their interactions. This research was conducted in March of 2014 through a partnership between Boulder County Jail and the University of Colorado Boulder, in collaboration with Joanne Belknap, Professor of Ethnic Studies, Yuko Munakata, Professor of Psychology and Neuroscience, Sargent Lydia Mitchell with Boulder County Correctional Services, and undergraduate students Olivia Kolodziejeck and Abby Cher.
Methods

Inmates incarcerated at the county jail \((n = 70) \) and control participants from Mechanical Turk \((n = 59) \) were surveyed on a number of personality and behavioral characteristics, including social trust and delay of gratification. We predicted that group differences in delay of gratification would diminish or decrease after controlling for differences in trust.

Participants

\textit{Jail Participants.} A total of 76 currently-incarcerated criminal offenders enrolled and completed the survey during a single day of data collection at Boulder County Jail (BCJ). Six participants were excluded for missing data, yielding a total of 70 participants available for analysis. Participants were recruited from one of 11 non-disciplinary housing modules. Eligibility was restricted to individuals who were over the age of 18, post-sentencing (in order to confirm age), and fluent in English. Recruitment occurred the day prior to data collection and was coordinated by plain-clothed BCJ staff (e.g., therapists or program leaders, but not correctional staff, to avoid coercion). Participants were supplied with a recruitment flyer and provided information about the study during program sessions. Inmates recruited from the jail were not compensated financially or otherwise for participating in the study.

\textit{Control Participants.} Data collection for the control sample occurred within one week of the jail sample, also within a single 24-hour period. A total of 74 participants initially enrolled and completed the survey through Amazon’s Mechanical Turk. Eligibility was restricted to individuals aged 18-65 years, IP addresses from the United State (to increase the likelihood of English fluency and ensure the appropriateness of US currency for the delay of gratification measure), at least a 99% approval rating from previous Mechanical Turk jobs, and no prior incarcerations in the preceding six months (as indicated on a survey item). Fifteen control
participants were excluded prior to analysis due to survey non-compliance (i.e., failing the catch question, $n=5$) and having a prior incarceration history ($n=10$), leaving a total of 59 control participants in the analytic sample. Participants were roughly gender-balanced and normally distributed in terms of socioeconomic status.

Materials and Procedure

Participants in the control group completed the survey electronically through the Qualtrics web-based survey platform (hosted on Mechanical Turk). Participants in the jail group completed surveys on pencil and paper during module-based program sessions attended by inmates and overseen by BCJ staff members. Jail participants were consented by members of the research team prior to survey administration, and researchers remained available to answer participant questions through the duration of the survey. The survey included sections on Demographics, Decision-Making and Trust, Health History, Brief Offending and Victimization History, and Concluding Questions, and took approximately 30-45 min to complete. Analyses in this chapter are restricted to items from the Decision-Making and Trust section of the survey; the remaining sections were included to address questions of interest to other members of the research team.

In the Decision-Making and Trust section of the survey, participants first read a short fictional vignette about a neutral character, then made a series of intertemporal choices between immediate and delayed rewards offered by that character. These procedures exactly matched the trust manipulations and delay of gratification measure used in Experiment 2 of Chapter 2. Importantly, the neutral vignette was not intended to manipulate trust in the present study; instead, it provided a social context for the intertemporal choice questions, and was therefore used to reflect individual differences in trust toward neutral people. Next, participants rated the
fictional vignette character on trustworthiness and other personality traits. Finally, participants completed a well-established and validated self-report measure of dispositional trust (Propensity to Trust Survey; Evans & Revelle, 2008). After survey completion, all inmates were verbally debriefed by a member of the research team before being escorted back to their modules by BCJ staff.

Results

As predicted, inmates were less willing to delay gratification for hypothetical monetary rewards, and also less trusting, relative to controls. Additionally, the direct effect of criminal status on delay of gratification was attenuated in a series of mediation models that adjust for group differences in trust. However, these mediation effects were not statistically distinguishable from zero, suggesting trust does not fully or reliably explain these group differences.

Analytic Approach and Preliminary Analyses

A trust composite variable was created from the z-scored average of the two survey measures (trust ratings of the fictional vignette character and dispositional trust score on the Propensity to Trust survey). Individual k-parameters were computed to reflect individual differences in delay of gratification using the k-parameter estimation procedures described in Chapter 2 and log-transformed prior to analysis. Groups were contrast coded (Jail = 1, Control = -1) prior to analysis. Groups were equivalent in age and gender at baseline, and neither age nor gender was significantly related to trust or delay of gratification.

Relationships between criminal offending, trust, and willingness to delay gratification were evaluated using a series of multiple regression models based on Baron and Kenny’s (1986) framework for mediation analysis. In this framework, impacts of X (criminal offender status) on
M (trust) propagate causally to Y (delay of gratification), representing the “indirect effect” of X on Y. The model assumes X can also affect Y directly, independent of X’s influence on M.

Mediation Model Results

The mediation model and corresponding estimates are depicted in Figure 5. The direct effect of criminality on delay of gratification was attenuated in a mediation model that accounted for the indirect effect of trust. However, the direct effect of criminality on delay of gratification remained significant in this mediation model, and bias-corrected bootstrap confidence intervals indicate the absence of a statistically significant mediation effect, $c-c’=0.169$, [-.21, 0.55].

![Figure 5](image_url)

Figure 5. The direct effect of criminality on delay of gratification, when accounting for trust, was attenuated, but remained significant. Bias corrected bootstrap confidence intervals indicate the absence of a statistically significant indirect effect, $c-c’=0.169$, [-.21, 0.55].
Discussion

Criminal offenders self-reported significantly lower trust and less willingness to delay gratification relative to control participants, but these differences in trust did not fully account for the group differences in delay of gratification. Although these findings do not support the mediation model that was hypothesized a priori, they are consistent with previous evidence on group differences in delay of gratification in criminal offenders, and contribute to a large body of sociological and econometrics research on associations between social capital and crime.

Importantly, the data stopping rule in this study was determined by the availability of access to criminal offenders as opposed to an a priori power analysis, and our resulting sample size was small and underpowered to detect mediation effects. Our results should therefore be interpreted as insufficient evidence to reject the null hypothesis, rather than compelling evidence against the hypothesized mediation model.

An alternative interpretation of these results is that our mediation model was overly simplistic. Trust is highly endogenous (i.e., it both determines and is determined by other factors in the environment), and is consistently correlated with many aspects of the environment that are also associated with criminal convictions, like neighborhood quality and socioeconomic status. Additionally, recent longitudinal work suggests that relations between delay of gratification and crime may also be reciprocal: low delay of gratification predicts subsequent criminal behavior, but criminal behavior also predicts subsequent delay of gratification (Lee, Derepinko, Milich, Lynam, & DeWall, 2017). These reciprocal relations among trust, crime, and delay of gratification, and their potential moderators, may need to be modeled directly in order to provide a valid test of our hypothesized mediation effects.
CHAPTER 5: IMPACTS OF TRUST ON LIFE OUTCOMES IN A DISCORDANT TWIN COMPARISON DESIGN

Introduction

This chapter presents a quasi-experimental study designed to address some of the interpretational issues highlighted in Chapter 4. Specifically, we evaluate the hypothesis that individual differences in trust causally contribute to individual differences in life outcomes by comparing twins discordant on trust but matched on nearly every other aspect of the environment. Discordant-twin studies can powerfully eliminate a number of alternative causal explanations of endogenous variables by focusing statistical comparisons on within-cluster variance. This approach effectively eliminates confounds that vary between families (and are known to affect and vary with trust, e.g., socioeconomic status, neighborhoods, early socialization experiences), thus providing a targeted test of hypothesized causal factors that can support stronger causal inferences relative to traditional cross-sectional designs. This work was conducted along with co-author John Lurquin, Ph.D., and is currently being prepared for journal submission.

MIDUS Dataset

The data for this study come from Phase II of the Midlife Development in the United States (MIDUS) series, a dataset which is maintained and distributed by the National Institutes of Health (NIH) and hosted by the Interuniversity Consortium for Political and Social Research (ICPSR). Initially established in 1989, the MIDUS project followed individuals aged 25-70 longitudinally across three decades with the goal of identifying behavioral, psychological, and social factors that predict age-related differences in physical and mental health. Data collection occurred in three phases: Phase 1 in 1995, Phase 2 in 2004, and Phase 3 in 2013. Approximately
77% of living longitudinal participants retained at Phase 3 (longitudinal N=3294). Participants included a general population survey (including siblings of the general population respondents), a twin pairs sample, and an oversample from five metropolitan areas. This chapter will focus on twin pairs in the MIDUS II dataset (Ryff et al., 2004-2006), as data from MIDUS III were not yet available at the time this study was initiated.

Methods

Participants

Both monozygotic and dizygotic twin pairs were eligible for inclusion in the study. Twin pairs were recruited by first screening a sample of 50,000 randomly selected households for the presence of a twin. Of the 14.8% of households that reported a twin, 60% agreed to participate in the MIDUS study. The final enrolled twin sample in MIDUS I consisted of \(n = 1915 \) participants, with a total of \(N = 7,108 \) participants enrolled in the overall MIDUS sample. At the time of MIDUS II, 4,963 of the original 7,108 MIDUS I participants were successfully recontacted, including \(n = 1,484 \) of the original \(n = 1,915 \) twins. Participants in MIDUS II completed a 30-minute phone interview and two self-administered questionnaires and received $20 upon completion.

Measured Variables

Measured variables include social trust, health, wealth, and a collection of sociodemographic covariates used for specificity testing. Specific items and additional details about the measures are available in Appendix A.

Social Trust. Trust was measured from the z-scored composite of participant responses to the following three survey items: “I have not experienced many warm and trusting relationships with others” (1: Agree strongly to 7: Disagree strongly); “I know that I can trust my friends, and
they know they can trust me” (1: Agree strongly to 7: Disagree strongly); “People in my neighborhood trust each other” (1: A lot to 4: Not at all). Each response was z-scored and then combined to create an average composite trust measure for each participant. Higher values indicate more social trust.

Health. Physical health was measured with two subjective items (perceived physical health, perceived overweight) and one objective measure (body mass index; BMI). Mental health was measured with one item asking about perceived general mental health, a 7-item Depressed Affect Scale that measures depressive symptoms, and a single-item measure of worry. We also included two items related to substance use, one measuring drug use (specific to drugs the participant self-reported to have used), and one measuring alcohol use.

Wealth. Wealth was measured using four self-report items (perceived financial situation, perceived control over financial situation, whether participants have enough money to meet their needs, difficulty in paying monthly bills), as well as one objective measure of wealth (annual income), though this measure was also self-reported.

Covariates. Covariates include gender, highest level of education (some or no high school, graduated high school, some college, graduated college or more), working status (full-time, retired, homemaker, unemployed), age, and race, each selected based on prior evidence of correlations with trust. Race was organized into three categories (white, black, other).

Results

Analytic Approach and Statistical Models

First, we fit separate linear models to predict each of our outcome variables with social trust using the full dataset and OLS regression. Next, we added covariates to estimate the same relationships after accounting for observed and theoretically-relevant confounds. Finally, we
used ML estimation with the twin sample to eliminate all observed and unobserved confounds by holding family constant in estimating within-family trust effects. Specifically, we created dummy variables for each twin pair and omitted the intercept from the model in order to leave only within-pair variation to be explained. OLS can be used to estimate these within-effects, but would produce inflated standard errors because estimation would be limited to the within-cluster variability. Using a fixed-effects estimator with ML estimation thus maximizes the precision of within-cluster estimates by implicitly controlling for all between-cluster confounds, eliminating the need to model them directly. Results from all three approaches are presented below in order to illustrate the utility of the fixed-effects twin-comparison method.

Descriptive Statistics

The twin sample was much smaller than the original full MIDUS sample. Therefore, we first examined whether it was demographically comparable so that we could justify generalizing any findings among twin pairs beyond that sample. Table 1 reports the covariates included in this study for both the full sample (N = 4,963) and the twin sample (n = 1,484) and shows that participant characteristics in the twin sample were similar to those in the full sample. Overall, the majority of the full sample was white (90.56%), had at least a high school degree (93.77%), and worked full-time (66.92%). These patterns were similar in the twin simple, which consisted of 93.23% white, 93.31% with at least a high school degree, and 68.48% who worked full-time. The full sample consisted of 46.67% male respondents compared to 44.34% in the twin sample, and the average age was similar in the two samples (full: 55.43, SD = 12.45; twin: 54.08, SD = 11.67).
Table 1
Sociodemographic Characteristics of the MIDUS Sample

<table>
<thead>
<tr>
<th></th>
<th>Full sample</th>
<th>Twin sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>46.67</td>
<td>44.34</td>
</tr>
<tr>
<td>Female</td>
<td>53.33</td>
<td>55.66</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< High school</td>
<td>6.23</td>
<td>6.69</td>
</tr>
<tr>
<td>High school</td>
<td>26.78</td>
<td>29.46</td>
</tr>
<tr>
<td>Some college</td>
<td>29.94</td>
<td>30.95</td>
</tr>
<tr>
<td>Graduated college</td>
<td>37.05</td>
<td>32.91</td>
</tr>
<tr>
<td>Working Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full-time</td>
<td>66.92</td>
<td>68.48</td>
</tr>
<tr>
<td>Retired</td>
<td>24.74</td>
<td>22.24</td>
</tr>
<tr>
<td>Homemaker</td>
<td>5.65</td>
<td>7.01</td>
</tr>
<tr>
<td>Unemployed</td>
<td>2.69</td>
<td>2.27</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>90.56</td>
<td>93.23</td>
</tr>
<tr>
<td>Black</td>
<td>4.64</td>
<td>3.32</td>
</tr>
<tr>
<td>Other</td>
<td>4.8</td>
<td>3.45</td>
</tr>
<tr>
<td>Age in years</td>
<td>55.43 (12.45)</td>
<td>54.08 (11.67)</td>
</tr>
<tr>
<td>Total N</td>
<td>4963</td>
<td>1484</td>
</tr>
</tbody>
</table>

Note. All values reflect percentages with the exception of Age in years. Parentheses denote standard error.

Regression Model Results

Results across all three analytic approaches are listed in Table 2. Overall, individuals who were more trusting had better life outcomes across all variables we examined. Higher trust predicted lower BMI, better perceptions of physical health, and lower likelihood of being overweight. Similar trends were observed between trust and mental health: higher trust predicted better perceived general mental health, fewer depressive symptoms, and less worry. Correlations between trust and substance use (alcohol and drugs) were in the predicted direction but not statistically significant. Finally, being more trusting was also associated with better wealth, including better perceived financial situations, more perceived financial control, higher
likelihood of feeling as though they had enough (or more than enough) money to meet their needs, and less reported difficulty paying monthly bills. Trust did not predict the only objective measure of wealth (annual income) in this model.

Multiple Regression Model Results

Results from the multiple regression models are generally consistent with those reported above: every relationship remained statistically significant after controlling for gender, education, employment status, age, and race. Interestingly, the magnitude of relationships with trust decreased for nearly every variable after controlling for these covariates. This supports our suspicions that failing to account for these observed and theoretically-justified sociodemographic variables can produce inflated estimates of relationships with trust.

Fixed-Effects Model Results

Relationships between trust and life outcomes continue to diminish in the fixed-effects models that control for between-family effects. Trust no longer significantly predicts BMI or perceived overweight status. The remaining relationships are statistically significant, but considerably smaller in magnitude relative to those suggested from the multiple regression results. This pattern is consistent with the notion that unobserved confounds continue to inflate estimated relationships in the multiple regression models even after controlling for the observed covariates. Interestingly, whereas there were virtually no relationships between social trust and the substance use items in the naïve model, the estimates of these relationships increased when fixed effects were included.
Table 2

Relationships Between Trust and Life Outcomes Across Three Different Estimation Methods

<table>
<thead>
<tr>
<th></th>
<th>Simple regression</th>
<th>Multiple regression</th>
<th>Fixed-effects estimator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health - Physical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>-0.107* 0.016</td>
<td>-0.069* 0.017</td>
<td>-0.052 0.04</td>
</tr>
<tr>
<td>Physical health</td>
<td>0.211* 0.015</td>
<td>0.197* 0.015</td>
<td>0.202* 0.045</td>
</tr>
<tr>
<td>Overweight</td>
<td>-0.048* 0.016</td>
<td>-0.054* 0.017</td>
<td>-0.052 0.046</td>
</tr>
<tr>
<td>Health - Mental</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mental health</td>
<td>0.257* 0.015</td>
<td>0.244* 0.016</td>
<td>0.172* 0.047</td>
</tr>
<tr>
<td>Depressive symptoms</td>
<td>-0.173* 0.015</td>
<td>-0.151* 0.016</td>
<td>-0.139* 0.046</td>
</tr>
<tr>
<td>Worry</td>
<td>-0.165* 0.016</td>
<td>-0.141* 0.017</td>
<td>-0.111* 0.046</td>
</tr>
<tr>
<td>Alcohol use</td>
<td>-0.083 0.016</td>
<td>-0.059* 0.017</td>
<td>-0.121* 0.045</td>
</tr>
<tr>
<td>Drug use</td>
<td>-0.056 0.045</td>
<td>-0.027 0.047</td>
<td>-0.43 0.353</td>
</tr>
<tr>
<td>Wealth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial situation</td>
<td>0.264* 0.015</td>
<td>0.215* 0.016</td>
<td>0.201* 0.049</td>
</tr>
<tr>
<td>Control over finance</td>
<td>0.223* 0.016</td>
<td>0.197* 0.016</td>
<td>0.226* 0.048</td>
</tr>
<tr>
<td>Have enough money for needs</td>
<td>0.191* 0.016</td>
<td>0.152* 0.016</td>
<td>0.115* 0.049</td>
</tr>
<tr>
<td>Difficulty paying bills</td>
<td>0.208* 0.016</td>
<td>0.163* 0.016</td>
<td>0.150* 0.046</td>
</tr>
<tr>
<td>Income</td>
<td>-0.001 0.02</td>
<td>0.027 0.018</td>
<td>0.137* 0.067</td>
</tr>
</tbody>
</table>

*Note. β = standardized betas, * = p<.05

Interactions with Zygosity. The presence of MZ and DZ twins in the MIDUS sample leaves open the possibility that discordance in genes, as opposed to discordance in trust per se, may be driving the observed relationships. That is, the life outcomes that differ within twin pairs may be caused by genetic differences within twin pairs, independent of any observed differences in trust. This would be reflected in stronger discordancy correlations among DZ twins, who share only 50% of their genetics on average, relative to MZ twins, for whom genetics are “held constant.”

We addressed this possibility by testing interactions between trust-life outcome discordancy correlations and zygosity across all twin pairs (see Table 3). This interaction term
was not statistically significant for any of the outcomes we tested, thus supporting our interpretation of discordancy correlations in terms of a causal, environmental effect of trust.

Table 3

Interactions Between Trust and Zygosity

<table>
<thead>
<tr>
<th>Interaction</th>
<th>(\beta)</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>-0.117</td>
<td>0.089</td>
</tr>
<tr>
<td>Perceived physical health</td>
<td>0.114</td>
<td>0.099</td>
</tr>
<tr>
<td>Perceived overweight</td>
<td>-0.038</td>
<td>0.103</td>
</tr>
<tr>
<td>Perceived mental health</td>
<td>0.088</td>
<td>0.105</td>
</tr>
<tr>
<td>Depressive symptoms</td>
<td>0.138</td>
<td>0.097</td>
</tr>
<tr>
<td>Worry</td>
<td>-0.046</td>
<td>0.103</td>
</tr>
<tr>
<td>Alcohol use</td>
<td>0.011</td>
<td>0.103</td>
</tr>
<tr>
<td>Drug use</td>
<td>0.369</td>
<td>0.737</td>
</tr>
<tr>
<td>Perceived financial situation</td>
<td>-0.06</td>
<td>0.11</td>
</tr>
<tr>
<td>Perceived control over financial situation</td>
<td>-0.142</td>
<td>0.108</td>
</tr>
<tr>
<td>Have enough money for needs</td>
<td>0.02</td>
<td>0.112</td>
</tr>
<tr>
<td>Difficulty paying bills</td>
<td>-0.123</td>
<td>0.105</td>
</tr>
<tr>
<td>Wealth composite</td>
<td>-0.096</td>
<td>0.11</td>
</tr>
<tr>
<td>Income</td>
<td>-0.039</td>
<td>0.142</td>
</tr>
</tbody>
</table>

Note. N=1484. All \(p \)-values > .05. Zygosity was dummy-coded (MZ=1, DZ=0).

Discussion

In this chapter, being more trusting was associated with better physical health, lower psychological distress, and more financial stability across nearly all outcome measures we tested. These results were largely consistent across the three different analytic approaches. However, most estimates were smaller in magnitude after accounting for observed and unobserved confounds, highlighting the utility of the fixed-effects estimator for modeling between-family effects.

Several assumptions must be met in order to interpret these results in terms of support for a causal role of trust. One is the assumption that the functional form of our model is correctly specified. We evaluated this assumption by including cubic and quadratic terms in our linear
model, neither of which were statistically significant. Another critical assumption is ignorable treatment assignment within units; in other words, the assumption that within-twin pair variation in trust is as good as random. We evaluated this assumption in two ways: by including each of our covariates as moderators in the fixed-effects models to control for adult differences between twins, and by regressing each of our covariates that varied within twin pairs (education and gender) on trust within both the full sample and the twin sample. None of the covariates significantly moderated the observed discordancy correlations in the fixed-effects models, suggested differences in trust continue to predict differences in life outcomes over and above any confounding differences in twins as adults. Furthermore, although both covariates were significantly related to trust in the full participant sample, \(\beta = 0.073, p < .001 \) for education; \(\beta = 0.057, p < .001 \) for gender), neither predicted variation in trust within twins \(\beta = -0.023, p = .711 \) for education, \(\beta = 0.032, F = .527, p = .599 \) for gender). In the future, ruling out other variables that might vary with trust within twin pairs and also predict our dependent variables would bolster our causal interpretation, and could also lead to testable predictions about what might be causing within-twin pair differences in trust. Finally, the Stable Unit Treatment Value Assumption (SUTVA) states that the outcome of one individual is not affected by the treatment status of another. This assumption seems tenuous in the case of twins. For example, if one twin is higher in trust, for example, and is consequently less likely to abuse drugs and alcohol, the other twin may follow suit. This would lead to a downward bias in the estimated effect of trust. A careful and systematic evaluation of these assumptions could strengthen the causal inferences that are able to be drawn from this work.
CHAPTER 6: REPLICABILITY OF AND REASONS BEHIND THE PREDICTIVE Validity of Delaying Gratification

Introduction

The studies in this chapter test the replicability of and reasons behind the link between early delay of gratification and later life outcomes. Two primary research questions are addressed:

1) Do longitudinal associations between preschool delay of gratification and important life outcomes replicate when tested using slightly different outcome measures and a larger, more diverse sample of participants?

2) If so, do individual differences in trust or self-control account for these observed associations?

The first research question (RQ1) constitutes a conceptual replication of longitudinal associations between delay of gratification and adolescent outcomes initially documented in Mischel, Shoda, & Peake (1988). The latter (RQ2) provides a test of the hypothesized importance of social trust in driving such associations. Both questions will be tested using the NICHD Study of Early Child Care and Youth Development (SECCYD) dataset.

An overall description of the dataset is provided below, followed by a description of the search and selection process that was used to identify measured variables. Methods and Results sections are then reported separately for each research question. A detailed preregistration plan summarizing the hypothesis and planned analyses was registered on the Open Science Framework prior to the viewing of any raw data or descriptive statistics for this study (https://osf.io/vjmkz/register/).
SECCYD Dataset

The data used in this study come from the National Institute of Child Health and Development’s Study of Early Child Care and Youth Development (SECCYD), a prospective longitudinal study of 1,354 children and their families conducted from 1991 through 2006. The purpose of the study was to examine associations between early child care experiences and subsequent developmental outcomes. As such, children and their mothers were regularly queried on information relating to children’s family, school, alternate care environments, social-emotional functioning, cognitive functioning, and physical health throughout the first 15 years of life. Strong precedent for use of the SECCYD dataset in longitudinal studies of psychosocial development in childhood and adolescence have been established in prior work (e.g., Duckworth, Tsukayama, & Kirby, 2013; Meldrum & Hay, 2011). Crucially, the SECCYD also includes a measure of children’s delay of gratification in a variation of the self-imposed delay task at four years of age. Thus, these data are thus well-suited for research on the predictive validity of preschool delay of gratification for adolescent outcomes.

The SECCYD dataset is restricted from general dissemination in order to protect respondent privacy. Access is only granted to individuals who hold a Ph.D. or other terminal degree and are affiliated with an institution of higher education, research organization, or government agency (or graduate students under the direct supervision of one of the above). Application and provision of the data are coordinated through the Interuniversity Consortium for Political and Social Research (ICPSR) after successful completion of the Data Access Request Form, which includes Investigator Information, Research Staff Information, Sponsor Information, Research Description, Confidential Data Security Plan, proof of approval or exemption from an Institutional Review Board, and signed Agreement for the Use of the NICHD
SECCYD Restricted-Use Data from an individual legally authorized to enter a contractual agreement on behalf of the investigator’s institution.

Study documentation and datasets were sent via email download in an encrypted, password-protected file from ICPSR. This file was transferred to an encrypted container of a non-networked computer for storage and analysis. Data were not copied or moved out of this secured directory for any reason at any time, and statistical applications were configured to point temporary analysis files to this secured data directory. The physical location of the non-networked computer containing the directory was secure. In short, all reasonable precautions were taken to avoid incidental identification of participants in the SECCYD sample.

Sample

Data collection was coordinated in four primary phases by 41 Principal Investigators at 29 universities across the United States. Mothers who had recently given birth to full-term, healthy newborns were recruited to participate through one of 24 hospitals in the following 10 locations throughout the United States: Little Rock, AR; Irvine, CA; Lawrence, KS; Wellesley, MA; Morganton, NC; Philadelphia, PA; Pittsburgh, PA; Charlottesville, VA; Seattle, WA; Madison, WI. A total of 8,986 families were screened at birth based. At two weeks, 5,416 families were identified as eligible based on the mother being of legal age to consent, English spoken in the home, no medical complications of the baby or mother, and the proximity of the family home to a data collection center. Of those, 3,015 families were contacted for an interview based on a conditional random sampling procedure designed to maintain at least 10% representation of single parent households, mothers with less than a high school education, and ethnic minority mothers. At one month of age, 1,364 children and their families enrolled in the
study (i.e., completed first visit). At Phase IV of the study, a total of 1,009 children and their families remained enrolled.

The resulting sample was representative of the sociodemographic composition of the 10 study sites at the time. Approximately 56% of enrolled families lived above-poverty, 23% lived near-poverty, and 21% lived in-poverty. The average household income among families ($37,947) was slightly higher than the U.S. average ($36,875), though enrolled families were more likely than the average U.S. family to receive public assistance (18.8 % versus 7.5%). Approximately 36% of mothers who took part in the study had a bachelor’s degree or higher, 33% had some college, and 31% had a high school degree or lower. Enrolled children were 76.4% White (of non-Hispanic origin), 12.7% African American, 6.1% Hispanic, and 4.8% Asian, Pacific Islander, American Indian, or Other.

Measured Variables

For researchers interested in psychosocial development, thousands of relevant measures and variables are available in the SECCYD dataset. In order to “reduce the temptation to p-hack” and to abide by recent recommendations regarding the use of large-N datasets in psychology to conduct hypothesis-driven confirmatory testing (Sakaluk, 2016), the only variables included in the present study were those deemed minimally necessary to assess the variables of interest and carry out the planned analyses. Several additional repeated observations and theoretically-relevant variables are available from the SECCYD dataset for further exploration in future research.

I developed a systematic search and selection process to identify measured variables to be included. First, broadly inclusive search terms were developed for each variable (with the exception of delay of gratification, for which an obvious measure was available from the
SECCYD dataset) in consultation with Medical Subject Headings (MeSH) thesaurus. MeSH is a web-based thesaurus of health-related terms organized in sets of hierarchical structures to permit searching at varying levels of specificity. The MeSH vocabulary is continually revised and updated by staff subject specialists in the Medical Subject Headings Section at the U.S. National Library of Medicine (NLM), and is primarily used by the NLM for indexing articles and other electronic resources from leading journals for the Medline/PubMed database. The MeSH thesaurus is available free of charge through the National Institute of Health website (https://www.nlm.nih.gov/mesh/mbinfo.html), and is widely used by researchers and professionals for classification, indexing, and systematic review of health-related information.

Variables entered in the MeSH Browser are automatically mapped to their “preferred” form for the purposes of indexing and retrieval by health-related electronic databases, and resulting descriptors can be viewed alongside their synonyms, subordinate terms, and superordinate terms in the MeSH Tree Structure. Each variable was entered as a MeSH search term and the resulting descriptors were individually evaluated for relevance to the variable of interest along with their neighboring terms and concepts. Relevant terms identified through this process were added to the search term for each variable (see Table 4).
<table>
<thead>
<tr>
<th>Variable</th>
<th>Search Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Achievement</td>
<td>achievement</td>
</tr>
<tr>
<td>Social Skills</td>
<td>cooperation</td>
</tr>
<tr>
<td>Problem Behaviors</td>
<td>aggression</td>
</tr>
<tr>
<td>Emotion Regulation</td>
<td>allostatic</td>
</tr>
<tr>
<td>Personality</td>
<td>assertiveness</td>
</tr>
<tr>
<td>Trust</td>
<td>attachment</td>
</tr>
<tr>
<td>Self-Control</td>
<td>“regulation”</td>
</tr>
</tbody>
</table>

These MeSH-informed search terms were then submitted to a full-text OCR (optical character recognition) search of the compiled SECCYD documentation. Specifically, the user guides, codebooks, questionnaires, assessment charts, annotated lists of research instruments, and manuals of operation for each phase of the study were combined to form a total of 4,792 pages of searchable text, and full and partial matches to each search term were identified from within this document. Matching terms that appeared in the title/description, items, validity, or subscales of a measure within the documentation were evaluated as candidates for the associated variable. This search effectively returned any instrument, item, or coded variable or subscale appearing anywhere within the SECCYD documentation that contained a term related to the variables of interest for the present study.
Matching entries were individually evaluated for inclusion based on the following criteria: conceptual relevance to the variable of interest, observations available at necessary time points, and moderate to high (i.e., >.7) internal reliability (when reported). Additionally, no more than one parent served as an informant on a given questionnaire for a given variable at any particular time point in order to reduce dependencies among informants. This process was repeated for each variable at each time point, resulting in a list of 77 candidate measures spanning all variables.

Alphanumeric variable labels and data files corresponding to each candidate measure were used to compute cross-sectional correlations among all candidate measures for a given variable at a given time point. Any measure that demonstrated one or more non-significant correlation was dropped. Remaining measures for each variable were then z-scored and averaged to form a single composite. A full list of the measures, subscales, indices, and SECCYD variable codes included in each composite variable, submitted as a part of my pre-registered analysis plan for this chapter, can be found in Appendices B and C.

Research Question 1: Do longitudinal associations replicate?

Methods

At four years of age, children in the SECCYD completed a laboratory-based delay of gratification task closely resembling the delay of gratification task used in Mischel, Shoda, & Peake (1988). Wait times from the delay of gratification task across the delay period were not normally distributed due to right-censoring of the distribution for those children who waited the full delay period (amounting to 53% of the total number of responses), and delay of gratification was therefore dummy-coded to indicate whether the child waited the full delay period during preschool (1=Delayer, 0=Otherwise).
Table 5
Descriptive Statistics for RQ1 Measured Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>n</th>
<th>M</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay of Gratification</td>
<td>840</td>
<td>4.55</td>
<td>2.98</td>
<td>0</td>
<td>7</td>
<td>-0.54</td>
<td>-1.55</td>
</tr>
<tr>
<td>Academic Achievement</td>
<td>908</td>
<td>0</td>
<td>0.68</td>
<td>-5.66</td>
<td>1.35</td>
<td>-1.09</td>
<td>6.03</td>
</tr>
<tr>
<td>Behavioral Problems</td>
<td>903</td>
<td>0</td>
<td>0.89</td>
<td>-2.08</td>
<td>3.02</td>
<td>0.33</td>
<td>-0.22</td>
</tr>
<tr>
<td>Emotion Regulation</td>
<td>646</td>
<td>0</td>
<td>0.78</td>
<td>-1.64</td>
<td>3.02</td>
<td>0.33</td>
<td>-0.29</td>
</tr>
<tr>
<td>Social Skills</td>
<td>895</td>
<td>0</td>
<td>0.75</td>
<td>-2.95</td>
<td>1.98</td>
<td>-0.31</td>
<td>0.1</td>
</tr>
<tr>
<td>Personality</td>
<td>842</td>
<td>0</td>
<td>0.71</td>
<td>-2.89</td>
<td>2.27</td>
<td>0.01</td>
<td>0.47</td>
</tr>
<tr>
<td>Age 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic Achievement</td>
<td>668</td>
<td>0</td>
<td>0.74</td>
<td>-1.61</td>
<td>1.98</td>
<td>0.24</td>
<td>-0.36</td>
</tr>
<tr>
<td>Behavioral Problems</td>
<td>847</td>
<td>0</td>
<td>0.75</td>
<td>-1.28</td>
<td>4.24</td>
<td>1.15</td>
<td>2.12</td>
</tr>
<tr>
<td>Emotion Regulation</td>
<td>875</td>
<td>0</td>
<td>0.9</td>
<td>-3.06</td>
<td>1.65</td>
<td>-0.58</td>
<td>-0.12</td>
</tr>
<tr>
<td>Social Skills</td>
<td>839</td>
<td>0</td>
<td>0.82</td>
<td>-3.2</td>
<td>1.52</td>
<td>-0.46</td>
<td>-0.16</td>
</tr>
<tr>
<td>Personality</td>
<td>866</td>
<td>0</td>
<td>0.86</td>
<td>-3.89</td>
<td>1.88</td>
<td>-0.47</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Note. Descriptive information is reported for the continuous Delay of Gratification measure, but this variable was dummy-coded prior to analysis. Remaining variables were created averaging z-scored parent, teacher, and child self-report questionnaires and child performance tasks for each variable within each time point. All pairwise correlations were statistically significant among measures included in a given composite variable.

Five long-term correlates of delay of gratification reported by Mischel, Shoda, and Peake (1988) were selected for conceptual replication in this study: Academic Achievement, Behavioral Problems, Emotion Regulation, Social Skills, and Personality. This particular study (Mischel, Shoda, & Peake, 1988) was selected for conceptual replication because the age of the participants at follow-up (15 years) matches the final time point available from the SECCYD. I created age four and age 15 composite variables for each of these five correlates using the systematic search and selection process described above.

I first tested five simple regression models predicting age 15 outcomes from age four delay of gratification in order to match the analytic approach employed in the original research. I then tested five multiple regression models that included an additional predictor to control for baseline levels of the dependent variables. The latter method is standard in contemporary
approaches to regression-based longitudinal data analysis, as it adjusts for cross-sectional
correlations and autocorrelations between the dependent and independent variables.

Results

Preliminary Analyses. Longitudinal correlations of each variable with itself were
computed as an initial assessment of the reliability and validity of the composite measures.
These correlations were generally large and statistically significant, ranging from $r = 0.32$ to
0.39, all p-values <.001, with the exception of the Personality variable, $r = -0.05$, $p = .151$.
Results of analyses involving the Personality variable should therefore be interpreted with this
caveat in mind. Descriptive information for the composite variables are listed for each time
point in Table 5. Pairwise correlations with delay of gratification are listed for each variable at
each time point in Table 6.

<table>
<thead>
<tr>
<th>Table 6</th>
<th>Age 4</th>
<th>Age 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlations with Age 4 Delay of Gratification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r p r p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic Achievement</td>
<td>.34</td>
<td><.001</td>
</tr>
<tr>
<td>Behavioral Problems</td>
<td>-.09</td>
<td>.010</td>
</tr>
<tr>
<td>Emotion Regulation</td>
<td>.09</td>
<td>.022</td>
</tr>
<tr>
<td>Social Skills</td>
<td>.21</td>
<td><.001</td>
</tr>
<tr>
<td>Personality</td>
<td>-.13</td>
<td><.001</td>
</tr>
</tbody>
</table>

Longitudinal Results. Results are summarized in Table 7. In a series of simple regression
models, individuals who delayed gratification at age four had significantly better Academic
Achievement ($\beta = 0.270$, $F = 11.22$), fewer Behavior Problems ($\beta = -0.224$, $F = -9.38$), and better
Social Skills ($\beta = 0.017$, $F = 5.78$) at age 15 relative to those who were classified as non-
delayers, all p-values <.05. Longitudinal correlations with Emotion Regulation and Personality
were not statistically distinguishable from zero (though the Personality composite variable may
be unreliable). Two of these three longitudinal associations were no longer significant in the multiple regression models, leaving only the outcome of Behavior Problems of the five long-term correlates tested.

Table 7

<table>
<thead>
<tr>
<th></th>
<th>Simple regression</th>
<th>Controlling for baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>F</td>
</tr>
<tr>
<td>Academic Achievement</td>
<td>0.270</td>
<td>11.22</td>
</tr>
<tr>
<td>Behavioral Problems</td>
<td>-0.224</td>
<td>9.38</td>
</tr>
<tr>
<td>Emotion Regulation</td>
<td>-0.021</td>
<td>0.08</td>
</tr>
<tr>
<td>Social Skills</td>
<td>0.175</td>
<td>5.78</td>
</tr>
<tr>
<td>Personality</td>
<td>0.091</td>
<td>1.567</td>
</tr>
</tbody>
</table>

Note. β = standardized beta coefficients.

Discussion

Associations between preschool delay of gratification and adolescent outcomes replicated across three of five adolescent outcomes tested using simple regression models, but two of those three associations were no longer significant after controlling for baseline outcome levels. One possible explanation for this pattern is that preschool delay of gratification does not explain any unique variance in subsequent life outcomes over and above its reflection of the concurrently-measured outcomes, and their predictive validity for subsequent levels. Still, preschool delay of gratification did continue to significantly predict the outcome of Behavior Problems even after the inclusion of baseline controls. RQ2 explores factors that might be driving this longitudinal association.

Research Question 2: If so, are they better explained by trust or self-control?

The main goal of RQ2 is to evaluate whether trust or self-control better-accounts for observed associations between delay of gratification and behavior problems. The outcome of behavior problems was selected as the primary focus of this RQ in order to reduce the number of
multiple comparisons and to maintain a confirmatory model of hypothesis testing. Behavior problems were selected based on the consistency of the measures available at each time point and given pre-existing theoretical interest in problem behaviors, given preferences for immediate gratification among certain populations (e.g., criminal offenders, addicts). This decision was made a priori and was not based on the results of the RQ1 analyses (see preregistration).

Methods

Measured Variables. Data are structured as repeated observations of behavior problems that vary over time within each child. Time 1 was collected when children were four years of age, Time 2 when children were in Grade 1, Time 3 when children were in Grade 5, and Time 4 when children were Age 15. Predictor variables in RQ2 include Age4Delay (dummy-coded, as in RQ1), Mean Trust, and Mean Self-Control. The latter two variables were computed as the individual’s average across four composite variables over the four time points. Behavior Problems (BP) are measured from a single instrument in RQ2, parent-reported Total Problems Score from the Child Behavior Checklist (CBCL; Achenbach, 1992), rather than a z-scored composite (as in RQ1), because standardized variables are generally avoided in multilevel models (the effects are not generalizable and thus difficult to interpret).

The CBCL is the most widely used screening instrument available for tracking the emergence of behavior problems in children between the ages of 4-18. Parents rate a series of approximately 100 behaviors on 3-point scales from 0 (not true of the child) to 2 (very true of the child), and syndrome scores are derived from a computerized scoring program. Narrow band scores include Social Problems, Depression, Delinquency, Aggression, and Attention Problems, and are combined to form broad band scores in the domains of Internalizing Problems, Externalizing Problems, and Total Problems. Extensive psychometric information indicates both
narrow band and broad band scores on the CBCL are highly reliable, internally consistent, and valid measures of the onset and continuation of problems in children.

Analysis Strategy. I used hierarchical models Two general approaches are used to fit growth models to longitudinal data: multilevel (hierarchical) modeling (MLM or HLM; e.g., Bryk & Raudenbush, 1987; Raudenbush & Bryk, 2002) and structural equation modeling (SEM; e.g., Bollen & Curran, 2006). Hierarchical growth curve models will be used for the present study because children in the SECCYD study were not all observed at every occasion, causing unbalanced data. The high degree of variability within and across children in terms of their testing occasions also supports the use of a hierarchical approach.

Results

Model Specification. As is customary, I began with an empty means, random intercept model in order to partition the variance across levels. The intraclass correlation computed from this model, $\text{ICC} = \frac{\tau_{i0}}{\tau_{i0} + \sigma^2} = (65.18/(65.18 + 39.96))$, indicates approximately 62% of the variance in behavior problems exists between-persons (see Table 8), which can later be modeled as a function of individual differences at Level-2.

<table>
<thead>
<tr>
<th>Fixed Effect</th>
<th>Coefficient</th>
<th>SE</th>
<th>z</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age 15 Behavior Problems, β_{0i}</td>
<td>52.57</td>
<td>.37</td>
<td>142.85</td>
<td><.001</td>
</tr>
<tr>
<td>Mean Change, β_{1i}</td>
<td>-0.55</td>
<td>.03</td>
<td>-21.40</td>
<td><.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Random Effect</th>
<th>Variance Component</th>
<th>SE</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 15 Behavior Problems, r_{0i}</td>
<td>65.18</td>
<td>3.49</td>
<td>58.68</td>
</tr>
<tr>
<td>Level-1 error, e_{ti}</td>
<td>39.96</td>
<td>1.10</td>
<td>37.88</td>
</tr>
</tbody>
</table>
Visual examination of the raw trajectories in BP over time indicate a systematically decreasing, roughly linear fit to the data (see Figure 6). This decrease in BP with age was unexpected, but may be an artifact of the specific items on the CBCL Total Problems measure, which are perhaps more developmentally-appropriate for younger as opposed to older children (causing their parents to endorse the items less frequently as their children age).

![Figure 6. Estimated mean behavior problems over time.](image)

I next compared a series of nested models using likelihood ratio tests to determine the variance components to be included in my unconditional model for time. Results indicated significant random intercept variance and significant random linear variance, supporting the use of the following unconditional model:

Unconditional Random Linear Time

Level − 1:

\[BP_{ti} = \pi_{0i} + \pi_{1i} \text{time}_{ti} + e_{ti} \quad e_{ti} \sim iid, N(0, \sigma^2) \]

Level − 2:

\[\pi_{0i} = \beta_{00} + u_{0i} \quad u_{0i} \sim iid, N(0, \tau_{00}) \]

\[\pi_{1i} = \beta_{10} + u_{1i} \quad u_{1i} \sim iid, N(0, \tau_{11}) \]
The fixed intercept in this model $\hat{\beta}_{00} = 52.58$ represents the average BP level at age 15 across children, and the fixed linear time slope $\hat{\beta}_{10} = -0.55$ reflects the annual change in BP across the study period (i.e., from ages four through 15). Importantly, the random effects parameters indicate significant variability around these mean estimates. Importantly, the random effects parameters indicate significant variability around these mean estimates (see Table 9).

<table>
<thead>
<tr>
<th>Fixed Effect</th>
<th>Coefficient</th>
<th>SE</th>
<th>z</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age 15 Behavior Problems, β_{00}</td>
<td>52.58</td>
<td>.36</td>
<td>144.82</td>
<td><.001</td>
</tr>
<tr>
<td>Mean Change, β_{10}</td>
<td>-0.55</td>
<td>.03</td>
<td>-17.99</td>
<td><.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Random Effect</th>
<th>Variance</th>
<th>SE</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 15 Behavior Problems, r_{0i}</td>
<td>74.64</td>
<td>5.93</td>
<td>63.88 87.21</td>
</tr>
<tr>
<td>Mean Change, r_{1i}</td>
<td>0.39</td>
<td>0.04</td>
<td>0.31 0.48</td>
</tr>
<tr>
<td>Level-1 error, e_{ni}</td>
<td>31.23</td>
<td>1.05</td>
<td>29.24 33.36</td>
</tr>
</tbody>
</table>

Consider the variance component associated with the slope on time: $Var(\pi_{1i}) = \tau_{11} = 0.39$.

Although the fixed effect of time is significant, indicating systematic decreases in BP over time on average across children, the range of plausible values extend from -1.79 to 0.69, $(PV = \hat{\beta}_{10} \pm 1.96(\sqrt{\hat{\tau}_{11}}) = 0.55 \pm 1.96 \times 0.63$. Thus, many children in the sample are not well-represented by this mean estimate, and some are actually predicted to increase in behavior problems over time. This can be seen from a plot of raw trajectories from a random subset of participants, which are displayed along with the mean trajectory in Figure 7.
Figure 7. Raw trajectories in behavior problems over development from a random subset of participants alongside the estimated mean trajectory.

Model Building. Next, I estimated three separate versions of the following model using Delay of Gratification, Mean Trust, and Mean Self-Control as covariates (all un-centered, represented generically as X below):

Intercepts- and Slopes-as-Outcomes

Level 1:

$$BP_{ti} = \pi_{0i} + \pi_{1i}time_{ti} + e_{ti} \quad e_{ti} \sim iid, N(0,\sigma^2)$$

Level 2:

$$\pi_{0i} = \beta_{00} + \beta_{01}X_{i} + u_{0i} \quad u_{0i} \sim iid, N(0,\tau_{00})$$

$$\pi_{1i} = \beta_{10} + \beta_{11}X_{i} + u_{1i} \quad u_{1i} \sim iid, N(0,\tau_{11})$$

Delay of Gratification is dummy-coded such that the intercept represents the reference group (non-delayers), and Mean Trust and Mean Self-Control, being standardized composites, are already centered around a grand mean of 0 with a standard deviation of 1.

Results are listed in Table 10. Children who delayed gratification during preschool have significantly fewer predicted Behavior Problems at age 15 relative to non-delayers, $\beta_{01} =$
\(-1.74, z = -2.27, p = .023\), but delaying gratification does not significantly differentiate children in terms of their change in Behavior Problems over time, \(\beta_{11} = -0.01, z = -0.07, p = .943\). Having more Mean Trust is also associated with significantly fewer age 15 Behavior Problems, \(\beta_{01} = -6.47, z = -14.95, p < .001\), as well as marginally-significant additional decrease to the already-decreasing time trend in Behavior Problems, \(\beta_{11} = -0.08, z = -1.89, p = .058\). Results with Mean Self-Control are similar: each unit increase in Mean Self-Control is associated with a predicted decrease of \(\beta_{01} = -5.00\) in age 15 Behavior Problems, and an additional decrease to the time trend in Behavior Problems of \(\beta_{11} = -0.11, z = -2.62, p = .009\). Though the fixed effects of Mean Trust and Mean Self-Control on the time slope are both statistically significant by conventional standards, these variables explained less than 1% of the overall variance in time and were therefore dropped from subsequent models, given that the majority of the variance in Behavior Problems exists between individuals, and in an effort to balance best fit against parsimony in model building.
<table>
<thead>
<tr>
<th></th>
<th>Age4Delayer</th>
<th>Mean Trust</th>
<th>Mean Self-Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Effect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int., β_{00}</td>
<td>Coeff.</td>
<td>SE</td>
<td>z</td>
</tr>
<tr>
<td></td>
<td>53.48</td>
<td>0.56</td>
<td>94.76</td>
</tr>
<tr>
<td>β_{01}</td>
<td>-1.74</td>
<td>0.76</td>
<td>-2.27</td>
</tr>
<tr>
<td>Change, β_{10}</td>
<td>-0.55</td>
<td>0.05</td>
<td>-11.44</td>
</tr>
<tr>
<td>β_{11}</td>
<td>-0.01</td>
<td>0.56</td>
<td>-0.07</td>
</tr>
<tr>
<td>Random Effect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_{0i}</td>
<td>Var.</td>
<td>SE</td>
<td>95% CI</td>
</tr>
<tr>
<td></td>
<td>72.61</td>
<td>6.15</td>
<td>61.57</td>
</tr>
<tr>
<td>r_{1i}</td>
<td>0.39</td>
<td>0.05</td>
<td>0.31</td>
</tr>
<tr>
<td>e_{ii}</td>
<td>31.18</td>
<td>1.11</td>
<td>29.08</td>
</tr>
</tbody>
</table>
Model Comparisons. Five nested models were compared in order to identify the combination of factors that explained the greatest proportion of variance in Behavior Problems at age 15. Each model is identical at Level-1 and in the equation for the slope at Level-2. Preliminary analyses indicated no significant two-way or three-way interactions among these variables in the equation for the intercept.

\[
\text{Level } - 1:\quad BP_{ti} = \pi_{0i} + \pi_{1t} \text{time}_{ti} + e_{ti}, \quad e_{ti} \sim iid, N(0, \sigma^2)
\]

\[
\text{Level } - 2:\quad \pi_{0i} = [\text{Models } 1 - 6 \text{ below}] \quad u_{0i} \sim iid, N(0, \tau_{00})
\]

\[
\begin{align*}
\pi_{1i} &= \beta_{10} + u_{1i} \quad u_{1i} \sim iid, N(0, \tau_{11})
\end{align*}
\]

<table>
<thead>
<tr>
<th>Model</th>
<th>(\pi_{0i} = \beta_{00} + \beta_{01}\text{Age4Delayr}{i} + u{0i})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 2</td>
<td>(\pi_{0i} = \beta_{00} + \beta_{01}\text{MeanTrust}{i} + u{0i})</td>
</tr>
<tr>
<td>Model 3</td>
<td>(\pi_{0i} = \beta_{00} + \beta_{01}\text{MeanSC}{i} + u{0i})</td>
</tr>
<tr>
<td>Model 4</td>
<td>(\pi_{0i} = \beta_{00} + \beta_{01}\text{Age4Delayr} + \beta_{02}\text{MeanTrust}{i} + u{0i})</td>
</tr>
<tr>
<td>Model 5</td>
<td>(\pi_{0i} = \beta_{00} + \beta_{01}\text{Age4Delayr} + \beta_{02}\text{MeanSC}{i} + u{0i})</td>
</tr>
<tr>
<td>Model 6</td>
<td>(\pi_{0i} = \beta_{00} + \beta_{01}\text{Age4Delayr} + \beta_{02}\text{MeanTrust}{i} + \beta{03}\text{MeanSC}{i} + u{0i})</td>
</tr>
</tbody>
</table>
Table 11
Intercepts-As-Outcomes Models

<table>
<thead>
<tr>
<th></th>
<th>Age4Delayer (Model 1)</th>
<th>Mean Trust (Model 2)</th>
<th>Mean SC (Model 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Effect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int., β_{00}</td>
<td>53.5 0.5 107.38 <.001</td>
<td>52.5 0.32 160.91 <.001</td>
<td>52.47 0.35 152.1 <.001</td>
</tr>
<tr>
<td>β_{01}</td>
<td>-1.77 0.59 -3 0.003</td>
<td>-7.08 0.29 -24.58 <.001</td>
<td>-5.93 0.35 -16.75 <.001</td>
</tr>
<tr>
<td>Change, β_{10}</td>
<td>-0.55 0.03 -17.02 <.001</td>
<td>-0.55 0.03 -18.06 <.001</td>
<td>-0.55 0.03 -18.03 <.001</td>
</tr>
<tr>
<td>Random Effect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_{0i}</td>
<td>72.68 6.15 61.57 85.8</td>
<td>50.61 4.85 41.96 61.06</td>
<td>62.43 5.4 52.71 73.97</td>
</tr>
<tr>
<td>r_{1i}</td>
<td>0.39 0.05 0.31 0.49</td>
<td>0.39 0.04 0.31 0.48</td>
<td>0.38 0.04 0.31 0.48</td>
</tr>
<tr>
<td>ε_{ti}</td>
<td>31.18 1.11 29.08 33.44</td>
<td>31.19 1.05 29.2 33.32</td>
<td>31.28 1.05 29.28 33.42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Age4Delayer + Mean Trust (Model 4)</th>
<th>Age4Delayer + Mean SC (Model 5)</th>
<th>Age4Delayer + Mean Trust + Mean SC (Model 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Effect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int., β_{00}</td>
<td>52.68 0.43 122.09 <.001</td>
<td>52.45 0.47 112.69 <.001</td>
<td>52.32 0.43 122.4 <.001</td>
</tr>
<tr>
<td>Delayer</td>
<td>-0.2 0.47 -0.43 0.667</td>
<td>0.15 0.53 0.28 0.779</td>
<td>0.43 0.46 0.92 0.359</td>
</tr>
<tr>
<td>Trust</td>
<td>-7.18 0.32 -22.58 <.001</td>
<td>-6.1 0.39 -15.67 <.001</td>
<td>-2.9 0.39 -7.43 <.001</td>
</tr>
<tr>
<td>SC</td>
<td></td>
<td>-5.87 0.36 -16.52 <.001</td>
<td>-16.52 <.001</td>
</tr>
<tr>
<td>Change, β_{10}</td>
<td>-0.55 0.03 -17.03 <.001</td>
<td>-0.55 0.03 -17.02 <.001</td>
<td>-0.55 0.03 -17.03 <.001</td>
</tr>
<tr>
<td>Random Effect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_{0i}</td>
<td>52.08 5.16 42.89 63.26</td>
<td>61.84 5.66 51.69 73.98</td>
<td>50.8 5.11 41.71 61.88</td>
</tr>
<tr>
<td>r_{1i}</td>
<td>0.39 0.05 0.31 0.49</td>
<td>0.39 0.05 0.31 0.49</td>
<td>0.39 0.05 0.31 0.49</td>
</tr>
<tr>
<td>ε_{ti}</td>
<td>31.13 1.11 29.03 33.38</td>
<td>31.2 1.11 29.1 33.46</td>
<td>31.14 1.11 29.05 33.39</td>
</tr>
</tbody>
</table>
Results are summarized in Table 11, and model comparisons appear in Table 12. Models containing either Mean Trust or Mean Self-Control as covariates in addition to Delayer status at age 4 are significantly more probable than the model containing Delayer status alone (Model 1). Moreover, the inclusion of Delayer status in addition to either Mean Trust or Mean Self-Control did not yield a significantly more probable model, both ps > .05. The full model containing Delayer, Trust, and Self-Control explained the greatest proportion of variance (PVE), $\hat{\tau}_{00}(\text{Uncond}) - \hat{\tau}_{00}(\text{Model}6)/\hat{\tau}_{00}(\text{Uncond}) = .319$, followed closely by Model 4 containing only Mean Trust, $PVE = 0.322$.

Table 12

Summary of Model Comparisons

<table>
<thead>
<tr>
<th>Model</th>
<th>Variance Component</th>
<th>PVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconditional time</td>
<td>74.64</td>
<td>.027</td>
</tr>
<tr>
<td>Model 1</td>
<td>72.61</td>
<td>.322</td>
</tr>
<tr>
<td>Model 2</td>
<td>50.61</td>
<td>.164</td>
</tr>
<tr>
<td>Model 3</td>
<td>62.43</td>
<td>.302</td>
</tr>
<tr>
<td>Model 4</td>
<td>52.08</td>
<td>.171</td>
</tr>
<tr>
<td>Model 5</td>
<td>61.84</td>
<td>.319</td>
</tr>
<tr>
<td>Model 6</td>
<td>50.80</td>
<td>.319</td>
</tr>
</tbody>
</table>

Likelihood ratio tests

<table>
<thead>
<tr>
<th>Comparison</th>
<th>χ^2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1 versus Unconditional</td>
<td>8.98</td>
<td>0.003</td>
</tr>
<tr>
<td>Model 2 versus Unconditional</td>
<td>466.34</td>
<td><.001</td>
</tr>
<tr>
<td>Model 3 versus Unconditional</td>
<td>244.51</td>
<td><.001</td>
</tr>
<tr>
<td>Model 1 versus Model 4</td>
<td>396.95</td>
<td><.001</td>
</tr>
<tr>
<td>Model 1 versus Model 5</td>
<td>213.79</td>
<td><.001</td>
</tr>
<tr>
<td>Model 2 versus Model 4</td>
<td>0.19</td>
<td>0.667</td>
</tr>
<tr>
<td>Model 3 versus Model 5</td>
<td>0.08</td>
<td>0.779</td>
</tr>
<tr>
<td>Model 4 versus Model 6</td>
<td>53.29</td>
<td><.001</td>
</tr>
<tr>
<td>Model 5 versus Model 6</td>
<td>236.53</td>
<td><.001</td>
</tr>
</tbody>
</table>
Discussion

This chapter provides important insights as to the factors that might be driving previously-documented longitudinal associations between preschool delay of gratification and subsequent life outcomes. Specifically, individual differences in children’s trust explain nearly 32% of the variance in where they end up in terms of behavior problems later on in adolescence, even after accounting for their time trends in behavior problems across development. These results support the hypothesis that trust may drive longitudinal correlations between preschool delay of gratification and later life outcomes, over and above the contributions of self-control. However, these results also support the importance of self-control. Individual differences in self-control explain approximately 16% of the variance in adolescent behavior problems. Although the explanatory contributions of self-control are comparatively less than those of trust, future studies could test stronger causal models comparing the relative contributions of trust and self-control over time using quasi-experimental methods that support causal inference from longitudinal data, such as reversing time-lagged predictor and outcome variables (e.g., Duckworth, Tsukayama, & May, 2011).

Importantly, these models assume that all children show a linear change in behavior problems over time, but this assumption is not supported by visual inspection of raw trajectories or the wide range of plausible values for the estimated linear slopes. Future studies should estimate alternative polynomial forms (e.g., quadratic or piecewise-linear change models) and model individual differences in the shape of change over time as a function of other individual differences at Level-2.
CHAPTER 7: GENERAL DISCUSSION AND CONCLUSIONS

The goals of this dissertation were to investigate the conventional assumption that “failures” to delay gratification reflect limitations in self-control, and to test the alternative possibility that delay of gratification, and the life outcomes predicted by it, may be driven by social trust. In Chapters 2 and 3, experimental manipulations of trust influenced willingness to delay gratification in adults and children, supporting the hypothesis that trust can drive willingness to delay even when self-control is limited (as in the case of preschoolers). Chapter 4 extended these ideas to an adult population with characteristic self-control limitations: incarcerated criminal offenders. Although we did not obtain sufficient evidence to support a mediation model of trust, the results indicate systematic differences in trust between criminals and controls. Chapter 5 proposed a causal model of trust as an initial test of the hypothesis that longitudinal correlations between delay of gratification and important life outcomes may be driven by their shared reliance on trust, as opposed to self-control. This hypothesis was further supported by the results of Chapter 6, in which some of the well-established long-term correlates of delay of gratification disappeared in multiple regression models that included simple baseline controls (RQ1), and the explanatory contributions of trust for understanding the development of behavior problems across childhood were found to far exceed those of delay of gratification (RQ2).

The results in Chapters 2-6 are consistent with some existing accounts of delay of gratification that emphasize decision-making processes over and above abilities and limitations in self-control. For example, some have proposed that “failures” to delay gratification can be understood in terms of rational, utility-maximizing choices based on temporal predictions (McGuire & Kable, 2012, 2013), environmental reliability (Kidd, Palmeri, & Aslin, 2013;
McGuire & Kable, 2012, 2013), or systemic conditions such as socioeconomic inequalities (Jachimowicz et al., 2017; Pepper & Nettle, 2017). These accounts are compatible with the idea that trust plays a fundamental role, but place relatively less emphasis on the social contingencies of delaying gratification that motivate hypotheses around trust. The points of overlap and distinction among these alternative theories should be explored to generate testable predictions for evaluation in future research.

The failed replications of longitudinal associations in Chapter 6, many of which occurred even when using naïve regression models without baseline covariates, are surprising given the widespread popularity of the original studies on delay of gratification. The predictive validity of the “marshmallow test” has been the topic of multiple best-selling popular-press books, articles in the *The New Yorker* and *The New York Times*, TED talks, Radiolab episodes, and countless home videos made by parents desperate to know whether their young child is destined for success or doomed for failure. However, other longitudinal cohort studies resembling the original studies in terms of the participant sample size and experimental procedures have also failed to replicate the original effects. No significant associations were found between delay time (raw number of seconds spent waiting in the delay of gratification task) at age four and inhibitory control performance on a go/no-go task approximately ten years later among a sample of 34 participants tested at the Barnard College nursery school (Eigsti et al., 2006), and although delay time measured at the start of the school year was weakly associated with GPA measured at the end of the school year among a sample of 56 Boston-area middle-schoolers ($r_h = 0.65, \text{CI} = [0.41, 1.03]$; Duckworth, Tsukayama, & Kirby, 2013, Study 1), this marginally significant association only emerged after controlling for intelligence, which was not a covariate used in the original Bing cohort studies.
These null and inconsistent longitudinal associations are somewhat less surprising when considered in light of certain aspects of the original studies that limit their internal and external validity, including high and likely non-random attrition and small-study effects. For example, because the marshmallow test research was not initially designed to be longitudinal, only 95 of the original 653 participants who had completed some version of the test at Stanford between 1968-1973 were successfully re-contacted for the first follow-up study (Mischel, Shoda, & Peake, 1988). Attrition from the original sample is very likely non-random; socio-demographic characteristics that cause one to move away or drop out of the study also predict later outcomes (e.g., highly mobile low-SES children were unlikely to be successfully re-contacted and also at greater risk for poor health/low wealth/more crime). As a result, estimates of longitudinal associations are based on a selected sample, which limits the precision and external validity of the results. In addition to concerns about selection and generalizability, the high rate of attrition from the original study also raises the threat of small-study effects. Some of the most widely cited longitudinal associations reported in studies on the original cohort were based on a very small number of observations (e.g., \(n = 35 \) for associations with adolescent SAT scores, Shoda, Mischel, & Peake, 1989; \(n = 26 \) for associations with adult emotional processing, Casey et al., 2011). Regardless of the original sample size, with follow-up samples this small, estimated effect sizes and significance levels have very wide confidence intervals and are highly unstable (e.g., Lakens & Evers, 2014). This increases the possibility of obtaining a false-positive result or an estimated association that is highly inflated.

Despite the alluring simplicity of the idea that one could “sit a child down, hand her a marshmallow and 15 minutes later be able to predict her SAT score” (Bourne, 2014), the results of this dissertation suggest that the seemingly simplistic nature of the predictive validity of delay
of gratification may belie the full complexity of potential implications for social and educational policies. Specifically, repeated “failures” to delay gratification across child development may reflect the stability of social forces that shape delay of gratification and life outcomes that are typically attributed to self-control, as opposed to trait-level cognitive limitations and competencies. If so, this highlights promising new directions for policies and programs that seek to improve delay of gratification in children and adults who struggle. Few demonstrations of large-scale trust interventions exist, but initial efforts have produced promising results. Community-based trust interventions in both laboratory and field settings have led to improvements in financial planning among low-income individuals (Jachimowicz, Chafik, Munrat, Prabhu, & Weber, 2017), and several researchers have suggested additional directions for such efforts, including attitude-change strategies that cultivate social belonging on college campuses (Walton & Cohen, 2011) and expanding funding for community service programs and incentivizing private employers to offer flexible work arrangements that facilitate family and community engagement (given the importance of family and community ties for social trust; Putnam, 2000).

Somewhat alarmingly, however, trends in cross-national survey data suggest that trust is on the decline among Americans. Trust in others and confidence in institutions measured in 2012 were at historic lows among all generations, with trust in recent years lower than trust during the Watergate scandal of the early 1970s, the 9/11 terrorist attacks in 2001, and the financial crisis of the late 2000s (Putnam, 2000; Twenge, Campbell, & Carter, 2014). At the same time, trust has become more relevant than ever for occupational, financial, and interpersonal exchanges: for example, the so-called “sharing economy,” with companies like Airbnb, Uber, and Tinder, has emerged as a legitimate economic and cultural force, and depends
critically on the willingness of strangers to trust one another. Thus, despite the increasing social and economic relevance of trust and its potential applicability as a candidate for health, wealth, and public safety interventions, trust may be in need of repair. Increased attention to research on trust, delay of gratification, associated life outcomes could support the re-focusing of intervention and prevention efforts in order to address the essential role of trust in individual and public health and well-being.

In conclusion, although self-control is commonly assumed to be the clear intervention target for policy-makers who seek to improve life outcomes in the domains of health, wealth, and crime (e.g., Mischel et al., 2011; Moffitt et al., 2011), the studies in this dissertation highlight the important and previously underemphasized role for social trust in predicting life outcomes. Converging evidence for the importance of trust was obtained across multiple investigative approaches, including experimental and quasi-experimental designs as well as quantitative models of longitudinal data. Based on the conclusions drawn from this evidence, the viability of social trust as a target for intervention efforts is an important future area of focus for policy-makers who seek to improve health, wealth, and public safety.

References

Broadbent, E., Kumar, V., Li, X., Sollers, J., Stafford, R.Q. *et al.* (2013). Robots with display screens: a robot with a more humanlike face display is perceived to have more mind and a better personality. *PLOS ONE*, 8 (8):e72589. doi:10.1371/journal.pone.0072589. pmid:24015263

Proceedings of the International Conference of Music Information Revival, 183-188.

doi:10.1016/j.cognition.2009.05.012

doi:10.1126/science.1100907

doi:10.1037/a0031910

Appendix A: Questionnaire items used in Chapter 5

Data were collected during a 30-minute phone interview and with self-administered questionnaires (SAQs).

Physical Health

1. BMI (SAQ)
[Calculated with self-reported weight, height, and age.]

2. Perceived physical health (phone)

In general, would you say your physical health is excellent, very good, good, fair, or poor?

3. Perceived overweight (SAQ)

Which of the following do you consider yourself: very overweight, somewhat overweight, about the right weight, somewhat underweight, very underweight?

Mental Health

1. Perceived mental health (phone)

Would you say your mental or emotional health is excellent, very good, good, fair, or poor?

2. Depressive symptoms (SAQ)

Depressed Affect Scale

During two weeks in the past 12 months, when you felt sad, blue, or depressed, did you

 a. lose interest in most things?
 b. feel more tired out or low on energy than usual?
 c. lose your appetite?
 d. have more trouble falling asleep than usual?
 e. have a lot more trouble concentrating than usual?
 f. feel down on yourself, no good, or worthless?
 g. think a lot about death?

3. Worry (phone)

Considering how things have been going in your life over the past 12 months, do you worry more than most people in the same situation, less than most people, or about the same as most people in the same situation?
4. Alcohol use (SAQ)

During the past 12 months, how many times did you use much larger amounts of alcohol than you intended to when you began, or used them for a longer period of time than you intended to? (1: Never to 6: more than 20 times)

5. Drug use (SAQ)

During the past 12 months, how many times did you use much larger amounts of any of these substances than you intended to when you began, or used them for a longer period of time than you intended to? (1: Never to 6: more than 20 times)

Wealth

1. Perceived financial situation. (SAQ)

Using a scale from 0 to 10 where 0 means “the worst possible financial situation” and 10 means “the best possible financial situation,” how would you rate your financial situation these days?

2. Perceived control over financial situation. (SAQ)

Using a scale from 0 to 10 where 0 means “no control at all” and 10 means “very much control,” how would you rate the amount of control you have over your financial situation these days?

3. Does your income meet your needs? (SAQ)

In general, would you say you (and your family living with you) have more money than you need, just enough for your needs, or not enough for your needs?

4. Difficulty paying bills. (SAQ)

How difficult is it for you (and your family) to pay your monthly bills? (1: Very difficult to 4: Not at all difficult)

5. Income (SAQ)

Pre-tax income you earned in the last calendar year:
Appendix B: Measures and corresponding SECCYD codes included in Chapter 6 composite variables

<table>
<thead>
<tr>
<th>Time</th>
<th>Variable</th>
<th>Measure(s)</th>
<th>Code(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Delay of Gratification</td>
<td>Delay of Gratification Task</td>
<td>DOGPFO54</td>
</tr>
<tr>
<td></td>
<td>Trust</td>
<td>Positive Relationship Score</td>
<td>TPRELM54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CBCL Withdrawn</td>
<td>BWT_TM54_r</td>
</tr>
<tr>
<td></td>
<td>SC</td>
<td>SRSS Self-Control</td>
<td>SLFRSM54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroop</td>
<td>IMPLSC54_r</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>Woodcock-Johnson Achievement</td>
<td>WJAPPC54, WJIWPC54, WJLWPC54, WJMSPC54, WJPVPC54</td>
</tr>
<tr>
<td></td>
<td>BP</td>
<td>CBCL Total Problems</td>
<td>BTO_TM54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRSS Problem Behaviors</td>
<td>PRBSSM54</td>
</tr>
<tr>
<td></td>
<td>ER</td>
<td>CBCL Internalizing Problems</td>
<td>BIN_TM54_r</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRSS Internalizing Problems</td>
<td>INTRSM43_r</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CBQ Negative Affectivity</td>
<td>CBQANM54_r, CBQFEM54_r, CBQSDM54_r</td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>SRSS Social Skills Total Standard Score</td>
<td>SSTSSM54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social Competence score on Social Problem-Solving Test</td>
<td>SOCASC54</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>CBQ Surgency</td>
<td>CBQAPM54, CBQALM54, CBQOSGM54_r</td>
</tr>
<tr>
<td>2</td>
<td>Trust</td>
<td>Positive Relationship Score</td>
<td>TPRE_M1S, TPRE_T1S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CBCL Withdrawn</td>
<td>BWT_TM1S_r, BWT_TT1S_r</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Child Peer Status</td>
<td>TCPRPST1S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loneliness and Social Dissatisfaction</td>
<td>LONLYC1F_r</td>
</tr>
<tr>
<td></td>
<td>SC</td>
<td>SRSS Self-Control</td>
<td>SLFRSM1S, SLFRST1S</td>
</tr>
<tr>
<td></td>
<td>BP</td>
<td>CBCL Total Problems</td>
<td>BTO_TM1S, BTO_TT1S</td>
</tr>
<tr>
<td>3</td>
<td>Trust</td>
<td>Positive Relationship Score</td>
<td>TPRE_MG5, TPRE_TG5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CBCL Withdrawn</td>
<td>BWT_TMG5_r, BWT_TTG5_r</td>
</tr>
<tr>
<td>Security in Relationships</td>
<td>SRSMACG5, SRSTRCG5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Support From Peers</td>
<td>SSFRCG5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOME Acceptance and Responsivity</td>
<td>HH_ARMG5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friendship Quality</td>
<td>FSQTOCG5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC</td>
<td>SRSS Self-Control SLFRSMG5, SLFRSTG5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td>CBCL Total Problems BTO_TTG5, BTO_TMG5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risky Behavior Questionnaire TOTRTMG5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Trust</td>
<td>Positive Relationship Score TPRE_MX5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CBCL Withdrawn BWT_TMX5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Friendship Quality FSQT_CX5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loneliness and Social Dissatisfaction LONL_CX5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOME Acceptance and Responsivity HHAARMX5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parental Warmth and Support PR1WSCX5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Secure Parental Attachment SECATCX5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC</td>
<td>SRSS Self-Control SLFRSMX5, SLFRSCX5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weinberger Impulsivity Scale MPLSCXX5_r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Math, science, and English achievement MTHCLSG9, SCICLSG9, HAPENSG9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td>CBCL Total Problems BTO_TMX5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risky Behavior Questionnaire ANYR_CX5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SRSS Problem Behaviors PRBSSMX5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER</td>
<td>CBCL Internalizing BIN_TMX5_r</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SRSS Internalizing Problems INTRSMX5_r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>SRSS Social Skills SSTSSMX5, SSTSSCX5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Psychosocial Maturity Inventory PSMITCX5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resistance to Peer Influence REPPRCX5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix C: Measures, subscales, and indices included in Chapter 6 composite variables

Academic Achievement

Time 4: Math, science, and English achievement (z-scored average of child course level achievement scores coded from transcripts on a 0-6 scale for math and science and a 0-1 scale for English).

Behavioral Problems

Time 1: Average of z-scored CBCL Total Problems score (parent-report) and SRSS Problem Behaviors score (parent-report).

Time 2: Average of z-scored CBCL Total Problems scores (parent-/teacher-report).

Time 3: Average of z-scored CBCL Total Problems scores (parent-/teacher-report average) and z-scored Total Risk-Taking Score on Risky Behavior Questionnaire (parent-report).

Time 4: Average of z-scored CBCL Total Problems score (parent-report), z-scored SRSS Problem Behaviors score (parent-report), and z-scored Total Risk-Raking Score on Risky Behavior Questionnaire (child self-report).

Delay of Gratification

Time 1: Two indices: the z-scored amount of time spent waiting for the delayed reward will be examined but is likely to be highly skewed due to right-censoring. If so, a binary pass/fail indicator of whether the child waited full delay period will be used.

Emotion Regulation

Time 1: Reverse-scored average of z-scored CBCL Internalizing score (parent-report), SRSS Internalizing Problems score (parent-report), and CBQ Negative Affectivity score (parent-report).

Time 4: Reverse-scored average of z-scored CBCL Internalizing score (parent-report) and SRSS Internalizing Problems score (parent-report).

Personality

Time 1: CBQ Surgency score (z-scored average of parent-reported Approach, Activity Level, and reverse-scored Shyness subscales).

Time 4: Average of z-scored Psychosocial Maturity Inventory score (child self-report) and Resistance to Peer Influence score (child self-report).
Self-Control

Time 1: Two indices will be separately examined: reverse-scored Stroop impulsivity score (z-scored percent incorrect out of the total number of non-missing trials; child performance) and z-scored SRSS Self-Control score (parent-report).

Times 2 and 3: Average of z-scored SRSS Self-Control scores (parent-/teacher-report).

Time 4: Average of z-scored SRSS Self-Control scores (parent-report/child self-report average) and reverse-scored impulse control scores on the Weinberger Adjustment Inventory (child self-report).

Social Skills

Time 1: Average of z-scored SRSS Social Skills score (parent-report) and Social Competence score from the Social Problem Solving Task (child performance).

Time 4: Average of z-scored SRSS Social Skills scores (parent-report/child self-report).

Trust

Time 1: Average of z-scored Positive Relationship Scores (parent-report) and reverse-scored CBCL Withdrawn scores (parent-report).

Time 2: Average of z-scored Positive Relationship scores (parent/teacher average), reverse-scored CBCL Withdrawn scores (parent/teacher average), Child Peer Status score (teacher-report), and reverse-scored Loneliness and Social Dissatisfaction score (child self-report).

Time 3: Average of z-scored Positive Relationship scores (parent/teacher average), reverse-scored CBCL Withdrawn scores (parent/teacher average), Security In Relationships scores (parent/teacher average), Social Support from Peers score (child self-report), HOME Acceptance and Responsivity score (researcher observation), and Friendship Quality score (child self-report).

Time 4: Average of z-scored Positive Relationship scores (parent-report), reverse-scored CBCL Withdrawn scores (parent-report), HOME Acceptance and Responsivity score (researcher observation), reverse-scored Loneliness and Social Dissatisfaction scores (child self-report), Friendship Quality score (child self-report), Parental Warmth and Support score (child self-report), and Secure Parental Attachment score (child self-report).