








Chapter 3

Research Context

Figure 3.1: Snapshot of the CCS showing community-contributed resources. The various
labels highlight user annotations (tags, saves and ratings) and features of these resources.

This dissertation research is based on educators’ use of an online instructional planning

platform called the Curriculum Customization Service (CCS). The CCS (see Figure 3.1) pro-

vides middle and high school educators with access to digital versions of their class textbook,

digital library resources and community-contributed resources [123]. Educators can organize

these digital resources into personal collections and they can contribute resources for use by
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others. They can also enhance resources by adding annotations such as tags and ratings.

This dissertation is focused on educators who shared and used community-contributed re-

sources. Community-contributed resources include lesson plans, videos, animations, reading

guides, assessments and other types of teaching and learning resources that educators have

found useful in their instruction.

The analyses conducted were based on the clickstream data and qualitative evaluations

(interviews & surveys) of educators from a large urban school district that used the CCS.

Clickstream data are the click actions of educators in the CCS—mouse clicks—which were

anonymously tracked as a way to analyze their behaviors. This dissertation is based on

the clickstream of educators over four academic years: 2009-2010, 2010-2011, 2011-2012 and

2012-2013. I now describe how both the clickstream and qualitative evaluations of educators

were used to conduct the studies outlined in this dissertation.

The first study of this dissertation focused on applying sociological network theory to

understanding the deduced social network and is based on two core datasets: clickstream

data from the 2011-2012 academic year and a pre-deployment survey responded to by 37

educators prior to the 2011-2012 academic year. This survey asked a series of questions about

teacher classroom settings, instructional practices, beliefs and needs. The survey instrument

was developed by education and evaluation researchers and was validated prior to its use

[80, 129, 28]. I used the results of this survey to investigate if homophily between educators

could be determined based on their connections in the deduced social network. Specifically,

I investigated whether higher edge weights between connected nodes signified a stronger

presence of homophily.

The second study used clickstream data from the 2011-2012 and 2012-2103 academic

years. A computational model for predicting the formation of triadic closures in the network

was based on the 2011-2012 school year. The applicability of this model to improving

traditional recommendation systems for resource recommendation was investigated on the

2012-2013 dataset.
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The final study of this dissertation used clickstream data from all four academic years.

The usage distribution of community-contributed resources was investigated for each aca-

demic year, and longitudinally over all four years. Table 3.1 summarizes the datasets and

methods used in this dissertation.

Table 3.1: Data sources employed for each research question and context of use. ‘n’ indicates
the number of users that used community-contributed resources in the data time frame.

Research
questions

Data used Methods to be employed

RQ 1

Clickstream data from the 2011-2012
academic year (n = 42)

Pre-deployment survey data from 2011-
2012 academic year(n=37)

Clickstream data was used to construct
the deduced social network. An edge
was created between two educators
that clicked on the same community-
contributed resource.

T-tests were used to identify similar-
ities and differences between groups
of educators based on survey items.
These groups were determined by cat-
egorizing educators based on the edge
weights they shared in the deduced so-
cial network.

Machine learning classifiers were devel-
oped to predict the formation of triadic
closures in the deduced social network.

RQ 2 Clickstream data from the 2012-2013
academic year(n=55)

The triadic closure prediction model from
RQ 1 was used to develop a recommender
system that was tested and evaluated on
the 2012-2013 clickstream data.

RQ 3 Clickstream data from all school years
(2009 - 2013) (n = 154)

The usage distribution of community-
contributed resources was investigated for
each academic year and over all four aca-
demic years.



Chapter 4

Weak ties as a lens for understanding resource usage behaviors of an online

community of educators

4.1 Purpose

The purpose of this study is to understand the nature of the deduced social network

created from the community-contributed resource usage behaviors of educators in the CCS.

As a reminder, the deduced social network is generated by creating an edge between two

educators that click on the same community-contributed resource. I examined the degree to

which the phenomena of homophily and triadic closures as predicted by sociological network

theory are exhibited by the deduced social network.

The findings of this study will provide insights into the resource usage behavior of

educators and how participating in the online learning community supports the instruction

of educators.

4.2 Data

This study was carried out using a mixed-methods approach that combined both qual-

itative data (survey) and quantitative data (clickstream of educators). The analyses per-

formed are based on two distinct datasets. They are:

• The clickstream data of educators (n=42) who used community-contributed re-

sources in the CCS during the 2011-2012 school year.
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• A pre-deployment survey completed by 37 educators who used the CCS during the

2011-2012 academic year. Responses from 37 of the 130 items in the pre-deployment

survey were grouped into six categories that provide insights into the instructional

practices, classroom needs and beliefs of educators. The remaining survey items

asked questions about CCS usage, and are therefore not relevant to the research being

performed here. The six categories covering the instructional practices, classroom

needs and beliefs of educators are: class size, years teaching, class needs, level of

comfort and use of technology, perceived level of isolation from other Earth Science

educators, and propensity to use and share resources of educators. These categories,

along with a description of the survey items and resulting data, are shown in Table

4.1. Furthermore, the questions which each category is composed of are listed in

Appendix A

4.3 Methodology

A core goal of the CCS is to support the development and enhancement of a school

district’s professional learning community. The primary way in which the CCS facilitates a

school district’s professional learning community is by enabling educators within the district

share teaching and learning resources that they have found useful or created with other

teachers.

Determining the degree to which the CCS achieved these aims is one of the motivations

for the research presented here. Towards this end, this study examines the concept of weak

ties deduced from the community-contributed resource usage patterns of educators in the

CCS’s online learning community. Specifically, study builds on Granovetter’s [66] theory of

weak ties as described in section 2.1. As a reminder, weak ties are relationships between

acquaintances; these relationships have a lower trust barrier and are easier to maintain as

compared to strong ties, which are characteristic of the relationship between family, close

friends and colleagues. Weak ties provide important pathways for new information in a net-
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work [50, 66]. In contrast, redundant information is often circulated among those who share

strong ties. This is primarily due to the frequency and intensity of the interactions between

those connected by strong ties [66, 64]. For example, over time, two Earth science educators

at the same school may develop a significant amount of shared background knowledge from

frequently exchanging ideas and resources with one another. However a weak tie to one

of these Earth science educators may expose both of them to new ideas and methods for

improving their instruction.

I deduced the latent social network formed between educators as follows: I hypothesize

a weak tie (undirected edge) to exist between two users (nodes) who use the same community-

contributed resource. Such an edge indicates mutual interest in the same set of resources.

If this hypothesis is valid, i.e., that deduced relationships constitute weak ties, then other

properties of Granovetter’s theory should hold [66]. Specifically, I examine the degree to

which homophily is predicted by tie strength, and the degree to which the evolution of the

network can be predicted by the formation of triadic closures. I also explore whether any

differences exist between educators who are part of the deduced social network and those

who are not.

This study is addressed through the following research questions:

(1) Are there qualitative differences between educators who use community-contributed

resources and those who do not? Specifically, do differences exist in the beliefs, in-

structional practices and teaching needs of educators who use community contributed

resources and those who do not use community-contributed resources?

(2) What is the nature of the deduced social network between educators using community-

contributed resources? What is the relationship between the strength of a deduced

tie and the level of homophily between the educators it connects?

(3) How does the network of educators who use community-contributed resources evolve

over time? Does this network exhibit the triadic closure process indicated by Gra-
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novetter’s [66] theory?

Table 4.1: Categorization of survey items. A full list of all questions that make up each
survey category is available in Appendix A.

Category Description
Class size A numeric value indicating average class size
Years teaching Respondents reported on their total number of years teaching in

general and their total number of years teaching Earth Science
in particular.

Class needs A set of six Likert-Scale questions (responses ranging from
strongly disagree to strongly agree) that asked educators about
the presence of students with different reading abilities, quantita-
tive skills, different cultural backgrounds and gifted and talented
(GT) students in their classrooms.

Level of comfort and use of
technology when teaching

A set of sixteen Likert-Scale questions that inquire about the use
of various computer technologies in the classroom. These ques-
tions sought information on educator usage of social networking
sites, digital libraries etc and their level of comfort with these
technologies.
Questions asked also included teacher frequency of use and com-
fort level with data processing programs such as Microsoft Word
and Excel, social networking sites, search engines and streaming
services.

Perceived level of isolation A set of six Likert-scale questions that inquire on the opportuni-
ties of educators to interact with peers in their school district and
their awareness of the practices of other Earth Science educators.
Questions asked include teachers’ rating on the opportunity to in-
teract with other Earth Science educators; attend relevant work-
shops and conferences; share materials with other educators; use
materials of other educators; look at materials of other educators
for inspiration and awareness of the instructional and curriculum
planning practices of other Earth Science educators in their dis-
trict.

Propensity to use and to
share resources

A set of six Likert-Scale questions that inquire on the comfort
level, frequency and ease with which educators shared teaching
resources with peers in the same school district.
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4.4 Results

A set of three analyses were performed to address each of the questions posed in section

4.3. The findings of each of these analyses are highlighted in this section.

4.4.1 Analysis 1: Educators who use community-contributed resources

This study addresses the first research question on the differences between educators

that use community-contributed resources and those who do not. It investigates whether any

differences exist in the teaching beliefs, needs and practices of these two groups of educators.

The set of teachers that participated in the survey were split into two groups: edu-

cators who used community-contributed resources (n=18) and educators who did not use

community-contributed resources (n=19). Single-tailed independent t-tests were performed

between both groups for all categories of survey items shown in Table 4.1.

The hypothesis for each t-test is as follows: “For a category x, educators who used

community-contributed resources express a higher average rating compared to educators

who did not use community-contributed resources.” The null hypothesis is that there is

not a significant difference between the ratings of both groups. As an example, for the

propensity to use and share resources category, I performed a t-test on the following

research hypothesis: “Teachers who used community-contributed resources have a higher

propensity to use and share resources compared to teachers who did not use community

resources.”

T-tests as described in the preceding paragraph were performed for each category

listed in Table 4.1. A statistically significant result was found for the following hypothesis:

“Teachers who used community resources have a higher perceived level of isolation in

comparison to teachers that do not use community resources.“ (t = 1.761, P = 0.0434 at

p < 0.05). No other statistically significant results were found between educators that used

community-contributed resources and those that did not for all other category variables.
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This finding is interesting as it supports a core premise behind the school district’s

adoption of the CCS: to promote the sharing of knowledge and best practices within the

professional learning community (PLC) of its educators. Research indicates that the lack

of a PLC that promotes knowledge sharing can contribute to educators’ feeling isolated in

the classroom. Results suggest that educators with higher levels of perceived isolation are

more likely to use, and potentially benefit from online knowledge sharing with their peers.

Consequently, this sharing may lead to improvements in teaching performance as highlighted

by prior research on teacher learning [34, 99].

4.4.2 Analysis 2: Deduced social network of weak ties

Figure 4.1: Deduced social network showing three sub-communities and bridge nodes.
Anonymized node labels represent the user’s school with the grade level in parenthesis.

This study addresses the second set of research questions that are concerned with

understanding the nature of the deduced social network of educators. The social network
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is deduced by creating a tie (undirected edge) between two educators (nodes) who used the

same set of community-contributed resources. The full deduced social network at the end of

the 2011-2012 school year is shown in Figure 4.1.

The analysis reported here was carried out in two steps. First, I determined the

presence and characteristics of sub-communities in the network. Second, this analysis inves-

tigated whether there is a direct relationship between the strength of a deduced tie and the

level of homophily between the nodes (educators) it connects.

I now describe each of these tasks and the analyses that were performed

4.4.2.1 Detecting sub-communities in the social network

The first task in understanding the nature of the social network was to discover the

presence and characteristics of sub-communities in the network. This analysis was based on

the clickstream data of educators who used community-contributed resources as explained

in section 3. There were 580 unique click actions on 372 community-contributed resources.

Irrespective of the number of times an educator clicks on a specific resource, I define this to

be one unique click action.

Consequently, the Clauset-Newman-Moore’s [37] clustering algorithm was employed to

discover community structures in the network. Clauset-Newman-Moore is a fast hierarchical

clustering algorithm suitable for very large graphs [37]. Communities within the network are

detected based on a property of graphs called modularity. Modularity is a measure of the

likelihood of modules (communities) within a graph. A network of high modularity indicates

dense connections between nodes in the same module and sparse connections between nodes

of different modules. Running Clauset-Newman-Moore’s clustering algorithm on the deduced

social network yielded three distinct sub-communities: G1, G2 and G3, as illustrated in

Figure 4.1. Cluster G1 is comprised of 9th grade educators, G2 is comprised of 6th grade

educators and G3 is a combination of both 6th and 8th grade educators. Figure 4.1 also

indicates the presence of bridge nodes in the graph. Bridge nodes represent users who used
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resources characteristic of multiple clusters. For example, a 9th grade educator (cluster G1)

using resources primarily used by 6th grade educators (Cluster G2). Prior research have

found that bridge nodes may serve as important pathways for the transfer of information

between disparate groups/clusters in a network [66, 50].

4.4.2.2 Homophily in the deduced network

I now proceed with my second task in understanding the nature of the social network.

In this task, I explored the relationship between tie strength and homophily in the deduced

social network.

In describing the strength of ties in a social structure, Granovetter posits that the

strength of a tie is directly related to the level of homophily between the individuals it

connects [66]. In this setting, the strength of a deduced tie is delineated by the edge weight

between a pair of nodes (educators). For a pair of nodes A and B, an edge weight of x

indicates A and B have used x community-contributed resources in common. I used the

categorized survey data described earlier to compute the level of homophily between two

nodes.

My analysis proceeded by identifying all edges in the deduced social network (Figure

4.1) for which I had survey data for both nodes connected by the edge. I identified 53 out of

the 186 unique edges in the network that satisfied this criteria. In this set of 53 edges, edge

weights ranged from 1 to 33 with an average and median weight of 4.18 and 2 respectively.

Consequently, I split the set of edges into two groups: those with high edge weights and those

low edge weights. Edge weights greater than the median weight of 2 were considered as high

edge weights and edge weights less than or equal to the median as low edge weights. In this

study, there were 31 low edge weights and 22 high edge weights connecting node pairs.

Using the survey item categories: class size, years teaching, class needs, level of comfort

and use of technology when teaching, perceived level of isolation and propensity to use

and share resource, I investigated the similarity between educators connected by high edge
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weights (weights > 2) versus those connected by low edge weights (edges of weight ≤ 2).

T-tests were performed to understand if any significant differences existed between both

groups: educators that share a high edge weight and educators that share a low edge weight,

for the set of categories in Table 4.1. The hypothesis for each category x is as follows: “Lower

edge weights indicate a higher difference in agreement between connected users on x.” The

null hypothesis is that there are no significant differences in the level of agreement on x

between the low-edge weight and high-edge weight groups.

Significant results were found for the propensity to use and share resources (t =

3.052, P = 0.00167 at p < 0.05) and the level of comfort and use of technology (t =

1.871, P = 0.033 at p < 0.05) categories. The results of the other four categories: class size,

years teaching, class needs, and perceived level of isolation were not significant, and thus are

not reported here.

These results suggest that the strength of a tie is directly related to the level of ho-

mophily between individuals it connects. Higher edge weights between educators indicate

similar levels in their propensity to use and share resources, and also in their level of com-

fort and use of technology. Furthermore, this result provides preliminary support for the

claim that the edges in the deduced social network do constitute weak ties, as described by

Granovetter’s theory.

4.4.3 Analysis 3: Evolution of the deduced social network

Here I address the third research question of this study on whether the deduced social

network follows the triadic closure process as predicted by Granovetter’s theory. As stated

in section 2.1.2, triadic closures are a basic group phenomena in social networks that provide

explanations for the formation of new edges (connections) in a network. Research shows that

in a sufficiently large network, edges that create a triadic closure (e.g. the edge between B

and C in figure 4.2(d)) are also likely to be bridges. For example, the edge B − C in figure

4.2(d) may act as a bridge between the communities of B and C [50].
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The analysis performed was carried out in two steps. First, I determined whether

the triadic closures observed in the deduced social network were random. Second, if the

occurrence of triadic closures are not random, then developing a computational model for

predicting the formation of these closures over time is plausible.

In an undirected graph such as the DSN, triads can be in one of four states (see Fig

4.2):

• Empty: No edges exist between any pair of nodes i.e., ¬∃eij∀vi, vj where e and v

represent edges and vertices (nodes) in the graph respectively.

• Single edge: Exactly one edge exists in the triad.

• Candidate triad: Two edges exist in the triad.

• Closed: A closed triad is one in which all possible edges in the triad exist i.e., ∀vi, vj ∈

5, there exists eij ∈ E where E and V are the set of edges and vertices(nodes) in

the triad.

Figure 4.2: Depiction of the four possible states of a triad in our network

I performed a triadic census on a set of 100 random undirected graphs—with the same

density and number of nodes as the deduced social network. These graphs were generated

using the Erdos-Renyi process 1 to determine if triadic closures observed in our network can

1 Erdos-Renyi is one of two common mathematical models for generating random graphs [52].
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be explained by random processes. A triadic census is a count of all possible triad states

available in a network. As indicated in figure 4.3, there is a significant disparity between

the triadic census of the deduced social network and the average triadic census of all 100

random graphs. This indicates that the triadic closures in the DSN are not the result of a

random process.

Given this finding, I developed a computational model to predict the formation of

triadic closures as follows. I mined all candidate triads that occur in the network on a

monthly basis to understand what features F of a candidate triad ∨ at time ti best predict

whether it will close at time ti+1 in the future. My model only considers if a candidate triad

will close and not when it closes.

Figure 4.3: Comparison between triadic formations in random graphs versus the deduced
network

The dataset of triads is comprised of two classes: candidate triads that closed and

candidate triads that remained open. For each candidate triad that closed, I captured the

state of its features (see Table 4.2) just before closing. If the triad remained open, I captured

the state of its features at the end of the observation period. The dataset comprised of 640
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candidate triads. 115 of these triads eventually closed and the other 525 remained open.

Consequently, I performed a classification task based on the set of features of each

candidate triad and its eventual state (closed or open) to determine what features best

predict whether a candidate triad will remain open or closed. The features F of a candidate

triad are inspired by prior research which indicate that the structural properties of existing

edges and the common node of a candidate triad are good predictors of triadic closure [74].

Table 4.2: Candidate triad features

Feature Description
Edge weight 1 The weight of one of two edges that exist between

a candidate node and the common neighbor (e.g.
the edge A−B in figure 4.2(c)).

Edge weight 2 The weight of one of two edges that exist between
a candidate node and the common neighbor (e.g.
the edge between node A− C in figure 4.2(c)).

Average edge weight The average of edge weights 1 & 2.
Common neighbor degree The degree of the common neighbor A of nodes B

& C. The degree of a node is the number of edges
connected to it.

Common neighbor between-
ness centrality

Betweenness centrality of the common neighbor A
of nodes B & C. The betweeness centrality of a
node is the number of shortest paths between any
two nodes in the network that passes through it.

To determine what features of a candidate triad best predict the likelihood of its closing

or remaining open, I performed the following classification tasks:

• Classification with all features listed in Table 4.2

• Classification with the weights of both existing edges (the first two features high-

lighted in Table 4.2)

• Classification with the most predictive features.
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Using Weka’s CfsSubsetEval attribute selection function, I discovered three features

to be most predictive: the average edge weight, common neighbor degree, and common

neighbor betweenness centrality. CfsSubsetEval evaluates a set of features by considering

the predictive power of each feature along with the degree of redundancy between them. It

favors features that are highly correlated with the class while having low correlation with

each other [71].

I compared a series of classifiers—Naive Bayes, SVM, C4.5 decision trees and REP

tree—to the majority class baseline and found the C4.5 decision trees to have the best

performance. The C.4.5 decision tree classifier had a 15.8% boost in performance over the

majority class baseline using the most predictive features (best) described above. The results

of our classification experiments are shown in Table 4.3. All classification experiments were

evaluated using a standard 10-fold cross validation.

Table 4.3: Traidic closure prediction perfomance using J48 Decision trees.

Results
Features Precision Recall F1 Accuracy
Majority class baseline 0.673 0.82 0.739 0.82
All features 0.968 0.969 0.968 0.968
Edge weights 0.825 0.844 0.828 0.844
Best features 0.978 0.978 0.978 0.978

These experiments show that triadic closures in the network are not random and can

be predicted with a high degree of accuracy. These findings further support the hypothesis

that the deduced relationship between educators using community-contributed resources

constitute weak ties as they exhibit two core properties: homophily and triadic closures [66].

4.5 Discussion

This study questioned whether the edges in a deduced social network depicting the

resource usage patterns of educators constituted weak ties. The results of analyses 2 &

3 both provide confirmatory evidence for this hypothesis. In analysis 2, I showed that the
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strength of a tie is directly related to the level of homophily between the educators it connects.

In the DSN, educators connected stronger ties, i.e., with an edge weight greater than the

median, were similar in their propensity to use and share resources and their reported level

of comfort and use of technology when teaching.

In the third analysis, I demonstrated that it was possible to predict the formation

of triadic closures with a high degree of accuracy using three features of a candidate triad:

average edge weight, common neighbor degree and common neighbor betweenness centrality.

Within a social network, triadic closures represent new ties between people and thus new

paths for the sharing of information. As stated earlier, in large graphs this property leads

to bridge nodes i.e., people that connect sub-communities. Even though the size of the

DSN is small, the second study indicated that several bridges nodes have emerged that link

communities of educators across different grade levels (see figure 4.1).

4.5.1 Implications for school districts and educators

My first analysis found that educators with higher perceptions of isolation sought

out resources contributed by peers in their school district. Other school districts may use

this finding as motivation for providing educators with greater access to, and awareness

of, resources available through educational digital libraries and online professional learning

communities. This research provides preliminary evidence that such repositories may help

educators to overcome isolation. Several studies have shown that teacher isolation can have

a detrimental effect on the quality of teaching instruction and student learning [34, 53, 130].

In the school district I studied, many of these educators are the only Earth science teacher

in their school. The CCS provided these teachers with one of the few means by which they

could view and share Earth science materials created by their peers. While I only examined

educators’ perceived level of isolation prior to system deployment, future research should

investigate whether prolonged system usage helps to alleviate perceptions of isolation.
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4.5.2 Benefits of mixed methods research

In these studies, I combined network analytic techniques with social science research

methods such as surveys. This mixed methods approach was essential: the network analytic

techniques uncovered interesting phenomena, while the survey data provided insight into

the meaning of these phenomena. For instance, the survey data was essential to identify-

ing the similarities between educators in the DSN (homophily). Additionally, the survey

data enabled us to understand the social-psychological constructs influencing educator use

of community-contributed resources, which in this case is educator isolation. In bounded

institutional settings, mixed methods approach can help to identify the specific social and

psychological concerns that shape system use and the evolution of the institution’s social

network.

4.6 Limitations

In comparison to contemporary social network research, the datasets analyzed in this

study are small. Consequently, I have taken steps to verify that the results being reported are

statistically significant. The size of the datasets are a direct function of the research context:

patterns of sharing among educators in a single school district. School districts, like many

companies, are very interested in learning how the tools and processes they have put into

place support professional learning and knowledge sharing amongst their employees. These

types of network analysis focusing on activities within a bounded institutional setting, will

often have to face the challenges associated with smaller datasets. Nevertheless, I believe

that it is imperative to develop data analytic techniques that are appropriate to studying

small communities within institutional settings.
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4.7 Conclusion

In this study, I showed that Granovetter’s theory on weak ties can be used to un-

derstand the phenomena of homophily and triadic closures in the deduced social network.

Furthermore, I discovered that an educator’s perceived level of isolation in the classroom

may play an influential role in their decision to use community-contributed resources.

To attain these insights, I combined network analytic techniques with social science

research methods such as surveys. This mixed methods approach was essential: the network

analytic techniques uncovered interesting phenomena, while the survey data provided insight

into the meaning of these phenomena. For instance, the survey data was essential to identify-

ing the similarities between educators in the network (homophily). Additionally, the survey

data illuminated the social-psychological constructs which may influence the formation and

evolution of the deduced social network. I believe that the methods described in this study

can be generalized to other bounded institutional settings to identify the specific social and

psychological concerns that shape system use and the institution’s social network.



Chapter 5

Using network analysis of clickstream data to improve resource

recommendation systems

5.1 Purpose

The purpose of the study presented in this chapter is to determine if the triadic closure

prediction model developed in the first study (see chapter 4) can be used to improve tradi-

tional resource recommendations systems. In particular, this study investigates the extent

to which the triadic closure prediction model developed in chapter 4 can be used to improve

traditional collaborative filtering recommendation systems.

5.2 Data

This study is based on the recorded clickstream of Earth Science educators who used

the CCS during the 2011-2012 and 2012-2013 academic years. It uses the triadic closure

prediction model developed in study 1 (see chapter 4) to augment recommendation systems

that were built and evaluated on clickstream data from the 2012-2013 school year. As a

reminder, the triadic closure prediction model was developed using clickstream data from

the 2011-2012 school year. The 2011-2012 and 2012-2013 datasets are described in Table

5.1.
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Table 5.1: Description of datasets under analysis. The 2011-2012 data is used in building
the triadic closure prediction model (see chapter 4), and the recommendation systems are
built and evaluated on the 2012-2013 data.

School year
Stat 2011-2012 2012-2013
Number of users 40 55
Number of schools 31 42
Grades 6th-9th 6th-9th
Number of community resources used 372 325

5.3 Methodology

The recommendation engine is developed in two stages. In the first stage, collaborative

filtering and content-based recommendation systems were implemented separately. They

were then combined in a hybrid recommendation system.

In the second stage, the triadic closure prediction model was added to the collaborative

filtering system and then to the hybrid system to gauge whether the addition of the triadic

closure prediction model could improve the accuracy of either recommendation system. The

triadic closure prediction model was not applied to the content-based system because content-

based recommendations are by nature, independent of user similarity.

I now describe how each of the aforementioned recommendation systems were imple-

mented.

5.3.1 Collaborative filtering resource recommendation system

The collaborative filtering recommendation system recommends to a user u resources

that have been utilized by other users similar to u. Two users u, v are judged to be similar

based on their ratings for a set of resources used between them. The CCS click stream dataset

consists of only unary ratings on resources. Specifically, we only know which resources an

educator used (clicked on). For the set of resources used by users u and v, user similarity

is determined by computing the Jaccard similarity between ur and vr where ur is the set of
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resources used by user u and vr is the set of resources used by user v:

sim(u, v) =
|ur

⋂
vr|

|ur
⋃
vr

(5.1)

The Jaccard similarity of two sets ur and vr is the ratio of the size of the intersection

and union between ur and vr [107] as shown in equation 5.1. The Jaccard similarity between

two users is a real value ranging from 0-1. Two users are similar if the set of resources they

have used has a high Jaccard similarity. In this study, I deem users with a Jaccard similarity

score of ≥ 0.1 to a user u as similar enough to be considered for a collaborative-filtering

recommendation of resources to u.

5.3.2 Content-based resource recommendation system

The content-based recommendation system recommends to a given user u, resources

that are similar to the set of resources that have already been used by u. Resource similarity is

computed based on a set of seven features. These features and their weights are highlighted

in Table 5.2. The first six of these features (resource title, description, context, author,

grade tags, and other tags) are surface features i.e. they are visible to all users of the

CCS platform (see Figure 1). The 7th feature (the resource type) was created by grouping

resources according to their intended purpose. For example, resources contributed by users

for use in testing and assessment purposes were grouped as assessments, and those created

as reading aids for students were grouped as reading guides. The similarity between two

resources b and c is given by the following equation:

sim(b, c) =
n∑
f=1

Jaccard(bf , cf )wf (5.2)

where f indicates a feature of the resource, and w indicates the weight of that feature.

As with the collaborative filtering recommendation system, only resources with a sim-

ilarity score of ≥ 0.1 to a resource b are considered by the content-based recommendation

system in making resource recommendations that are similar to b.
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Table 5.2: Description of features of a commmunity resource

Feature Description Weight
Author This refers to the contributor of a resource. Each resource contrib-

utor is identified by a unique user id.
20%

Context This refers to the specific curricular context within the CCS to
which a resource was contributed. This curricular context could be
a specific unit or activity. Resources can also be contributed to a
global repository called “All shared stuff.” Resources in “All shared
stuff” are accessible from all contexts within the CCS.

10%

Title This refers to the title of a resource. The content-based recommen-
dation system is operationalized on keywords that are extracted
from a resource’s title. I use a rapid keyword extractor (RAKE) 1

to extract keywords from a resource’s title.

10%

Description This is a short blurb describing the resource. Keywords are ex-
tracted from the resource’s description and are used in comparing
it to other resources. I use a rapid keyword extractor (RAKE) 2

to extract keywords from a resource’s description.

10%

Grade-level
tags

These are a set of user assigned tags that give an idea of the scope
of a resource. For example, a resource with the tags ‘GT’ and
‘ELA’ indicates that this resource is appropriate for both Gifted
& Talented students and is appropriate for improving the English
literacy of students.

20%

Other tags These are a set of user assigned tags that indicate the scope of a
resource i.e., the range of instructional contexts that a resource is
suitable for. These tags include the appropriateness of a resource
for instructing student of special abilities such as gifted and talented
students or English language learners

10%

Resource type This refers to the intended purpose of a resource. Community-
contributed resources were categorized into one of eight high level
categories depending on their purpose. They are: animations, as-
sessments, reading guides, worksheets, flipcharts, lab exercises, web
links and power point presentations.

20%

5.3.3 Hybrid resource recommendation system

The hybrid recommendation system is a combination of both the content-based and

collaborative filtering recommendation systems. This system returns the set of resources pro-

duced by the intersection of the results of both the content-based and collaborative filtering
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recommendation systems.

5.3.4 Triadic closure augmentations of both the collaborative filtering and

hybrid recommendation systems

As discussed earlier, the collaborative filtering recommendation system recommends

resources to a user ui based on resources utilized by other users who are similar to ui.

Similarity is computed using the Jaccard similarity metric. Thus if sim(ui, uj) = 0, resources

of ui would not be recommended to uj and vice versa. In this domain, sim(ui, uj) = 0 would

occur when there is no edge eij, e.g. the missing edge B − C in Figure 4.2(c). Thus, if the

recommendation system predicts that a candidate triad with no edge eij is likely to close in

the future, it can use this knowledge to recommend resources of ui to uj even though ui and

uj are currently not similar.

Once a candidate triad is predicted to close, the similarity of the user (node) in the

closure is computed by averaging the similarity between the common neighbor and the

two other nodes in the triad. For example, consider the case where a recommendation of

resources is being made to the node B in the candidate triad in Figure 4.2(c). Using a

traditional collaborative filtering system, only resources of A would be recommended to B

since Jaccard(Ar, Br) > 0, where Ar and Br represent the set of resources used by nodes A

and B respectively. When the traditional collaborative filtering system is augmented with

the triadic closure prediction model, it makes a prediction as to whether the edge B − C is

likely to form. If this prediction is positive, then the similarity of node B to C is computed

by taking the average of the similarities of A to B and A to C i.e.

sim(B,C) =
Jaccard(Ar +Br)+Jaccard(Ar + Cr)

2

where Ar, Br and Cr represent the set of resources used by nodes A, B and C respectively.

A similarity score of ≥ 0.1 is required to recommend resources from C to B as with the

collaborative filtering and content-based recommendation systems.
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5.3.5 Evaluating recommendation systems

Prior studies have proposed three main ways for evaluating recommendation systems.

They are: offline experiments, user studies and online experiments [118]. I now describe

each of these evaluation approaches, after which, I investigate which approach is the most

suitable to evaluating the recommendation system being developed in this study.

5.3.5.1 Offline experiments

Offline experiments involve testing the output of the recommender system on existing

data. The typical measure for offline experiments is prediction accuracy. For a test set T

of actual usage, a recommender system predicts a set of ratings for T . Offline experiments

are widely used in evaluating recommender systems due to the low set up cost and the

ability to compare a wide range of different candidate algorithms easily [118]. However, by

reducing the recommendation problem to a prediction task, offline tests have been discredited

for their inability to measure the novelty or serendipity of recommendations [72]. Novel

recommendations are successful recommendations of items the user did not know about and

serendipity is a measure of how surprising a successful recommendation is [118]. For example,

a successful movie recommendation that introduces a user to a new genre or actor is more

serendipitous in comparison to one where the user is already familiar with the acting cast

and genre.

5.3.5.2 User studies

User studies involve having a set of users perform pre-determined tasks using the

recommendation system. Quantitative and qualitative data such as the amount of time

spent on tasks and user perception of the system interface is taken as part of the study

[118]. As an example, consider a user study designed to test the impact of a recommender

system on the browsing behavior of users on a news site. Users are asked to read a set of
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stories on the site that are interesting to them; some, but not all, of these stories are system

recommendations. Afterwards, quantitative measurements on the performance of users on

the task are taken. These include the number of times the recommendations were clicked

on, and tracked gestures such as eye movements that show whether subjects looked at the

recommendations. Qualitative data include post-study interviews that examine the relevance

of recommendations to users [118]. Qualitative studies investigate the reason behind a user’s

decision to select a news story. Unlike offline experiments, user studies allow system designers

to explicitly study the behavior of users as they are interacting with the recommender system.

However, user studies are expensive to conduct and the outcome of the experiments maybe

skewed, depending on the types of participants tested [118]. For example, if there is a

significant disparity in the interests and/or browsing behavior of participants in the user

study as compared to real users, then insights from the user study may not provide an

accurate estimate of general user behaviour.

5.3.6 Online experiments

Online experiments are widely regarded as the most accurate approach for evaluating

recommender systems [72]; they evaluate the performance of recommendation systems on

real users oblivious to the experiment. Most times, online experiments are a penultimate

step in the evaluation of a new recommendation system. They give system designers the

best insights into the impact of a recommender system on user behavior [118]. A simple

example of an online experiment is an A/B test where a subset of users to a website are

shown recommendations. Quantitative data is collected to understand whether there are

any substantive differences in the usage behavior and interaction patterns of the subset of

users that viewed the recommendations and those that did not [72, 118].
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5.3.7 Using offline experiments to evaluate the recommendation systems

developed

Given that I only had historic usage data (i.e. the recorded user click stream from

the 2012-2013 school year) to build and evaluate the recommendation systems on, I used an

offline experiment approach to evaluate the recommendation systems developed. Specifically,

the offline experiment was modeled as a prediction task.

The offline experiment was carried out as follows: for each day in which at least one

community-contributed resource was used, the recommender system made predictions for the

set of resources that were used on that day based on the click stream data up until the day

prior. For example, recommendations for August 5th will be generated using clickstream

data prior to August 5th. Recommendations are limited to users who have a history of

using community-contributed resources i.e. the system does not attempt to predict a set

of recommendations for a user’s initial use of community-contributed resources. In the

recommender system literature, this is commonly known as the cold-start problem and has

garnered a lot of research interest in recent times [117, 79, 113].

The precision at N [72, 118] was computed for each set of predictions made by the

recommendation system. Precision at N (P@n) measures the ratio of the number of accurate

predictions to the total number of recommendations made where N represents the total

number of recommendations made. It is given by the formula:

Precision =
true− positive

true− positive+ false− positive

For a user u, true-positives are the recommended resources that were used by u and

false-positives are the resources that were recommended but not used by u.

N is set as the number of resources used by a user u. Thus, if the system makes

predictions for a u’s usage of 5 resources on August 5th, then N will be the recommendation

system’s top 5 recommendations. Other studies have also used recall in measuring the

performance of recommender systems. However, recall is generally not a practical evaluation
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measure for recommender systems since relevance is determined at the user level [72]. In

traditional Information-Retrival (IR) experiments, relevance is standardized at the query

level, i.e. for a particular query, we can objectively determine the relevance of the returned

documents to that query. However, in recommendation systems, relevance is an individual

metric. A resource/item that is relevant to one person may be irrelevant to another person.

Furthermore, we have no way of knowing whether a resource was not used because it is not

irrelevant to the user. Even if we say that the usage of a resource equates to relevance, then

for a fixed value of N , Recall at N is effectively the same as Precision at N . Thus calculating

Recall at N will be effectively be the same as calculating Precision at N .

Consequently, I calculated the average precision at N for the five recommendation

systems developed:

(1) Collaborative filtering

(2) Content-based

(3) Collaborative-filtering + triadic closure prediction model

(4) Hybrid system (collaborative-filtering + content-based)

(5) Hybrid system + triadic closure prediction model.

The results of the experiments carried out to evaluate the recommendation systems

listed above are highlighted in Table 5.3

Table 5.3: Average Precision at N for all five recommendation systems evaluated.

Recommendation system Average precision at N
Collaborative filtering 17.26%
Collaborative filtering + Triadic closure prediction model 29.12%
Content-based 68.57%
Hybrid system (Collaborative filtering + Content-based) 77.15%
Hybrid system + Triadic closure prediction model 83.25%
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The results show that the triadic closure prediction model improves by 68.66% (17.25%

- 29.12%) the average precision at N of a traditional collaborative filtering recommen-

dation system. The triadic closure prediction model also improves by 7.9% (77.15% -

83.25%) a traditional hybrid recommendation system. Paired t-tests indicate that the im-

provements of the triadic closure prediction model over a standard collaborative filtering

(t = 3.368, P = 0.000417) and hybrid recommendation system (t = 1.744, P = 0.041) are

statistically significant at p < 0.05.

Also, from Table 5.3, we can see that the content-based recommendation system had

the greatest impact on overall recommendation accuracy. There are two main explanations

for this.

First, the deduced social network of educators (see Figure 4.1) is primarily characterized

by the grade levels they teach. Thus, most of the 6th grade educators primarily used 6th

grade resources, and the 9th grade educators primarily used 9th grade resources. Also, most

of the resources used by educators during the 2012-2013 school year had been contributed

to the system in previous years; thus, the content-based system had a large repository of

possible resources to recommend to users. This improved the probability of the top N

recommendations matching the set of resources that were used by users.

Second, the collaborative filtering model (and triadic closure model) recommendations

suffered early on in the school year due to the paucity of usage click stream data with which

to make recommendations. Since the academic school year did not fully begin until late

August, very few users utilized the system in the month of August, thus making it difficult

for the collaborative filtering recommendation system to find similar users from which to

make recommendations for the current user. This follows findings in the literature that show

collaborative-filtering systems suffer when the user-item matrix is very sparse [3, 51, 107].
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5.4 Discussion

In this study, I augmented a traditional collaborative filtering recommendation system

with the triadic closure prediction model from the first study. Preliminary evaluations of

this approach were promising as it outperformed both a traditional collaborative filtering

and a hybrid recommender system. I now discuss potential implications of my findings with

regards to trust-based recommendations and I also discuss the limitations of this approach

in its current state.

5.4.1 Triadic closures and trustworthy recommendations

The triadic closure prediction model may represent a novel way of incorporating ele-

ments of trust-based recommendations within a deduced social network. In the first study,

I discovered that the edge weight between two educators is directly proportional to their

level of homophily (similarity). In particular, I discovered that higher edge weights between

educators indicate greater similarity in their propensity to use and to share resources, and

greater similarity in their level of comfort and use of technology.

Consequently, as discussed in Section 4.4.3, the average edge weight between two nodes

B, C and their common neighbor A (see Figure 4.2(c)) is indicative of a triadic closure. Prior

studies has illustrated the direct relationship between homophily and trust [94], and more

recent work have linked trust to the efficacy of a recommendation [85]. Individuals are more

likely to accept recommendations from people they trust [12]. However in networks with

sparse connections between users, pure trust-based recommendation systems suffer [90]. To

alleviate this drawback, trust propagation mechanisms have been proposed [12] to improve

recommendation quality. These approaches focus on propagating trust across relationships

and are similar to our triadic closure prediction model [90]. Thus if user A trusts B and C

trusts B, trust propagation mechanisms assume that to some extent, B is also likely to trust

C.
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5.4.2 Limitations

There are some drawbacks to the triadic closure recommendation system as outlined

in this study. The biggest disadvantage of the triadic closure prediction model is its com-

putational complexity. For each point in time when a recommendation is to be made, two

computationally expensive operations are performed. First, a deduced social network of the

click stream prior to that point has to be generated. Second, the deduced network has to be

scanned to detect all candidate triads (see Figure 4.2(c)), each of which is evaluated for the

possibility of closing at time ti+1. Generating the deduced network scales linearly as the size

of the network and detecting all candidate triads is an O(n2) operation. Therefore, in a very

large network it may not be computationally feasible to perform both of these operations

in real time. Similarly, the naive collaborative-filtering implementation illustrated in this

paper does not scale in applications with a very large user-item matrix, such as applications

with millions of users and items/resources [86]. A quick optimization to the triadic closure

prediction model will be to implement the algorithm using a dynamic programming-like

approach. Dynamic programming works by caching intermediate results that tend to be

performed multiple times by related sub problems. In this setting, this could be caching

the results of both operations listed above. Thus, in generating the deduced network, the

recommendation system would only generate new parts of the network that change from a

previous run of the algorithm, and in predicting the formation of triadic closures would only

scan parts of the network that have changed over time.

Furthermore, techniques for improving collaborative-filtering and content-based rec-

ommendation approaches were not explored in this research. These include dimensionality

reduction–i.e. reducing the user-item matrix–and grouping related items in the user-item

matrix have not be explored. Although these techniques would have improved the compu-

tational complexity of the collaborative-filtering and content-based approaches, they may

not have accounted for the edge cases discovered by the triadic closure prediction model.
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Future work incorporating and measuring the impact of these optimizations in improving

the recommender system will make for an excellent line of inquiry.

5.5 Conclusion

Recommendations are a staple of modern e-commerce, content and information deliv-

ery platforms. Within learning environments, appropriate recommendations are necessary

to keep learners informed and engaged; and educators abreast of appropriate pedagogical

resources for classroom instruction.

In this study, I introduced an approach that improves on a standard hybrid recom-

mendation system approach by performing network analysis on a deduced social network

generated from user clickstream data. In particular, this approach predicts the formation of

triadic closures in a deduced social network and uses this prediction to augment a traditional

collaborative filtering approach. The triadic closure prediction model is able to predict the

formation of edges between users in a deduced social network–thus future interest in the

same resources–where a traditional collaborative filtering recommendation approach cannot.

My model shows a 68.66% and 7.9% boost to the average precision at N of a traditional

collaborative filtering and hybrid recommender system respectively. These improvements in

recommender performance were found to be statistically significant.

I profer the approach outlined in this study as only a first step towards improving

the quality of a recommender system. Before deploying a recommendation system, a more

thorough evaluation of its quality by experts in the learning domain is suggested. These

could include controlled user studies or online experiments. Current literature indicates that

these evaluation approaches are the most indicative of a recommender system’s impact on

user behavior [72, 118].



Chapter 6

An information cascade model for understanding the usage distribution of

resources

6.1 Purpose

This study investigates the usage distribution of community-contributed resources in

the CCS. The usage of a community-contributed resource is defined by the number of unique

educators who use (click on) it. These resources include lesson plans, videos, reading guides

and other types of instructional materials that educators have found useful in their instruc-

tion, and subsequently shared with their peers. I explored what the usage distribution of

these resources looked like and investigated what underlying mechanisms may have generated

the observed distribution.

6.2 Data

This study is based on the click stream of 6th and 9th grade Earth Science educators

who shared and used community-contributed resources in the CCS over a period of four

academic years: 2009-2010, 2010-2011, 2011-2012, and 2012-2013. A core design goal of the

CCS is to enable educators to share their instructional practices with others in their district

through these community contributions. The datasets I analyzed are summarized in Table

6.1
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Table 6.1: Description of clickstream datasets under analysis. NA indicates that this statistic
does not apply to the year under observation

School year
Stat 09-10 10-11 11-12 12-13 All years
Number of users 89 50 40 55 154
Number of new users in this
school year

89 16 23 26 NA*

Number of resources used 386 249 372 325 532
Max number of users per re-
source

24 20 14 9 44

Number of resources with
only 1 user

25 89 209 195 77

Mean number of users per
resource

5.66 2.52 1.79 1.68 7.297

Median number of users per
resource

5.00 2.00 1.0 1.0 6.00

Number of new resources
used over prior year(s)

386 37 50 59 NA*

6.3 Methodology

This study began with an exploration of the usage distribution of community-contributed

resources. Specifically, I was interested in finding out whether the observed usage distribu-

tion followed any known probability distribution. Consequently, I explored the underlying

mechanism(s) that may have given rise to the observed distribution. Specifically, I considered

whether resource position or perceived quality could predict the usage distribution. Through

the lens of information cascades, I also questioned the extent to which social influence im-

pacted the observed usage distribution. I now describe each of the analyses performed as

part of this study.

6.4 The usage distribution of community-contributed resources

Visually, the usage distribution of community-contributed resources during each aca-

demic year and across all academic years appears right-skewed and heavy-tailed, as shown in

Figures 6.1 and 6.2. However, the distribution of the 2009-2010 academic year appears to be
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more uniform in comparison to that of subsequent years. To gain a more quantitative and

concrete understanding of the differences between the usage distribution of each academic

year, I looked into the skewness and kurtosis of the usage distribution of each academic year.

Figure 6.1: Usage distribution across for each academic year

Skewness is a measure of symmetry in a distribution. A distribution is symmetric if

it looks the same to the left and right of the center point. The skewness of a distribution

is defined by the following formula γ = µ3/µ
3/2
2 where µ2 and µ3 are the second and third

central moments 1 . My analyses indicate that the usage distribution of each academic year

is positively skewed (see Table is 6.2). However, the distribution of the 2010-2011, 2011-

2012 and 2012-2013 academic years are considerably more positively skewed than the usage

distribution of 2009-2010.

While skewness measures the symmetry of a distribution, kurtosis measures a distri-

bution’s peakedness. Kurtosis gives an idea of how heavy-tailed a distribution is relative to

1 Moments are a set of statistical measures used to describe a distribution. For example, the first and
second central moments of a distribution are its mean and variance.
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the normal distribution. It is given by the following formula: γ2 = µ4/µ
2
2 − 3 where µ2 and

µ4 are the second and fourth central moments. Distributions with high kurtosis tend to have

a distinctive high peak near the mean, followed by a sharp decline and long tail. Distribu-

tions with low kurtosis, such as the uniform distribution, tend to be flat. Table 6.2 shows

that the usage distributions of every year—apart from the 2009-2010 academic year—have

a high kurtosis. In fact, the distributions of the 2010-2011 and 2011-2012 academic years

have about 10 times more kurtosis than the 2009-2010 academic year. Also, the 2012-2013

academic year has about seven times more kurtosis than that of the 2009-2010 academic

year.

Given the skewness and kurtosis of the usage distribution of community-contributed

resources in the CCS, it is unlikely for the usage of these resources to be normally distributed.

However, to conclusively rule out the normal distribution, I performed a Shapiro-Wilks test

2 for normality on the distribution. The null hypothesis H0 of the Shapiro-Wilks test

is that the data is normally distributed and the alternate hypothesis Ha is that the data

is not normally distributed. The outcome of the Shapiro-Wilks test showed that the null

hypothesis H0 can be rejected with a p-value of 2.2e−16. This provides conclusive evidence

that the usage of community-contributed resources is not normally distributed.

Table 6.2: Comparison of the skewness and kurtosis of the usage distribution for each aca-
demic year

School year
Measure 09-10 10-11 11-12 12-13 All years
Skewness 1.1675 3.776 3.528 3.156 1.704
Kurtosis 2.269 23.485 22.491 14.347 5.709194

6.4.1 User behavior and the observed heavy-tailed distributions

Furthermore, I investigated whether the usage behaviors of educators gave any insights

into the skewed distribution in the usage of resources. In particular, I investigated whether

2 A standard statistical test for exploring the normality of data
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Figure 6.2: Usage distribution across all academic years

there was a contrast between the number of resources used (clicked on) before they had

been saved ( i.e. had a public social signal) versus those that were used only after they had

already been saved. The outcome of this analysis was quite startling, as shown in Figure 6.3.

During the 2009-2010 academic year, only 14.5% of all resources used were clicked on before

they had been saved. That is, only 14.5% of all resources used had no public social signal

prior to usage. This number drops to zero during the 2010-2011 and 2011-2012 academic

years. Only 2 out of the 325 resources that were used during the 2012-2013 academic year

had not been saved by a user prior to usage.

This preliminary analysis suggests that social influence may have played a role in the

observed skewed distribution. It gives a precursory indication that educators were more

likely to use resources that had already been saved by others.

6.4.2 Usage distribution of community-contributed resources as a power law

My next analysis investigated whether the observed heavy-tailed shape of the usage

distribution of community-contributed resources followed any known probability distribution.
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Figure 6.3: A comparison between the total number of resources used and the number of
resources used before they had been saved per academic year.

Specifically, I investigated whether it followed a power law. Since power laws are known

to experience the rich-get-richer phenomenon—i.e. entities that are popular tend to get

even more popular over time—power laws provide a logical hypothesis for the observed

distribution. One can imagine that community-contributed resources with more saves, hence

visibly more popular, will attract even more usage over time.

Determining whether a distribution exhibits a power law is a complex task [100]. Typ-

ically, investigations begin with a log-log plot of a quantity’s complimentary cumulative

distribution function (Pr[X ≥ x]). A resultant straight-line plot provides a preliminary

indication of a power law. I generated a log-log plot of the complimentary cumulative dis-

tribution function (CCDF) of the usage of each resource, i.e. the number of users who used

each resource. A straight line—the slope of which represents the scaling parameter α—was

observed, as shown in Figure 6.4. This provided preliminary evidence for the power law
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hypothesis.

Figure 6.4: A log-log plot of the number of resources (y-axis) and number of users (x-axis)
constructed using logarithmic binning (bins of exponentially increasing widths) shows up as
a roughly straight line. This provides preliminary though inconclusive evidence of a power
law distribution.

While historically, power laws have determined from a visual appraisal of a quantity’s

CCDF, visual evidence is not sufficient enough to ascertain a power law. Recent research

indicates that qualitative determinations of power laws from plots of logarithmic transfor-

mations of data are fraught with errors [38, 100]. Data from other probability distributions

such as the lognormal or exponential distribution can also show up as a straight line on

a log-log plot [100, 38]. Thus, to garner plausible evidence for the power law hypothesis,

I follow a principled statistical approach introduced by Clauset et al. [38] for identifying

power law distributions in empirical data. Clauset et al. [38] prescribe a three step approach

for determining power laws in empirical data. They are as follows:

(1) Determine the values of xmin and the scaling parameter α of the data that makes

the probability distribution of the measured data and best-fit power law model as
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close as possible for values of x where x ≥ xmin. This is done using a Maximum

Likelihood Estimator (MLE) approach that determines the values of xmin and α

for which the Kolmogorov-Smirnov (KS) statistic (distance) between the empirical

data and power law model is smallest. The KS test is a non-parametric test for

determining if two data distributions d1 and d2 differ significantly [91]. It returns a

value D which specifies the distance between d1 and d2.

(2) Perform a goodness of fit test between the data and synthetic datasets drawn from

power law distributions parameterized by the values of xmin and α from step 1.

Typically, 2500 synthetic datasets are generated from a power law distribution pa-

rameterized by xmin and α. The premise for generating 2500 synthetic datasets is

simple. If we wish to obtain statistically significant results within about ε of the true

value, then we should generate at least 1
4
ε−2 synthetic datasets [38]. If we wish our

p-value to be accurate to within 2 decimal digits, then ε = 0.01, and thus therefore,

2500 synthetic datasets will be needed since 1
4
(0.01−2) = 2500. A p-value is gener-

ated by calculating the fraction of the synthetic datasets with a higher KS distance

to the power law fit in comparison to the empirical data. When this value is closer to

1, then the differences between the empirical data and the model can be attributed

to statistical fluctuations alone and we can conclude that the model is a plausible fit

to the data [38]. Clauset et al. [38] suggest a value of p > 0.1 to reasonably accept

the power law hypothesis as a plausible fit to the data.

(3) Perform likelihood ratio tests to determine if alternative distributions provide a

better fit to the data. Clauset et al. [38] encourage investigators to at least compare

the fit of their data to exponential, log normal and stretched exponential (Weibull)

distributions. If any other probability distribution has a statistically significant

better fit compared to power law distribution, the power law hypothesis is rejected

in favor of the alternate distribution.
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I used software packages [58, 8] implementing the approaches of Clauset et al. [38] to

determine if the observed usage data follows a power law.

Consequently, the usage distribution of community-contributed resources across all

academic years was found to follow a power law with an α of 4.44 and an xmin value of 15.

Goodness of fit tests (step 2) determined that this fit had a p-value of 0.86. Furthermore,

likelihood ratio tests (step 3) comparing this fit to a log normal, exponential and Weibull

distribution indicated that none of the alternatives provided a significantly better fit to

the empirical data. Figure 6.5 illustrates that a power law provides a closer fit to the

complimentary cumulative distribution function (CCDF) of the empirical data in comparison

to the lognormal and exponential distribution.

Figure 6.5: Comparisons of the complimentary cummulative distribution function (CCDF)
of the empirical data, the power law, lognormal and exponential distribution fits to the data.
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6.5 Mechanisms behind the power law distribution of resources

My next order of investigations looked into generative mechanisms that might have

been responsible for the observed power law distribution in the usage of community-contributed

resources. I considered if resource position, quality or social influence—investigated through

the lens of information cascades —can provide some explanation as to how the observed

power law distribution arose.

6.5.1 Resource position

My first line of inquiry looked into whether the position of a resource played any role

in its usage. I began by performing simple correlation tests between the position of resources

and their usage. If resource usage is influenced by position, then we would expect a negative

correlation. That is, resources at lower positions (top of the list) will have greater usage

(number of users). In the CCS, resources are organized in lists ordered from positions 0-9.

Position 0 represents the top of the list and 9 is the bottom of the list. Most resources are

accessible via multiple lists in the CCS. Thus, the recorded click position of a resource is

dependent on which list it is located in. In light of this, correlation tests were performed

against multiple modalities of a resource’s position namely: the median click position, the

last click position and the mode click position. The median click position refers to the middle

position of all recorded clicks on the resource. The mode click position refers to the most

frequent position of all clicks on the resource. The last click position refers to the position

of the last recorded click on the resource. The null hypothesis H0 of the correlation tests is

that there is no correlation between the click position of a resource and the number of users

who clicked on it. The alternate hypothesis, Ha is that the true correlation is less than 0 i.e.

the lower the position of a resource (higher rank), the greater the number of users.

As shown in Table 6.3, results indicate only a weak correlation between the mode click

position and resource usage during the 2012-2013 academic year. This strongly suggests that
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the position of a resource is not responsible for the observed power law distribution.

Table 6.3: Correlation tests between the last, mode and median click position of resources
and their eventual usage. Statistically significant correlations are highlighted in bold text

School year
Stat 09-10 10-11 11-12 12-13
Last click 0.0216 0.0055 0.0003 0.0213
Mode -0.0247 -0.0094 -0.0440 -0.1315
Median -0.0345 -0.0085 -0.0176 -0.0563

6.5.2 Resource quality

My next analysis investigated if any relationship existed between the quality of a

resource that can be inferred before a user clicks on it and its usage. This analysis is based

on all resources used between 2009 and 2013 (see Table 6.1). I was able to extract the records

of 523 out of the 532 resources used within this period. The xml annotation record of the

remaining 9 of these resources were unavailable at the time of this analysis. My analyses

were carried out in two steps:

• First, I used the presence of a description in the listing of a resource as a marker of

its quality. Thus, resources with a description were deemed as having high quality

and those without a description were of low quality. I then investigated if there was

a statistically significant difference in usage between resources of high quality and

those of low quality. Since user contributed, educators have the option of writing a

description along with the resource they contribute. However, not all educators do

so.

• Second, I mapped quality indicators of Bethard et al. [17] to signals that can be

inferred by users before using a resource.
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6.5.2.1 Differences between resources with a description and resources with

no description

To determine if any significant differences in usage existed between resources with

a description (n = 276) and those without one (n = 247), I performed a Manny-Whitney-

Wilcoxon 3 test between both groups. The null hypothesisH0 is that the usage distribution of

both groups is the same and the alternative hypothesis Ha is that resources with a description

have a greater market share than resources without a description. I was unable to reject the

null hypothesis (p-value: 0.1665). This indicates that there was not a statistically significant

difference in the usage of resources with a description and those without a description.

6.5.2.2 Resource usage and quality indicators

My next analysis investigated whether there was any correlation between the number

of inferable quality signals of a resource and its usage. To do this, I developed a composite

resource quality score that incorporated all signals of a resource’s quality that can be inferred

by a user before using it. These signals were mapped to the resource quality indicators

developed by Bethard et al. [17] as described in Table 6.4. The resource quality score is a real

number between 0−1. The weights of each of these signals contributing to a resource’s quality

score is described in Table 6.5.2.2. They were determined from the number of keywords in

a resource’s description and the presence of time and grade tags. If a description had ≥ 8

keywords, it received the full weight for the description signal. Else, if 4 > keywords < 8,

1/2 the weight for the description signal was given. If the resource had < 4 keywords then

no weight was assigned to the description signal. The full weight of time tag and grade tags

required the presence of at least 1 time tag and 1 grade tag respectively

A correlation test was performed under the the null hypothesis H0 that no correlation

exists between the quality of a resource and its usage, and the alternate hypothesis Ha of the

3 The Manny-Whitney Wilcoxon test is a non-parametric test for differences between groups.
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Table 6.4: Mapping of quality indicators of Bethard et al. [17] to signals that can be inferred
before using a resource. An ’X’ indicates that a signal for this indicator is not present.

Quality indicator Signal
Has instructions Description,Time tag
Identifies age range Grade tag
Has prestigious sponsor X
Has sponsor X
Organized for learning goals X
Content appropriate for age X
Identifies learning goals X

Table 6.5: Signal weights

Signal Weight
Description 60%
Time tag 20%
Grade tag 20%

true correlation being greater than 0 i.e. the higher the quality of a resource, the greater the

number of users. My results show only a weak correlation of 0.124 between resource quality

and usage (t = 2.8343, df = 516, p = 0.002387)

6.5.3 Social influence and resource usage

My next step explored whether social influence exerted by the decisions of others

influenced the usage of resources. My first task in this regard was to determine if any

correlation existed between the number of saves and the usage of a resource. A statistically

significant positive correlation of 0.634 at a p-value of 2.2e−16 between saves and usage was

found. This correlation is highlighted in Figure 6.6. Unlike earlier tests on resource position

and quality, this provides preliminary evidence that the social influence conveyed through

the saving of resources may be in part responsible for driving usage. This trend is even more

apparent in Figure 6.7 which shows the number of saves and the average usage of resources

over time.
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Figure 6.6: Correlation between saves and usage over time

6.5.3.1 Information cascsade and resource usage

As described in section 2.3.4, an information cascade is a sequence of decisions where it

is optimal for individuals to imitate the choice of others ahead of them. Bickhchandani, Hir-

shleifter and Welch (BHW) [18] introduced an information cascade model based on Bayesian

reasoning which illustrates how information cascades can occur under rational conditions.

The goal of this analysis is to determine if information cascades can generate a power law

as observed in the usage distribution of community-contributed resources. To this end, I de-

veloped an information cascade model simulating the decision making process of educators.

My model extends the BHW model in the following ways:

• Decision between multiple choices: Instead of the binary decision model of BHW, a

decision will be made between 1..r resources at any time
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Figure 6.7: Trend lines showing the relationship between the number of unique users and
saves on a resource

• Public signals: In the BHW model, the decision of an individual is always visible

to others as a public signal. In the context of this research, the only public signal

available is whether or not a user saves a resource. After clicking on a resource,

users will leave public signals with a uniform random probably p. The value of this

probability is exogenously fixed at 0.41. This was determined by computing the ratio

of saves to unique clicks on all resources across all academic years.

• Private signals: A user’s private signal ps for a resource r is drawn from a discrete

uniform probability distribution such that ps ∈ [0, 1]. If ps = 0, then the agent

infers a low private signal, otherwise if ps = 1, the agent infers a high private signal.
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Before describing the information cascade model I used, I begin with an illustration

of the experiments of Anderson and Holt’s [10] to show how the BHW model can be used

understand how individuals can end up in an information cascade under rational conditions.

In the experiments of Anderson and Holt [10], a group of students sequentially decided

if an urn containing 3 marbles was either majority-blue or majority-red. A majority-red urn

contained 2 red marbles and 1 blue marble, and a majority-blue urn contained 2 blue marbles

and 1 red marble. The urn was equally likely to be majority-red or majority-blue. After

drawing a marble from the urn, students observed the color of the marble (private signal)

and announced their decision i.e., whether the urn was majority-red or majority-blue to the

rest of the class (public signal). If a student draws a blue marble, then she has a high (H)

private signal for the majority-blue option and a low (L) private signal for the majority-red

option. The converse occurs if she draws a red marble from the urn. An information cascade

occurs when students ignored their private signals to follow the decisions of others before

them. For example, if a student has a high private signal for the majority-blue urn—i.e.

she drew a blue marble—but ignored this signal to declare the urn as majority red, then an

information cascade is said to have occurred.

From the set-up of the experiment, we know the prior probabilities of a majority-red

and majority-blue urn are each 1/2. To ensure that all equations fit properly on the page,

I shorten majority − blue to major − blue and majority − red to major − red.

Pr(major − blue) = Pr(major − red) = 1/2 (6.1)

Also, the posterior probabilities of choosing marbles that matches the actual composi-

tion of the urn are:

Pr(blue|major − blue) = Pr(red|major − red) = 2/3 (6.2)
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Posterior probabilities of choosing marbles that do not match the actual composition of the

urn are:

Pr(blue|major − red) = Pr(red|major − blue) = 1/3 (6.3)

I now work through the sequential drawing process, to see how Baye’s rule can be used to

reason about the decisions of participants. Suppose the first student draws a red marble,

she would want to determine if P (majority − red|red) > 1/2. Using Bayes rule this

can be calculated as follows:

Pr(major − red|red) =
Pr(major − red).Pr(red|major − red))

Pr(red)
(6.4)

and

Pr(red) = Pr(red|major − red).Pr(red) + Pr(red|major − blue).Pr(blue)

= 2/3 ∗ 1/2 + 1/3 ∗ 2/3 = 1/2

(6.5)

If we plug this value in equation 6.4, we get:

Pr(major − red|red) =
1/2 ∗ 2/3

1/2
= 2/3

Since this conditional probability is greater than 1/2, it makes sense for the student to

decide that the urn is majority-red given a red observation. A similar calculation exists for

the second student. The second will also announce a decision that matches her draw. If she

draws a marble of the same color as the first student e.g., red, she announces that color as

her decision. If she draws a different color, she now has two observations (i.e., the draw of

the first student and hers), both of which are equally likely. Thus, we can assumes she flips a

coin and goes with her observation. For the sake of brevity, I skip the mathematical details

and suppose that second student announces a majority-red decision as well.

Now, I consider how the 3rd student might ignore her observation to follow the deci-

sions of the previous two students. Suppose the third student draws a blue marble. Given
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the prior two draws of red marbles, she will announce a majority-blue urn if

Pr(major − blue|red, red, blue) > 1/2 and a majority-red urn if Pr(major −

red|red, red, blue) > 1/2. Using Baye’s rule Pr(major − blue|red, red, blue) can

be calculated as follows:

Pr(major−blue|red, red, blue) =
Pr(red, red, blue|major − blue).Pr(major − blue)

Pr(red, red, blue)
(6.6)

Since the draws from the urn are independent

Pr(red, red, blue|major − blue) = Pr(red|major − blue)∗

Pr(red|major − blue) ∗ Pr(blue|major − blue)

Pr(red, red, blue|major − blue) = 1/3 ∗ 1/3 ∗ 2/3 = 2/27

Pr(red, red, blue) = Pr(major − blue) ∗ Pr(red, red, blue|major − blue)

+ Pr(major − red) ∗ Pr(red, red, blue|major − red)

(6.7)

Pr(red, red, blue) = 1/2 ∗ 1/3 ∗ 1/3 ∗ 2/3 + 1/2 ∗ 2/3 ∗ 2/3 ∗ 1/3 = 1/9

Plugging this value back into Equation 6.6

Pr(major − blue|red, red, blue) =
2/27 ∗ 1/2

1/9
= 1/3

Thus the third student will choose the majority-blue option with a 1/3 chance even

though she observed a High signal for it. Since this value is less than 1/2, the student will

instead choose the majority-red option disregarding her observation of a blue marble. This

choice heralds the beginning of an information cascade.
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6.5.3.2 Information cascade model

I now introduce my information cascade model with a description of the ingredients of

the model:

• Agents: These represent the users(educators) in the observed dataset. An agent can

click on and save a resource after clicking. I initialized the number of agents in the

model to an arbitrary default of 154. This matches the number of educators that

used community-contributed resources across all academic years.

• Resources: Resources can be clicked on and saved by agents. I initialize the number

of resources in the model to an arbitrary default of 532. This matches the number

of resources that were used across all academic years.

• Private signals: For each resource, an agent has a signal as to whether to use the

resource or not. This signal is referred to as the agent’s private signal. Private

signals can either be high(H) or low(L). An agent’s private signal for a particular

resource is modeled as a random integer N such that 0 ≤ N ≤ 1. If N = 0, then

the agent infers a low private signal, otherwise if N = 1, the agent infers a high

private signal. Agents follow their private signal with a probability s. Thus, if an

agent infers a high private signal for a particular resource, then with a probability

s, the agent will click on the resource, and with a probability 1 − s an agent will

not click on the resource. s refers to the strength of an agent’s private signal. It

is a real number between 0 − 1. A value of 1 indicates a perfect private signal.

Bikchandani et al. [18] and Anderson & Holt [10] assume that an agent’s private

signal is perfect—i.e. has a probability of 1—by default. However, Bikchandani et

al. [18] also experimented with private signal strengths ranging from 0.55 − 0.95,

and they found that weaker private signal strengths took longer for an information

cascade to converge on a particular option. In this experiment, I set the value of
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an agent’s private signal strength s to 1, i.e., agents will always follow their private

signal.

• Public signals: Public signal of a resource is determined by the number of users who

have saved it. Public signals allow users to infer about the decisions of others before

clicking on a resource.

Agents decide on what resources to use (click on) and subsequently save in three steps.

First, they select a resource from the set of all resources. Then, they make a decision as

to whether to click on this resource. This decision is based on a combination of an agent’s

private signal for a resource and the resource’s public signals (i.e. other agents that have

saved the resource). Finally, if the agent decides to click on the resource, she leaves a public

signal (saves it) with a p of 0.41.

Unlike the BHW [18] model, a decision for a specific resource in my model has been split

into two steps, which are: choosing a resource from the set of resources, and consequently

deciding as to whether to click on it. In the binary decision process of the BHW model [18],

a choice for one choice, by default, indicates a decision against the alternative. However,

this decision making process is not amenable to situations where individuals choose between

more than two alternatives. Thus, splitting the decision making process into two distinct

processes where agents first select one out of r resources, and then decide as to whether

to use this resource provides a simple way of extending the decision making process of the

BHW model [18].

The information cascade model evolves in t discrete time steps or iterations. During

each time step, the action of an agent occurs under one of two conditions:

No public signal across all resources

• Selecting a resource: The agent selects a resource at random from the set of resources

with a uniform probability 1/r where r is the total number of resources.
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• Clicking the selected resource: The agent decides whether to click the selected re-

source according to her private signal. She clicks on the resource if she infers a high

private signal. Otherwise, if she infers a low private signal, she does not click on it.

• Saving the resource after clicking: If an agent decides to click on a resource then

with a probability of 0.41 she also saves the resource. This action leaves a public

signal for subsequent agents.

Public signals exist: If at least one resource has been saved, then the decision process

of agents is a bit different from when no public signals exist.

• Selecting a resource: The probability of selecting a resource is relative the number

of public signals (saves) it has. Before any public signals were contributed to the

set of resources, the probability of selecting any particular resource was a uniform

probability 1/r. After public signals exist, this probability is updated in favor of

resources with public signals (saves). The greater the number of saves on a resource,

the higher the likelihood of it being chosen.

• Clicking the selected resource: After selecting a resource, the agent evaluates whether

to click on this resource against her private signal. If her private signal is high(H),

she proceeds to click on the resource. If her private signal is low(L), she weighs

the resource’s public signals (saves) against her private signal in deciding whether

to click or not. If there is a single public signal (save) on the resource against her

private signal of L, then the probability that she clicks on the resource is 0.5. In my

model, I assume that in such cases, the agent sides with her private signal. On the

other hand, if there are 3 public signals (saves) on the resource against her private

signal of L, then the probability of click on the resource is 3
4

and the the probability

that the agent does not click on the resource is 1
4
. An information cascade occurs

when an agent with a low private signal for a resource decides to click on it due to

the preponderances of saves (public signals) the resource has.
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• Saving the resource after clicking: After clicking on a resource, a save signal is left

with a probability of 0.41

6.6 Results

2500 simulations of the information cascade model described above were processed

with each simulation running for 2500 discrete time steps. Each of these simulations were

evaluated to see if they follow a power law using the procedure of Clauset et al. [38] as

described in section 6.4.2. As shown in Table 6.6, 82.6% of these simulations were determined

to follow a power law distribution. The outcomes of this experiment strongly suggests that

the above information cascade model of the decision making process of educators can lead

to a power law distribution in the usage of resources. This finding provides credible evidence

for social influence as a plausible hypothesis for the observed power law distribution in the

usage of community-contributed resources.

Table 6.6: Results of information cascade simulation experiments

Stat Result
Total number of cascade simulations 2500
Number of simulations without a plausible power law fit (step 2 of Clauset
et. al[38] procedure)

230

Number of simulations where alternative distributions provided a better
fit compared to the power law (step 3 of Clauset et. al[38] procedure)

205

Number of good power law fits 2065
Simulations that follow a power law 82.6%
Simulations that do not follow a power law 17.4%

To ensure that the results of this model are highly unlikely by chance, I compared it to a

random model. This model generated a set of 532 random integers with values ranging from

0-154. These 532 integers represented the 532 resources in the information cascade model

and the value of these integers represented usage. Like the information cascade model, 2500

simulations of these numbers were created. Consequently, each of these simulations was

tested to see if it follows a power law per the procedure of section 6.4.2.
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None of the 2500 simulations of random integers fit a power law distribution. This

further supports the hypothesis of information cascades as a plausible generative mechanism

behind the observed power law distribution in the usage of community-contributed resources.

6.7 Discussion

In this study, I have demonstrated that an information cascade model simulating the

decision making process of educators using community-contributed resources can generate a

power law as observed in the empirical usage data. This strongly suggests that the hypothesis

of social influence driving the usage of these resources is plausible.

This finding has important implications for both educators and agencies that support

online learning communities.

For educators, it highlights the fact that popularity does not always equal quality. As

indicated by multiple studies, the decisions of individuals acting in sequence can be inaccu-

rate [18, 50]. Thus, educators should view a resource’s popularity as only a precautionary

indicator of its value. Equivalent emphasis should also be placed on other pieces of metadata

such as the description of the resource.

For agencies that support online learning communities, this research has important

implications for resource presentation and recommendation. In presenting resources, social

influence signals can be de-emphasized to limit the chances that they will detract users

from evaluating a resource’s inherent quality. For example, in the CCS, the number of

educators that have saved a resource can be hidden and require active effort from users

to be revealed. In recommending resources, high quality but barely used resources can be

recommended to educators in ways that give them high precedence. This could include

personalized recommendations while active on the platform or email recommendations.
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6.8 Limitations

In this section, I discuss the limitations of the analyses conducted as part of this study

and their implications.

6.8.1 Size of the datasets

In comparison to contemporary studies on information cascades and diffusion (spread)

in social networks [9, 83, 33], the size of the datasets analyzed in this research may ap-

pear small. This, however, is a direct function of the research context: patterns of sharing

among educators in a single school district. While “big data” analyses may be useful in un-

derstanding grand diffusion patterns, these techniques may not generalize to smaller, more

focused communities. For example, models for understanding the diffusion patterns of con-

tent shared on Facebook [33] may not be directly applicable to the diffusion of educational

resources in a learning community. One reason why this may be the case is that there is a

much higher threshold for adoption in a learning community compared to Facebook. In learn-

ing communities, educators are focused on finding high quality resources that can improve

their instruction, while on Facebook information shared may primarily serve entertainment

purposes.

6.8.2 Logged position of community-contributed resources

Understanding the impact of a resource’s position and its usage is complicated by the

fact that the CCS’s click tracker only records the position of a resource in a list and not

the page of the list in which the resource belongs. A list of resources is divided into pages

with each page containing up to 10 resources (positions 0-9). Thus two items of the same

position may actually be located on different pages. In light of this limitation, I made the

assumption that all resources are located on a single page with positions 0-9. The impact

of this limitation is that the rigor of findings from this study may not be applicable to the
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usage of resources beyond the first page of the list they appear in. However, this limitation

may be mitigated by findings from research on the browsing behavior of users online which

indicates that 91% of all web searchers do not go past the first page of search results [127].

If we assume that educators in the CCS follow a similar behavior, then the outcomes of this

study will be largely indicative of the usage behaviors of educators in the CCS.

6.8.3 Social influence at the individual level

In this study, as with prior work on information cascades [18, 10, 46], social influence

was examined at the aggregate level. I demonstrated—through the lens of information

cascades—that the decision of an educator to use a particular resource may be in part due

to the aggregate decisions of prior educators to also use the same resource.

However, in reality, the choices of an individual’s close neighbors, family or friends may

have a stronger influence on his decision as compared to the aggregate decision of everyone

else. Consider the example of an information cascade that was introduced in section 2.3.4,

where an individual i abandons his preferred restaurant A to follow the decisions of others

and dine at restaurant B. Now imagine, that i has a close friend j whose preferred restaurant

choice is also A. Unlike i, j is not easily swayed by the decisions of others. Thus, even

though A is relatively empty as compared to B, j insists that he and i should still dine at

A. Although i has a penchant for following the crowd, he may decide to ignore this feeling

and dine at A since his friend j insists that they both dine there.

Several prior studies have considered the effect of person-to-person influence on the

decision making of individuals. Ryan and Gross study on the adoption of hybrid corn

seeds among farmers in Iowa showed that while most farmers learned about the seeds from

salesmen, they were only convinced to try out the seeds when their neighbors also used the

seeds [50, 112]. One might imagine that the salesmen would probably had informed the

farmers of how popular the hybrid corn seeds were. However, the farmers weren’t convinced

of the value of the hybrid corn seeds until they observed a close neighbor also adopt the hybrid
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corn seeds. Similarly, in a study of the adoption of tetracycline by physicians, Coleman et

al. [50, 40] showed that the physicians were more likely to adopt tetracycline as a part of

their treatment regimen for patients if their close colleagues also did.

In the context of the CCS, we have no way of understanding all the influences that play

a role in an educator’s decision to use a resource. In particular, we do not know an educator’s

ego network, in terms of how they decide on what resources to use in their instruction. We

do not know who educators’ consult, and the weight of this influence on their decisions.

Thus, the aggregate decision of others in the online professional learning community is our

closest proxy for understanding the impact of social influence.

6.9 Conclusion

In this study, I evaluated the usage distribution of resources shared amongst educators

in an online learning community. I sought to understand what this usage distribution was

and what generative mechanisms may underly the observed distribution. Results indicate the

usage distribution of resources followed a power law. Furthermore, I discovered that social

influence investigated through the lens of information cascades provide a plausible generative

mechanism for the observed distribution. 82.16% of 2500 simulations of an information

cascade model simulating the decision making process of educators resulted in a power law

distribution as observed in the usage distribution of community-contributed resources.



Chapter 7

Final thoughts

I began this dissertation with an outline of the three core components of my thesis.

These are that:

(1) Sociological network theory can be used to explore the phenomena of homophily

and triadic closures in online learning communities wherein ties between members

are not evident.

(2) An understanding of the triadic closure process can be used to improve the recom-

mendation of resources in these communities.

(3) Social influence may play a significant role in the diffusion and popularity of resources

within online learning communities.

The outcomes of the three studies performed as part of this dissertation research provide

strong evidence to support this thesis. I now summarize each of these studies and how it

supports my thesis.

The first study of this dissertation (see chapter 4) showed that Granovetter’s theory

on the strength of weak ties provides a useful theoretical lens for understanding the resource

usage and sharing patterns of educators in an online learning community. Granovetter’s

theory was operationalized on a deduced social network that was generated by creating

edges between educators (nodes) based on their common usage of community-contributed
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resources. The results of this study provided empirical evidence of the presence of homophily

and triadic closures in the community of educators that used the CCS.

Specifically, I showed that educators connected by stronger ties—ties with higher edge

weights—in the deduced social network shared greater similarity in their propensity to use

and share resources and level of comfort and use of technology in comparison to educators

connected by weaker ties—ties with lower edge weights. This confirms the presence of

homophily in the network, i.e., the notion that the strength of a tie between two educators is

directly related to the level of similarity between them. Furthermore, I showed that triadic

closures in the deduced social network are not random and are highly predictable. My results

indicate that the betweeness centrality, node degree and average edge weight of the common

neighbor shared by two unconnected nodes in a triad can be used to predict whether an edge

will form between them in the future.

The second study of this dissertation (see chapter 5) showed that an understanding

of the triadic closure process can be used to improve traditional resource recommendation

systems. Specifically, I showed that a traditional collaborative-filtering recommendation

system that is augmented with a triadic closure prediction model can provide statistically

significant increases in prediction accuracy. This improvement persisted even when the

collaborative-filtering system was combined with a content-based system to create a hybrid

recommendation system.

The third and final study of this dissertation (see chapter 6) investigated the usage

distribution of community-contributed resources and underlying mechanisms that may have

generated the observed distribution. The results of this study indicates that the usage

distribution of community-contributed resources is heavy-tailed, i.e. a few resources are

widely used while most resources were barely used. In particular, the usage distribution of

community-contributed resources follows a specific class of heavy-tailed distributions known

as power laws.
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Investigations into the underlying mechanism(s) behind the observed power law distri-

bution in the usage of community-contributed resources indicate that neither the position

of a resource nor its perceived quality played a significant role in its usage. However, so-

cial influence—investigated through the lens of information cascades—was found to play a

significant role in the observed power law distribution in the usage of resources. Educators

were likely to use community-contributed resources that they know that their peers have

also used.

7.0.1 Research contributions

The three studies conducted as part of this dissertation make intellectual contributions

to the fields of social network analysis, recommendation systems and economic theory on

information cascades respectively.

7.0.1.1 Intellectual contributions

My first study demonstrated how social network analysis techniques coupled with soci-

ological network theory can be used to understand the phenomena of homophily and triadic

closures in online learning communities where ties between members are not evident.

My second study showed that traditional educational recommender systems can be

improved by the incorporation of a computational model for predicting triadic closures. It

suggests that educators are also likely to be interested in resources that have been used by

others with whom they have a common neighbor that they share a similar usage history

with.

Finally, my third study contributed a computation model for understanding the usage

behavior of educators that can potentially lead to inequity in the usage distribution of

community-contributed resources. In particular, I extended the classic information cascade

model of Bikchandani, Hirshleifer and Welch (BHW) [18] to a scenario where individuals

select among multiple choices and when only an aggregate of the decisions of prior individuals
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is available to them. This extensions confirm suggestions of Bikchandani et al. [18] that

information cascades can still occur under this scenario.

7.0.1.2 Implications for school districts and agencies that support online

learning communities

In addition to the aforementioned intellectual contributions, findings from this disser-

tation will be beneficial to educational agencies, such as school districts that are invested in

online professional learning communities.

By coupling field research with usage log data, I showed that educators that par-

ticipated in the CCS’s online learning community demonstrated a higher perceived level

of isolation in comparison to educators that did not use community-contributed resources.

This finding suggests that school districts may be able to mitigate the isolation felt by their

educators by encouraging and faciliating their use of online learning communities. Many

educators in the school district studied in this dissertation were the only Earth Science ed-

ucator in their school. Thus, the CCS’s learning community provided a convinient way for

them to share and learn from their peers. Multiple studies indicate that teacher isolation

can have a detrimental impact on teacher enthusiasm, performance and ultimately student

learning outcomes [34, 99].

Furthermore, an understanding of the factors that impact the usage of resources in

online learning communities can be used to promote the usage of high-quality but barely used

resources. As illustrated, social influence is a dominant factor in the usage of community-

contributed resources. Like other domains, the impact of social influence can shroud user

perception of unpopular yet high quality resources. In light of this, agencies that support

online learning communities can incorporate alternative content delivery strategies to ensure

greater equity in the usage of resources in their communities. These strategies can include

personalized resource recommendations among others.
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7.0.2 Potential future directions

I now discuss potential future directions to the research presented in this dissertation.

7.0.2.1 Do weak ties help alleviate educator perceived of isolation?

In the first study of this research (see Chapter 4), it was discovered that educators who

used community-contributed resources, on average, had a higher perceived level of isolation

in the classroom as compared to educators who did not use community-contributed resources.

Unfortunately, the survey questions that were used to ascertain an educator’s perceived level

of isolation were not asked in the post-survey interview that was conducted at the end of

the 2011-2012 academic year.

Future work that can ascertain as to whether using community-contributed resources

makes educators feel less isolated in the classroom will be very interesting and of added value

to the work presented here. Prior research studies, have shown that in-person professional

learning communities can help alleviate teacher’s perceived feelings of isolation in the class-

room [34, 99]. However, there is a dearth of research suggesting if this effects persists within

online learning communities.

7.0.2.2 Qualitative studies on the impact of social influence on educators’

usage of community-contributed resources

In the final study of this dissertation (see chapter 6), I showed that social influence

may be a driving factor behind the usage of community-contributed resources, and hence

the observed power law distribution in the usage of these resources.

While an information cascade model has illustrated that the social influence hypothesis

is plausible, qualitative studies (such as interviews and surveys) that ask educators’ about

their decision making process in using resources can be valuable as well. A preponderance

of educators who indicate that the decisions of others play a major role in their decision on
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what resources to click on will provide further validation for the social influence hypothesis.

7.0.2.3 Educator awareness of participation in an online professional learning

community

In this dissertation, I have not explicitly considered the influence of educator awareness

of the online professional learning community on participation. It is natural to wonder if

educators equated participating in knowledge sharing with others in the CCS to participation

in physical professional learning communities that they may have been a part of. If not, why

so? Or it may be the case that educators felt that the CCS constituted a professional

learning community but to a much lesser degree as compared to other professional learning

communities they engage in. Prior research indicates that effective community of practices

are characterized by individuals that are aware of their social presence, comfortable and

motivated to share resources with others and are willing to collaborate with each other

[30, 128].

While most educators who had access to the CCS were involved in training sessions

on using the CCS to facilitate knowledge sharing with others in their district, the extent

to which these training sessions influenced their perception of the CCS’s online professional

learning community was not explicitly measured. Furthermore, there is no explicit reward

for educators that participate in the CCS’s online learning community. For example, edu-

cators that contribute resources do not receive special recognition from the school district.

Thus, external factors of motivation that may impact an educator’s participation were not

considered in this research.

Future work that considers the role of educator awareness and motivations on their

participation in an online professional learning community may shed greater insights into

their usage behaviors and the community’s evolution over time. Research in other online

communities such as Facebook has shown that behaviors of individuals within these com-

munities is impacted by their awareness of the ramifications of their actions within the
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community [2]. An early study of college students on Facebook noted that most students

were unaware of the visibility of their actions (posts on Facebook) to others outside their

immediate friend circle. Consequently, upon discovering the potentially wider audience of

their Facebook posts, students that were concerned with privacy either tightened the pri-

vacy controls around their profiles or restricted the type of information they made public [2].

Perhaps, a similar phenomenon may can be observed in the CCS. For example, it may be

the case that educators that are more vested in the online professional learning community

as a core part of their instruction may be less swayed by the decisions of prior educators in

choosing which resources to click on.

7.0.2.4 Richer representations of an agent’s private signal

In the third study of this dissertation, an educator’s private signal was modeled as

a random integer i ∈ [0, 1], where 0 indicated that an educator had a low private signal

for a resource and 1 indicated that the educator had a high private signal for the resource.

While straightforward, this simple duality of an educator’s preference (private signal) does

not capture the innate complexity that make up the decision making process of educators.

For example, it does not account for preferences of a particular resource type that educators

may have. One can imagine that an educator who has a penchant for using animations and

interactive visuals in her classroom may have a high private signal resource for resources

of that nature as compared to word documents or power point presentations. Similarly,

an educator’s need in the classroom at the time of using a resource can play a key role

in her preference for a particular resource. An educator looking for something flashy and

instantly engaging for her students will probably have a preference (high private signal) for

an interactive resource such as an animation or video as apposed to a static resource such

as a word document.

While capturing richer representations of an educator’s private signal may lead to

improved information cascade models, such representations may be very difficult to obtain.
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This is because many of the processes that impact an educator’s preference (private signal)

for a resource are unobservable. For example, it is almost impossible to know an educator’s

exact need at the time of using a resource. Furthermore, as with the cascade models of

Bikchandani et al.[18] and Devany and Lee [46], casting the private signal of an individual

as either high or low in the random fashion as done in this research, allows for information

cascade models that are easy to understand and are generalizable to other domains.

7.0.2.5 Generalizability of findings

Finally, it will be interesting to explore the generalizability of the ideas presented in this

dissertation to other domains. These could include other educational settings (e.g. a school

district of Mathematics educators), or professional learning communities in institutions such

as banks and engineering firms.

7.1 Acknowledgements

The research presented in this dissertation has been supported by National Science

Foundation awards #1043638 and #1147590.



Bibliography

[1] Gene duplication. https://en.wikipedia.org/wiki/Gene_duplication. Accessed:
2016-02-15.

[2] Alessandro Acquisti and Ralph Gross. Imagined communities: Awareness, information
sharing, and privacy on the facebook. In Privacy enhancing technologies, pages 36–58.
Springer, 2006.

[3] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions. Knowledge
and Data Engineering, IEEE Transactions on, 17(6):734–749, 2005.

[4] Monika Akbar. Integrating community with collections in educational digital libraries.
2013.

[5] Monika Akbar, Clifford A Shaffer, Weiguo Fan, and Edward A Fox. Recommendation
based on deduced social networks in an educational digital library. In Digital Libraries
(JCDL), 2014 IEEE/ACM Joint Conference on, pages 29–38. IEEE, 2014.

[6] Monika Akbar, Clifford A Shaffer, and Edward A Fox. Deduced social networks for an
educational digital library. In Proceedings of the 12th ACM/IEEE-CS joint conference
on Digital Libraries, pages 43–46. ACM, 2012.

[7] Catherine Allen-West. Copycat behavior in children is universal and may help promote
human culture. EurekAlert, 2010.

[8] Jeff Alstott, Ed Bullmore, and Dietmar Plenz. powerlaw: a python package for analysis
of heavy-tailed distributions. PloS one, 9(1):e85777, 2014.

[9] Ashton Anderson, Daniel Huttenlocher, Jon Kleinberg, Jure Leskovec, and Mitul Ti-
wari. Global diffusion via cascading invitations: Structure, growth, and homophily.

[10] Lisa R Anderson and Charles A Holt. Classroom games: Information cascades. The
Journal of Economic Perspectives, pages 187–193, 1996.

[11] A Andronico, A Carbonaro, G Casadei, L Colazzo, A Molinari, and M Ronchetti.
Integrating a multi-agent recommendation system into a mobile learning management
system. Proceedings of Artificial Intelligence in Mobile System, pages 123–132, 2003.

https://en.wikipedia.org/wiki/Gene_duplication


101

[12] Ofer Arazy, Nanda Kumar, and Bracha Shapira. Improving social recommender sys-
tems. IT professional, 11(4):38–44, 2009.
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Kaski, János Kertész, and A-L Barabási. Structure and tie strengths in mobile com-
munication networks. Proceedings of the National Academy of Sciences, 104(18):7332–
7336, 2007.

[105] Education Portal. School district administrator career info, 2014. [Online; accessed
10-January-2015].



108

[106] Marie D Price. The kindness of strangers. Geographical Review, 91(1-2):143–150,
2001.

[107] Anand Rajaraman and Jeffrey David Ullman. Mining of massive datasets. Cambridge
University Press, 2011.

[108] Mimi M Recker, Andrew Walker, and Kimberly Lawless. What do you recommend?
implementation and analyses of collaborative information filtering of web resources for
education. Instructional Science, 31(4-5):299–316, 2003.

[109] William J Reed. The pareto, zipf and other power laws. Economics Letters, 74(1):15–
19, 2001.
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Appendix A

CCS pre-deployment survey questionnaire

This section outlines 37 questions that were asked to CCS’s participants as part of a

pre-deployment suvey questionnaire before the 2011-2012 school year. These questions were

grouped under the following six categories:

(1) Class size

(2) Years teaching

(3) Class needs

(4) Level of comfort and use of technology when teaching

(5) Perceived level of isolation

(6) Propensity to use and share resources

Here are the questions that were asked under each of these categories

A.1 Years teaching

(1) The following question is for statistical purposes ONLY. Including the current school

year, how many years of total teaching experience do you have?

(2) The following question is for statistical purposes ONLY. Including the current school

year, how many years of total teaching experience in earth science do you have?
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A.2 Class size

(1) What is your average earth science class size?

A.3 Level of comfort and use of technology when teaching

Rate your frequency of use of the following computer technologies (options: Rarely, A

few times per semester, A few times per month, A few times per week, Daily)

(1) Microsoft Office (Word, Excel, PowerPoint) or similar programs

(2) An Internet search engine (e.g., Google, Yahoo!)

(3) A digital library (e.g., NSDL, DLESE)

(4) A favorite web site (e.g., NASA, NSTA, other)

(5) A social networking site (e.g., LinkedIn, Facebook, MySpace, other)

(6) A streaming video site (e.g., YouTube, TeacherTube) wife died and he wrote Paradise

Regained.

(7) The Curriculum Customization Service (CCS)

(8) District or school made sites

Rate your level of comfort with using the following computer technologies in your

instruction (options: Uncomfortable, Neutral, Comfortable, Very comfortable):

(1) Microsoft Office (Word, Excel, PowerPoint) or similar programs

(2) An Internet search engine (e.g., Google, Yahoo!)

(3) A digital library (e.g., NSDL, DLESE)

(4) A favorite web site (e.g., NASA, NSTA, other)
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(5) A social networking site (e.g., LinkedIn, Facebook, MySpace, other)

(6) A streaming video site (e.g., YouTube, TeacherTube)

(7) The Curriculum Customization Service (CCS)

(8) Other (specify below)

A.4 Propensity to use and share resources

In their previous semester of teaching, participants were asked about to assign a fre-

quency to the following questions (options: Rarely, A few times per semester, A few times

per month, A few times per week, Daily)

(1) How often do you used materials created by other Earth Science educators in your

district?

(2) How often do you look at materials created by other Earth Science educators in your

district for inspiration?

(3) How often did you share materials that you created such as handouts, Powerpoint

slides, rubrics, etc.-with other educators in your district?

(4) I have felt very comfortable sharing my materials and ideas with other Earth science

educators in my district.

(5) It has been easy to share materials and ideas with other Earth science educators in

my district.

(6) Do you agree with the following question: Sharing best practices and good ideas

has been a routine practice among Earth science educators in my district. (options:

Strong disagree, Disagree, Netural, Agree, Strongly Agree)
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A.5 Perceived level of isolation

Participants were asked to rate on a 5 point scale from Strongly Disagree to Strongly

Agree on the following questions:

(1) I have opportunity to interact with other Earth Science teachers in my school

(2) I have opportunities to interact with other Earth Science teachers in my district

(3) I have opportunities to attend workshops and/or conferences

(4) I have a strong awareness of the curriculum practices of other Earth Science teachers

in my district

(5) I have a strong awareness of the classroom instruction practices of other Earth Sci-

ence teachers in my district

(6) I have a strong understanding of how other Earth Science educators in my district

use interactive resources in their teaching.

A.6 Class needs

Participants were asked to rate on a 5 point scale from Strongly Disagree to Strongly

Agree their agreement with the following questions when selecting materials for Earth science

instruction. I need to consider the specific learning needs of these students:

(1) Individual or clusters of students with different knowledge, skills, or abilities

(2) Students with different reading abilities (e.g., ELA or Special Ed)

(3) Students with different quantitative skills

(4) Students with different cultural backgrounds and life experiences

(5) Gifted and Talented students
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(6) Select which of the following describes your level of control in regard to curriculum

of your classroom


