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Abstract

Cross-polarization level, inherent in radiation from a small horizontal electric dipole
{HED) on a flat grounded dielectric substrate, is investigated in detail. The study is directed
towards the design of a very low cross-pol level in a linear array of microstrip antenna ele-
ments. Field expressions for a microstrip HED are derived in spherical coordinates with
respect to the array direction. In particular, two important cases, namely a HED along the
array direction (i.e., parallel polarization) and a HED perpendicular te array directioun (i.e.,
perpendicular polarization) are investigated. Extensive numerical examples for the cross-pol
levels are given. It is shown that, in general, there are inherent limitations in achieving very

low cross-pol levels, especially for the case of parallel polarization.
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1. Introduction

Examination of the possibility of obtaining a -30 dB cross-polarization level in a linear
array of microstrip antenna elements motivated the work described in this report. Since the
cross-polar side lobes in directions other than that of the beam are reduced by array factor.
the cross-polarization level in the direction of the beam is the dominant in calculation of the
cross-polar side lobes (i.e., cross-pol level) of a linear array. In the present case. the direction

of the beam is assumed to be between 10° to 40° from broadside.

This report describes the investigations of the cross-pol level inherent in the radiation
from a small. arbitrarily-oriented, horizontal electric current element on a flat grounded
dielectric substrate (Figure 1). Usually, coordinate system selected for deriving the fields of a
current element has the z-axis (i.e., reference axis of the spherical coordinate (r, 8, ¢,)). nor-

L]
mal to the substrate [for example, see 1] as seen in Figures 1 and 2. However. for the linear
array problem, it is desirable to use a polar coordinate system with reference axis along the
array axis. say. the y-axis (Figure 3). This choice of the polar direction, makes it convenient
to evaluate co-polar and cross-polar fields with respect to the beam direction. Thus it is desir-
able to derive the ficld expressions for the case when the polar-axis is in the plane of the sub-

strate.

In section 2 of this report, based on a directional-cosine formulation. field expressions for
a microstrip horizontal electric dipole (HED) are derived in a spherical coordinate with
respect to any arbitrarily-oriented axis. In particular, the field expressions with respect to the
y-axis (which is along the array direction) are explicitly given.

In section 3. a definition of the cross-polar side lobe level, according to the IEELE stan-
dard [2] is given and two important cases, namely, a y-directed HED (i.e., parallel polariza-
tion} and an x-directed HED (i.e., perpendicular polarization) are discussed. Also included in

this section are the expressions of co-polar and cross-polar fields for an arbitrarily-oriented

HED.
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In section 4. numericul examples for the co-polar and cross-polar radiation patterns arc
given and a parametric study of the cross-pol level (for the two different polarizations) is
presented. Finally, in section 5, the results are summarized and inherent limitation< in

achieving very low cross-pol levels are discussed.
2. Formulation

2.1 Derivation of the Radiated Fields

A horizontal electric dipole (HED) is placed on a grounded dielectric slab as shown in
Figure 1. The diople source is of moment p and directed at an angle x with the x-axis in the
x-y plane. The dielectric slab is of thickness d and assumed to be infinitely extended in the
x-y plane. As shown in Figure 1, the permittivities in the air and the slab regions are €, and
€;, respectively: the permeability in both media is assumed to be p,.

To find the field expressions due to this HED current source, we employ the 7 com-
ponents of two clectric and magnetic Hertz vector potentials, II, and II . Outside of the

source region (i.e.. outside z=0 plane), we have [3],

E=VxXVx(Ma)+iepVx (I, 1, (1.1)

H=VxVx(I,a,)-iweV x(I,a,) (1.2)

The potentials II, and II satisfy the homogencous Helmholtz equation

(V=4 k)T, . =0 z#0 (2)
In (1) and (2), € = €, or ¢, and k = k; or k,, depending upon the medium in which the obser-
vation point is located.

Equations in (1) can further be reduced to
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Fig. 1: An arbitrarily-oriented microstrip dipole antenna.

(1,6,.6,)

Fig. 2: Spherical coordinate with respect to z -axis.
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Fig. 3(a): Spherical coordinates with respect to the y-axis.

R

Fig. 3(b): X-directed HED, i.e., polarization perpendicular to array axis.

Fig. 3(c): Y-directed HED, i.e., polarization along the array axis.
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. - oll, | -
E,=-V:1II. ; Et=Vt,TZ——1wp,0az><VHm (3.1)
. — all . -
Hz= —Vt' Hm : H(_=Vt_—5;—+ 1wea, X VIIe {3.2)

where the subscript t denotes to the transverse components with respect to z. Now since

V"E = --fz—Ez . a,V, X E = +jiwp,Hz
VH=-21, . 35V xH=-ioekE
t 3z z 'z Tt z

the boundary conditions can be translated into the following conditions for E, and H,,

Hz|z+ = Hzlz— ; Ez’|z+ = I-32’!2— (4-1)
Hzllz+ - Hz'lz-— = —a_z'vt X Js (42)
ik, -

_'f]—::L (Ez|z+ - € Ezlz—] = Vt"]s (4.3)

at z = 0, and

H,=0 ; E,/=0 (3)
at z = -d, where m, (= 120 7 ohms) is the free-space characteristic impedance and € (=
€,/€,) is the refractive index of the dielectric substrate.

To solve equation (2) subject to the boundary conditions in (4) and (5). we first define the

Fourier transform pair as:

o«

fxy) = J f (eB)e ™" ™ dq qp (6.1)

-0
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. k D 1ky{ax 1
f(aB)= [7;;—] I f f(x,v)e Koles +B))d.\' dy ;

—& -_—

in transform domain, then, we have,

V. ke @ + B

= kila® + ),

I

kgta® + B7) 1T,

bt
Ikt
]
I

where 1T, and IT |, now satisfy the equation

o

8' B R]

[ P k6 L'0.1] He,m =0

dz-

wherein
UO=-\/‘!';'+BZ'_1;

u, = \/a?+ B- — e,

Re(Ug;) > 0 5 Im(Ug,) < 0

From (7). (&)} and (5), the solutions for E, and H, can be constructed as

E,=E, ch [Ukyz + d)]
H, = H, sh [U;ky(z + dJ]

for =d < z < 0, and

(8.2)

(8)

(9)

{10}
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E
= [HO] ¢ . (11)

for z > 0. We now substitute for E, and H, from (10) and (11) into (4.1)-(4.3) and solve for

the coefficients E ; and Hy ; this finally yields

E. = _IT]O (V Y1 th(l}lk()d)
0 0 t ﬁ DT\l (1))
H, = (a V X J) L
0 Drg
and
E, = - Yo E
1T U sh(Uked) O (13)
-1 )
i, = si{U, kod) Hy
where
Dpg = Uy + U cth (U k,d) (14)

DTNi = GrLTO + [“1 th(lzlk“d)

Equations (10) and (11). via (7) and (6.1). now yield the formal expressions for II, and IT, . In

particular. for z > 0 one gets

—i P ~~  Uph(Ukod) ks ik (axs By
At LR S SRS EL i FPAFLLILS LI L S I

]\‘? —r —-x - + B' DT\f (]—)

)
& x p—_ )

1 1 1 =Ugkyz —ikglax+By)
NI = — V. x ] oro 0 Y dad
Y R vl LRl Drp ¢ odp

It should be noted that the expresions in (15) are valid for any source distribution J, on the
slab in the x-y plane. For the present case of a dipole source of moment p which is directed at

an angle x with the x-axis, one can easily show that
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— k_3
Ved=1i——pl(acosx + B sinx)

457~
a,Vy X J=i—-plasinx — Bcosy),

4zw-

and therefore, for z > 0,

I, = l;‘“— J J (acosx + Bsiny) fTe(UO) o~ Uokgz+ ikglax+By) d%dﬁ
"o - = i} .
~ , (16)
q7° U
where
N . ] ll()l'lt]]((T}k(,(])
f (U= _ -
Lo =77 e D (17.1)
. ) . U( ) -———fn
fm(lo)=‘l—f'{7§'D—T;T ; L‘1=‘\/b6+ 1— ¢ (17.2)
Substituting these results into (3.1) and (3.2) now yields all the components of Eand H.
2.2 Far-Field Approximation
Recall the identity:
PR dadf 2% ~ikr
J' f exp[—k,Uplz — 2/ + ikga(x — x') + ik B(y — v)) Tk = e (1R)
where

r=lx = xPH (v =P+ (2= 2

X Y oo Ly . for|x'| << |F|

b
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wherein r, = ‘\/x2 + y? + z°. Defining the directional-cosines as

v\-_-_f\_. v\.=-‘—,v2=i
g ) Ty Ty

Iy ) (s}
v, + vy + v, =1

in general, we can postulate that for (kox. kv, koz) > > 1.

= o« N . ik
Ly o= Uokgetkglax+By) ded 9m . tkarg

f f f(a,B.er)e okgz+ikfax \)_‘:}_(Ez —}‘_f (a_.vx;B..vy;[:O..—lvz)_r._

—% - 0 0 0

Far-field patterns of Il, and II, are derived by applying (19) to the integrals in (16). as

. ik('lrl -
o= [M)—-] ¢ "0 [tv, cos x + vy sin x)f (—iv,)]

N m™ ) kyry
Pik()rO -
I = [_)[):__] T [{v, sin x = v, cos x)f (=iv,)]
~u nta

10

{19)

(20)

In order to obtain the far-field expressions for the electric and magnetic fields. we utilize

the fact that to the order of
L

2.n- [(ar x a—r x ;z)(vx cos x + v}‘ Sin X) r 6(—iv2)

_ [ - k(mnp] ei]\'nr0 -

Py

+ (a, X a,Nv, sin x — v, cos x)fm(—ivz)]

. one can replace the operation V X by ikoa_r in (1) so that

The vector products (a, X a_ X a,) and a, X a, as well as the directional-cosines can be

explicitly expressed in terms of a spherical coordinate system with respect to any axis.
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2.2.1 Z-axis as the polar axis

For example, if we choose the reference axis to be the conventional z-axis {Figure 2), we

have in the spherical coordinate system (a, aq, a4 ):
! 2z z

v, = a,a, = cos 8,
= a,a, = sin0,cos b, (22
V.= a,<a, = sin 8, sin ¢,
and
arxarxaz—(r z)ar—az= (3zae)aez
- = - - - = - = = (23)
a, X a,=(a,ag X (r)a¢,z (a,aq)ay
where (f’—z';ez) = —sin 6, . Insertion of (22) and (23) into (21) results in the two far-zone
orthogonal components of i
Eg = —E,sin 8,[(v, cosx + v sin x)f . (—icos8,)
(24)

Ey = —E;sin 8, [(v,sin x = v, cos x)i?m(—icos 9,)]

z

kymap eik”r“ . . . .
where E, = T For the special case when x = 0, i.e., when the dipole 1s Tocuted
¢

in the x-direction. the expressions in (24) reduce to:

U
E, = iE, cos &, cos 8 s
% 0RT T2 TR T U — i€, cos 8 cth(Ujq kod)
: : (25)
E\;b = —iL, sin ¢, cos 6, T L N TR
Z ! i \
cos 8, + 1l ct { 10, od)
where Ui,4 = —i\/ €, — sin“0. The expressions in (25) are identical to those obtained. with a

different approach, by Mosig and Gardiol [1].

2.2.2 Y-axis as the Polar Axis
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For studying cross-pol level in a linear array, it is convenient to use the corresponding

radiation fields expression derived with the polar axis of the spherical coordinates in the array

direction, i.e., the y-axis (Figure 3a).

In the spherical coordinate system (a ;ev 5_4, ), we have
v %y

Vv, = a,a, = cos 8,

vy = aya, = sin 8, sin ¢,
v, = a,a; = sin 6, cos ¢,

and after some vector manipulations

= (-  — v, ‘\/ —p?
= ( LAY vx“‘bv) I=vg

= (v o, — = ‘\/ —2
- (vxf’ey v}'vzad)y) 1 vy

Substituting (24) and (25) into (21) yields

Eey = —E; sin 8, [~ (v, cos x + v, sin X, v, i?e(—ivz)
+ (v, sin x — vy cos x) vy f ol —1v,)]
= =E, sin 8, [=(v, cos x + v, sin x)vxf d—iv,)

- cos X v, v, Fm("i"z)]

- (vxsmx = vy

We now examine two special cases which are of importance in the present study.

(1) Y-directed HED., i.e., parallel polarization.

{26)

(28)
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Let x = -1;— in (28); we then have
v sin 8, cos ¢, . N . N
Eey = E, B S— [sin 6, sin® ¢, Crg + cos® 8, cos & Cpyy
ol 29)
v sim(26,)sin{2d.) . (
L¢y = -E, ‘4]) [Cry — sin 8y cos ¢, Cr]
where b = 1 = sin” 8, cos” ¢, and
C"TE = . . L 1 "
sin 8, cos ¢, + i(e, = b)"~ cot ({€, — b)I"? kyd)
(e, — b)1”? (30)
Corng = - - ,
R (€, = b)Y~ + ie, sin 8, cos ¢, cot ((e, = b)1* kyd)
(1) X-directed HED, i.e.. perpendicular polarization.
Let x=01n (28), then
« sin(28,)sin(2d,) . .
Eey = E() 1D [C'TE = sin e_V cOos ¢_V C'Thi]
< sin 8, cos ¢, . o . N (31)
E¢y =E—— [sin 8, sin” &, Cryy + cos™ 8, cos ¢, Crg]

where Cpp and Cryy are given by (30).
3. Cross Polarization Level and Co-Polarized Radiation

3.1 Definition of the Cross-Pol Level (CPL)

In accordance with the IEEE Standard Definition of Terms for Antennas [2], we define
the cross-polar side lobe level (CPL) as the maximum relative partial dirctivity (corresponding
to the cross-polarization) of a side lobe with respect to the maximum partial directivity

(corresponding to the co-polarization) of the antenna. Therefore, with respect to the spherical

coordinates {r, 8,, &,). one can write:
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IEcros.e
IEC‘O

max

CPL= (32)

max

where |Ecolmay and |EoesImax are, respectively, the maximum values of co-polar and cross-

polar fields for a given value of 8, and as $, varies from 0 to 180°.

3.2 Co-pol and Cross-pol for a y-directed HED

For a y-directed HED (Figure 3C), i.e., x = -127— we have

Y Al
Eco = Ee‘.

, v
Ff(‘l'oss = E¢

v

where E‘;v and E;‘ are given in (29). For the special case of no slab, i.e., as €, = 1, we get

N . ikgdsin 0, cos &, . VI
Eep = —iEg e Y y ¥sin 8, sin(kdsin 0, cos &) (34)
E o =0

cross M

l.e., we have a zero cross-pol level. Presence of the substrate (€, > 1) will increase the C'PL.

3.3 Co-pol and Cross-pol for a x-directed HED

For a x-directed HED (Figure 3B), i.e., x = 0, we have

X W
Eco = E¢_‘.

) Y (35)
X
ECross = EO}.

where E‘;‘ and E,_are given in (31). For the special case of no slab, l.e., as € = 1, one obtains
y v

. _ikod sin 8 cos . .
Ebo = —iEge o "% *y cos ¢, sin(kyd sinf, cos ) (36)
) 36
3 = _ 1 ikgdsin8 cosé, ) . Y -
Eiros = —iEe y ¥ cos Oy sin &, sin(kyd sin 8, cosd,)
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Eco® Emavor
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Fig. 4: Elliptical polarization for an arbitrarily-oriented dipol.
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2|Eq | Eg |
1 8,1 17y

6, = —tan 2 — cos(Aa) 39

2 [Eq I° = |By |2 (39)

where Ao = oy — ay.

Therefore, provided that the dipole-orientation, X, is given, one can determine the co-
polar direction, 8,, and the maximum values (maximum with respect to ¢.) of Ecq and E, ...
which are nceded to calculate the CPL. Conversely, if a desired co-pol direction of 8, and

value of the CPL. are given, in principle, it is possible to determine the angle x, i.e.. the

required orientation of HED.

In deriving the co-polar and cross-polar fields in this work, we have assumed a spherical
coordinate with y as the reference axis. However, we note that because the formulation in
section 2.2 is in terms of directional cosines v v, and v, (see eq. (21)). the discussiop is. in
fact, independent of the array direction. In other words, one can always assign the dipole-
orientation as. say, x and redefine the directional cosines in (21) acccrding to an arbitrary

array axis, y'.

4. Numerical Results

For the results presented in this section, the reference-axis (i.e., the array-direction) i~

assumed to be the y-axis and two cases of diople’s orientations are considered.

4.1 y-directed HED
The co-pol (Ee“\_‘) and cross-pol (E¢j) radiation patterns for different values of €, and k,d

are shown in Figures 5-7. The results are normalized with respect to the maximum value of

the co-pol. Eg . which for all the cases considered here occurs at ¢, = 0. Asshown. however.

the direction of cross-pol’s maximum varies depending on the parameters €, and k,d.
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By inserting the values of co-pol and cross-pol’s maximums into (32), the cross-pol level
is calculated and plotted in Figures 811 as a function of k,d ( = \/E—, kyd). and for various
values of € and 8,. In general, for 0 < k;d < 1.5, the cross-pol level (CPL.} decreases
linearly as k,d increases. In addition, the lower the value of €, the lower is the CPL. Figure
12 shows the CPL in dB as a function of kyd and for €, = 2 and various values of 8, in
degrees. For larger values of 8, (i.e.. closer to broadside direction), the lower values of CPL is

achieved. In general. for kyd < < 1, the CPL behaves like (Appendix A)

CPL = — " =
Ee,|

'E-"_lmax -1
¢\ [ Er ] cos ey (40)

9
mas €, — cos” B,

A more accurate expression is given in Appendix A. As expected, for 8, = 90°, there is no

cross-pol radiation and (CPL)yp = — .

These figures show, however. that over the desired range of 50° = 6, = 80°, no ('PL of
-30 dB can be achieved for a y-directed HED. We note that because the minimums and max-
imums in Figures &-11 correspond to the resonances in the slab and consequently the excita-
tion of surface waevs. all of the values of kyd larger than that of the first minimum should be

avoided. In other words, in order to avoid the higher-order surface modes (other than TN,

mode that always exists). one should have kyd \/er -1 < -121-

4.2 x-directed HED

Figures 13-15 show the co-pol (F‘;\) and cross-pol (E';")' radiation patterns of a x-directed
HED over a dielectric slab. The corresponding cross-pol levels are shown in Figures 16-20. As
opposed to the ¥-HED case, the CPL 1n this case initially incrases with increasing k,d (see
Figures 12 and 20); furthermore, the higher values of €, yield lower cross-pol levels.

For this p.ola»rization. over the desired range of 50° < 0). < 80°, the -30 dB CPIl. can be

achieved provided that one chooses a large value of €, (€, 2 10) and small values of k,d. As
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derived in Appendix A, for kgd < < 1 and € > > 1, the CPL for the x-directed HED

behaves like

. _ 'E:vlma,\' l‘ld

¥ 'max I

5. Conclusions

Expressions for the co-pol and cross-pol fields for any arbitrarily dipole-orientation and
array-direction have been derived. These are given by equations (21), (25) and (28)-(31).
It 1s found that for a y-directed HED a relatively low cross-pol level may be achieved by

using small values of €, and k,d \/er -1 —g— For example, for €, = 2, k,d = 1 and over

the desired runge of the beam-direction, 50° < 8, = 80°, one gets: —12dB < CPL < —25dB

{see Figure 12). To obtain lower CPL, smaller values of €. must be used.

For the x-directed HED, however, a -30 dB (or lower) CPL over the whole range of the
beam-direction can be achieved by using a large value of €, (i.e.. €, > 10) and a small value of
kod (Figures 16-19).

In general, the cross-pol radiation cannot be completely eliminated. This stems from the
fact that even for the case of an air-filled (i.e., €, = 1) microstrip (x-directed) dipole antenn:.
the cross-polarized field {as defined by (36)) always exists. The effect of the diclectric snh-
strate (€, > 1). as compared to the case of € = 1. is to increase the cross-pol level in the y-

directed HED and to decrease it in the x-directed HED configurations.
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APPENDIX A

In this appendix, we derive the approximate expressions for the cross-pol level (CPL) of a
microstrip dipole antenna. These expressions are derived for a y-directed HED when

‘\/er kyd < < 1 and for a x-directed HED when \/e—r kfd< <1lande > > 1.

(I) Y-directed HED.

From (33) and (29), we have

sinf, cosd,

b

D‘co = E, [siney singd)yCTE + cosi’eycoSd)yCTM] (A.1)

sin(20,)sin(2d,)

Etross = —Eg b [Crym — sin@ cosd Corg] (A.2)

where b = 1 = sin"6, cos"d,. and

1
Crp = -
TE sinBycosd, + i(e, = b)" cot((e, — b2 kyd) (4-3)
¢ 3 (Er - b)l/;? A
T (g, — b2+ gsinb cosd,cot((e; = b)2 kyd) (A4)
For kd = \/;kod < < 1, we may write
cot ({€, — b)1"* kod) ~ !
! P Rd) (€, — b)"" kd
and therefore the expressions in {A.3) and (A.4) can be approximated by
g = —ikyd
0 {e, = bjk,d (A.5)

Crm = (€, — b)kod + i€sin6 cosd,

Substitution of (A.5) into (A.1) and (A.2) now yields
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¥ sinB_ cosd, ) ., X

Eco = Eq _Jb—j:h [—lkodsmeysm-d)y + cos“6,cosd, (OTM] (A.6)
; sin(20, )sin(2é, o

Ecross = —EO q‘n( 4);) ( ‘b ) [C(')TM + lkOdsme}'cosd)."] (.‘\.7)

In order to calculate the CPL, we need to have the maximum values of |Eco| and |E,,.. |
as ¢, varies from 0 to m. We note that |Eng|,,., at least for small kod, always occurs at
¢, = 0: then from (A.6) one gets

- co0s°9,
—E’——ﬂi—‘—] kd (A.8)

r

v -
IEC‘(>Inmx~EO [
In deriving (A.&) from (A .6), it is assumed that 6, is not close to zero; this is indeed consistent
with the assumption that 50° < @, < 80°.

. . N
To obtain the maximum of [E .|, we let

v

a |E(’rOFF l

36, =0 (A.9)

By neglecting the terms of the order (kyd)* and (kod)cos’d, (since, we expect (by)Imay to be

close to g—). (A.9) leads to the equation:

-1 2 -1 2
7%+ 2 [e’ kocl] z- [ef kod] =0 (A.10)

ersme.‘, ersmﬁy

where Z = cos"d,. Solving (A.10) for Z, yields

Z= —— {- (kod (e, = 1)° + [(kod)'fe?(e, = 1)%in®8, + (kod)*(e, — 1)4]”"'}

e;sm-ey

or, for sin®_ not very small.
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(€. — 1) € — 1
2, = 7= [—|kd [1 - | -
o ¢} \ErSine}'J od | [ErSiney] Kod (A1)
(e — 1)
~ | kd
\ersmByJ
Also,
it =1-z~1- [ 2114
sing.=1-—2=1 - 3y :
@y €sinf ) Y (A.12)

Substituting for cosé, and sind, from (A.11) and (A.12) into (A.7) finally yields

o ~ €~ 1 ~ 2(€r - 1) . 12 )
|Ecross Imax = Eq [ Py ]kod [l €50, ked| cos@, (A.13)

or to the order of (k,d)~,

IE,

Cross

=
max

€ =1
~E, [ . ] k,d (‘os(')y {A.14)
By inserting (A.8) and (A.14) into (32), we finally get

‘15 ~ € - ]
(Cl ],)‘v = f—_— c‘ose}. {A.15)

€ — cos B,

A more accurate expression for CPL can be obtained if one uses the expression in (A.13) for

IE, 0. |
cross hmax-

) ~ ef - ] — er - 1 . o
(CPLI, [er - cosi’e‘.] [1 [ersinﬁy kod cos8y (A.16)

. X-Directed HED

From (35) and (31), we have
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sinf.cosd. o )
Eco = E, - [sinfsin"d, Cryy + cos?0,cosd Crg) (A.17)
« sin(20 )sin(2d ) .
ECX‘OSF = 0 ‘4b [CTE - Slney(‘os¢yCTM] (;A]g)

For \/e,, kgd << 1ande€ >> 1, Crg and Cqyyin (A.3) and (A.4) can be approximated by

Cre™ —ikyd
kod (A.19)
kod + 1sinbcosd,

o
C‘TM"'

Substitution from (A.19) into (A.17) and (A.18) gives

£ sinf cosd, L d sinf sin’d, 020 A 20
co ™ B Ty, | Kd + isinBcosd, yeosby : (4.20)
s . sin(20,)sin(2¢,) (kod )

Ei oo = —1E —— A.2]
cres o 4b kod + isin 6, cos d, ( )

Since the maximum value of IF\CO| occurs at ¢, = 0. therefore from (A.20) we obtain

IEco lmas = Eglkod)sing, (A.22)
In order to obtain |E, .. |, we let
31K o |
— =0 A.23
re { )

this leads 1o an approximate solution

o kqd
i = — 9.
sin ¢}. on Oy (A.241)
kod
Therefore, from (A.21) and (A.24), for pr— << 1, we get

Y
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IE\;rOSS max = EO(}{Od)‘3 Cos e_v ("\2'))

Substitution from (A.22) and (A.25) into (32), finally yields

(CPL), = kyd cot 0, = V:_mt 6, (A.26)

where k; = (€, )V~ k,.
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