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Figure D.1: Comparison of stochastic and deterministic open access time paths

Time paths under the stochastic (blue line) and deterministic (black line) models.
The red dots in the “collision rates” panel are the draws of `t .
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D.2 Technical assumptions and lemmas

Assumption 6. Let S be a vector of state variables, and Ik be a vector of same size as S with 1 in the kth

position and 0 in all other positions. φ(`|S) is a conditional density which satisfies the following properties:

(1) The derivative of φ(`|S) with respect to the kth argument of S,

∂φ(`|S)
∂Sk

= lim
h→0

φ(`|S+ Ikh)−φ(`|S)
h

≡ φS(`|S),

exists and is bounded ∀`, with φS(`|S) 6= 0 for some `, ∀S.

(2) Let S1 and S2 be two vectors which are identical except for the kth entry, where IkS1 < IkS2.

∀S1,S2, and ∀A ∈ [0,1], define ¯̀1 ≡ ¯̀(A,S1), ¯̀2 ≡ ¯̀(A,S2) such that

∫ ¯̀1

0
φS(`|S1)d`=

∫ ¯̀2

0
φS(`|S2)d`= A.

Then φ(`|S) satisfies a Lipschitz condition∣∣∣∣∣∣∣∣∫ ¯̀2

¯̀1
φ(`|S2)d`

∣∣∣∣∣∣∣∣< ||S2−S1||,

The first condition places a lower bound on the change in collision probability from new satellite

placements and ensures some smoothness for the changes in the density across the support.

The second condition places an upper bound on changes to the density φ(`|S,D) over the space

of (S,D). The idea is that the additional area under the new density required to achieve a target area

under the old density is bounded by the change in S or D. Physically, this requires that new satellites or

debris will not be placed in orbits that will cause a drastic change in the collision probability. Rather,

the change in collision probability from new launches should be bounded and proportional to the number

of new satellites placed in orbit. Together, the physical implication of these two conditions is that new

satellites or debris will cause some changes to the collision probability, but that those changes will be

bounded across the possible outcomes. This is economically reasonable for satellites - a violation of this
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implies that firms are deliberately placing their satellites in risky orbits. This may be less reasonable for

debris, since the orbits of debris objects resulting from collisions are uncontrolled and difficult to predict.

These conditions facilitate the proofs of the lemmas below, but are not crucial to the main results of the paper.

Note that the proofs of the lemmas below often assume uniformly bounded functions. While no such

property is proven for the value functions studied, realistic parameter choices should guarantee the existence

of uniform bounds on the value functions.

Lemma 2. (Measurable functions under changes in distribution) Let ` be a random variable with a

conditional density φ(`|S) defined on the compact interval [a,b] and with range [r(a),r(b)]. Let f (·) :

[r(a),r(b)]→ [ f (a), f (b)] be a measurable function of `. Then∫ b

a
f (`)

∂φ(`|S)
∂S

d`=
∂E[ f (`)|S]

∂S

Proof. ∫ b

a
f (`)

∂φ(`|S)
∂S

d`=
∫ b

a
f (`) lim

h→0

φ(`|S+h)−φ(`|S)
h

d`

= lim
h→0

1
h

(∫ b

a
f (`)φ(`|S+h)d`−

∫ b

a
f (`)φ(`|S)d`

)
= lim

h→0

1
h
(E[ f (`)|S+h]−E[ f (`)|S])

=
∂E[ f (`)|S]

∂S
.

Lemma 3. ∂E[ f (x)|S]
∂S = 0 ∀S and ∀ f (x) which do not depend on `, the argument of φ(`|S).

Proof. From Assumption 6 and Lemma 2,

∂E[ f (x)|S]
∂S

=
∫ 1

0
f (x)

[
lim
h→0

φ(`|S+h)−φ(`|S)
h

]
d`

= f (x) lim
h→0

1
h

[∫ 1

0
φ(`|S+h)d`−

∫ 1

0
φ(`|S)d`

]
= f (x) lim

h→0

1
h
[1−1] = 0.



167

Lemma 4. If f (`) is a nonnegative and uniformly bounded function, then under assumption 3

(1) ∂E[ f (`)|S]
∂S = 0 if ∂ f (`)

∂` = 0 ∀`

(2) ∂E[ f (`)|S]
∂S < 0 if ∂ f (`)

∂` < 0 ∀`

(3) ∂E[ f (`)|S]
∂S > 0 if ∂ f (`)

∂` > 0 ∀`

Proof. For simplicity, the proof is written for a scalar-valued S. Extending the argument to vector-valued S

is possible but not particularly informative.

The first statement, ∂E[ f (`)|S]
∂S = 0 if ∂ f (`)

∂` = 0, follows directly from Lemma 3 and the assumption

that f (`) is constant ∀`.

To show that ∂E[ f (`)|S]
∂S < 0 if ∂ f (`)

∂` < 0 ∀`, without any loss of generality let S2 > S1. Pick ¯̀1, ¯̀2 :∫ ¯̀1
0 φS(`|S1)d`=

∫ ¯̀2
0 φS(`|S2)d`= A ∈ (0,1). Note that when A = 0, ¯̀1 = ¯̀2 = 0, and when A = 1, ¯̀1 = ¯̀2 =

1, ∀S1,S2. Assumption 3 implies that ∀A ∈ (0,1), ¯̀2 > ¯̀1. Since ∂ f (`)
∂` < 0 ∀`,

∫ ¯̀1

0
f (`)φS(`|S1)d` >

∫ ¯̀2

0
f (`)φS(`|S2)d`

=⇒
∫ ¯̀1

0
f (`)φS(`|S1)d`−

∫ ¯̀2

0
f (`)φS(`|S2)d` > 0

=⇒
∫ ¯̀2

0
f (`)φS(`|S2)d`−

∫ ¯̀1

0
f (`)φS(`|S1)d` < 0

=⇒ lim
S2→S1

1
S2−S1

[∫ ¯̀2

0
f (`)φS(`|S2)d`−

∫ ¯̀1

0
f (`)φS(`|S1)d`

]
= lim

S2→S1

1
S2−S1

[∫ ¯̀1

0
f (`){φS(`|S2)d`−φS(`|S1)}d`+

∫ ¯̀2

¯̀1
f (`)φ(`|S2)d`

]
=
∫ ¯̀1

0
f (`) lim

S2→S1

{
φS(`|S2)d`−φS(`|S1)

S2−S1

}
d`+ lim

S2→S1

∫ ¯̀2

¯̀1
f (`)

φ(`|S2)

S2−S1 d`

=
∫ ¯̀1

0
f (`)φS(`|S1)d`+ lim

S2→S1

∫ ¯̀2

¯̀1
f (`)

φ(`|S2)

S2−S1 d` < 0

By assumption 6 and f (`)≥ 0, S2 > S1, φ(`|S2)≥ 0,

∫ ¯̀2

¯̀1
f (`)

φ(`|S2)

S2−S1 d`≥ 0.
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Now, taking the limit as A goes to 1, we get

lim
A→1

∫ ¯̀1

0
f (`)φS(`|S1)d`+ lim

S2→S1
lim
A→1

∫ ¯̀2

¯̀1
f (`)

φ(`|S2)

S2−S1 d` < 0,

where

lim
A→1

∫ ¯̀2

¯̀1
f (`)

φ(`|S2)

S2−S1 d`= O( ¯̀2− ¯̀1)

is a nonnegative remainder term is bounded by ¯̀2− ¯̀1. This leaves us with

lim
A→1

[∫ ¯̀1

0
f (`)φS(`|S1)d`

]
+ lim

S2→S1
O( ¯̀2− ¯̀1)< 0.

When A = 1, ¯̀2 = ¯̀1 = 1 and the remainder is exactly 0 ∀S1,S2. Since S1 was chosen arbitrarily, we can

therefore say that ∫ 1

0
f (`)φS(`|S)d`≡

∂E[ f (`)|S]
∂S

< 0 if
∂ f (`)

∂`
< 0 ∀`.

Repeating the argument above with f (`) strictly increasing instead of decreasing yields the third

statement, ∂E[ f (`)|S]
∂S > 0 if ∂ f (`)

∂` > 0 ∀`.

D.3 Proofs

Lemma 1 (Launch response to stock and flow controls): The open access launch rate is

• decreasing in the future price of a stock control;

• decreasing in the current price and increasing in the future price of a flow control.

Proof. Stock controls: From equation 3.23, we can write

I = π− rF−Et [`t+1]F− pt+1 = 0. (D.3)
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Applying the Implicit Function Theorem, we get that

∂Xt

∂ pt+1
=−∂I/∂ pt+1

∂I/∂Xt
(D.4)

=− −1

− ∂E[`t+1]
∂Xt

(D.5)

=− 1
∂Et [`t+1]

∂St+1

∂St+1
∂Xt

+ ∂Et [`t+1]
∂Dt+1

∂Dt+1
∂Xt

(D.6)

=−∂Et [`t+1]

∂St+1
+m

∂Et [`t+1]

∂Dt+1
< 0. (D.7)

Flow controls: From equation 3.26, we can write

G = π− rF−Et [`t+1]F− (1+ r)pt +Et [(1− `t+1)pt+1] = 0. (D.8)

Applying the Implicit Function Theorem, we get that

∂Xt

∂ pt
=−∂G/∂ pt

∂G/∂Xt
(D.9)

=− −(1+ r)

− ∂Et [`t+1]
∂Xt

F− ∂Et [`t+1]
∂Xt

pt+1
(D.10)

=− 1+ r

[ ∂Et [`t+1]
∂St+1

∂St+1
∂Xt

+ ∂Et [`t+1]
∂Dt+1

∂Dt+1
∂Xt

](F + pt+1)
(D.11)

=− 1+ r

[ ∂Et [`t+1]
∂St+1

+m ∂Et [`t+1]
∂Dt+1

](F + pt+1)
< 0. (D.12)

Similarly, we can obtain

∂Xt

∂ pt+1
=−∂G/∂ pt+1

∂G/∂Xt
(D.13)

=− 1−Et [`t+1]

− ∂Et [`t+1]
∂Xt

F− ∂Et [`t+1]
∂Xt

pt+1
(D.14)

=
1−Et [`t+1]

[ ∂Et [`t+1]
∂St+1

∂St+1
∂Xt

+ ∂Et [`t+1]
∂Dt+1

∂Dt+1
∂Xt

](F + pt+1)
(D.15)

=
1−Et [`t+1]

[ ∂Et [`t+1]
∂St+1

+m ∂Et [`t+1]
∂Dt+1

](F + pt+1)
> 0. (D.16)

Proposition 12 (Smoothness at boundaries): Stock controls can be initiated without letting the launch

rate exceed the open access launch rate. Flow controls cannot be initiated without forcing the launch

rate to exceed the open access launch rate.
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Proof. In both cases, I suppose that there is open access before the control is initiated.

Initiating a stock control: Suppose a stock control is scheduled to take effect at t, that is, satellite owners in

t begin paying pt . In t−1, firms would launch with this fact in mind:

Xt−1 : π = rF +Et−1[`t ]F + pt . (D.17)

Let the open access launch rate in t− 1 with no stock control in t be X̂t−1 : π = rF +Et−1[`t ]F . Lemma 1

implies that for all pt > 0, X̂t−1 > Xt−1.

Initiating a flow control: Suppose a flow control is scheduled to be implemented at t, that is, satellite

launchers in t begin paying pt to launch. In t−1, firms would launch with this fact in mind:

Xt−1 : π = rF +Et−1[`t ]F− (1−Et−1[`t ])pt . (D.18)

Let the open access launch rate in t−1 with no flow control implemented in t be X̂t−1 : π = rF +Et−1[`t ]F .

Lemma 1 implies that for all pt > 0, X̂t−1 < Xt−1.

Proposition 13 (Controlling the rate of deorbit): Stock controls with positive prices can make satellite

owners deorbit their satellites and induce net deorbits. Flow controls with positive prices cannot make

satellite owners deorbit their satellites or induce net deorbits.

Proof. A satellite owner facing a stock control in period t will deorbit if

pt > π +(1−Et [`t+1])F−V d . (D.19)

The regulator can induce firms to deorbit in t by raising pt high enough in t− 1. A potential launcher in

t−1 will not launch if

pt > π +(1−Et−1[`t ])F. (D.20)

By raising pt high enough, the regulator can both discourage further launches and induce existing satellite

owners to deorbit their satellites.
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A satellite owner facing a flow control in period t will deorbit if

pt : π +(1− `t)βEt [Qt+1]<V d , where Xt : βEt [Qt+1] = F + pt (D.21)

=⇒ (1− `t)(F + pt)<V d−π, (D.22)

which cannot be satisfied by positive pt , given V d < π . A potential launcher in t will not launch if

pt+1 : π +(1−Et [`t+1])pt+1 < rF +Et [`t+1]F +(1+ r)pt . (D.23)

If π < rF + Et [`t+1]F + (1 + r)pt , equation D.23 will not be satisfied for any positive pt+1. Although

equation D.23 can be satisfied if pt+1 is sufficiently negative, this would require the regulator to commit to a

path of ever-decreasing negative prices as long as they wished to prevent launches (as described earlier and

in Lemma 6). Regardless, the regulator cannot induce net deorbits (no new arrivals and some deorbits) in

t +1 with a positive pt+1.

Proposition 17 (ADR can reduce collision risk):

Proof. I show the result first for the introduction of debris removal services, then for the ongoing use of

debris removal services.

The introduction of ADR: Suppose an active debris removal service will become available at date t.

To clarify whether removal is an option or not, I explicitly include the conditioning variables in the loss

rate, that is, Et [`t+1] is written as Et [`t+1|St+1,Dt+1−Rt+1] when removal is an option.

Under open access, firms without satellites at t−2 will launch until

Et−2[`t−1|St−1,Dt−1] = rs− r. (D.24)

At t−1, launchers will expect to be able to remove debris once their satellites reach orbit. They will

launch until

Et−1[`t |St ,Dt −Rt ] = rs− r− ct

F
Rit . (D.25)
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Comparing Et−2[`t−1|St−1,Dt−1] and Et−1[`t |St ,Dt − Rt ] yields the necessary and sufficient

conditions:

Et−2[`t−1|St−1,Dt−1]−Et−1[`t |St ,Dt −Rt ]> 0 ⇐⇒ ctRit > 0. (D.26)

Ongoing use of ADR: Under open access, the equilibrium collision risk in t +1 after debris removal in t is

Et [`t+1] = rs− r− ct+1

F
Rit+1.

Similarly, the equilibrium collision risk in t after debris removal in t−1 is

Et−1[`t ] = rs− r− ct

F
Rit .

Subtracting one equilibrium risk from the other yields the necessary and sufficient condition for ongoing

debris removal to continue to reduce the collision risk:

Et−1[`t ]−Et [`t+1]> 0 ⇐⇒ rs− r− ct

F
Rit − (rs− r− ct+1

F
Rit+1)> 0

⇐⇒ ct+1Rit+1 > ctRit .

D.4 Cost and congestion shifts in cooperative removal demands from new satellites

For brevity, I write Et [`t+1] as L(St ,Dt − StRit) in this subsection and use S and D subscripts to

indicate the respective partial derivatives. Since these results are intratemporal in nature, I also drop time

subscripts.

To see the cost and congestion shifts in the cooperative private demand for removal, suppose there

were two types of satellites, Kinds (k) and Unkinds (u). Kinds make sure their satellites can never collide

with others and purchase debris removal, while Unkinds allow their satellites a non-zero chance of colliding

with another satellite and never purchase debris removal. The private marginal benefit of debris removal for

a Kind named i is

MBi = LD(u,D− kRi)kF. (D.27)
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The congestion shift is the effect of another Unkind entering, while the cost shift is the effect of another

Kind entering. Formally,

Cost shift:
∂MBi

∂k
=−LDD(u,D− kRi)kRiF +LD(u,D− kRi)F (D.28)

Congestion shift:
∂MBi

∂u
= LDS(u,D− kRi)kF (D.29)

Adding them and normalizing by a function of the collisions rate’s in debris,

∂MBi
∂k + ∂MBi

∂u

LDDk2F
=

(−LDDkRiF +LDF)+(LDSkF +LDF)

LDDk2F
(D.30)

=
LD

LDDk2 +
LDS−LDDRi

LDDk
=

∂Ri

∂S
. (D.31)

The congestion shift may be positive or negative. It is the effect of increasing the number of satellites

on the marginal collision risk from a unit of debris. If the collision rate were decoupled from the satellite

stock, the congestion shift would disappear. If a marginal Unkind would increase the effect of a marginal

unit of debris, the congestion shift will be positive. Reducing the amount of debris would greatly reduce

the threat posed by the marginal satellite. If a marginal Unkind would decrease the effect of a marginal

unit of debris, the congestion shift will be negative. This could be the case if the Unkind was well-shielded

from debris but a threat to other satellites. Reducing the amount of debris would not change the risk of the

marginal Unkind by much then.

The cost shift is the effect of increasing the number of customers in the market for debris removal on

the marginal collision threat from a unit of debris. There are two pieces to this. First, the debris removed

by each Kind reduces the collision risk for all owners. As long as the collision rate is increasing in debris,

reducing debris is always a good thing for everyone. This will tend to make the cost shift positive. Second,

the debris removed by each Kind changes the marginal benefit of the next Kind’s removal. Since the collision

rate must be locally convex in debris at an interior solution, this effect will tend to make the cost shift

negative. If the collision rate is sufficiently locally convex, this effect can make the cost shift negative in

total. Generic satellites are both Kinds and Unkinds.
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D.5 Open access launch response to collisions

Lemma 5. (Open access launch response to collision risk draws) The open access launch rate in t can be

non-monotonic in the realized collision risk in t.

Proof. From equation 3.11,

F = rs− r−Et [`t+1] = 0. (D.32)

Applying the Implicit Function Theorem to F,

∂Xt

∂`t
=− ∂F/∂`t

∂F/∂Xt
(D.33)

=

∂Et [`t+1]
∂St+1

St +
∂Et [`t+1]

∂Dt+1

∂G(St ,Dt ,`t)
∂`t

∂Et [`t+1]
∂St+1

+m ∂Et [`t+1]
∂Dt+1

≶ 0 (D.34)

Figure D.2 illustrates three cases of Lemma 5: one where the open access launch rate is first

decreasing and then increasing in the satellite-destroying collision risk draw, another where it is uniformly

decreasing in the collision risk draw, and a third where it is uniformly increasing in the collision risk draw.

There are two competing effects of collisions driving this behavior: collisions generate debris, but collisions

also remove other satellites from orbit.

In the first case, the effect of additional debris dominates the launch decision when the collision risk

draw is low, and the effect of fewer satellites dominates when the collision risk draw is high. In the second

case shown in Figure D.2, the new-debris effect dominates for all draws. In the third case shown in Figure

D.2, the fewer-satellites effect dominates for all draws. The third case is the least-realistic, as it implies that

the number of fragments from a satellite destruction is tiny compared to the number of fragments created by

a debris-debris collision. Debris modeling studies such as Liou (2006); Letizia et al. (2017) find the opposite:

satellite destructions contribute much more debris to the orbital environment than collisions between debris

fragments. The first and second cases are plausible under realistic relative orders of magnitude between the

number of fragments created by satellite-satellite, satellite-debris, and debris-debris collisions.
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Figure D.2: Three ways the open access launch rate may respond to collision probability draws.
Left panel: The open access launch rate is decreasing then increasing in the collision risk draw.
The effect of additional debris dominates the launch decision when the collision risk draw is
low, and the effect of fewer satellites dominates when the collision risk draw is high.
Middle panel: The open access launch rate is uniformly decreasing in the collision risk draw.
The new-debris effect dominates for all draws.
Right panel: The open access launch rate is uniformly increasing in the collision risk draw. The
fewer-satellites effect dominates for all draws.
The left panel and middle panel cases are more plausible than the right panel case under realistic
relative orders of magnitude between the number of fragments created by satellite-satellite,
satellite-debris, and debris-debris collisions.
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D.6 Two details for flow control implementations

Lemma 6. (A feature of flow controls with no end date) If the discount rate is positive, the price of a

time-consistent infinite-horizon flow control is an exploding process.

Proof. From equation 3.26, we can write the price in period t +1 as a function of the price in period t as

pt+1 =
1+ r

1−Et [`t+1]
pt −

π− rF−Et [`t+1]F
1−Et [`t+1]

. (D.35)

Differentiating with respect to pt ,

∂ pt+1

∂ pt
=

1+ r
1−Et [`t+1]

> 1 ∀r > 0. (D.36)

This holds along a generic equilibrium path as shown above, or along an optimal path. Along an

optimal path, the numerator of the second term on the right-hand side would be replaced with the marginal

external cost of a satellite in period t +1. Since the first term on the right-hand side is unchanged, the flow

control process still has a unit or greater-than-unit root.

Lemma 6 is likely to be practically relevant to designing a flow control policy, even though in theory

such a control could be made optimal.1

Lemma 7. (A limitation of flow controls) If the expected future loss rate is one, there is no value of the

future flow control price which can affect the current launch rate.

Proof. Rewriting equation 3.26 with Et [`t+1] = 1, the launch rate will satisfy

Xt : π = rF +Et [`t+1]F +(1+ r)pt . (D.37)

Since equation D.37 no longer contains pt+1, the regulator cannot use it to affect Xt .

I present this result for completeness, though it is likely a moot point. The destruction of all active

satellites in an orbit would likely trigger Kessler Syndrome there. The regulator and the space industry

1Though it seems unlikely to me, perhaps there exists or could exist a regulatory body with the credibility to commit to an exploding

price path for the foreseeable future; they would find this result irrelevant.
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would then have bigger problems than whether or not a flow control in line with the pre-committed path

exists. This may be relevant for low orbits where debris decays sufficiently quickly. If such destruction

occurred in those orbits intentionally, for example missile tests or conflict, the regulator and space industry

would again have bigger problems than deviation from prior commitments.

D.7 Incentives to cooperate in debris removal

Suppose all satellite owners agree to cooperate and individually purchase R∗it units of debris removal.

Owner i considers deviating and reducing her removal demands by ε ∈ (0,R∗it ]. Her payoff from not deviating

by ε is

π− ctR∗it +(1− Ẽt [`t |St ,Dt −R∗t ])F︸ ︷︷ ︸
Expected value of cooperating

−[π− ct(R∗it − ε)+(1− Ẽt [`t |St ,Dt − (R∗t − ε)])F︸ ︷︷ ︸
Expected value of deviating by ε

]

=−εct +[Ẽt [`t |St ,Dt + ε−R∗t ]− Ẽt [`t |St ,Dt −R∗t ]]F.

Cooperation is a strictly dominant Nash equilibrium if and only if

Ẽt [`t |St ,Dt + ε−R∗t ]− Ẽt [`t |St ,Dt −R∗t ]> ε
ct

F
∀ε ∈ (0,R∗it ]. (D.38)

Proposition 20 establishes an intuitive necessary and sufficient condition for cooperation to strictly

dominate small deviations. If the change in the expected loss rate before removal is greater than the ratio

of the cost of removal in t to the cost of launching a satellite in t, then a tiny deviation will cost a satellite

owner more expected value through a lower survival rate than it will yield in a removal expenditure savings.

Proposition 20. (Local stability of cooperation) Cooperation with any non-zero debris removal plan strictly

dominates small deviations if the change in the equilibrium collision risk from another unit of debris is

greater than the ratio of the removal price to the launch cost,

∂ Ẽ[`t |St , D̄−Rt ]

∂ D̄

∣∣∣∣
D̄=Dt

>
ct

F
.

Proof. Cooperation with a non-zero debris removal plan is robust to all deviations ε for which

Ẽt [`t |St ,Dt + ε−R∗t ]− Ẽt [`t |St ,Dt −R∗t ]> ε
ct

F
.
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Cooperation with a non-zero debris removal plan strictly dominates small deviations if

lim
ε→0

Ẽt [`t |St ,Dt + ε−Rt ]− Ẽt [`t |St ,Dt −Rt ]

ε
>

ct

F
∀Rt > 0

=⇒ ∂ Ẽ[`t |St , D̄−Rt ]

∂ D̄

∣∣∣∣
D̄=Dt

>
ct

F
∀Rt > 0.

The following proposition establishes that the debris removal solution described in equation 3.56 is

in fact the cooperative private debris removal solution.

Proposition 21. (A cooperative private removal plan) The debris removal solution described by equation

3.56 is maximizes the value of the currently-orbiting satellite fleet, given open access in that period.

Proof. Given open access launch rates, the value of a satellite already in orbit is

Qi(S,D) = π− cRi +(1− Ẽ[`])F.

Given open access launch rates, the value of all satellites already in orbit is

W (S,D) =
∫ S

0
Qidi

= πS− cR+(1− Ẽ[`])FS.

Equation 3.56 is the first-order condition for the firm’s problem,

Qi(S,D) = max
0≤Ri≤D/S

{π− cRi +(1− Ẽ[`])F}.

A constrained planner who maximizes the value of the currently-orbiting satellite fleet, taking open

access to orbit as given, solves

W (S,D) = max
0≤R≤D

{πS− cR+(1− Ẽ[`])SF}

= max
{0≤Ri≤D/S}i

S{π− cRi +(1− Ẽ[`])F}

= max
{0≤Ri≤D/S}i

SQi(S,D).
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The constrained planner’s objective function is an individual satellite owner’s objective scaled by the

current size of the fleet, which the constrained planner takes as given. The individual removal solution given

by equation 3.56 therefore characterizes a cooperative debris removal solution, where each firm behaves as

an open-access-constrained social planner would command.

D.8 Nonconvexities and corner solutions

For brevity, I write Et [`t+1] as L(St ,Dt − StRit) in this subsection and use S and D subscripts to

indicate the respective partial derivatives. Since these results are intratemporal in nature, I also drop time

subscripts.

Upper bounds on damages, nonconvex stock decay rates, and complementarities between stocks in

damage production each imply nonconvexities in the marginal benefits of abatement. The static private

marginal benefits from abatement reflect two of these features:

(1) at most all satellites can be destroyed in collisions, implying the upper bound on the rate of satellite-

destroying collisions;

(2) the marginal effect of debris on the number of satellite-destroying collisions depends on the number

of satellites in orbit, which makes collisional complementarity or substitutability between satellites

and debris possible.

When the satellite and debris couplings in the collision rate depend on each other, that is, LSD 6= 0,

changes in the satellite stock can change the returns to scale for debris removal. The dynamic benefits of

debris abatement also include the effect of fragment growth from collisions between debris. This effect

implies that the net marginal rate of debris decay (δ −GD(S,D−R)) can be negative.

The marginal benefit of removal is the private value of reducing the probability of a satellite-

destroying collision. Debris removal has diminishing marginal benefits if and only if the collision rate

is strictly convex in debris. The upper bound on L(S,D) implies that debris removal will have increasing
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marginal benefits when the risk of a collision gets high enough. Figure D.3 shows two examples of this, one

with a negative exponential collision rate (globally concave) and another with a sigmoid collision rate (first

convex and later concave).

For any positive initial level of debris and satellites (S,D), removal must be nonnegative and no more

than all of the debris can be removed. When all satellite owners are identical, the maximum that any one

can remove is D/S. This closes the feasible set. Any intermediate amount can also be removed, making the

feasible set convex.

The nonconvexity of marginal removal benefits complicates analysis of the optimal amount of

removal. There are two cases: the collision rate is globally concave, or the collision rate is convex over

some nonnegative interval.

(1) If the collision rate is globally concave, there can be no interior solution to the satellite owner’s

removal problem. Global concavity implies increasing marginal benefits of debris removal, so

satellite owners will choose either to remove all debris or none of it.

(2) If the collision rate is convex over some nonnegative interval, an interior solution is possible but

not guaranteed. For example, suppose the collision rate is convex initially and concave near the

end, as in the sigmoid case in Figure D.3. Either the right-most intersection of marginal benefits

and marginal costs is optimal (where equation 3.56 and inequality 3.57 hold) or else zero removal

is optimal.

Determining which corner is optimal when the collision rate is globally concave case is

straightforward. If the profits of full removal are greater than the profits of zero removal, full removal is

optimal; if not, zero removal is optimal.

With local convexities, the problem is more complicated. One approach is as follows. First, select

all solutions to the removal first-order condition (equation 3.56) which satisfy the second-order condition

(inequality 3.57), and include them in a set with zero removal and full removal. This is the set of candidate
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Figure D.3: Two collision rate functions and the private marginal benefit of debris removal.
Upper row: Collision risks given different levels of debris removal.
Lower row: Private marginal benefits of debris removal.
Left column: Negative exponential collision rate (globally concave).
Right column: Sigmoid collision rate (convex then concave).
Darker colors correspond to fewer satellites. More satellites may reduce or increase the marginal
benefits of debris removal, depending on whether satellites and debris are complements or
substitutes in collision production.
Not shown: More initial debris in orbit shifts the removal benefit curves to the right. This makes
the optimal removal amount increase until a jump to zero removal.
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solutions. Calculate the profits of each candidate solution, and select the one with the highest profits. This

procedure is computationally tractable over a closed and convex support as long as the collision rate function

is reasonably well-behaved. Figure D.4 illustrates how nonconvexity of the collision rate affects profits and

the optimal level of removal.

D.9 Comparative statics of cooperative debris removal and open access launching

I show three results about the demand for debris removal in this section.

First, there is a unique cooperatively-optimal post-removal level of debris for any given level of

the satellite stock. This is a consequence of the linear cost (to satellite owners) of debris removal and the

monotonicity of the expected collision risk in debris. Due to the linearity, cooperative satellite owners will

pursue a most-rapid approach path to the optimal post-removal level of debris in every period. Were the

cost nonlinear, the most-rapid approach path would no longer be optimal but the optimal level of debris

would remain unique due to monotonicity.

Second, if satellites and debris are “strong enough” complements in producing collision risk,

increasing the number of satellite owners in orbit will reduce the optimal post-removal level of debris.

This spillover effect in debris removal suggests that a “dynamic virtuous cycle” of active debris removal

may be possible: removal in one period can spur entry in the next, which in turn spurs more removal in

the following period. Although the functional forms I use rule this effect out, those forms are simplified

from a statistical mechanics approximation of orbital interactions. A higher-fidelity model may allow this

possibility. A static analog of this effect can be seen in Figure 3.9.

Third, the open access launch rate may be increasing in the launch cost. Though this result seems

counterintuitive, it is a natural consequence of three features of open access orbit use:

(1) open access drives the value of a satellite down to the launch cost;
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Figure D.4: Nonconvexity and privately optimal removal.
Upper row: High cost scenario where zero removal is cooperatively optimal.
Lower row: Low cost scenario where some removal is cooperatively optimal.
Left column: Negative exponential collision rate (globally concave), where the optimal removal demand is
always on a corner.
Right column: Sigmoid collision rate (convex then concave), where the optimal removal demand may be in
the interior.
The thin horizontal line is the marginal cost of removal. The thicker curve is the marginal benefit of removal.
Red regions are losses, blue regions are profits. In the upper row, zero removal is optimal. In the lower left
panel, full removal is optimal. In the lower right panel, removal of about 40 units is optimal. Because the
collision risk is bounded in [0,1], it cannot be strictly convex globally over S and D.
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(2) the amount of removal is increasing in the launch cost;

(3) new entry can reduce the individual expenditure required from cooperative firms to achieve the

optimal post-removal level of debris.

The cooperative cost-savings from new entry exceeding the effect of new entry on collision risk is necessary

and sufficient for the open access launch rate to be increasing in the launch cost.

Together, these results suggest that the use of debris removal can result in interesting and

counterintuitive dynamics in orbit use. Though these results are relevant to understanding the effects of

debris removal technologies on orbit use, I omit their proofs from this section. Interested readers may find

the proofs in the Appendix, section B.

Cooperative private debris removal:

Lemma 8. (Law of cooperative private debris removal demand) The cooperative private debris removal

demand is

(1) weakly decreasing in the price of removing a unit of debris, and

(2) weakly increasing in the cost of launching a satellite.

Proof. I consider corner solutions first, then interior solutions. I characterize how interior solutions change

in response to a change in the removal price, then show that increases in the price can only induce the firm

to reduce their removal demands even at corners. I refer to the non-optimized value of a satellite as Qi(Ri).

The full removal corner: The first part of the proposition is trivially true at the full removal corner,

since the amount of debris removal purchased cannot increase at this corner. So it must either stay the same,

or decrease, in response to an increase in the price of removal. For the second part, suppose a firm initially

finds full removal optimal. Reducing the amount of debris by a positive amount ε in response to a change
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in launch cost removed is optimal if and only if, at the new launch cost,

Qi(D/S− ε)−Qi(D/S)> 0 ∀ε ∈
(

0,
D
S

]
=⇒ π +F− c

D
S
+ cε− Ẽ[`|S,D−S(D/S− ε)]F−π−F + c

D
S
+ Ẽ[`|S,0]F > 0

=⇒ cε− (Ẽ[`|S,ε]− Ẽ[`|S,0])F > 0

=⇒ Ẽ[`|S,ε]− Ẽ[`|S,0]
ε

<
c
F
∀ε ∈

(
0,

D
S

]
.

If full removal was optimal to begin with, then an increase in the launch cost cannot make it optimal to

switch strategies. The above inequality also shows how an increase in the cost of removal can induce a firm

to reduce the amount of removal purchased.

The zero removal corner: Consider the profits from increasing the amount of removal from zero to ε

in response to a change in the launch cost or removal price. The change is privately optimal if and only if,

at the new cost or price,

Qi(ε)−Qi(0)> 0 ∀ε ∈
(

0,
D
S

]
=⇒ π +F− cε− Ẽ[`|S,D−Sε]F−π−F + Ẽ[`|S,D]F > 0

=⇒ −cε− [Ẽ[`|S,D−Sε]− Ẽ[`|S,D]]F > 0

Ẽ[`|S,D−Sε]− Ẽ[`|S,D]

ε
>

c
F
∀ε ∈

(
0,

D
S

]
.

If zero removal was optimal to begin with, then an increase in the price of removal cannot make it optimal

to switch strategies. An increase in the cost of launching a satellite, however, may induce a firm to begin

removing debris.

For interior solutions: From equation 3.56,

Rit : H = c− ∂ Ẽ[`]
∂D

SF = 0. (D.39)
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Applying the Implicit Function Theorem to H,

∂Ri

∂c
=− ∂H/∂c

∂H/∂Ri

=− 1
∂ 2Ẽ[`]
∂D2 S2F

< 0.

Strict negativity follows from the second order condition (inequality 3.57). If there are multiple solutions

and the removal price increase causes firms to jump from interior one solution to another, they must jump

to a solution with less removal.

Similarly, from applying the Implicit Function Theorem to H,

∂Ri

∂F
=− ∂H/∂D

∂H/∂Ri

=

∂ Ẽ[`]
∂D S

∂ 2Ẽ[`]
∂D2 S2F

> 0.

Strict positivity follows from the second order condition (inequality 3.57). If there are multiple solutions

and the launch cost increase causes firms to jump from interior one solution to another, they must jump to a

solution with more removal.

The intuition for this result is simple. Satellite owners pay for debris removal. When the price of

removal rises, the demand for removal falls. Under open access the continuation value of a satellite is the

cost of launching. So, the demand for debris removal increases when satellites become more valuable.

Figure D.5 illustrates Lemma 8.

What about changes in the satellite and debris stocks? Increases in the debris stock increase the

cost of achieving any given level of reductions, but may also increase the marginal benefit of removal if the

collision rate is locally concave. Increases in the satellite stock may increase the marginal benefit of removal

if the collision rate is locally jointly concave, but also increase the number of firms in the market for removal

and give existing firms an incentive to reduce their expenditures. I examine this question in Propositions 22

and 23.
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Figure D.5: The effects of changes in satellite launch and debris removal costs on individual cooperative
debris removal demands.
Increases in the cost of launching a satellite increase the open-access value of satellites in orbit,
increasing the amount of debris removal demanded. As expected, increases in the cost of debris
removal decrease the amount demanded. Costs are stated in multiples of the one-period return
generated by a satellite in orbit.
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Proposition 22. (Cooperative demand for debris removal and the state of the orbit) The optimal post-

removal debris level is independent of the pre-removal debris level, but depends on the number of satellites

in orbit.

Proof. Proof. I focus on interior solutions, but the result follows for corner solutions as well due to the

monotonicity of Ẽt [`t ] in St and Dt .

From equation 3.56,

Rit : H = ct −
∂ Ẽt [`t |St ,Dt −Rt ]

∂Dt
StF = 0.

Applying the Implicit Function Theorem to H,

∂Rit

∂Dt
=− ∂H/∂Dt

∂H/∂Rit

=
1
St

> 0.

The total quantity of debris removed is

Rt =
∫ St

0
Ritdi = StRit .

Suppose that a positive amount of removal is optimal before and after the change in debris.

Differentiating Rt with respect to Dt and using the earlier results for individual removal demands,

∂Rt

∂Dt
= St

∂Rit

∂Dt
= 1.

The monotonicity of Ẽt [`t ] in St and Dt also implies that, for any St , there is a unique Dt −Rt such

that

ct =
∂ Ẽt [`t |St ,Dt −Rt ]

∂Dt
StF.

Proposition 22 shows that when it is optimal to remove debris, firms will increase their removal

efforts in response to increases in debris. The uniqueness of the optimal post-removal debris stock requires



189

aggregate removal demanded to match changes in the debris stock. This is analogous to the uniqueness of

optimal escapement policies in fisheries management. Figure D.6 illustrates this behavior.

Proposition 23. Additional satellite owners decrease the cooperative individual debris removal demand

unless satellites and debris are “strong enough” complements in collision risk production.

Proof. I show the result for interior solutions. A similar condition also holds for corner solutions.

The total quantity of debris removed is

Rt =
∫ St

0
Ritdi = StRit .

Differentiating Rt with respect to St ,

∂Rt

∂St
= Rit +St

∂Rit

∂St
.

Rit and St are both nonnegative by definition. It follows that

∂Rt

∂St
> 0 ⇐⇒ Rit

St
>−∂Rit

∂St
.

This is always true when individual removal demands increase in response to additional satellite owners

( ∂Rit
∂St

> 0). The following steps establish the complementarity condition for interior solutions.

From equation 3.56,

Rit : H = ct −
∂ Ẽt [`t |St ,Dt −Rt ]

∂Dt
StF = 0.

Applying the Implicit Function Theorem to H,

∂Rit

∂St
=− ∂H/∂St

∂H/∂Rit

=

∂ Ẽt [`t ]
∂Dt

∂ 2Ẽt [`t ]

∂D2
t

S2
t

+

∂ 2Ẽt [`t ]
∂Dt ∂St

− ∂ 2Ẽt [`t ]

∂D2
t

Rit

∂ 2Ẽt [`t ]

∂D2
t

St

≶ 0.

So, increases in the amount of debris must increase the privately optimal amount of removal at all

interior solutions, while increases in the number of satellites will have ambiguous effects. The privately
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Figure D.6: The effects of changes in the number of firms and debris in orbit on the post-removal level of
debris.
The color scale represents the amount of debris left in orbit after removal. The cooperatively
optimal post-removal level of debris does not depend on the amount of debris initially in orbit,
but on the number of firms who are available to share the cost of removal. Once there are enough
firms to begin removal the post-removal debris level is constant (full removal).
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optimal demand for removal will be increasing in the number of satellites if and only if

∂Rit

∂St
> 0 ⇐⇒

∂ Ẽt [`t ]
∂Dt

∂ 2Ẽt [`t ]

∂D2
t

S2
+

∂ 2Ẽt [`t ]
∂Dt ∂St

− ∂ 2Ẽt [`t ]

∂D2
t

Ri

∂ 2Ẽt [`t ]

∂D2
t

S
> 0

⇐⇒
∂ 2Ẽt [`t ]
∂Dt ∂St

∂ 2Ẽt [`t ]

∂D2
t

S
>−

∂ Ẽt [`t ]
∂Dt

∂ 2Ẽt [`t ]

∂D2
t

S2
+

Ri

S

⇐⇒ ∂ 2Ẽt [`t ]

∂Dt∂St
<−

∂ Ẽt [`t ]
∂Dt

S
+

∂ 2Ẽt [`t ]

∂D2
t

Ri.

The right hand side of the final line is strictly negative at an interior optimum from the second-order

condition, inequality 3.57. So ∂ 2Ẽt [`t ]
∂Dt ∂St

must be “sufficiently” negative for the presence of new satellites to

increase privately optimal removal. Economically, this means that satellites and debris are “strong enough”

substitutes.

Proposition 23 shows that firms may increase or decrease their removal demands in response to more

firms entering the orbit. At the full removal corner, they will always reduce their demands. This is a

cooperative cost-sharing effect: it remains optimal to remove all debris, but the contribution required of

each firm decreases when more firms enter. At an interior solution, their response to more satellites depends

on two effects: a congestion effect and a cooperation effect. Their net effect depends on the collision rate’s

convexity in debris and satellites, particularly whether satellites and debris are “strong enough” complements

in producing collision risk. If

• the cooperation and congestion effects are collectively positive, then the presence of more satellites

increases the marginal benefit of debris removal (positive spillover effects);

• the cooperation and congestion effects are collectively negative, then the presence of more satellites

decreases the marginal benefit of debris removal (negative spillover effects).

These shifts are shown algebraically in the Appendix, section D.4. Conditional on a positive amount

of removal being optimal, increases in debris are matched by increases in removal. Increases in the number

of satellites can result in aggregate removal decreases if the individual demand reduction is large enough.
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Given the functional forms I assume for simulations, the shifts are always collectively negative. I remain

agnostic about the “correct” functional form to assume.

Any increase in debris is matched by a commensurate increase in aggregate removal. Since satellites

are identical, owners collectively agree on the optimal level of debris. The total quantity of debris removed

can not be decreasing in the number of satellites unless individual owners reduce their removal demands in

response to more satellites in orbit. Proposition 23 shows this is a necessary but not sufficient condition.

Proposition 22 also offers some insight into the effects of launches on privately optimal removal.

With no launch debris, the effect of a marginal launch on privately optimal removal is only the effect of a

new satellite on privately optimal removal. With launch debris, the effect of a launch is a combination of the

effect of a new satellite and the effect of new debris.

Open access launching: The option - or, in the cooperative case studied here, the obligation - to

remove space debris alters the incentives of open access satellite launchers. While they will still launch until

expected profits are zero, the expected collision risk is no longer the only object which equilibriates their

launching behavior. In addition to expected collision risk, the expenditure they expect to incur removing

debris as satellite owners will also adjust to equilibriate the launch rate. Though they will be price takers

when their satellites reach orbit, they can anticipate the number of satellite owners who will contribute

to debris removal. This acts in the opposite direction as the expected collision risk: while more satellites

in orbit increases risk, more firms with satellites in orbit decreases each individual firm’s debris removal

expense. Since debris removal also reduces collision risk, the net effect of introducing debris removal

financed by satellite owners may be more launches than would otherwise occur. Indeed, this is precisely

what occurs in the cases simulated here.

In addition to this perhaps-counterintuitive effect, it is plausible that an increase in the cost of

launching a satellite could increase the launch rate. This is not as pathological a case as it may seem at

first. Since open access drives the value of a satellite down to the launch cost, and the cooperatively-optimal
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amount of debris removal which satellite owners will pay for is increasing in the launch cost, and increase

in the launch cost under open access could increase the value of owning a satellite by more than it increases

the cost of launching it, at least locally near an existing equilibrium. This is not a violation of the law of

demand for satellite ownership; rather, it is a violation of the “all else equal” clause. Assumption 7 describes

a necessary and sufficient condition to rule this case out.

Assumption 7. (New launches reduce the expected profits of satellite ownership) The change in individual

removal expenses from a marginal satellite launch is smaller in magnitude than the sum of the change

in expected future collision costs from a marginal satellite launch and the change in individual removal

expenses from a marginal piece of launch debris. Formally,∣∣∣∣∂Et [`t+1]

∂St+1
F +m

(
∂Et [`t+1]

∂Dt+1
F +

∂Rit+1

∂Dt+1
ct+1

)∣∣∣∣> ∣∣∣∣∂Rit+1

∂St+1
ct+1

∣∣∣∣ .
If this assumption is violated, then launches increase the profitability of owning a satellite through the

debris removal expenditure channel described above. It is also possible that increases in the cost to satellite

owners of removing a unit of debris could increase the launch rate Assumption 8 describes an additional

condition necessary for increases in the price of debris removal to reduce the launch rate. An increase in

the price of debris removal will reduce the cooperatively-optimal amount of debris removal satellite owners

purchase, potentially reducing the total debris removal expenditure and increasing the profits of owning a

satellite. As in the case of launch rates being increasing in launch costs, this is not a violation of the law of

demand for satellite ownership; it is a violation of the “all else equal” clause.

Assumption 8. (Removal expenditure is increasing in the removal cost) The cooperative private debris

removal expenditure is increasing in the price of removing a unit of debris. Formally,

∂

∂ct+1
(Rit+1ct+1) = Rit+1 +

∂Rit+1

∂ct+1
ct+1 > 0.

Assumption 8 states that the amount of debris removed (Rit+1) is larger than the reduction in removal

due to a price increase ( ∂Rit+1
∂Dt+1

ct+1, which is weakly negative from Proposition 8). This is likely to hold

whenever the change in individual removal demands from a change in removal cost is small, for example,if

removal demand is in the interior before and after the change. It is unlikely to hold if the opposite is true,
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for example,if the change in removal cost causes individual removal demands to jump from the full removal

corner to the zero removal corner at a time when there are few satellites and many debris fragments. Though

future cooperative private debris removal demands are an anticipated cost to current satellite launchers, those

same launchers may find their willingness to launch increasing in the cost of removal if it reduces the burden

of cooperating and purchasing removal.

Proposition 24. (Private demand for satellite ownership) The open access launch rate is

(1) strictly decreasing in the cost of launching a satellite if and only if new launches reduce the expected

profits of satellite ownership; and

(2) strictly decreasing in the price of removing a unit of debris in t +1 only if new launches reduce the

expected profits of satellite ownership AND the cooperative private expenditure on debris removal

is increasing in the cost of removal.

Proof. From equation 3.54,

Xt : F = π− rF−Et [`t+1]F−Rit+1ct+1 = 0.

Applying the Implicit Function Theorem to F and assuming Rit+1 is chosen optimally (as described

in Proposition 8),

∂Xt

∂F
=−∂F/∂F

∂F∂Xt

=−
r+Et [`t+1]+

∂Rit+1
∂F ct+1

∂Et [`t+1]
∂St+1

F +m
(

∂Et [`t+1]
∂Dt+1

F + ∂Rit+1
∂Dt+1

ct+1

)
+ ∂Rit+1

∂St+1
ct+1

,

which is negative for all parameter values when Assumption 7 holds.

Similar manipulations yield

∂Xt

∂ct+1
=−∂F/∂ct+1

∂F∂Xt

=−
Rit+1 +

∂Rit+1
∂ct+1

ct+1

∂Et [`t+1]
∂St+1

F +m
(

∂Et [`t+1]
∂Dt+1

F + ∂Rit+1
∂Dt+1

ct+1

)
+ ∂Rit+1

∂St+1
ct+1

.

∂Xt
∂ct+1

is negative only if Assumptions 7 and 8 hold.
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Given Assumption 7, Assumption 8 is necessary and sufficient for ∂Xt
∂ct+1

to be negative. A

simultaneous violation of Assumptions 7 and 8 would indicate that the private marginal cost of orbit use

was decreasing in the costs of access and debris removal - a counterintuitive situation, but not an a priori

impossible one.



Appendix E

Legal and institutional features of orbit use policy

E.1 International laws regarding space traffic control

Orbits are inherently global resources, and space law is fragmented across nations and documents.

Space law spans domestic policies, international treaties, bilateral agreements, and guidelines. Not all

agreements are signed by all spacefaring nations, and many are non-binding. Most of the agreements are

vague and suffer from enforcement problems. Four of the most relevant international agreements relating

to orbit management are the 1967 Outer Space Treaty, the 1972 Liability Convention, the 1975 Registration

Convention, and the 2007 COPUOS Guidelines.1

1967 Outer Space Treaty The Outer Space Treaty2 established the legal framework for peaceful

uses of outer space. Article 2 of the Treaty designates outer and orbital space as common pool resources, to

be used “for the benefit of all” humankind. The only explicit restrictions are on military uses and claims of

national sovereignty; the state of resource use is left ambiguous. The Treaty does not mention debris, only

stating that nations should avoid causing (undefined) “harmful contamination” of outer space.

1972 Liability Convention The Liability Convention3 established the framework for tort law of

space activities. However, the Convention focused more on damage to terrestrial objects from re-entry

than on damages to orbital objects which occur in space. “Damage” in this Convention is defined only

in relation to realized outcomes for people and property, rather than potential outcomes caused by the

1A more detailed analysis of these laws can be found in Akers (2012).
2The “Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and

Other Celestial Bodies.”
3The “Convention on International Liability for Damage Caused by Space Objects.”
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environment. Additionally, the Convention places liability for such damages on the launching state rather

than the launching entity. This has motivated nations like the US to require satellite owners insure their

satellites, with the federal government indemnifying losses beyond a certain amount. The EU has different

insurance requirements, with a similar motivation. There is no liability attached to producing debris in orbit,

only to attributable damages. Liability extends to damage to people or property caused by re-entry. Such

attribution is difficult in space, where damages may be caused by difficult-to-detect fragments of unknown

origin.

1975 Registration Convention The Registration Convention4 requires nations to register space

objects launched from or by that nation with the UN Secretary-General. The responsibility for ensuring

compliance lies with the launching state, with the UN being responsible for integrating all the registrations

and publishing a publicly available international registry of objects in orbit. The Convention only requires

basic orbital information to be provided: orbital parameters to ascertain the object’s initial path, and the

general function. It does not require more detailed information, such as orbit changes or satellite positions,

or even continuous updates. The Convention does not offer a deadline by which a launched object must be

registered, or specify a penalty or enforcement mechanism for noncompliance.

2007 COPUOS Guidelines The COPUOS Guidelines5 are seven nonbinding guidelines for

mitigating artificial space debris. This was the first international treaty to recognize the problem of orbital

debris, though it is unenforceable and only focused on technical mitigation practices rather than economic

control measures. Senechal (2007) discusses some features that an enforceable international space debris

convention should possess; the COPUOS guidelines are a step in this direction, but they do not contain the

kinds of clear definitions and enforceable provisions required.

In general, the legal doctrine of nemo dat quod non habet (“no one gives what he doesn’t have”)

means that the Outer Space Treaty prevents states from issuing rights over orbital paths. Since they lack

sovereignty in space, states do not have rights to give6. States retain their authority over launches within

4The “Convention on Registration of Objects Launched into Outer Space.”
5The “Committee on the Peaceful Uses of Outer Space (COPUOS) 2007 Nonbinding Guidelines for Space Debris Mitigation.”
6Salter and Leeson (2014) argue that this poses no difficulty to efficient decentralized orbit use management, as privately enforced
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their borders, and satellites operated by firms within their borders.

E.2 US institutions regarding space traffic control

International law places responsibility for objects launched to space on the nations from which

the objects are launched and the nations in which the launching entities are registered. This means that

understanding the legal status of space objects also requires some background on national laws. A majority

of currently-operational satellites were launched from the United States, Russia, and China. In this section,

I focus on institutions in the United States.

In the US, the Federal Aviation Administration’s Office of Commercial Space Launch handles issues

related to launches and reentry, including issuing launch permits. The Department of Commerce currently

regulates remote sensing satellite systems, with a focus on controlling the resolution and coverage of images

that are sold. The DOC is set to take control of regulating on-orbit activities by US entities over the next two

years. The FCC regulates satellite activities by US telecom entities through radio spectrum controls. Traffic

management operations so far have therefore been limited to controlling launches or operations by entities

primarily based within a country’s national borders - for example, the FCC can use its control of spectrum

rights to deny service to poorly-behaving telecom operators who want to provide service to North America,

but have no leverage over providers who are interested in serving China. The patchwork of laws around

the world has already led some firms to evade regulation in their home area by launching from another (for

example, Dvorsky (2018)). Space Policy Directive-3, a presidential memorandum issued in June of 2018,

directs federal agencies to cooperate in developing a framework for a national space traffic management

policy centered on a new object tracking infrastructure to better predict the aggregate collision rate and

coordinate collision avoidance maneuvers.

property rights have arisen in other common resource settings on Earth. Weeden and Chow (2012) offer suggestions guided by

Ostrom’s principles of commons management for developing decentralized protocols for orbit use. An interesting question, not

pursued in detail here, is the degree to which physical dynamics allow cooperative mechanisms to operate. Section D.7 in the

Appendix examines the stability of cooperation with debris removal plans.
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E.3 The militarization of space

Military use of space accounts for over 10% of known active satellites in orbit Union of Concerned

Scientists (2018). Although I focus on commercial orbit use with no reference to military use, some

understanding of military incentives is necessary to place military use in the appropriate context. Sweeney

(1993) describes some of generic logic for the effects of national security concerns on nationally optimal

depletable resource extraction, whereby the socially optimal extraction rate may exceed the privately

optimal extraction rate. Similarly, national security concerns may drive a national fleet planner to launch

more than their national space sector would.7

Anti-satellite missile uses can trigger Kessler Syndrome. The space traffic control policies described

here are not designed to control anti-satellite missile use. International agreements around space traffic

control in the future are likely to be shaped in large part by the military stances of major space-faring

nations, most notably the United States, Russia, and China. The current lack of binding international space

traffic agreements is partly due to a lack of science and consensus around how such controls should be

designed and why, but also partly due to military-related incentives facing the governments of space-faring

nations which would be party to such agreements.

Article 4 of the Outer Space Treaty declares that state parties “undertake not to place in orbit

around the Earth any objects carrying nuclear weapons or any other kinds of weapons of mass destruction,

install such weapons on celestial bodies, or station such weapons in outer space in any manner.” It also

forbids establishing military installations, conducting weapons tests, or any other non-peaceful activities

on the Moon and other celestial bodies. Despite these provisions, the Outer Space Treaty does not

explicitly prohibit using near-Earth space for reconnaissance, terrestrial warfare coordination, or even

7The depletable resource case may be more apt than the renewable resource one for some orbital regimes, particularly higher-

altitude ones such as GEO or high-Earth orbits. Natural rates of orbital decay in these regimes can be on the order of millennia

- long enough that Kessler Syndrome without removal technologies can render them effectively unusable (the orbital volume

“completely extracted”) for economic purposes.
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outright conflict so long as “weapons of mass destruction” are not used in orbit. The ongoing militarization

of space has therefore involved these uses, with the US government being the largest such user of orbital

space. The US government has not yet supported international treaty efforts to limit the militarization of

space. Shimabukuro (2014) offers an explanation for the lack of more international regulation on space

militarization in light of rising tensions between the US and China. The core of that explanation is that the

US benefits from high ambiguity over acceptable uses of outer space given the US’s high level of military

dependence on space systems. This allows the US to induce its adversaries to spend ever-increasing amounts

on developing comparable space capabilities, potentially collapsing their warfighting capabilities without a

battle.



Appendix F

Full proofs for Chapter 4

F.1 Derivation of the optimal launch rate

In this section we derive the equations characterizing the planner’s launch rule, equations 4.9 and 4.10.

Period t values are shown with no subscript, and period t+1 values are marked with a ′, e.g. St ≡ S,St+1≡ S′.

For notational simplicity, we keep the economic parameters are constant over time. The fleet planner’s

problem is

W (S,D) =max
X≥0
{πS−FX +βW (S′,D′)} (F.1)

s.t. S′ = S(1−L(S,D))+X (F.2)

D′ = D(1−δ )+G(S,D)+ γA+mX . (F.3)

The fleet planner’s launch plan will satisfy

X∗ : β [WS(S′,D′)+mWD(S′,D′)] = F, (F.4)

that is, the planner will launch until the marginal value to the fleet of a new satellite plus the marginal

value to the fleet of its launch debris is equal to the launch cost.

Assuming an optimal policy function X∗ = H(S,D) exists and applying the envelope condition, we

have the following expressions for the fleet’s marginal value of another satellite and another piece of debris:

WS(S,D) = π +β [WS(S′,D′)(1−L(S,D)−SLS(S,D))+WD(S′,D′)GS(S,D)] (F.5)

WD(S,D) = β [WD(S′,D′)(1−δ +GD(S,D))+WS(S′,D′)(−SLD(S,D))] (F.6)
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Rewriting equation F.4, we have

WS(S′,D′) =
[

F
β
−mWD(S′,D′)

]
(F.7)

Plugging equation F.7 into equations F.5 and F.6,

WS(S,D) = π +F(1−L(S,D)−SLS(S,D))−βWD(S′,D′)[m(1−L(S,D)−SLS(S,D))−GS(S,D)] (F.8)

WD(S,D) = (−SLD(S,D))F +βWD(S′,D′)[1−δ +GD(S,D)−m(−SLD(S,D))] (F.9)

Define the following quantities:

Marginal satellite return: α1(S,D) = π +(1−L(S,D)−SLS(S,D))F

Cost of launch debris’ collisions: α2(S,D) =−SLD(S,D)F

Growth-launch fragment balance: Γ1(S,D) = GS(S,D)−m(1−L(S,D)−SLS(S,D))

New fragments from current stock: Γ2(S,D) = 1−δ +GD(S,D)+mSLD(S,D).

These allow us to rewrite equations F.8 and F.9 as

WS(S,D) = α1(S,D)+βΓ1(S,D)WD(S′,D′) (F.10)

WD(S,D) = α2(S,D)+βΓ2(S,D)WD(S′,D′). (F.11)

As long as δ < 1, Γ2(S,D) 6= 0 ∀(S,D), allowing us to rewrite equation F.11 as

WD(S′,D′) =
WD(S,D)−α2(S,D)

βΓ2(S,D)
. (F.12)

Plugging equation F.12 into equation F.10, we get

WS(S,D) = α1(S,D)+βΓ1(S,D)
WD(S,D)−α2(S,D)

βΓ2(S,D)

= α1(S,D)+
Γ1(S,D)

Γ2(S,D)
(WD(S,D)−α2(S,D))

=⇒ WS(S,D) = α1(S,D)− Γ1(S,D)

Γ2(S,D)
α2(S,D)+

Γ1(S,D)

Γ2(S,D)
WD(S,D) (F.13)
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Iterating equation F.7 one period backwards and plugging it into equation F.10, we get

F
β
−mWD(S,D) = α1(S,D)− Γ1(S,D)

Γ2(S,D)
α2(S,D)+

Γ1(S,D)

Γ2(S,D)
WD(S,D)

=⇒ WD(S,D) =

[
F
β
−α1(S,D)− Γ1(S,D)

Γ2(S,D)
α2(S,D)

][
Γ1(S,D)

Γ2(S,D)
+m

]−1

. (F.14)

Substituting in the forms for α1(S,D),α2(S,D),Γ1(S,D), and Γ2(S,D), equation F.11 yields equation

4.9 and equation F.14 yields equation 4.10.



Appendix G

Estimation details

G.1 Measurement error in satellite and debris counts

Limitations of sensor technology suggest that the debris counts are lower-bound estimates. To the

extent that this biases the collision probability and debris counts downward, it will bias the estimated decay

rate, collision probability parameters, fragmentation parameters, and launch debris weakly downwards.

Since downward bias in the physical parameters makes collisions and missile tests appear to cause less

congestion than they actually do, the open access and optimal launch rates will be inflated.

Downward bias in the collision probability data will bias the economic parameter estimates weakly

downwards as well. This will to some degree offset the inflation in the launch rate caused by the physical

parameter underestimation, though the exact extent of the offset is not clear.

In general, measurement error in the collision probability data also causes the nonnegativity constraint

on the collision probability parameters (αSS and αSD) to bind in some bootstrap replications. This causes

issues, of the type described in (Ketz, 2018), in obtaining asymptotic standard errors.

G.2 Collision probability model misspecification

We assume that the collision probability model has constant parameters. Changes in patterns of

satellite placement, construction, and ownership structures lead to changes over time in the physical

primitives reflected in αSS and αSD. The “net” convexity or concavity of the time path of the primitives
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will determine whether the constant approximations over or understate the true time-varying parameters

in any period on average. A convex time path — low values initially and high values later on — will be

overestimated on average, while a concave time path — high values initially, with slow increases over time

— will be underestimated on average.

The misspecification causes two problems with simulation and inference. First, underestimation

will inflate launch rate projections and overestimation will deflate them. However, because the deflation

affects both open access and optimal launch rates in the same way, the simulated optimal satellite tax

will not be affected. Second, underestimation may cause the nonnegativity constraint on the collision

probability parameters to bind in some bootstrap replications, causing the same types of asymptotic issues

as measurement error.

G.3 Measurement error in returns and costs

We take the returns and costs of satellite ownership from the data used in Wienzierl (2018), which

aggregate revenues from all commercial satellites in orbit. By including more than just LEO satellites, the

direct returns and costs data overstate the returns to LEO paths. The economic parameter estimates therefore

reflect a “LEO share” coefficient on the revenue data between 0 and 1. The LEO share coefficient attenuates

the estimates of aL1, aL2, and aL3.

G.4 Returns to scale and economic misspecification

We assume that the LEO satellites aggregate in constellations with constant returns to scale.

Decreasing returns to scale will inflate the projected open access and optimal launch rates, while increasing

returns to scale will have the opposite effect. While I do not have detailed data on LEO constellation

revenues, historical returns and fleet sizes for GEO telecom satellites over 2000—2012 from the TelAstra

Communications Satellite Databases (TelAstra, Inc., 2017) offer suggest that both increasing and decreasing

returns to scale are plausible.
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The data contain returns and constellation sizes for the major commercial entities offering Fixed

Satellite Services (using GEO satellites) from 2000 to 2012. Selecting operators with both a constellation

size and a returns entry in each recorded period yields the 17 largest constellations in GEO, accounting for

approximately 68% of all satellites in GEO in 2009.
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Figure G.1: Trends in GEO satellite productivity and ownership.

Upper left: The natural log of satellite Total Factor Productivity.

Upper right: The revenue elasticity of satellites in a constellation, i.e. returns to scale from

satellite ownership.

Lower left: The average number of satellites in a GEO constellation over time.

Lower right: The Herfindahl-Hirschman Index for GEO satellite ownership. Higher HHI

values indicate more ownership concentration. The vertical black dashed line marks the merger

between Intelsat and PanAmSat, wherein Intelsat received all of PanAmSat’s satellites.

Standard errors in TFP and output elasticity estimates are shown as shaded regions.
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G.5 Projecting the launch constraint

To prevent the model from violating the limited availability of launches, we estimate the launch

constraint from the observed historical data and then project it forward. In each historical period, we

calculate the maximum number of satellites which can be launched as the cumulative maximum of launch

attempts (successes+failures). From the historical calculation, we project the launch constraint forward with

a linear time trend and an intercept. Table G.1 shows the estimated coefficients, and figure G.2 shows the

estimated and projected launch constraint time paths.

Launch constraint model parameters: Intercept Time trend

Parameter values: 30.13 12.5

Standard errors: 16.43 2.65

Table G.1: Parameter values from linear model of launch constraint. All values are rounded to two decimal

places. We estimate these coefficients using OLS on the historical launch constraint.
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Figure G.2: Launch constraint, observed and projected.

The black line shows the observed launch constraint (cumulative max of attempted launches).

The blue dashed line shows a linear projection of the launch constraint.

G.6 Sensitivity analyses of physical equation calibration

To study the sensitivity of our conclusions to estimated physical parameters, we conduct a sensitivity

analysis of the model simulations given different physical parameter values. We use a residual bootstrap

procedure to accomplish this.

First, we estimate equations 4.12 and 4.13 as described above. Then, we sample from the distribution

of residuals to generate “bootstrap worlds”. We add these residuals to the estimated models to generate

bootstrap world outcome variables. Finally, we re-estimate the model using the bootstrap world outcomes
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to generate alternate sets of physical parameter estimates, and simulate the model under a random sample

of those estimates. The procedure is described in Algorithm 4.

Algorithm 4: Residual bootstrap

1 Estimate equations 4.12 and 4.13, get residuals {eLt ,eDt}t .
2 Sample from distribution of residuals, {êi

Lt , ê
i
Dt}t .

3 Add sampled residuals to estimated models, generate “bootstrap world” outcomes {(StLt)
i,Di

t+1}t

4 Re-estimate equations 4.12 and 4.13 using {(StLt)
i,Di

t+1}t

One issue to note is that, because we estimate equation 4.12 with a constrained procedure and the

coefficients are near one of the constraint boundaries, the asymptotic properties of this procedure are

difficult to obtain. Since our goal is not asymptotic analysis of standard errors but rather to generate

alternate parameter sets in a principled way for counterfactual simulations, we select the main model

estimates as the mean of the bootstrap world parameters. This ensures that our sensitivity analysis selects

parameters around the main model estimates. Ultimately this is inconsequential for the outcomes of interest

— collision risk under open access and optimal management, and the resulting satellite tax — since the

outcomes are endogenous variables which satisfy economic conditions irrespective of the specific physical

parameter values. The physical parameter values affect the specific paths of launches, satellites, and debris,

but only such that the collision risk continues to satisfy the economic conditions. Figures G.3 and G.5

show bootstrapped sensitivity analyses of equations 4.12 and 4.13; Figures G.7 and G.8 show bootstrapped

projected paths of orbital aggregates under open access; and Figure G.9 shows the resulting bootstrapped

optimal satellite tax projections. Figures G.4 and G.6 show the distributions of bootstrapped parameter

estimates for equations 4.12 and 4.13.
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Figure G.3: Bootstrapped collision rate model projections.

Equation 4.12 projections generated from residual-bootstrapped parameter estimates.
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Figure G.4: Residual-bootstrapped parameter estimates for equation 4.12. The lack of asymptotic normality

reflects the estimation issues described above.
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Figure G.5: Bootstrapped debris law of motion model projections.

Equation 4.13 projections generated from residual-bootstrapped parameter estimates.
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Figure G.6: Residual-bootstrapped parameter estimates for equation 4.13. The issues in estimating α̂SS

and α̂SD propagate through to the distributions of β̂SS and β̂SD. The remaining parameter

distributions are not centered on the main model estimates due to ridge estimation bias.
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Figure G.7: Bootstrapped open access orbit use projections.

Open access orbit use projections generated from residual-bootstrapped physical parameter

estimates.
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Figure G.8: Bootstrapped optimal orbit use projections.

Optimal orbit use projections generated from residual-bootstrapped physical parameter

estimates.
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Figure G.9: Bootstrapped optimal satellite tax projections.

Optimal satellite tax projections generated from residual-bootstrapped physical parameter

estimates.


