Spring 5-1-2003

Cooling and Trapping of Atomic Strontium

Xinye Xu
University of Colorado Boulder, xyxu@jilau1.colorado.edu

Thomas H. Loftus
University of Colorado Boulder

John L. Hall
University of Colorado Boulder, jhall@jila.colorado.EDU

Alan Gallagher
University of Colorado Boulder

Jun Ye
University of Colorado Boulder, ye@jila.colorado.edu

Follow this and additional works at: https://scholar.colorado.edu/phys_facpapers

Part of the [Physics Commons](https://scholar.colorado.edu/phys_facpapers)

Recommended Citation
Xu, Xinye; Loftus, Thomas H.; Hall, John L.; Gallagher, Alan; and Ye, Jun, "Cooling and Trapping of Atomic Strontium" (2003).
Physics Faculty Contributions, 63.
https://scholar.colorado.edu/phys_facpapers/63

This Article is brought to you for free and open access by Physics at CU Scholar. It has been accepted for inclusion in Physics Faculty Contributions by an authorized administrator of CU Scholar. For more information, please contact cuscholaradmin@colorado.edu.
Cooling and trapping of atomic strontium

Xinye Xu, Thomas H. Loftus, John L. Hall, Alan Gallagher, and Jun Ye
JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440

Received August 6, 2002; revised manuscript received December 5, 2002

We present a detailed investigation of strontium magneto-optical trap (MOT) dynamics. Relevant physical quantities in the trap, such as temperature, atom number and density, and loss channels and lifetime, are explored with respect to various trap parameters. By studying the oscillatory response of a two-level $^1S_0-^1P_1$ 88Sr MOT, we firmly establish the laser cooling dynamics predicted by Doppler theory. Measurements of the MOT temperature, however, deviate severely from Doppler theory predictions, implying significant additional heating mechanisms. To explore the feasibility of attaining quantum degenerate alkaline-earth samples via evaporative cooling, we also present the first experimental demonstration of magnetically trapped metastable 88Sr. Furthermore, motivated by the goal of establishing the fermionic isotope 87Sr as one of the highest-quality, neutral-atom-based optical frequency standards, we present a preliminary study of sub-Doppler cooling in a 87Sr MOT. A dual-isotope (87Sr and 88Sr) MOT is also demonstrated. © 2003 Optical Society of America

1. INTRODUCTION

Alkaline-earth metal atoms possess versatile internal level structure and a diversity of naturally abundant isotopes, making these systems extremely useful for fundamental studies of Doppler and recoil-limited laser cooling, precision optical-frequency metrology, and ultracold collisions. Specifically, the zero-nuclear-spin isotopes are free from hyperfine structure and are thus ideal platforms for direct tests of Doppler cooling theory and quantitative studies of ultracold light-assisted collisions. In addition, the narrow intercombination transitions between singlet and triplet spin manifolds permit ultralow-temperature laser cooling and sympathetic cooling relatively hot 88Sr atoms with sub-Doppler-cooled 87Sr atoms. In Section 4 we describe the creation of a dual-isotope MOT for fermionic 87Sr and bosonic 88Sr.

As a first step toward studies of photon-free cold collisions and radio-frequency evaporation of Sr, Section 5 describes our efforts to trap 88Sr magnetically in the 3P_2 metastable excited state. Currently we find that, although the trap population, loading rate, and density scale are as expected, blackbody radiation associated with the present vapor-cell trap limits the trap lifetime to 40 ms. A beam-loaded apparatus operated at room temperature will extend the magnetic trap lifetime beyond several seconds.

2. DOPPLER COOLING 88SR IN A MAGNETO-OPTICAL TRAP

Figure 1 shows a simplified energy-level diagram for 88Sr. The $^1S_0-^1P_1$ transition [λ = 461 nm, transition linewidth (FWHM) = 32 MHz] is used to cool and trap 88Sr in a standard six-beam MOT. In this blue 88Sr MOT, atoms can leak out of the trap by radiatively branching from the 1P_1 state to the metastable 3P_2 state via the $^1P_1 \rightarrow ^1D_2 \rightarrow ^3P_2$ decay path. Atoms decaying to the

© 2003 Optical Society of America
A simplified diagram of the Sr-vapor-cell, $^1S_0-^1P_1$ MOT is shown in Fig. 2. Various experimental results reported in this article were obtained with appropriate modifications to this basic setup. The 461-nm cooling and trapping light is generated by frequency-doubling the output from a Ti:sapphire laser. The cooling laser detuning is controlled by a double-pass acousto-optic modulator (AOM1). The intensity is stabilized by a second AOM (AOM2). A third AOM (AOM3) provides an on-resonance probe beam for absorption measurements. The two repumping beams are produced by external-cavity laser diodes (ECLD), each locked to a stabilized reference cavity. Since the cooling transition linewidths of the alkaline-earth atoms are generally larger than those of the alkali-metal atoms, the magnetic quadrupole field gradient needs to be larger than the corresponding fields in alkali-metal MOTs. For the experiments reported here, we typically employ an axial field gradient (δB_z) of 60 G/cm.

In the absence of repumping lasers, the Sr-MOT loss rate R_L is approximated by 37,38

$$R_L = R_0 + \frac{I_t/2I_s}{1 + I_t/I_s + 4(\Delta/\Gamma)^2} A_{1P_1-^3D_2} B_{1P_1-^3D_2} \cdot$$

(1)

where R_0 is the loss rate caused by background gas collisions and the second term on the right-hand side of Eq. (1) gives the loss rate that is due to radiative decay from the 1P_1 state to the 3P_2 state. I_t is the total intensity of the six trapping beams, and Δ represents detuning. $I_s = 43$ mW/cm2 is the saturation intensity of the $^1S_0 \rightarrow ^1P_1$ transition (such that $\Omega^2 = \Gamma^2/2$, Γ being the Rabi frequency), and $\Gamma/2\pi = 32$ MHz is the transition linewidth. For Sr the radiative decay rate from the 1P_1 state to the 3P_2 state is $A_{1P_1-^3P_2} = 3.85(1.47) \times 10^3$ s$^{-1}$, and the predicted branching ratio from the 3P_2 state to the 3P_0 state is $B_{1P_1-^3P_0} = 0.33$. Figure 3 shows the measured 88Sr-MOT loss rate as a function of I_t at a fixed Δ. Here $\delta = \Delta/\Gamma = -40$ MHz, the axial magnetic field gradient δB_z was 53 G/cm, and the Sr vapor pressure p_{Sr} was 3.5×10^{-8} Torr (obtained at a cell temperature $T_c = 360$ °C). To determine the loss rate, trap filling is observed by measuring absorption of an on-resonance, low-intensity probe beam that is focused through the trap center. A given loading curve is then fitted by a single exponential function. Finally the loss rate as a function

![Fig. 2. $^1S_0-^1P_1$ vapor-cell Sr MOT. AOM, acousto-optic modulator; CCD, charge-coupled-device camera; PMT, photomultiplier tube; PD, photodiode; ECLD, external-cavity laser diode; PBS, polarizing beam splitter. Experimental results reported in this paper are obtained with appropriate modifications to this basic setup.](image)

3P_1 state are returned to the ground state, so the effective loss rate per 1P_1 atom is $\sim 1.29 \times 10^{3}$ s$^{-1}$, which is quite small (1:160,000) in comparison with the strong cooling transition rate of 2.0×10^{7} s$^{-1}$. Therefore 88Sr MOTs can be produced simply by using single-frequency cooling light at 461 nm. This capability is in contrast to all alkali-atom MOTs, in which repumping is an absolute necessity. To eliminate the 3P_2 state shelving loss, two repumping lasers, one at 707 nm and the other at 679 nm, are used to pump atoms from the 3P_2 state to the 3S_1 state. From the 3S_1 state, the atoms decay to the short-lived 3P_1 state, which then returns the atoms to the ground state. The 679-nm laser is used to prevent repumping leaks to the 3P_0 state. These repumping lasers increase the 88Sr-MOT density, the total number of atoms, and the trap lifetime typically by a factor of 10. The lifetime is then limited by Sr–Sr$^+$ collisions,27 so this enhancement factor is intensity-dependent.

![Fig. 3. Measured 88Sr MOT loss rate versus trapping-beam intensity for a fixed detuning of -40 MHz. Filled squares are data and the curve is a least-squares fit according to Eq. (1).](image)
of the trapping laser intensity is fitted by
\[R_L = R_0 + \Gamma_{p_1} - 3p_r I / (624 + 2I_0), \]
where \(\Gamma_{p_1} - 3p_r = A_{p_1} - 1p_0 B_{p_2} + p_r \). We find that
the fitted value of \(\Gamma_{p_1} - 3p_r = 1.29(0.04) \times 10^3 \text{ s}^{-1} \) is in
excellent agreement with the predicted rate \(\Gamma_{p_1} - 3p_r = 1.29(0.26) \times 10^3 \text{ s}^{-1} \). According to the fit in Fig. 3, \(R_0 \) is less than \(1 \text{ s}^{-1} \). In the absence of repumping, the
\(^{88}\text{Sr-MOT} \) lifetime is therefore dominated by decay to the
metastable dark state \(^3P_2\), and thus can be expressed as
\[\tau = 1.56(0.05) \times 10^{-3} \left(1 + \frac{1 + 4(\Delta I)^2}{I/I_o} \right) \text{ s}. \]

This result is in contrast to ordinary alkali-metal MOTs, where the lifetime is typically determined by the loss from background collisions.

On the basis of the loading curves and measured trap sizes, we can calculate the peak density \(n_0 \) from \(n_0 = -1/\sigma r^2 \pi \ln(I/I_o) \), where \(\sigma = 3\lambda^2/2\pi \) is the absorption cross section, \(r \) is the \(1/e \) atomic cloud radius, and \(I \) (\(I_o \)) is the probe-beam transmitted intensity when the MOT is switched on (off). The cloud density distribution is described by \(n = n_0 \exp(-r^2/\alpha^2) \). Figure 4(a) shows \(n_0 \) versus the trapping-beam intensity for \(\delta = -40 \text{ MHz}, \) \(\partial B_z = 53 \text{ G/cm}, \) and \(\partial \text{Sr} = 3.5 \times 10^{-8} \text{ Torr} \) under the condition of no repumping lasers. Under these conditions, the intensity that optimizes \(n_0 \) is \(\sim 20 \text{ mW/cm}^2 \).

For intensities below (above) this value, \(n_0 \) decreases (plateaus). These results can be understood in terms of the competition between the trap loss rate (as shown in Fig. 3) and the trapping-beam capture velocity \(v_c \). Specifically, as the trapping-beam intensity increases, both \(R_L \) and \(v_c \) increase while the cloud size remains essentially constant, leading to a peak density that is weakly dependent on the intensity above a critical value. This argument can be solidified with a simple theory.

The solid curve in Fig. 4(a) shows a theoretical prediction based on
\[n_0 = L/(R_L \pi \alpha^2 r^3), \]
where \(L = 0.5n_0V_{\alpha^2} \) \(\times \) \(v_c^3 (m_{\alpha^2}/2B_T)^{3/2} \) is the loading rate, \(T_v \) is the vapor cell temperature, \(n_{Sr} \) is the \(\text{Sr} \) background vapor density, \(m_{Sr} \) is the \(\text{Sr} \) mass, and \(V = 4\pi r^3/3 \) is the capture volume, with \(r \) being the \(1/e \) trapping-beam radius (~5 mm). \(v_c \) is obtained by numerically modeling the one-dimensional capture process for \(\text{Sr} \) atoms.4 Figure 4(b) shows the trap peak density as a function of the trapping-laser detuning for \(I = 40 \text{ mW/cm}^2 \), \(\partial B_z = 62 \text{ G/cm} \), and \(\partial \text{Sr} = 3.5 \times 10^{-8} \text{ Torr} \), in the presence (data in filled circles) and absence (data in filled squares) of repumping lasers. Solid curves in the figure show theoretical predictions based on the model described above. Clearly there is an optimal detuning, \(\sim 45 \text{ MHz} \), for the maximum trap density. As the detuning increases, the loss rate decreases while the capture velocity first grows and then decreases, as deceleration of atoms in the trapping region becomes less efficient. We find the optimal detuning of about 45 MHz is the same with or without repumping lasers.

However, the density is increased by a factor of 10 when the repumping lasers are present. In Fig. 4 the calculated results based on the simplistic one-dimensional model agree only qualitatively with the measured trap densities. The model, however, does reproduce the essential trends observed in the data.

Motivated by the data shown in Fig. 3, we optimized the operation of the \(^{88}\text{Sr MOT} \) by adding appropriate repumping lasers. Figure 5 illustrates improvements in the trap lifetime and the atom number, both by a factor of 10, as a result of the two repumping lasers employed. The data were obtained by using trap fluorescence to measure trap loading curves under the following conditions: \(I = 27 \text{ mW/cm}^2, \) \(\delta = -46 \text{ MHz}, \) \(\partial B_z = 44 \text{ G/cm}, \) and \(\partial \text{Sr} = 2.1 \times 10^{-8} \text{ Torr} \).

Given the atomic two-level-like structure, the \(^{88}\text{Sr} \) \(^1\text{S}_0 \) \(-^1\text{P}_1 \) MOT provides an ideal system for testing Doppler cooling theory. By monitoring the absorption signal of a focused probe beam positioned a half radius from the center of the trap, we measured the step response of center-of-mass trap oscillations produced by a chopped

Fig. 4. Dependence of the \(^{88}\text{Sr MOT} \) density on (a) trapping-beam intensity and (b) trapping-beam detuning. Theoretical predictions are shown as the solid curves.

Fig. 5. Effect of the repumping lasers on the \(^{88}\text{Sr MOT} \) population and lifetime for \(I = 27 \text{ mW/cm}^2, \) \(\delta = -46 \text{ MHz}, \) and \(\partial B_z = 44 \text{ G/cm} \). \(N_{ss} \) is the steady-state MOT population \((\times 10^{-7}) \). The numbers in parentheses are the corresponding trap lifetimes.
push beam aligned perpendicular to the probe beam in
sured beam intensity and (b) detuning as determined from the mea-
Fig. 6. Damped 88Sr MOT oscillation signals during a pushing-
oscillation as it approaches equilibrium. We can express
center-of-mass is displaced (returns to its original posi-
In (a) the measured slope is 0.076 (0.005) while the theoretical
slope is 0.0036 (0.0007) mK/(mWcm2).

Predictions based on Doppler theory are shown as dashed curves.

To date, highly stable optical-frequency standards have
m Sr
ranging

2, the cloud temperature \(T \) can be determined from \(\kappa \) and the trap
size. These results are shown in Fig. 7 for \(\delta = -40 \) MHz, \(p_{\text{Sr}} = 3.5 \times 10^{-8} \) Torr, and \(a_{Bz} \) ranging from 35 G/cm to 80 G/cm. Temperatures obtained with
this procedure were independently verified at the level of
10% with a cloud-expansion technique. Additionally we
find that for a given intensity, the measured temperature is independent of \(a_{Bz} \).

For comparison the Doppler cooling limit is also displayed in the figure. The Doppler
limit is expressed as

\[
T_D = \frac{k \Gamma}{8k_B} \left(\frac{1}{T} \right) \left(\frac{I}{|\Delta|/T} \right)^2.
\]

On the basis of this expression, the data shown in
Fig. 7(a) are fitted by \(T = T_0 + a I_t \). From the fit we find
\(T_0 = 1.77(0.15) \) mK, \(a = 0.076(0.005) \) (mKcm2)/mW; the corresponding theoretical values are
\(T_0 = 1.11(0.22) \) mK and \(a = 0.0036(0.0007) \) (mKcm2)/mW. Therefore, while the measured temperature is close to the predicted values in the low-intensity limit, it rises much faster with intensity than Doppler theory predicts, by more than a factor of 20. As shown in Fig. 7(b),
we find that as \(|\Delta| \) decreases the measured temperature increases rapidly compared to the Doppler predictions, especially in the region below 40 MHz. Here \(I_t = 27 \) mW/cm2 and \(a_{Bz} = 53 \) G/cm. By analogy to Eq.
(2), we fit the data to \(T = c|\delta| + d/|\delta| \), where \(c \) and \(d \) are two fitting parameters. From the fit, \(c = -0.00014 \) (0.00364) mK/MHz and \(d = 189(6) \) mK MHz; in essence
\(T \propto 1/|\delta| \). The corresponding theoretical values are \(c = 0.0239(0.0048) \) mK/MHz and \(d = 10(2) \) mK MHz.

Thus the measured intensity and detuning dependence both deviate severely from Doppler theory. Combining
these observations of trap dynamics and temperature, we conclude that the cooling rate (represented by the damping coefficient) predicted by Doppler cooling theory agrees well with experimental results, but the heating rate does not. We are currently investigating possible causes for the extra heating effects.

3. SUB-DOPPLER COOLING 87Sr IN A MAGNETO-OPTICAL TRAP

To date, highly stable optical-frequency standards have
been demonstrated by using the intercombination lines in
even-isotope alkaline earths. In order to reach \(\mu \)K

\(\delta \), the system becomes rather complicated. Additionally, the corresponding optical transition linewidths are always above the hertz level and are sensitive to cold-
collision shifts. However, in the fermionic alkaline-earth ^{87}Sr, there is an extremely stable and narrow optical transition, $^{1}\text{S}_0(F=9/2) - ^{3}\text{P}_0(F'=9/2)$, with a line-width of ~1 mHz, which is far less sensitive to external electromagnetic fields and cold-collision shifts. (Note that the collision shift is usually scaled by the relevant transition linewidth.) When considering a Lamb–Dicke regime for these neutral atoms using a magic wavelength for a far-off-resonance lattice trap, the insensitivity to the light polarization of the $^1\text{S}_0 - ^1\text{P}_1$ states will be invaluable in practice and important for clock accuracy. Furthermore, the temperature of ^{87}Sr may be reduced to tens of microkelvins by use of a single-stage, polarization-gradient cooling in a $^1\text{S}_0 - ^1\text{P}_1$ MOT.

Motivated by these system advantages, we have cooled and trapped fermionic ^{87}Sr by slightly modifying the ^{88}Sr MOT setup shown in Fig. 2. The atomic energy levels relevant to cooling and trapping of ^{87}Sr are shown in Fig. 8. Since there are magnetic sublevels in the ground $^1\text{S}_0$ state, sub-Doppler cooling is operative in a ^{87}Sr MOT. On the other hand, the Landé g-factor for the ground state is much smaller than those in alkali-metal atoms, leading to more efficient sub-Doppler cooling in the presence of applied magnetic fields.5–11 Figure 9 demonstrates that the ^{87}Sr MOT loss rate is also primarily determined by radiative branching from the $^1\text{P}_1$ excited state. Here the conditions are $\delta = -40$ MHz, $\partial B_z = 53$ G/cm, and $p_{\text{Sr}} = 5.6 \times 10^{-8}$ Torr ($T_c = 370^\circ$C). Fitting Eq. (1) to the observed loss rates, we find $\Gamma_{1\text{P}_1-3\text{P}_0} = 1.32(0.07) \times 10^3$ s$^{-1}$, in good agreement with the theoretically predicted value. However, for ^{87}Sr, a more elaborate scheme of repumping lasers (for example, using frequency modulation to broaden the repump bandwidth) must be employed to achieve efficient recycling. Figure 10(a) shows the measured ^{87}Sr MOT temperature as a function of the trapping beam intensity for a fixed laser detuning of $\delta = -40$ MHz. Figure 10(b) shows the measured temperature as a function of the laser detuning for fixed trapping beam intensities of $I_t = 48$ and 27 mW/cm2. In all cases, the magnetic field gradient is $\partial B_z = 53$ G/cm and $p_{\text{Sr}} = 5.6 \times 10^{-8}$ Torr. For comparison, dashed curves show the temperature dependence expected from Doppler theory. In both plots, sub-Doppler cooling is clearly revealed.

To perform these temperature measurements, we use a cloud expansion technique.7, 20 A 100-μm-diameter, on-resonance, 461-nm probe beam is sent through the center of the trap, and absorption of the probe beam is detected by a photodiode. Trap decay curves are recorded after the MOT is switched off. The data are then fitted with

$$f(t) = \xi_1 \exp \left(-\frac{\xi_2}{r_0^2 + 2v_{\text{rms}}^2 t^2} \right),$$

where ξ_1, ξ_2, and v_{rms} are three fitting parameters and $r_0 = (r_x r_y r_z)^{1/3}$, where r_x, r_y, and r_z are the 1/e radii of the cloud as determined from fits to images of the 461-nm trap fluorescence. From the fitting param-

Fig. 8. Hyperfine structure of the $^1\text{S}_0 - ^1\text{P}_1$ fermionic ^{87}Sr cooling and trapping transition. ω_L is the $^1\text{S}_0 - ^1\text{P}_1$ MOT cooling-laser frequency (detuning). The $^1\text{S}_0 - ^1\text{P}_1$ Einstein A coefficient is given in parentheses.

Fig. 9. Measured ^{87}Sr MOT loss rate versus trapping-beam intensity for $\delta = -40$ MHz. The solid curve is a least-squares fit according to Eq. (1).
4. DUAL-ISOTOPE MOT

Dual-isotope Sr MOTs offer the possibility for sympathetically cooling relatively hot 88Sr atoms with sub-Doppler cooling theory. In Fig. 10, according to the sub-Doppler cooling theory, we fit the data by $T = a(h\Gamma/2k_B)(\langle I / I_0 \rangle / (\langle I / \Gamma \rangle) + b$, where a and b are two fitting parameters. For Fig. 10(a) we find $a = 1.40(0.23)$ and $b = 0.041(0.13)$ mK. We have not yet obtained data in the low-intensity region; however, from the fit we expect temperatures near 40 μK when the intensity is minimized. We also note that this result is obtained in the presence of the MOT magnetic field. Figure 10(a) demonstrates the lowest temperature for alkaline-earth atoms achieved in a single cooling step at 400 μK, corresponding to an rms velocity of 20 cm/s. In Fig. 10(b), for the case of $I_1 = 48$ mW/cm2, $a = 2.46(0.28)$ and $b = -0.31(0.20)$ mK. For the case of $I_1 = 27$ mW/cm2, $a = 1.25(0.12)$ and $b = -0.016(0.060)$ mK. In the high-intensity case, observed temperatures are higher than the Doppler limit for detunings smaller than 40 MHz as the Doppler cooling mechanism begins to dominate the cooling dynamics.

Fig. 11. Image of 87Sr-88Sr fermion-boson, dual-isotope MOT. The two isotopes are deliberately separated in space for viewing clarity.

5. MAGNETICALLY TRAPPING 88Sr IN THE $^{3}P_2$ METASTABLE STATE

Since the 1S_0 ground state lacks useful magnetic substructure, 88Sr and 87Sr cannot be loaded into ground-state magnetic traps currently used for alkali atoms. In the case of 88Sr, the 1S_0 state completely lacks magnetic substructure, while in the case of 87Sr this structure arises through coupling to the nuclear magnetic moment and thus provides, for typically employed magnetic field gradients, extremely shallow magnetic traps. As was recently pointed out, however, magnetic trapping of the alkaline-earths should be possible by using the 3P_2 state (17-min radiative lifetime in the case of 88Sr) as an effective ground state. Moreover because of the large magnetic moment for these states [$3\mu_B$ for 3P_2 ($m = 2$)] and the radiative transfer of precooled atoms from the $^1S_0-^1P_1$ MOT to the 3P_2 state that exists naturally during typical MOT operations (see Fig. 12), such traps can be continuously loaded without having to produce and cool 3P_2-state atoms separately. A similar technique has been applied to Cr atoms.

Fig. 12. Partial 88Sr energy-level diagram showing transitions relevant to magnetic trapping in the 3P_2 state. The probing scheme is also shown, with a 707-nm probe laser and fluorescence collection at 688 nm and 689 nm. The inset presents the magnetic-trap loading and detection-timing diagram.
in the weak-field-seeking \(P_2 (m = 2, m = 1) \) states. At the end of the loading process, the 461-nm light is switched off by AOM2 within a few microseconds and atoms in the \(P_2 (m = 2, m = 1) \) states are trapped purely by the MOT magnetic quadrupole field. After time \(t_{MT} \), which is the magnetic trap holding time, the magnetic field is turned off within less than 100 \(\mu s \). A 1-cm \(\times \) 1-cm, on-resonance, 707-nm probe beam with an intensity of 0.22 mW/cm\(^2\) illuminates the atomic cloud 100 \(\mu s \) after the magnetic field is turned off. The induced fluorescence signal at 688 and 689 nm is then photon counted with a photomultiplier tube armed with a set of interference filters that transmit 688 nm and 689 nm and a color filter that blocks 461 nm. To account for the light-scattering background, we use two 200-\(\mu \)s counter gates. The first gate is turned on 100 \(\mu s \) after switching off the magnetic field, and the second gate is turned on 10 ms later, after the trapped atoms have completely decayed away from the detection region. During each gate, the probe beam is always switched on. The hold time \(t_{MT} \) between probing and the 108Sr MOT switch-off is then varied to map the magnetic-trap lifetime and population.

The magnetic-trap depth is expressed as \(T_{MD} = g_2 (2 \mu \text{B}_m B_m/k_B) \), where \(g_2 = 1.5 \) for the \(P_2 \) state and \(B_m \) is the magnitude of the maximum closed-contour of the magnetic field. Figure 13 presents magnetic-trap lifetime measurements for two different values of \(p_{Sr} \) and the following conditions: \(T_{MD}(m = 2) = 14 \text{ mK} \) and \(T_{MD}(m = 1) = 7 \text{ mK} \) with the magnetic field gradient of 79 G/cm and a \(^1S_0 - ^1P_1 \) MOT temperature of \(T_{MOT} = 5 \text{ mK} \). The magnetic-trap lifetime is obtained by an exponential fit to the measured decay curves. As the Sr background vapor density varies from \(5.5 \times 10^8 \text{ cm}^{-3} \) to \(1.4 \times 10^8 \text{ cm}^{-3} \), the corresponding magnetic-trap density changes from \(2.3 \times 10^6 \text{ cm}^{-3} \) to \(3.1 \times 10^5 \text{ cm}^{-3} \), but the \(P_2 \) trap lifetime does not change significantly; for both data sets, the lifetime is \(\approx 40 \text{ ms} \). Thus this unexpectedly short lifetime does not appear to depend on the Sr vapor pressure, the trapped-atom density, or collisions with Sr atoms from the initial MOT.

Figure 14 shows the normalized initial number of magnetically trapped atoms versus the ratio of the magnetic-trap depth over the \(^1S_0 - ^1P_1 \) MOT temperature. This result agrees with expectations based on loading a Maxwell–Boltzmann energy distribution into a trap of depth \(k_B T_{MD} \) [the solid curve in Fig. 14(a)]. Here the normalized initial number \(N_{\text{norm}} \) of trapped atoms is given by

\[
N_{\text{norm}} = \text{Erf} \left(\frac{T_{MD}}{T_{MOT}} \right)^{1/2} - 2 \left(\frac{T_{MD}}{T_{MOT}} \right)^{1/2} \exp \left(-\frac{T_{MD}}{T_{MOT}} \right),
\]

where \(\text{Erf}[x] \) is the error function. However, we find no clear evidence for a dependence of the magnetic-trap lifetime on the ratio of \(T_{MD}/T_{MOT} \), as shown in Fig. 14(b).

Given the relatively high vapor-cell temperature of 360 °C, one must consider blackbody-radiation-induced transitions to nearby excited states as a possible source of \(P_2 \) magnetic-trap loss. Here the relevant excitation rate \((R_B) \) is given by

\[
R_B = \Gamma_1 \exp \left(-\frac{\omega_1}{k_B T_B} \right),
\]

where \(\omega_1 (\lambda_1) \) is the transition frequency (wavelength), \(\Gamma_1 \) is the Einstein A coefficient, and \(T_B \) is the blackbody temperature. In \(^{88}\text{Sr} \), transitions from the \(P_2 \) state to the \(5s4d \) excited-state manifold (\(\lambda \approx 3 \mu \text{m} \)) are especially relevant to magnetic-trap loss. In particular, Fig. 15 shows three possibilities wherein \(P_2 - 4d^3D \) blackbody-induced absorption processes depopulate the magnetic trap. In Fig. 15(a) excitation of the

6. CONCLUSIONS
We have investigated the dynamics of the 88Sr MOT in detail, and have found that the cooling rates agree well with Doppler cooling theory, while the heating rate is higher than theoretical predictions. We find that an optimal intensity and detuning can maximize the trapped-atom density in a Sr MOT, and the lifetime and number of trapped atoms in the 88Sr MOT can be increased by a factor of 10 by employing two repumping lasers. In the 87Sr MOT, we have also observed the lowest temperature for alkaline-earth atoms using a single cooling stage in which polarization-gradient cooling is effected by the presence of a nuclear-spin-originated magnetic degeneracy in the ground state. We will continue to explore the prospect of a high-quality, optical-frequency standard based on cold 87Sr atoms. In addition, by magnetically trapping 88Sr in the metastable $3P_2$ state, we have made the first magnetic trap for alkaline-earth atoms. The surprisingly short trap lifetime is attributed to blackbody-radiation-induced transitions. In future beam-loaded trap experiments, sub-Doppler cooling based on the radiatively closed $(5s4d)^3D_3-(5s5p)^3P_2$ transition can be applied, followed by radio-frequency evaporative cooling. One target is quantum degeneracy in the $3P_2$ metastable state. Another target is the production of an ultracold sample in a lattice-bound Lamb–Dicke regime for the development of an optical-frequency standard. We plan further polarization-gradient cooling measurements in the 87Sr MOT through use of the intercombination, narrow-line transition, investigating various approaches to the quantum degeneracy. Finally we will study cold collisions using ultracold and dense Sr atoms in both the ground and metastable $3P$ states.

ACKNOWLEDGMENTS
We gratefully acknowledge stimulating discussions with U. Sterr, C. Oates, and T. Ido. This work is funded by the National Science Foundation, the Office of Naval Research, and the National Institute of Standards and Technology. T. H. Loftus appreciates support from the National Research Council.

Jun Ye may be reached by e-mail at ye@jila.colorado.edu.

REFERENCES

