Spring 1-1-2015

The Marginal Edge of Learning Progressions and Modeling: Investigating Diagnostic Inferences from Learning Progressions Assessment

Ruhan Circi Kizil

University of Colorado Boulder, ruhan.circi@colorado.edu

Follow this and additional works at: https://scholar.colorado.edu/educ_gradetds

Part of the Educational Assessment, Evaluation, and Research Commons

Recommended Citation

https://scholar.colorado.edu/educ_gradetds/75

This Dissertation is brought to you for free and open access by School of Education at CU Scholar. It has been accepted for inclusion in School of Education Graduate Theses & Dissertations by an authorized administrator of CU Scholar. For more information, please contact cuscholaradmin@colorado.edu.
The Marginal Edge of Learning Progressions and Modeling: Investigating Diagnostic Inferences from Learning Progressions Assessment

by

Ruhan Circi Kizil

B.S., Bogazici University, 2005

M.S., Bogazici University, 2010

A Dissertation

Submitted in Partial Fulfillment of the Requirements for the

Doctor of Philosophy

Research and Evaluation Methodology Program

in the Graduate School of Education

University of Colorado at Boulder

2015
This dissertation entitled:
The Marginal Edge of Learning Progressions and Modeling: Investigating Diagnostic Inferences
from Learning Progressions Assessment written by Ruhan Circi Kizil
has been approved for the School of Education
Department of Research and Evaluation Methodology

Dr. Derek C. Briggs

Dr. Lorrie A. Shepard

Dr. Andrew Maul

Dr. Erin M. Furtak

Dr. Michael Stallings

Date_____________

The final copy of this dissertation has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline.
Circi Kizil, Ruhan (Ph.D., Research and Evaluation Methodology)

The Marginal Edge of Learning Progressions and Modeling: Investigating Diagnostic Inferences from Learning Progressions Assessment

Dissertation directed by Dr. Derek Briggs

Abstract

Learning Progressions (LPs) are hypothesized pathways describing the development of students’ understanding. Although they show promise for informing decisions about student learning, and helping develop standards and curricula, attempts to validate LPs empirically have been virtually nonexistent.

The purpose of this dissertation is twofold: 1) to validate an LP by applying psychometric models and 2) to examine and compare these models and their results in terms of their applicability to that LP. I examine the information produced by Item Response Theory (IRT) models and Diagnostic Classification Models (DCMs) when applied to item responses from an assessment—composed of Ordered Multiple Choice (OMC) items—designed to measure an LP of Force and Motion. I apply the Partial Credit Model (PCM; Embretson & Reise, 2000), Attribute Hierarchy Model (AHM; Gierl, Leighton, & Hunka, 2006), and Generalized Diagnostic Model (GDM; von Davier, 2005) to the assessment data.

All three models in this study yield evidence that student item responses do not follow progressions given in the LP. Hence, the hypothesized LP, as well as the OMC items used to measure student understanding of that LP, should be reexamined. In particular, the assessment tasks and associated OMC items exhibit ceiling and floor effects that impair the models’ abilities to associate student responses LP levels.
Each model had unique limitations in terms of its applicability to the LP. The PCM model’s assumptions and its resulting item statistics were inappropriate, and could not be used to classify students into LP levels. In contrast, both the AHM and GDM models did classify students into latent classes, but they were still limited. The AHM’s estimation procedure, which relies on an artificial neural network approach, introduced problems, as did the overall fit of the model. The GDM is so complex that it is conceptually hard to understand and utilize, even though it did produce both item level statistics (unlike AHM) and student classifications.

Overall, this study provides insights into how to use psychometric modeling to inform an LP and LP assessment, as well as the viability of three models from two different frameworks in the context of an LP.
Dedication

To real family and Turkish tea.
Acknowledgments

I have received more support during the writing of this dissertation than can be acknowledge here. Despite this limitation, I would be remiss if I did not acknowledge the support I have received from my family, friends and mentors.

First, I wish to thank Dr. Derek Briggs for his generosity and his support at every moment of my graduate study. Without his contagious enthusiasm for psychometrics, his patience, and encouragement, I would not be able to forward in my career.

Second, I would like to acknowledge the endless support I have received from my family and husband. Without them this work would not be possible.

Third, I would also thank you my friends whose support and perspective have been invaluable. I am lucky to have encountered fellow students at the School of Education who view me a colleague, friend and a sister. These current and past students include: Nathan Dadey, Ben Domingue, Kate Allison, Jessica Alzen, and Jon Weeks. My friends who live oversea and outside the academia also gave me encouragement in my completion of this work, particularly Elif Altuntas.

Fourth, I would like to thank my committee members for their insight and dedication to make this work the best it could be.
Contents

Chapter

1. Introduction .. 1
 1.1 Introduction and Problem Statement ... 1
 1.2 Research Problem ... 10
 1.3 Research Questions ... 13
 1.4 Chapter Summary ... 14

2. Literature Review: Learning Progressions and Modeling 17
 2.1 Assessment for Diagnostic Purposes .. 17
 2.2 Learning Progressions ... 25
 2.2.1 Defining, Assessing and Using Strands .. 25
 2.2.2 Learning Progressions in the Large Scale Context ... 30
 2.2.3 Validity Argument for Learning Progressions .. 31
 2.2.4 Modeling Strand .. 36

3. Methodology ... 42
 3.1 The FM Learning Progression .. 43
 3.1.1 Ordered Multiple-Choice Items ... 44
 3.1.2 Basics of Data Set Analyzed in Current Study .. 47
 3.2 Modal (Simplistic) Approach ... 48
 3.3 Psychometric Models for Diagnostic Feedback .. 49
 3.4 IRT Modeling .. 52
 3.4.1 Partial Credit Model ... 57
 3.5 Diagnostic Classification Models (DCM) ... 63
 3.5.1 Probabilistic Models (DINA Example) .. 65
 3.5.2 General Diagnostic Model .. 68
 3.5.3 Pattern Recognition Models (AHM Example) .. 75
 3.6 Chapter Summary ... 86

4. Results ... 87
 4.1 Examination of Data .. 88
 4.1.2 Modal Classification Results ... 90
 4.2 Unidimensional Partial Credit Item Response Theory Model 91
4.2.1 Examination of Empirical Dimensionality ... 92
4.2.2 Item Parameter Estimation ... 97
4.2.3 Model Fit .. 102
4.2.4 Item-Person Map ... 105
4.2.5 PCM-based Classification into LP Levels .. 106

4.3 Attribute Hierarchy Model Results ... 108
4.3.1 Linear Hierarchy .. 108
4.3.2 Model Fit Results .. 110
4.3.3 Attribute Probability Estimation Results ... 112
4.3.4 Attribute Relationships ... 113
4.3.5 Distribution of Attribute Mastery with Different Cutoff Values 114
4.3.6 The Prediction Variance of Attribute Probabilities from ANNs 115

4.4 Generalized Diagnostic Model Results .. 118
4.4.1 GDM .. 118
4.4.2 Parameter estimates ... 120
4.4.3 Model Fit .. 123
4.4.4 Parameter Invariance ... 125
4.4.4 Relationship between Attributes ... 126
4.4.5 Classifications into Latent Classes ... 127

4.5 Comparison of Models ... 131
4.5.1 Comparison between AHM and Modal Classification ... 131
4.5.2 Comparison between GDM and Modal Classifications, AHM 133
4.5.3 Comparison of Person Parameter Estimates across Models 134

5. Discussion ... 138
5.1 Model Evaluations in the Context of FM LP Assessment .. 141
5.2 Inferences across Models ... 145
5.3 Limitations .. 149
5.4 Implications and Future Research ... 151
5.5 Conclusion .. 154

References .. 156

Appendix
A: Force and Motion Learning Progression ... 170
B: 16 Force and Motion Items ... 173
C: Earth and Solar System Learning Progression Levels and Descriptions 179
D: Summary of Results from Well-behaved Subset of Items ... 180
List of Tables

3.1. Descriptive Statistics for Each FM OMC Items .. 46
3.2. Descriptives and Reliability for OMC Items ... 48
3.4. Excerpt of the Q_r Matrix Associated with FM LP Attribute Hierarchy 81
3.5. Expected Response Patterns for Two OMC Items: Option Level 82
3.6. The Concept of Misfit with OMC Items ... 84
4.1. Mean Level Values of FM LP Assessment .. 88
4.2. Mean Total Score for Students Selecting Same LP Level Option in an Item 90
4.3. Basic FM LP Level Placement Results .. 91
4.4. Factor Loadings from Oblique Exploratory Factor Analyses for 1-Factor Structure 95
4.5. Factor Loadings from Oblique Exploratory Factor Analyses for 4-Factor Structure 96
4.6. Category Boundary Parameter Estimates of 16 Items ... 99
4.7. Descriptives of Correlations for Parameter Invariance across 100 Sampled Groups 104
4.8. The Category Difficulty Parameters for 11 Items ... 107
4.9. Descriptive Statistics for RCI Index ... 111
4.10. Example of Attribute Probabilities for Perfectly Fitting Response Patterns 113
4.11. Descriptive Statistics of Attribute Probabilities for Real Students 113
4.12. Correlations between Attributes ... 114
4.13. The Distribution of Levels with Different Cutoff Values ... 114
4.15. Correlations between Attributes across 100 ANN Trials .. 117
4.16. Example of AHM Derived LP Levels ... 118
4.17. Category Easiness Parameters for FM LP Items ... 121
4.18. Slope Parameters for Each FM LP Item .. 122
4.19. Item Fit Results for GDM. .. 124
4.20. Comparison of Model Fit of 4 skills GDM and PCM. ... 124
4.21. Descriptives of Item Parameter Correlations for GDM across 100 Pairs of Groups........ 125
4.22. Relationship between Attributes (GDM). ... 126
4.23. Percent of Students across 16 Possible Latent Classes. ... 128
4.24. Summary of Attribute Mastery Probabilities. ... 130
4.25. LP Level Placements with AHM. .. 132
4.26. Cross Examination of LP Level Classification (Modal and AHM) 132
4.27. Cross Examination of LP Level Classification (cont.) .. 133
4.28. Cross Examination of LP Level Classification (Modal and GDM) 133
4.29. Cross Examination of LP Level Classification (AHM and GDM) ... 134
4.30. Correlations of Person Estimates across Models. .. 136
5.1. Information Provided by Three Models. .. 141
D1.1. Category Boundary Parameter Estimates for 10 Items ... 180
D2.1. The Summary of Standard Deviations in Estimates across 100 ANN Trials for 10 Items. 181
D2.2. LP Level Placements with AHM Based on 10 Items.. 182
D2.3. Cross Examination of LP Level Classification Using 10 Items (Modal and AHM) 182
D3.1. Category Easiness Parameters for 10 Items. ... 183
D3.2. Slope Parameters for 10 Items. ... 183
D3.3. Percent of Students across 16 Possible Latent Classes for 10 Items. 184
List of Figures

1.1. A Short Version of FM Learning Progression ... 5
1.2. Sample OMC Item from FM Learning Progression .. 7
2.1. Relationship between the NCR (2001) Assessment Triangle and Four Strands of 22

3.1. Example OMC Item from FM Learning Progression ... 45
3.3. An Example of a Wright Map for the Rasch Model ... 56
3.4. A Simple 3-Attribute Hierarchy .. 75
3.5. Mechanism of Artificial Neural Network ... 77
4.1. Parallel Analysis Approach Scree Plot .. 93
4.2. FM LP Item 1 ... 100
4.3. Category Response Functions with Ordered Category Boundaries for Item 1 100
4.4. FM LP Item 15 ... 101
4.5. Category Response Functions with Reversed Category Boundaries for Item 15 101
4.6. Distribution of Correlations between Validation Samples across 100 Trials 105
4.7. Item-person Map for FM LP Items (regrouped items) .. 106
4.8. FM Learning Progression ... 109
4.9. Observed Distribution of the RCI for 16 FM OMC Items ... 111
4.10. Overlap of RCI Values between Randomly Generated Data and FM LP Data 112
4.11. Distribution of Marginal Attribute Probabilities .. 130
4.12. Relationship between Total Score and PCM Ability Estimates 134
4.13. Relationship between Total Score and AHM Attribute Estimates in Logits 135
4.14. Relationship between Total Score and GDM Attribute Estimates in Logits 135
4.15. Relationship between GDM and AHM Attribute Estimates in Logits 137
Chapter 1

Introduction

1.1 Introduction and Problem Statement

In response to the desire for students to build their knowledge and develop complex inquiry reasoning over the past two decades, the education community has developed new frameworks to better understand student learning and respond accordingly. Over the same period of time, in the field of psychometrics, models have been developed to extract detailed information about students’ strengths and weaknesses in a content domain. There can be a tension in the relationship between theories that posit complex sets of interrelated skills and psychometric models that necessarily make simplifying assumptions about these skills. That is, complicated statistical models used with assessments developed with restricted cognitive tasks are impractical, and similarly assessments which are developed under the guidance of learning theories with a detailed understanding of student learning but analyzed with models that are unable to provide detailed interpretation of the data are specious.

Learning progressions (LPs)\(^1\) have captured the attention of the education community in the past decade, especially among science and mathematics educators (e.g., Duschl, Maeng & Sezen, 2011; Learning Progressions in Science Conference (LeaPS), 2009; Foundations for Success: Report of the National Mathematics Advisory Panel, 2008), as helpful theoretical and hypothetical frames that show how student learning progresses across predefined developmental

\(^1\) The term ‘learning trajectory’ is used commonly in mathematics education literature while ‘learning progression’ is preferred in science education literature (Mosher, 2011).
levels (Corcoran, Mosher & Rogat, 2009). In theory at least, LPs can be used to provide insights into the evolution of a student’s learning process. These progressions provide a tool that can be used to track the advancement of the student’s understanding of a topic, from virtually no understanding (a novice) to a complex and sophisticated understanding (an expert). Learning progression level descriptors can be used to indicate the degree of sophistication of a student’s understanding.

To provide information about student understanding of a given concept, the instrument(s) used to observe and elicit information about student learning play a central role. These instruments need to facilitate the extraction of diagnostic feedback so that users understand the students’ current learning level and needs in order to progress to the next step. Thoughtfully designed assessments could serve this purpose (Steedle, 2008). These assessments are likewise important for collecting validity evidence on hypothesized learning progressions. However, the potential utility of LPs is balanced against the difficulties inherent in developing and modeling them. Particular methods are selected in this dissertation to investigate the latter by systematically examining and comparing the viability of two approaches; a) Item Response Theory (IRT) modeling, and b) diagnostic classification modeling (DCM). In the context of a previously established LPs in science, I examine whether the hypothesized levels of each LP align with students’ actual answers, and collect information on the quality of assessment items through the lens of different information provided by each psychometric model. I likewise examine the extent to which choices of different model specifications can lead to substantially different inferences about students’ skills. To provide an overview and motivation for this dissertation, I first provide an example of a learning progression with an overview of two
common modeling approaches. I conclude this chapter with the research questions that are the focus of this study.

Figure 1.1 illustrates a learning progression crafted around the content area: “Force and Motion” learning progression. The FM learning progression is the learning progression that I will examine in my dissertation. In their research, Alonzo and Steedle (2009) posited this learning progression by analyzing the science education research literature and relevant content benchmarks (i.e. eighth-grade students of Force and Motion content for top level of the learning progression and research literature reporting students’ ideas about force and motion as well as expert judgements for the lower levels). The learning progression is revised in an iterative process via cognitive interviews and analyses of student responses to preliminary versions of ordered multiple-choice and open-ended assessment items.

In the FM learning progression, the levels are defined with respect to the combination of four phenomena in the FM domain, a) Force: Situations in which a force is acting, and students are asked about the resulting motion, b) No Force: Situations in which there is no net force acting, and students are asked about the resulting motion, c) Motion: Situations in which an object is moving, and students are asked about the force(s) acting on the object, and d) No Motion: Situations in which an object is at rest, and students are asked about the force(s) acting on the object. In other words, the LP focuses on understanding of the reciprocal relationships between force and motion in a one-directional space (i.e., students are expected to consider only one-dimensional motion. In this case, force acting in the opposite direction is also required in the
items). FM LP has four levels\(^2\) and descriptions of students’ understanding of concepts at each level.

\(^2\) Alonzo and Steedle (2009) described additional two sublevels (2A and 3A) where students at a given level (e.g., Level 2 or Level 3) and students at the corresponding sublevel A (e.g., Level 2A or 3A) share the same underlying idea about the relationship between force and motion. Students at Levels 2 and 3 are described to have a more conventional understanding of “force” while students at sublevels present an “impetus view” of force. For the purpose of this study, I did not differentiate across levels and sublevels.
Figure 1.1. A Short Version of FM Learning Progression (adapted from Alonzo & Steedle, 2009).

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Student understands that the net force applied to an object is proportional to its resulting acceleration (change in speed or direction) and that this force may not be in the direction of motion.</td>
</tr>
<tr>
<td>3</td>
<td>Student understands that an object is stationary either because there are no forces acting on it or because there is no net force acting on it. Student has a partial understanding of forces acting on moving objects. Student recognizes that objects may be moving even when no forces are being applied; however, the student does not believe that objects can continue moving at a constant speed without an applied force. Student recognizes that there may be forces acting on an object that are not in the direction of its motion; however, he or she believes that an object cannot be moving at a constant speed in a direction in which a force is not being applied. Student believes that the object’s speed (rather than its acceleration) is proportional to the net force in the direction of its motion. Common Errors: • An object’s speed and direction are proportional to the nonzero net force acting on it.</td>
</tr>
<tr>
<td>2</td>
<td>Student believes that motion implies a force in the direction of motion and that nonmotion implies no force. Conversely, student believes that force implies motion in the direction of the force. Common Errors: • If there is no motion, there are no forces acting.</td>
</tr>
<tr>
<td>1</td>
<td>Student believes that force as a push or pull that may or may not involve motion Common Errors: • Forces are caused by living things. • Force is an internal property of objects related to their weight.</td>
</tr>
</tbody>
</table>
This learning progression maps a hypothesis about increasingly sophisticated understanding as a student learns about these key phenomena. Researchers specify student thinking, typical at each level, and include partial understanding and ‘common errors’ related to each level. This approach not only explains how new knowledge is incorporated into a student’s mental model, but also provides information about limitations in students’ understanding. It is hypothesized that when students transition to the next level, they are likely to have resolved these common errors.

Following Gotwals and Alonzo (2012), I describe any learning progression as having four interdependent strands; a) a well-defined construct and the conceptualization of student progress, b) assessments developed in relation to the learning progression, c) modeling and interpreting student performance on the assessments, and d) the use of the learning progression to support teaching and learning. Figure 1.1 exemplifies the first feature by defining the construct and providing a continuum with the levels for students’ progress in the FM domain. The next strand requires developing assessments that elicit students’ understanding in connection to the learning progression. This step provides tools to extract richer information on student learning as well as to place students into the levels of progression validly and reliably. Therefore, using different types of assessments and items becomes particularly important in the context of learning progressions. When the items in the assessments of learning progressions are constructed so that they are linked to the levels of a learning progression, patterns of student responses then provide information about what students know and can do relative to the learning progression (e.g., Briggs, Alonzo, Schwab & Wilson, 2006; Wilson & Sloane, 2000). Ordered multiple choice (OMC) items are distinctive tasks particularly well aligned with LP assessments. OMCs contain item options which reflect the different levels of a learning progression.
Returning to the FM example, Figure 1.2 illustrates an OMC item showing the correspondence between response options and FM LP levels.

Figure 1.2. Sample OMC Item from FM Learning Progression.

![Diagram](image)

Derek throws a stone straight up into the air. It leaves his hand, goes up through point A, gets as high as point B and then comes back down through A again.

12) Ignoring air resistance, what force(s) are acting on the stone when it is moving up through point A?

<table>
<thead>
<tr>
<th>Level</th>
<th>Force(s) Acting on the Stone</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Only gravity is acting on the stone</td>
</tr>
<tr>
<td>2</td>
<td>Only the force that Derek put on the stone is acting on it.</td>
</tr>
<tr>
<td>3</td>
<td>Both gravity and the force that Derek put on the stone are acting on it.</td>
</tr>
<tr>
<td>1</td>
<td>There are no forces acting on the stone.</td>
</tr>
</tbody>
</table>

Learning progressions are hypotheses about the nature of student learning, and as such, they are iterative. Following the development of a learning progression and corresponding assessment items, we need to answer the critical question of “how to model the data?” and “how to do it more efficiently?” The modeling strand has the potential to provide compelling information that can help to confirm or disconfirm the initial hypotheses used to develop the LP.

Psychometric modeling is important for learning progressions for two reasons: *a*) it allows us to make probabilistic inferences about unobserved – *latent* – states of student understanding, and *b*) it offers a systematic way to validate the learning progression with the help of a specified model and evaluation of its fit to data (Briggs & Alonzo, 2012). Determining a student’s position on an LP can help educators as well as the student to decide what skills they have mastered, and it also may provide some ideas for next steps that can be taken to progress to
the upper level. Collecting evidence to validate the learning progressions can help to better understand the hypothesized progression and the degree to which assessment tasks are able to provide evidence about student learning. This crucial modeling step is the focus of this study.

The difficulty in analyzing data produced by assessments developed based on learning progressions is well noted (e.g., Jin, Choi, & Anderson, 2009; Songer, Kelcey, & Gotwals, 2009). That is, modeling is complicated by (a) selecting the model that will be used to draw inferences about students’ locations on the learning progression, (b) deciding how students’ inconsistent patterns can be explained (c) evaluating model characteristics and model fit, and (d) understanding how results from the model can be used to refine the LP and its assessment tasks/items. As I will show in this study, the OMC item format, in particular, is complex and poses challenges for the modeling of LPs.

Although the interest around learning progression development gained much attraction following the publication of the National Research Council’s report *Knowing What Students Know* (NRC; 2001), it wasn’t until recently that implementation of serious psychometric modeling of LPs began. At present, this gap still continues today and accounts for the relatively small amount of work that applies measurement models to learning progression assessments. However, this scarcity of modeling approaches is exciting as well – it affords an opportunity to apply previously developed models in novel ways and develop new models.

In the current literature, there are two main frameworks that can be used to model the results of learning progression assessments. These two frameworks, latent trait models (e.g., IRT; van der Linden & Hambleton, 1997) and latent class models (e.g., DCMs; Rupp & Templin, 2008), make different assumptions about the structure of the
underlying latent ability or abilities that indicate where students are on the LP. Specifically, IRT assumes that the latent ability is a continuum, whereas DCM assumes that the latent ability is made up of separate discrete classes.

Nonetheless, both IRT and DCM models are essentially a similar set of statistical tools (Rupp & Templin, 2008) that can provide information about the performance of the students on an assessment. The main purpose of using diagnostic classification models is to classify students into levels of finely defined attributes directly, while the main purpose of IRT analysis is to specify the location of a student on a continuum with a criterion-referenced classification possibly following in a second step. Both models can be used to place the students into levels of learning progressions.

The approach taken in skill diagnosis using IRT models is similar to that used in standard setting procedures for large-scale assessments (Roussos, Templin, & Henson, 2007) in that the end result is a series of cut scores on unidimensional scales (Rupp, Templin & Henson, 2010). These cut-scores are established with the help of experts and statistical information about items and respondents. Then, students are classified into the categories based on their placement in relation to the cut scores (e.g., de la Torre & Karelitz, 2009).

Over the last decade, there has been an explosion of psychometric models that fall within a cognitive diagnostic framework (Rupp et al., 2010). The supposed promise of diagnostic models is that they are capable of communicating item response data in a more diagnostic way which highlights students’ weaknesses and strengths on the relevant latent discrete variables. With such a claim, it is natural to think that such models would be especially relevant in the context of assessment items created for a learning progression. Currently, there are only a few
unique attempts to model the learning progression data by the different diagnostic classification models (e.g., Briggs & Alonzo, 2012; West et al., 2012).

Neither IRT nor latent class models are a panacea, however. Diagnostic Classification Models (DCMs) have become increasingly popular but, they are frequently criticized for their complexity in estimation and interpretation (Wilhelm & Robitzsch, 2009). Because we model discrete latent traits, an increase in the number of distinct traits specified in any analysis can lead to a dramatic increase in computational burden. Additionally, some of the characteristics such as global model fit indices have not been developed thoroughly for DCMs. IRT models, particularly those from the Rasch family, can be used for diagnostic purposes (Wilson, 2005), but critics of use of IRT models in the learning progression context point out the poor alignment between the nature of the latent variable underlying progression (i.e., discrete nature) and the continuous latent variable assumption in IRT models (Briggs & Alonzo, 2012).

DCMs and IRT models differ in several ways and have their own pros and cons. There are few (see de la Torre, 2009, for an example) examples of studies comparing the results coming from both IRT and DCM frameworks with the same data, and in most cases these studies rely on simulated data. Hence, the issue of the usefulness of the multidimensional profiles estimated in the DCM over and above traditional scores has remained mostly unanswered. This dissertation is unique in this sense because it is premised on empirical data from assessment items developed together with a learning progression.

1.2 Research Problem

There are many choices for how to model data in order to obtain diagnostic information on students’ strengths and weaknesses. The choice regarding which model to use may depend on the intended use of learning progression, and can influence the development of the learning
progression. That is, the theory of LP and task design provides the framework for modeling the observations of student understanding and in turn, measurement models formalize the characteristic of underlying latent constructs. In this study, I use the Force & Motion (FM; Alonzo & Steedle, 2009) learning progression in which items are designed to map differences in the LP levels into the response options, OMC items.

As described above and again in greater in detail in Chapter 3, two related but different psychometric frameworks are possible for making diagnostic classifications from items to LP levels: IRT and DCM. For the purpose of this study, the Partial Credit Model (PCM; Masters, 1982) is chosen as an example of a model from the IRT framework, and the Attribute Hierarchy Model (AHM; Gierl, Leighton, & Hunka, 2007) as well as the General Diagnostic Model (GDM; von Davier, 2008, 2005) are chosen as examples of models from the DCM framework.

Partial Credit Model (PCM) is selected for both practical and theoretical reasons. This model provides a way for the analysis of polytomous items such that options of assessment items targeted specific LP levels can be placed along the learning progression. The presentation of the students' current proficiency levels versus all the item characteristics on an aggregated map helps to communicate the alignment between item options and LP levels. This mapping works as a tool to validate the LP framework and to refine the LP assessment itself.

Attribute Hierarchy Model (AHM) is selected as a pattern recognition model. In AHM, a student’s observed response pattern is judged relative to an expected response pattern with an artificial neural network approach under the assumption that the cognitive model proposed by learning progression is true. Pattern recognition analysis is used to estimate the probability of a student’s mastery of specific attribute combinations based on learning progression. The empirical
relationships between each of the attributes are examined for their alignment with the theoretical expectations in learning progression.

General Diagnostic Model (GDM) is selected due to its power to connect item level probability for polytomous items with discrete latent variables. It produces item level information as well as the strength of relationships between discrete latent variables corresponding to the skills in learning progressions. It also places students into the latent classes composed of a variation of the skills. Because it does not require any hierarchy across the latent variables, it provides evidence of non-hierarchical groups of latent classes in which students may reason with different combinations of skills across problem contexts.

These three models are the mathematical representations of the learning progression assessment data. Hence, it is important to have a systematic examination on the pertinence of the models. The methodical approach used in this dissertation is based on evaluation of appropriateness of the models based on the available tools before attempting the classification of students into the LP levels. While the final classification and its interpretation is an important product of psychometric analysis, when a model is assumed there are a number of psychometric assumptions and characteristics that need to be evaluated and addressed. Therefore, to examine the appropriateness of the models in the context of OMC based learning progression assessments, I repeated the specific steps used at each model.

a. Examination of the dimensionality
b. Examination of item parameter invariance
c. Model fit
d. Item parameter estimation
e. Attribute/skill mastery status estimation
These criteria are also critical in order to understand the benefits of different modeling approaches for applications in a large scale context including but not limited to the assessment development, item banking, computerized adaptive testing (CAT), and test equating. However, it is important to note that not all of the models provide all the information listed above. This may be due to the estimation approach taken in the modeling or current status of models which are still evolving. Consequently, I investigate all available information for a model and evaluate it before placing students into the LP levels.

This research expands our knowledge in empirically validating learning progressions using different models. It provides an opportunity to examine whether hypothesized LPs provide a valid and practically useful way of portraying the pathway of student learning and to investigate the quality of assessment items, as well. This research likewise provides insight for whether certain decisions made in LP modeling result in practically significant differences in inferences about students. Of particular interest are implications for model choice, such as whether certain models sufficiently provide diagnostic information in connection to learning progressions. Examining the results of empirical analyses by using these different methodologies with the assessments developed through the learning progressions has the potential to provide information which may better serve the purposes of extracting diagnostic information. In addition, differences between the results within different models can help further questioning among those who develop and use learning progressions.

1.3 Research Questions

The principal research question of this dissertation is “when we have OMC assessment items designed under a learning progression for diagnostic purposes, how should we go about modeling responses to them?” More specifically:
1. What information does each model provide to the researcher about the quality of learning progression hypothesis and assessment items?

a. What information is provided by the PCM model within the IRT framework about the quality of the LP and its assessment items?

b. What information is provided by the AHM and GDM within a DCM framework about the quality of the learning progressions and assessment items?

2. What are the qualitative differences (student classification) across different models?

a. How similar are the results of analyses for classification of students produced by AHM and GDM from diagnostic framework and PCM from IRT framework?

The theoretical framework provided by Briggs and Alonzo (2012) is promising for the analyses of learning progressions with ordered multiple choices, but it has yet to be extensively examined. In addition, at present there is not a comprehensive study to explore the comparability of models from the IRT and DCM frameworks for analyzing data from a small cluster of diagnostic LP assessment items. In sum, this dissertation study is poised to contribute to the expanding diagnostic assessment and modeling work by examining inferences from different frameworks and thereby informing the decision making process by developers and users of these assessments.

1.4 Chapter Summary

This dissertation is divided into four chapters, in addition to this introduction. Chapter 2 provides an overview of learning progression assessments as tools for diagnostic purposes and various applications and related concerns to the analysis of data from learning progression assessments. The chapter begins with changing use of assessments from providing normative information (Scott, 2004) to deliver feedback to teachers and students to modify instruction and
enhance learning (NCR, 2001; Black & Wiliam, 1998). This is followed by a presentation of four strands of learning progressions to categorize and describe the work done so far in science education. The chapter concludes with a separate review of modeling in learning progressions, as the focus of this dissertation, pointing to modeling as the critical, and least investigated, strand in the learning progression literature.

Chapter 3 provides an overview of the data used in this dissertation. It also presents two major modeling frameworks that can be used to extract diagnostic information tied to specific learning progressions – Item Response Theory (IRT) and Diagnostic Classification Models (DCMs) frameworks. It focuses on models which can be used for diagnostic purposes and presents the details of three models that I use in the current study. It starts with the description of unidimensional IRT models and their properties as well as underlying assumptions, then transitions to the IRT modeling practices in the context of learning progressions with a focus on PCM (Masters, 1982; Embretson & Reise, 2000). This is followed by description of DCMs as models specifically developed for multivariate classifications of respondents on the basis of hypothesized sets of discrete latent skills. The properties of two DMCs used in this dissertation are presented- GDM (von Davier, 2005) and AHM (Briggs & Alonzo, 2012; Gierl, Cui, & Hunka, 2007) with an extension to the polytomous items.

Chapter 4 begins with the exploratory analysis of the data via descriptive statistics and an examination of the classification of students into LP levels from a modal analysis. This is followed by analysis results to examine my first research question. I started with PCM analysis results. At the beginning of PCM section, special focus is given on the investigation of the dimensional structure underlying the Force and Motion (FM) learning progression assessment. I conducted parallel analysis and explanatory factor analysis to examine whether there is support
for selected models with different underlying assumptions. Note that the results from dimensionality analysis inform all models selected for the current study.

I continued with the PCM model fit and parameter invariance results. Then, I presented the parameter estimation results by highlighting the challenges and opportunities on how to place students into the LP levels in the context of OMC items of learning progression assessments. For AHM, I provide the description of the linear structure specified across attributes, and introduce a new person model fit which is adapted from original consistency index. I likewise investigate the relationship between attributes and provide results on classification of students into mastery status for each attribute. For GDM, I present item parameters estimates together with item fit statistics. I likewise present the results on the skill mastery probabilities. This is followed by the comparison of skill mastery probabilities from GDM with overall ability estimates from PCM and comparison of model fit across two models.

Chapter 5 presents a summary of findings from Chapter 4 and discusses the implications of these findings a) in the context of validation of learning progressions, b) in the context of policy determinations (i.e., using learning progressions at classroom level and/or at large-scale), and c) from a methodological perspective (i.e., the potential advantages and challenges of different modeling frameworks to analyze LP data). The chapter concludes with a discussion of future research directions and limitations of the study.
Chapter 2

Literature Review: Learning Progressions and Modeling

The use of learning progression assessments requires embracing alternative approaches to statistical modeling that can help to provide key stakeholders with the type of information that they need to improve learning and teaching. The premise of this dissertation is to address empirical questions that have yet to be answered. The study examines the viability of models from two different frameworks within a novel data context to draw conclusions regarding modeling learning progressions (LP) while also highlighting the opportunities and challenges emerging in the wake of such an examination. This chapter provides the background relevant to these questions. The first part of the chapter covers the notion of using assessments for diagnostic purposes. The second part describes operational concepts and research relevant to learning progressions. This chapter concludes with the modeling concerns for analyzing data from learning progression assessments in connection to both small scale and large scale assessments.

2.1 Assessment for Diagnostic Purposes

The incorporation of testing into education in the United States has a long history going back to at least the mid-nineteenth century (e.g., Gallagher, 2003; McArthur, 1983). It has been seen as a powerful tool for change in student learning, instruction, schools and systems (Herman, Dreyfus, & Golan, 1990). It has had two main functions which sometimes have overlapped:
sorting and selecting students through comparisons to one another, and improving the quality of education (Haertel & Herman, 2005).

Historically, large-scale assessments have been used to provide normative information about student academic achievement. Using normed-referenced standardized tests became a common practice starting in the 1920s and steadily increased over time (Scott, 2004). Tests have frequently been designed to rank order test takers along a bell curve (Zucker, 2003). That is, to compare students’ scores against a norm group (e.g., a nationally representative group) where one can only say student A is better than student B or, or that student A has scored higher than x percent of students who took the test (Ingram, 1985). One well-known example of these tests is the Iowa Test of Basic Skills, which was first administered in 1935 (Salkind, 2007) and used by most states until the No Child Left Behind Act was passed in 2001 (NCLB, 2001). Other commercial and internationally normed-referenced tests continue to be used nationally, such as the California Achievement Test, Comprehensive Test of Basic Skills, Metropolitan Achievement Test, and Scholastic Aptitude Test. The prevailing approach of testing practices remained normed-referenced until the 1970s. Two main limitations have been noted on the use of normed-referenced tests: potential deflection in instruction due to limiting curriculum to the expected content of the test, otherwise known as teaching to the test (Popham, 1999) and the impossibility of all students to place at the higher end of the distribution (Burley, 2002).

The desire to obtain richer data at the individual student level and give teachers more feedback on their students’ learning outcomes is rooted in “Bloom’s Taxonomy” (Bloom, Englehart, Furst, Hill, & Krathwohl, 1956). The idea of designing a test to show what students know without referring to a norm group led to substantial progress in the development and the use of criterion-referenced tests (Dziuban & Vickery, 1973). These tests allowed making
interpretations about student performance in terms of specific standards that are defined by a
domain of tasks within a specific content area that should be performed by the individual (Glaser
& Nitko, 1971). Standards have been used both in classrooms to guide day-to-day classroom
instruction and as broader large scale assessments for other purposes, including program
evaluation (e.g., Haertel & Herman, 2005). In the last decade, this shift in large scale testing,
especially to measure student mastery of specific curricular objectives, is partially due to the
NCLB law which pushed for criterion-referenced assessments. There has been a radical increase
in the number of tests used at the state level since NCLB was implemented in 2001 (NCES,
2005). This illustrated that large scale testing has likewise desired not just to determine how a
student score relates to others, but also what this student knows and can do. This shift in the
landscape of testing also headed to the more frequent assessment of students on more local
levels. A well-known example of criterion-referenced tests is National Assessment of
Educational Progress (NAEP). Even before NCLB, NAEP adapted the use of achievement levels
describing what a student in an achievement level knows and can do. Currently, there are three
cumulative achievement levels: Basic, Proficient, and Advanced, spanning all grades and
subjects (NAEP, 2012). Other examples of widely used international-comparison tests include
the Programme for International Student Assessment, the Progress in International Reading
Literacy Study, and the Trends in International Mathematics and Science Study (Giacomo,
Fishbein, & Buckley, 2012). Mostly, these tests are designed to enable comparisons between
larger units such as schools, states, and countries rather than examining skill profiles of
individual students. However, the results of these assessments have captured the interest of
politicians, educators, and researchers and have contributed to the development of tests to
provide feedback at the student level. Most recently, in order to support the implementation of
Common Core State Standards (CCSS), the Partnership for Assessment of Readiness for College and Careers (PARCC) has announced it will create assessments providing detailed information about what students know in Grades 2-8 (PARCC, 2013). That is, criterion referencing itself has constituted a part of a continuum towards more diagnostically-oriented assessments.

While the large scale attempts to provide more information on student learning via criterion-referenced tests and the diagnostic value of large-scale assessments created enthusiasm within the education community, they are challenged to provide little insight with respect to strengths and weaknesses of students. That is, because they are distal to teaching and learning (e.g., broad content coverage, less focus on determining specific reasons for student misunderstanding), an angle towards classroom assessment received more attention. Although the notion of classroom assessment traditionally grew out of the behaviorist view of learning and testing practices, more recently, it has been reconceptualized as a part of the learning process and teaching under the principles of cognitive and constructivist theories (Shepard, 2000). Recently, there has been increased discussion on how to link assessment with student learning and the use of assessment to provide feedback to teachers and students to modify instruction and enhance learning. In their highly influential study, Black and Wiliam (1998) concluded that there was a vast body of evidence on formative assessment leading to increased student learning. That is, they highlight that high quality formative assessment has a powerful impact on student learning and is one of the most important interventions for promoting high student performance. Following Sadler (1989), they focus on the significant role of feedback from assessment to compare the actual level of students’ performance to the desired level, and to engage in effective actions to reduce this gap (Wiliam, 2007; Wiliam, 2006). Current common understanding on formative assessment focuses on attending to student thinking, eliciting what they understand,
and using assessment tools to collect evidence which can be used to improve the current learning of students (e.g., Shepard, 2000; CCSSO, 2008). This understanding underlines the need of detailed and timely feedback for both students and teachers and use of a variety of assessment tools that are not necessarily tests.

Another document that has had a significant influence on current practices and research is the NRC report “Knowing What Students Know” (KWSK; NCR, 2001). The report argued for assessments that coordinated task design, psychometric modeling, assessment delivery, and psychological research, and also provided guidelines for the development and evaluation of such assessments. It introduced an assessment model which emphasized the need to incorporate cognitive theories into the development of assessments and to use evidence to support interpretations from observed performance. Also, it called for a “balanced assessment system” (p.221) of large scale and classroom assessments by highlighting new development in cognitive science, educational measurement, and technology.

Two examples of frameworks that coordinate various aspects of task design, psychometric modeling, assessment delivery, and psychological research are, “evidence-centered design” by Mislevy and his colleagues (2003) and the “BEAR assessment system” by Wilson (2005). Both have developed a conceptual approach to, and methodology for, test design. The first approach directly links test design to both evidentiary reasoning and general design science. The latter makes use of construct maps for the development of assessments and provides a guideline to analyze the observed scores as assessments outputs.

The call for assessments that incorporate cognitive theory has received considerable attention, especially in science and mathematics education. Assessments that are based on a model of cognitive development, of which learning progressions are an example, are grounded in
research on how students’ learning actually develops, rather than in traditional curriculum sequences or logical analysis of how learning components may fit together (Heritage, 2008).

The close alignment between learning progressions and the KWSK assessment model is evident in the ‘assessment triangle’ defined in KWSK (NCR, 2001). The assessment triangle shows three elements needed for an effective assessment system: cognition (cognitive processes defined as part of achievement to be assessed), observations (assessment activities to observe student learning), and interpretation (analyses and interpretation of student work). These three elements are connected to each other and have reciprocal relationships. Exploration and elaboration of the relationships among these three elements lead to a diversity of work on learning progressions, developing assessments, and interpreting the results of students’ understanding of a particular phenomenon (e.g., Alonzo & Gotwals, 2012; Duschl, Maeng, & Sezen, 2011). Currently in LP work, four strands are defined: defining, assessing, modeling and using. As Alonzo (2012) shows, these strands can be coordinated with the KWSK assessment triangle as presented in Figure 2.1.

Figure 2.1. *Relationship between the NCR (2001) Assessment Triangle and Four Strands of Learning Progressions (Alonzo, 2012, p.243).*
In Figure 2.1, the definition strand of learning progression corresponds to the cognition aspects of the assessment triangle. The assessing and modeling strands match with observation and interpretation aspects, respectively. Therefore, learning progression work can be viewed as an expansion of the assessment triangle. In both frameworks, it is important to note that there must be alignment among the specified elements. Namely, the connections are dynamic and interdependent.

Learning progressions are premised on the specification of an ordered hierarchy (e.g., Wilson, 2009a). That is, developmental levels connect to each other linearly in most applications. Though in principle, it is possible to create multiple connections across these levels. Other frameworks describe student mental models in networks rather than linear structures. These structures likewise are commonly discussed in a branch of psychometric modeling; the Diagnostic Classification Models (DCMs), such as the AHM (Leighton & Gierl, 2007). In DCM literature, it is commonly mentioned that assessments should measure the specific knowledge structures and processing skills that students possess (e.g., Leighton & Gierl, 2007). Specifically, for the purpose of high quality diagnosis, assessments need to provide information about why
students respond in the ways they do, provide feedback at the level of the individual, and distinguish between skills mastered and those yet to be learned (Gorin, 2007). In order to give valid feedback to students, tasks should be designed from an explicit model of how students learn and allow respondents to show their potential weaknesses and strengths in a specific content domain. So far, methodological developments of DCMs have been illustrated by preexisting data sets rather than assessments designed with respect to cognitive or learning theories. Therefore, learning progressions are good candidates to examine the use of different models, including DCMs, to extract more detailed information on student learning. Learning progressions can also provide an opportunity to examine the capability of the models in the context of an assessment built from the ground up to diagnose student understanding in a targeted content.

Learning progressions are also appealing for assessments that will be used for accountability purposes (Wilson, 2009b). Current education policies demand that the assessments should be grounded in frameworks of how understanding develops in a given subject domain. The request from policy makers has increased the need for research on both assessments and the models to extract inferences from these assessments to provide feedback on student learning.

In sum, testing practices have evolved such that there is an increasing desire for assessments that can be used for diagnostic purposes. A substantial amount of work has been done in the last decade, leading to new developments in both assessment and modeling of learning progressions. However, these attempts to develop assessment and modeling raise many new questions. In what follows, I will review some of these attempts by focusing on learning progressions in current literature of the field.
2.2 Learning Progressions

As the idea of providing detailed feedback on student learning grows in both importance and popularity, it becomes important to examine the consequences of implementations in different strands. Because the learning progressions used in this dissertation are in the science domain, I focus mainly on the LP framework in science education. The field is dynamic, so one sees diversity among relevant research that addresses both potentials and challenges that researchers encountered in four different strands of learning progressions: defining, assessing, modeling, and using. These four strands help categorize and describe the work done so far on learning progressions in science, and also identify the gaps in the field central to my dissertation research.

The focus of my work is on the LP modeling. However, as I mentioned earlier, all aspects of LP work depend on each other. In the following sections, I describe literature about defining, assessing, and using strands related with my work, and then I present the modeling strand in a separate sub-section. I likewise provide a set of arguments for the validity of learning progressions, and for justifying my choice of models.

2.2.1 Defining, Assessing and Using Strands

As Mohan and Plummer (2012) note, the definition of learning progression has become more precise in the last few years. The commonly cited definition for a learning progression is “hypothesized descriptions of the successively more sophisticated ways student thinking about an important domain of knowledge or practice develops…over an appropriate time span” (Corcoran et al., 2009, p.37). This definition emphasizes commonly agreed upon characteristics of a learning progression as students develop sophisticated ways of thinking (a change of understanding that begins with simple concepts and increases in complexity) and growth of
student knowledge over time rather than moving through an ordered set of ideas or curriculum pieces. When analyzing their linear structure, Steedle (2008) notes learning progressions assume that students systematically use a specified set of ideas and these ideas can be ordered in relation to the expert-level understanding. These features of learning progressions necessitate carefully designed instruction in order to move students’ learning forward. At the classroom level, learning progressions are promising tools for teachers, helping them construct stronger classroom assessment practices (e.g., Furtak & Heredia, 2014). The information obtained through the learning progressions on student progress regarding the mastery of key concepts specified in learning progression levels can help teachers in several ways: teachers can better understand how core concepts are related and then use inferences from these assessments to tailor their instruction. This same information can also help researchers gain a better understanding of the teaching and learning process.

Decisions regarding what to assess and how to assess lead to differences in the structure of learning progressions and related assessments. Examples of decisions to be made here include domain specifications (coarse domain topics vs fine-grained domain topics) and the use of single vs. multiple progress structures in a learning progression or item design used in assessments.

The defining strand requires the author of a learning progression to make several decisions. First, content domain and important topics (or big ideas in the domain) are decided. The development of learning progressions was guided and received a boost when two model learning progressions are developed at the request of the NCR (2005) committee—atomic molecular theory of matter (Smith, Wiser, Anderson, & Krajcik, 2006) and theory of evolution—were released to the public (Catley, Lehrer, & Reiser, 2005).
Up to now, researchers have developed hypothetical LPs on big ideas for various science disciplines, including biology, chemistry, physics, and environmental science. One example of a heavily studied topic in the LP literature is the structure of matter (e.g., Seviana & Talanquerb, 2014; Wilson, Black, & Morell, 2013; Stevens, Delgado, & Krajcik, 2010; Park & Light, 2009; Smith et al., 2006). Another example is ecological systems (e.g., Guncke1, Covitt, Salinas, & Anderson, 2012; Jin, & Anderson, 2012; Gunckel, Covitt, & Anderson, 2009; Mohan, Chen & Anderson, 2008). LPs have also been developed for scientific modeling (Schwarz et al., 2009), scientific argumentation (Berland & McNeill, 2010), and quantitative reasoning (Mayes, Peterson, & Bonilla, 2013).

In the next step of the definition strand, LP levels are defined, and student learning in each LP level is described. When constructing hypothetical LP and LP levels, sources including standards, literature, and classroom research are used together in most studies. In connection to this step, decisions on grain size— which range in relation to the description of learning progression topic – are made. Some LPs have narrowly-focused domain topics such as a celestial motion (Plummer & Maynard, 2014; Plummer & Krajcik, 2010), formation of a solar system (Plummer, Flaren, Palma, Rubin, & Botzer, 2013), complex reasoning about biodiversity (Songer, Kelcey, & Gotwals, 2009), and the molecular basis of heredity (Roseman, Caldwell, Gogos, & Kurth, 2006). Other LPs have a broader focus, like atomic-molecular theory (e.g., Smith et al., 2006) and energy (e.g., Neumann, Viering, Boone, & Fischer, 2013). In addition to defining student understanding at each level of the progression, the notion of common errors can be embedded into the levels (e.g., Alonzo, 2012). These student misconceptions can also help to clarify the difference between levels, such that the misconceptions at a lower level are resolved in the next level (e.g., Alonzo & Steedle, 2009; Roseman, Caldwell, Gogos, & Kurth, 2006;
Besides, single or multiple constructs can be used in a single learning progression. For example, the Earth and Solar System LP (Briggs et al., 2006) is a single construct, including one progression, while the Natural Selection LP (Furtak, 2012) is a multiple construct made up of multiple progressions (these include biotic potential, random mutations, and differential survival with each having its own progression levels).

The assessing strand is focused on eliciting the evidence on student learning in connection to the constructed LP, with the development of assessments playing a central role (e.g., Corcoran et al., 2009). The focus on content or practices, and the grain size of the construct all affect the development of assessment tasks. When the learning progression is a single construct and fine-grained size, assessment tasks need to elicit student understanding on one phenomenon while allowing us to obtain more specific information on student learning.

A review of the literature shows that different types of assessment tasks have developed in connection to hypothetical LPs. These range from interviews (e.g., Mohan, Chen, & Anderson, 2008; Plummer & Krajcik, 2010) to multiple choice item assessments (e.g., Swarat, Light, Park, & Drane, 2011). In addition, different item types are used in LP assessments. Some of them use novel item types, such as scaffolded items (e.g., Gotwals & Songer, 2013) and ordered multiple choice items (e.g., Briggs et al., 2006). Some others use classical items types, such as constructed response items (e.g., Seviana & Talanquerb, 2014; Gunckel et al., 2012; Songer et al., 2009), and multiple choice items (e.g., Plummer & Maynard, 2014; Neumann et al., 2013). In the modeling strand, measurement models used to analyze assessment data help inform revisions of both the LP, and the aforementioned items (e.g., via model fit examination; Alonzo, 2012).
The *use* strand relates to the notion of validity by focusing on how and for what purposes it will be used. LPs provide a framework that can inform curriculum development (Corrigan, Loper, Barber, Brown, & Kulikowich, 2009; Stevens et al., 2007), professional development (Hestness et al., 2014; Gunckel, Covitt & Salinas, 2014; Furtak, 2009; Plummer & Slagle, 2009), classroom assessment (e.g., Cooper, Underwood, Hilley, & Klymkowsky, 2012; Gunckel et al., 2012; Furtak, 2009), standard construction, and large-scale assessment. Learning progressions of the appropriate breadth and granularity are important for the intended use. For example, to inform classroom instruction, smaller granularity-rather than broad content- can be preferable with the fine-grained shifts across LP levels. However, a very small grain size would be unmanageable with too much information. If the purpose of using assessment is summative, it becomes more important to classify students (i.e. location of students at LP levels) as reliably as possible. In contrast, if the purpose is mainly to inform teachers for tailoring their instruction, reliability may be less important (e.g., Gotwals, 2012).

The Force and Motion (FM) learning progression I use in my research is developed primarily for classroom instruction (it is also possible to consider it nested in LPs with broader foci). FM LP is in line with a single construct (there is only one construct per LP), specified domain topic (Force and Motion), and aligned with standards documents. The assessment is connected to the hypothesized learning progression, which include naïve (or alternative) conceptions students bring to school at the lower level of learning progression and describe progress on accurate scientific knowledge. As a distinctive item design, Ordered Multiple-Choice (OMC) items (Briggs et. al, 2006) is used in the assessment of learning progression.
2.2.2 Learning Progressions in the Large Scale Context

Although most of the current LPs are developed for small scale purposes, the interest of educators and policy makers on LPs has raised when NRC (2005) recommended science learning progressions to align instruction, curriculum and assessment around big core ideas and inclusion of LPs in the science framework of NAEP 2009. The consideration of LPs for large scale assessments has gained even more attention in the context of Common Core Standards and Next Generation Science Standards that build on the establishing standards and assessments to prepare students for success in college and workforce (e.g., Kobrin, Larson, Cromwell, & Garza, 2015). LPs as tools which provide a context for increasing sophistication of student thinking across LP levels in a specific domain seem to have potential to align current research on how student learns and large scale assessments.

Several researchers (Alonzo, Neidorf, & Anderson, 2012; Shepard, Daro, & Stancavage, 2013) provided cautions in implementing or integrating LPs into the large scale context. They pointed out different psychometric challenges in item development, item analysis, scoring, and reporting that need to be addressed to ensure the defensibility of integrating this type of assessment into a large-scale system.

As noted by Shepard et al. (2013), a significant challenge for using LPs for a large scale program is the scarcity of the full research cycle on learning progressions (e.g., revised and validated LPs). Another challenge is the close connection required for LPs between assessment tasks and instruction while in the large scale assessments target is to make assessment curriculum or instruction neutral. Specifically, Alonzo et al. (2012) referred to the dynamic nature of LPs where LP assessments are subject to revision based on the further evidence such as field testing of items and development of coherent set of items. They note that the typical item analysis
followed in large scale assessments may not be appropriate for the LP assessments. For example, item difficulty is measured as the mean score (or as the amount of the latent trait needed to have a .5 probability of correctly answering an item) and represents the correctness (or difficulty). Therefore, in large scale assessments, more items in the middle range are preferred. Large scale assessments such as NAEP use the IRT methodology to produce scores which are well-examined across decades to produce reliable individual scores. However, the interpretation is totally different in LP items. The mean score of an LP item can be interpreted as the sophistication level of student thinking in connection to LP levels. For instance, because students in different grades are exposed to various degrees of the instruction related with Force and Motion, one could expect different mean scores such that elicit evidence about student thinking at or above LP level expected for a particular grade. The traditional analyses may not be adequate for evaluating LP assessments and the alternative ways are dearth in current research.

In sum, while the use of LPs in the large scale context requires more research, the evaluation of current psychometric practices and possible alternatives for validation and reporting of LP specific scales provide an opportunity for further developments. It highlights barriers ahead and potential areas both for classroom use and large scale consideration of the LPs and LPs assessments. It also aligns well with the objective of LPs as providing information regarding the state of a student with respect to the level of understanding of a given domain.

2.2.3 Validity Argument for Learning Progressions

One aspect of this is study is to validate an LP by applying psychometric models. The term ‘validate’ can have different meanings in different contexts. In this study, it refers to establishing evidence based on the relationship between students’ understanding—observed by LP assessment—and the proposed progression. As mentioned before, validating a learning
progression is not independent of its intended use. Hence, this section helps to contextualize how, in principle, the information provided by the different psychometric models is relevant to the proposed uses of the test.

A learning progression has the potential to be a helpful tool for different uses such as guiding curriculum development, helping teachers with formative assessment or professional development, and constructing a bridge between large scale summative assessment and formative assessment. Learning progressions, if valid, can be used to report student understanding and fulfill other intended uses. Hence, the validation of the learning progression (LP) is critical for every use (Kobrin et al., 2015). Yet, the intended validity evidence for each use may not be the same. As Anderson (2008) underlined, the conceptual coherence and development from a strong research base are critical as a first step for the validation of the LPs. Yet, the LP gains both power and validity from empirical examination (Anderson, 2008). Hence, the evidence for validating learning progressions includes:

a. A strong research that presents a well-developed exposition of progressively more sophisticated understandings about the content domain. In the development of FM LP, the learning progression and levels are sourced from research, science education standards documents, and curriculum materials as well as the research literature on students’ alternative conceptions.

b. LP levels describe the kinds of performances that students at different levels of the learning progression are likely to exhibit. The inclusion of the misconceptions at each level makes the LP stronger to cover alternative conceptions of the students.
c. The assessment tasks are connected to the big ideas in the learning progressions (e.g., the nature of force, motion implying the force, force associated with speed, and force associated with acceleration).

d. An observation of the quality of the student’s work is extracted in a specified format. The assessment items, OMC in the FM LP, become a part of a larger investigation to validate the learning progression.

The empirical evidence for supporting the validation process is extracted from the data obtained from administering assessment tasks to students. Similar to evidence collected from cognitive interviews and other methods, the data can inform not only item revision, but also consideration of the learning progression itself. Student thinking, as revealed by their responses to the assessment tasks, may lead to different connections between ideas in the learning progression or a reorganization of the ideas it contains. The focus on the use of different psychometric models to support the validation efforts of LPs may differ for proposed uses of the assessment. For example, FM LP is developed primarily for classroom instruction. But, it can also be considered as a part of large scale assessment.

At the classroom level, learning progressions help teachers understand the pathways along which students are expected to progress with their learning. When teachers have an understanding of how learning develops in a particular domain, they can locate students’ current learning status and they can take action to help students move forward. Hence, they support instructional planning, and act as a touchstone for formative assessment. As Heritage (2008) notes, “many teachers are unclear about how learning progresses in specific domains…. [this] affects teachers’ ability to engage in formative assessment” (p.2). While the teachers may not be interested in the precise LP-level placement of students, the empirical verification on the learning
progressions via psychometric models in the background provides support for informing the progress of learning. Likewise, they can use LP assessments to determine a student’s level relative to an LP in order to make decisions about appropriate instructional interventions (e.g., Furtak, 2012). Hence, the well-developed assessments and items add more value to the classroom instruction.

However, Alonzo and Elby (2015) note that teachers are most interested in observing the students’ responses to the individual items for their formative assessment rather than getting information at the LP level. The evaluation and refinement of the LP assessment, as one of the formative assessment tools, can lead to high quality items and support teachers’ inferences about their students’ understanding of specific topics. Overall, the LPs and assessments refined with the help of psychometric analysis better guide what learning activities may be appropriate for further learning in a classroom.

For large-scale purposes, the focus is on the quality of the items and assessment as a whole, as well as precisely locating students on scales defined in terms of learning progressions. The former include the examination of the items’ locations along the learning progression. For OMC items, an item option is classified as being “at the level” if it supported an interpretation that students reaching that LP level would be able to pick that option whereas students at lower levels would not be able to pick it. The latter information can be used in turn to draw inferences about the skills a student has. We may infer that the student is most likely in one of the classes composed of different skills. Both student-level and aggregate results are useful in understanding and improving student outcomes at different levels.

To summarize, in order to achieve its potential, it is beneficial to utilize the statistical tools to link the student performance to the learning progressions. As of now, the modeling
attempts to validate the developed LPs and provide detailed probabilistic feedback on the student learning have remained elusive. At the same time, while there is a large pool of psychometric models that can align with the theory underlying the learning progressions, there are few attempts detailing the challenges of applying different models in the context of learning progressions. By selecting three psychometric models from different modeling approaches, I show how the information from these models can be used for practical purposes.

The modeling challenge in LPs using psychometric models arises from how to relate the LP assessment data back into the LP. In the context of FM LP, this is how the information from OMC items can inform us about FM LP and the LP assessment tasks/items with the help of different psychometric modeling approaches. Each OMC item on the LP assessment is linked at one level of one LP. Hence, this makes it possible to extract evidence about the targeted level of LP by means of item features as long as the selected model allows analysis at the item level. The examination of item features, such as difficulty, guides us in the way that tasks may incorporate ideas or student understanding outside the targeted LP levels. This may suggest insights that require skills either not yet studied or interacting with the targeted skills in novel ways. This can help to redefine the LP and to create the assessment items and options to target the skills at each LP level. Examining items on the LP assessment may show how two seemingly similar items actually assess different levels of a learning progression. OMC item options are matched with an LP level that refers to the different skills defined at each level. However, this intention is affected by the choice made in the task (e.g., this intention can be curbed by requirements from undefined or unrelated skills).

Initial analysis provides insight into the nature of the items and their relationships to LP levels. For instance, classical difficulty values can be calculated in order to identify items that
might not be appropriate for further analysis. Factor analytic methods can give an idea about the relationship between items as they measure one common skill or clustered under separate skills. The probabilistic models allow for the representation of the skills defined by the LP and use probability theory to characterize and examine the strength of those relationships. Therefore, they provide more information about items, relationships between multiple skills, and placement of the students into LP levels.

2.2.4 Modeling Strand

As it is apparent in the previous sections, in comparison to the large number of hypothetical LPs developed in the field, only a small portion of them have been tested and validated. The focus of this dissertation is on the first validation criterion of Anderson (2008), namely the modeling strand of LPs. By providing the link between student responses to LP assessments and the learning progression levels, the modeling strand helps in the process of validating learning progressions: evidence is gathered to test the robustness of the hypothesized learning progression and the hypothesis that the use of a suggested progression sequence is effective at producing the desired outcomes.

There are various methods used to validate the learning progressions. These different empirical pieces examine students’ conceptions on selected topics against LP levels through interviews (e.g., Seviana & Talanquerb, 2014; Plummer et al., 2013; Jin & Anderson, 2012; Swarat et al., 2011; Mohan et al., 2008), student demonstrations, explanations or interventions (e.g., Neumann, Viering, Boone, & Fischer, 2013; Gunckel et al., 2012; Plummer & Krajcik, 2010).

Unlike the methods listed above, my focus in this dissertation is the use of the psychometric models in the validation of LPs, which is a relatively new practice in the field, but
has already been established as critical (Wilson, 2009). In particular, this requires use of psychometric models for the evaluation of the extent to which the LP assessment captures student thinking as hypothesized in the LP and the extent to which the LP framework reflect the student thinking. From the modeling side, it is a reasonable to question why we need psychometric models for analyzing data from LPs which are intended to be used for formative assessment purposes (e.g., at classroom level). For example, Brookhart (2003) states that classroom assessments don’t need to be “as reliable” as large scale assessment because judgement in one day may change in next day (p.11). There are two main reasons why psychometric modeling is important for learning progressions: a) it allows us to make probabilistic inferences about unobserved – latent – states of student understanding, and b) it offers a systematic way to validate the learning progression with the help of a specified model and evaluation of its fit to data (Briggs & Alonzo, 2012). The two reasons are equally important such that we may not extract this kind of information with other empirical methods. Additionally, the attempts to incorporate the LP assessments to large-scale context may be benefitted from the comparison of different methods that some of them are used in current scoring of large-scale assessments and others are alternative methods. It helps both researchers and policy makers to see the adaptability of LPs into the large scale by highlighting opportunities and challenges introduced by different methods.

There are two main frameworks used to model the relationship between latent attribute(s) and student responses: latent trait models and latent class models. These two frameworks differ from each other in the way they treat the latent variable(s). The former assumes latent attributes are measured on a continuum (e.g., Wilson, 2005), while the latter assumes discrete categories (e.g., Briggs & Alonzo, 2009). Models from both these frameworks can be used for extracting
diagnostic information from learning progressions. The framework developed by Mark Wilson and colleagues, known as the BEAR Assessment System (Wilson, 2005; Wilson & Sloane, 2000), has had a strong influence on LP modeling practices (e.g., Lehrer, Kim, Ayers, & Wilson, 2014; Plummer & Maynard, 2014; Neumann et al., 2013; Lehrer, Wilson, Ayers, & Kim, 2011; Liu, Waight, Gregorius, Smith, & Park, 2012; Mohan, et al., 2008). In fact, this influence is so noticeable that it appears to underlie most of the studies cited above.

There are few other methods used (and theorized) in the validation of learning progressions. Briggs and Alonzo (2009) relied on Attribute Hierarchy Method (AHM) based on the assumption that there are discrete attributes across the levels of LPs. Steedle and Shavelson (2009) implemented latent class analysis and West et al. (2012) introduced the use of the Bayesian network approach to check the validity of diagnosing levels of learning progressions. These are all novel attempts and more investigation is needed to show their potential in modeling learning progressions.

2.2.3.1 Dimensionality. Selecting a modeling approach is challenging. It requires understanding the relationship between the granularity of the hypothesis in the design of assessment items and the granularity of the latent variable underlying the psychometric model. The assumption about the nature of the underlying construct can lead to different ways of connecting observed student responses into the qualitative descriptions provided in learning progressions. However, assumptions made about the nature of the latent variable in a learning progression can be difficult to evaluate.

Unidimensionality is one end of a (nature of a latent variable) continuum and constitutes a key assumption in IRT modeling. Multidimensionality is on the other end of this continuum
and, accordingly, forms an assumption for the latent class based models. The unidimensionality assumption refers to the case that student responses are mainly a function of a single continuous latent variable (de Ayala, 2009). Technically, it can be defined that item responses are independent when a single latent variable is controlled for. For example, on a science test to meet this assumption, it is assumed that there is a single latent science proficiency variable that underlies the student performance. There are factors such as content variety, construct complexity, and varying item formats that can lead to multidimensionality (e.g., Li, Jiao, & Lissitz, 2012; Traub, 1993). If the data measure multiple dimensions, but are modeled unidimensionally, the estimated item parameters are likely to be biased which lead to distortions in the scale. In practice, it is difficult to find tests measuring only one single construct. Hence, it is usually the goal to find a dominant factor rather than only one factor.

While dimensionality is mostly examined via fit statistics, dimensionality is often assumed to be theoretical rather than empirically tested. Thus, in parallel to what Smith (1996) argues, it is important to ask whether dimensionality threatens the interpretation of the item and person parameters estimates. While the examination of dimensionality is a critical question by itself, it is not the main focus of my dissertation. Rather, I investigate the question of whether validating a learning progression with models that make two different assumptions about the nature of dimensionality lead to significantly different inferences about student learning. That is, I wonder whether the discrete version can be considered as a coarsely divided representation of the continuous latent trait and if there are any practical advantages of one assumption over other. However, due to the severe effect of violating the dimensionality assumption on the scale, it is

3 Note that there are IRT models handling the multidimensionality. However, latent trait is still supposed to be continuous. To put a caution, as mentioned by Heinen (1996), the difference between latent trait and latent class models is not clear. That is, continuous latent variable can be approximated by a discrete distribution.
critical to examine the dimensional structure supported by data. Hence, instead of attempting to assume unidimensionality or multidimensionality for data and fitting the selected models from each modeling framework, there is an added value in examining the assessment data to find support in favor of either assumption. This leads to an exploratory approach where the goal is to empirically identify the underlying set of dimensions.

One of the common ways to evaluate the dimensionality of the assessment data is the use of Principle Component Analysis (PCA) together with eigenvalue plots and Factor Analysis (FA) (e.g., Hattie, 1985). While two methods are similar in their overall approach, they differ in the underlying assumptions (Stevens, 2002). The main difference between the two approaches is the way that the communalities4 are used. In principal component analysis, it is assumed that the communalities are initially 1. In other words, principal component analysis assumes that the total variance of the variables can be accounted for by means of its components (or factors), and hence that there is no error variance. On the other hand, factor analysis does assume error variance. Unidimensionality, in either FA or PCA, can be examined by searching for the existence of a single dominant component that explains the covariation among the items. One of the criticisms related with the eigenvalue plots of PCA is the lack of the statistical index guiding to decide the number of dimensions. Various criteria have been proposed to solve the problem. For example, Carmines and Zeller (1979) proposed that at least 40% of the variability should be attributed to the measure dimension when unidimensionality is present. Kaiser (1970) suggested omitting the components with eigenvalues less than 1.00. Lord (1980) suggested checking the ratio of the first component’s residual to the second and compare this with the ratio of the second

4 The communalities for the a variable is computed by taking the sum of the squared loadings for that variable across extracted factors.
to any of the next eigenvalue. As noted by Hambleton, Swaminathan, and Rogers (1991) the parallel analysis with baseline plots are very helpful in interpreting the dimensionality as researchers have started to use it commonly in the last decade. In the parallel analysis, the eigenvalue plot of actual data is compared with the baseline plot from an inter-item correlation matrix of the random data, which are generated from uncorrelated variables. If the test data are unidimensional, the eigenvalue plot and the baseline plot should look similar except that the first eigenvalue of the real data is much bigger than the first eigenvalue of the random data. The remaining eigenvalues should be close since they are expected from random errors. It has been suggested that exploratory factor analysis with parallel analysis may be used prior to the application of IRT models in order to give early indications of any dimensionality issues (Budescu, Cohen, & Ben-Simon, 1997; Weng & Cheng, 2005).

To sum up, as the demand on providing diagnostic information for student learning increases, it would be helpful to examine the empirical basis for using different psychometric models in the context of learning progressions. Previous research on the learning progressions shows that there has been a focus on the defining and assessing strands while modeling attempts are relatively small. Examining the new models can provide a new platform to validate learning progressions and obtain probabilistic inferences about unobserved states of student understanding. For this purpose, I examine the viability of three models: Partial Credit Model (Masters, 1982; Embretson & Reise, 2000) from the IRT framework and both the Attribute Hierarchy Model (as modified by Briggs and Alonzo, 2009) and the General Diagnostic Model (von Davier, 2005, 2008) from latent class framework. I review the place of these three models among the ones used to extract diagnostic feedback on student learning in the next chapter.
Chapter 3

Methodology

In the previous chapter, I showed that validating LPs is highly critical that any evaluation of LP assessments necessarily includes concurrent evaluation of the hypothesized LP itself. Hence, it is important to examine the opportunities provided by psychometric modeling frameworks that they link the theory embodied in a LP, tasks that provide evidence about a student’s level on that LP, and mathematical models that can characterize the relationship between student performance and levels of the learning progression. I likewise pointed out that for all the potential benefits of learning progression assessments, there are substantial conceptual and measurement challenges in modeling them. There has been little psychometric modeling of learning progressions, mostly focused on the use of a set of IRT models. There has been an explosion of psychometric models in the cognitive diagnostic framework in the last decade (e.g., Rupp et al., 2010). But, the number of practical applications of these new models has remained relatively small with simulation studies (e.g., de la Torre & Douglas, 2004) or use of a few pre-existing data sets (e.g., von Davier, 2005; Birenbaum, Tatsuoka, & Yamada, 2004). This provides an opportunity that there are numerous psychometric models that could be extended to the learning progression context, although these models introduce their own set of challenges.

The first part of this chapter describes the data source: dataset based on administration of Ordered-Multiple Choice (OMC) items written to assess student understanding relative to the Force and Motion learning progressions.
The primary goal for the second part is to describe the two major modeling frameworks that can be used to extract diagnostic information tied to specific learning progressions – IRT and DCM frameworks. This section begins with an overview of how the models from these frameworks are used (or can be used) to extract diagnostic information from LP assessments. This is followed by the details of the methods I employ in my dissertation; a) the Partial Credit Model (PCM; Masters, 1982; Embretson & Reise, 2000) from the IRT literature, b) the Attribute Hierarchy Method (as modified by Briggs & Alonzo, 2012) adapted for OMC items, and c) the General Diagnostic Model (von Davier, 2005, 2008). The second part likewise details how I address the two research questions by using three models. Additionally, it underscores the potential challenges that the use of OMC items can create for the diagnostic modeling.

3.1 The FM Learning Progression

This study uses empirical data from a learning progression (see Appendix A for actual FM LP). The LP focuses on the concept of Forces and Motion (FM). A total of 16 items were developed (Alonzo & Steedle, 2009) to assess students’ understanding of one-dimensional forces (e.g., downward gravitational force represented on – y axis in Cartesian coordinate system) and resulting motion (see Appendix B for assessment items). This LP describes the growth of students’ understanding across five levels from no evidence on student understanding of concepts, to an “expert” level of understanding the relationship between force and acceleration (i.e., change in speed or direction). Each LP level includes the descriptions of student thinking about the objects’ behaviors in the cases of force/no force and motion/no motion (Alonzo & Steedle, 2009). FM LP is developed using the science standards defined for understanding of force and motion expected of eighth-grade students and related research on student conceptions/misconceptions.
The LP assessment was administered within one test including 28 items to a sample of 1008 high school students at six schools in rural and suburban Iowa during the 2008-09 school year. The schools and teachers that agreed to administer the assessment were a convenience sample. As noted by Briggs and Alonzo (2012), the reason for choosing high school students for the study was to minimize guessing based on the claim that most high school students should have been exposed to the ideas in the two learning progressions (which had been based on concepts typically associated with science curricula from grades 3 through 8) and therefore would not need to guess at answers. As a consequence, such students are less likely to consistently choose responses consistent with lower levels of functioning on the LP.

According to Briggs and Alonzo (2009), the average participation rate across all classes was fairly high at 83%. Almost half of the sample (48%) was female students. Students were also asked whether content of assessment questions was covered in any science class they have taken. For FM LP, 73% of students responded “yes,” another 8.0% answered “no”, 17% answered “I am not sure”, and 2% did not respond at all. Later, for the purpose of this study, I examine the sensitivity of my results to restricting the sample to only those students who did not responded “no.”

3.1.1 Ordered Multiple-Choice Items

The LP assessment used in this dissertation consisted of Ordered-Multiple Choice (OMC) items. This item type is suggested especially to assess student learning with respect to ordered descriptions of understanding such as in LPs (Briggs et al., 2006).

OMC items look like traditional multiple choice items; however, they contain item options that have been written to reflect different levels of the learning progression. That means that although one of the options is the most correct response, based on the fact that it is linked to
a higher (or highest) level of the progression, other options connected to lower levels of the progression are not entirely incorrect, and they are designed to provide information about the ways that students might be thinking about the relationships between the relevant concepts. Hence, OMC items provide an opportunity for students to select an option that reflects their thinking about the topic. Also, having more than one option at the same level (such as in the items in Figure 3.1. on this page) helps to include different ways of thinking about the content. Note, however, this may create both conceptual and computational complications in modeling due to the many to one link between response option(s) and an LP level(s).

Because OMC items build on hypothesized cognitive differences specified in learning progression levels that are reflected in the item options, they have the potential to do a better job than open-ended items of eliciting responses that reflect the same understanding students express in cognitive interviews (Alonzo & Steedle, 2009). They are also preferable to diagnose the students’ learning progression levels via simple summations of options, which are tied to the LP levels, across items. One OMC item example from each LP is presented in the following figure.

Figure 3.1. Example OMC Item from FM Learning Progression.

<table>
<thead>
<tr>
<th>Option</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Gravity cannot be acting on the blob because it isn’t falling down.</td>
<td>2</td>
</tr>
<tr>
<td>B. Gravity must be acting on the blob or it would float away.</td>
<td>1</td>
</tr>
<tr>
<td>C. There are no forces acting on the blob because it isn’t moving.</td>
<td>2</td>
</tr>
<tr>
<td>D. Each force acting on the blob has another one to cancel it out.</td>
<td>3</td>
</tr>
</tbody>
</table>

All item options in Figure 3.1 are linked to the learning progression levels. That is, the polytomous scoring of items are intended to capture the LP levels.
Table 3.1 shows the distribution of student OMC item responses mapped to the levels of the FM learning progressions, respectively. The values in each cell give an indication of the easiness of OMC item options where, “easiness” is defined as the proportion of students (as percentages) selecting a given response option. The colored coding is used to make clear some characteristics of data. The grey cells represent the absence of the related LP level for specific items. Yellow cells show the options that are connected into two LP levels. The orange colored cells represent the most difficult items, and green colored cell shows the easiest item. Point-biserial coefficients associated with the highest level response options for each OMC item are presented at the bottom of the tables. These values can be used to evaluate item quality. For example, for Item 11, most of students selected options in the highest level of the FM progression but point-biserial was 0.40\(^5\). That is, students choosing this option were not necessarily those who performed the best on the remaining items.

Table 3.1. Descriptive Statistics for Each FM OMC Items (% responding at each level).

<table>
<thead>
<tr>
<th>Level</th>
<th>11</th>
<th>14</th>
<th>9</th>
<th>4</th>
<th>2</th>
<th>7</th>
<th>1</th>
<th>10</th>
<th>16</th>
<th>15</th>
<th>13</th>
<th>3</th>
<th>8</th>
<th>6</th>
<th>5</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>44</td>
<td>38</td>
<td>37</td>
<td>35</td>
<td>26</td>
<td>25</td>
<td>20</td>
<td>18</td>
<td>17</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>57</td>
<td>56</td>
<td>40</td>
<td>24</td>
<td>33</td>
<td>31</td>
<td>74</td>
<td>36</td>
<td>21</td>
<td>57</td>
<td>61</td>
<td>39</td>
<td>50</td>
<td>87</td>
<td>66</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>46</td>
<td>23</td>
<td>41</td>
<td>20</td>
<td>41</td>
<td>39</td>
<td>2</td>
<td>23</td>
<td>20</td>
<td>44</td>
<td>38</td>
<td>5</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>47</td>
<td>28</td>
<td>78</td>
<td>13</td>
<td>04</td>
<td>02</td>
<td>01</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
</tbody>
</table>

Notes: \(^1\)Columns sum to 100%.

In this table, the items are arranged from easiest to hardest. Notice that this conceptualization is sample dependent. That is, a different sample might yield a different ordering. For example, 57% of students selected the highest possible response option for item 11 ("On a visit to a science lab, Madison observes a blob of shiny material, which appears to be

\(\text{As in all correlations, point-biserial values range from -1.00 to +1.00.}\)
floating in the air. The blob isn’t moving. What can she conclude about the force(s) acting on the blob?”). Thus, item 11 is the easiest item. However, only 5% of students selected the option connected to the highest level possible for item 12 (Ignoring air resistance, what force(s) are acting on the stone when it is moving up through point A?). Hence, item 12 is the hardest item.

Table 3.1 highlights a challenge inherent in modeling OMC items. Not only will there be, upon occasion, multiple response options linked to the same LP level, but OMC items may have floor effects or ceiling effects. A floor effect occurs any time the response options to an OMC item are all higher than the lowest level on an LP (e.g., as in Item 14 for FM LP). A ceiling effect occurs any time the response options to an OMC item do not include a response at the highest level(s) of the LP (e.g., as in Item 11 for FM LP).

3.1.2 Basics of Data Set Analyzed in Current Study

Recall that the data used for this study originally included 16 Forces and Motion (FM) OMC items with a sample of 1,088 high school students. However, for the FM data set, 8.0% of the students answered “no” to the question of “Was the content of [these] questions covered in a science class you’ve taken?” These students were excluded from further analyses, leaving us with 1,006 cases. Further, I cleaned the data for students who did not answer any of the FM questions. Likewise, one of the students chose an unavailable option for item 14, so this student is also excluded from the analyses. The LP levels range between Level 1 and Level 4 (i.e., score 1 to 4). Because all of the items do not have the range from 1 to 4, the minimum possible score for the FM items is 24 and the maximum possible score is 60. Also, category response frequencies ranged from a minimum of 13 to a maximum of 815. The further analyses for FM LP include 931 cases.
Table 3.2 provides descriptive statistics and reliability for FM OMC items as they commonly presented in the literature.

Table 3.2. Descriptives and Reliability for OMC Items.

<table>
<thead>
<tr>
<th>Number of items</th>
<th>Number of students</th>
<th>Mean</th>
<th>Cronbach Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>931</td>
<td>0.73</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Notes: Mean value is presented in terms of percent of total points. The mean value is high that shows most students pick the higher level options.

The results for FM LP suggest that there is a moderate reliability, which is common with OMC items (see Alonzo & Steedle, 2009 for a justification of similar ranges of alpha for ordered-multiple choice items).

3.2 Modal (Simplistic) Approach

Ordered multiple-choice items (Briggs et al., 2006) are efficient tools to collect evidence that should be relevant to judgments about students’ locations on a LP. In an ideal case, if a student selects consistent options (i.e., LP levels) across all items, that LP level would be determined to be student’s current place on the LP. However, the reality is often more complicated that students may select different LP levels across items. The focus of the modal analysis in this dissertation is to place students into LP levels using students’ most frequently selected LP levels:

\[
\text{Mode} = \max(f_p)
\]

(3.1)
where \(f_{lp} \) is the frequency of item options associated with LP levels for each student. This approach is simple and easy to communicate so that a teacher can use it to make decisions about the LP levels of his/her students. It likewise provides a baseline for comparing the placement results from probabilistic models.

3.3 Psychometric Models for Diagnostic Feedback

The diagnostic value of the LP assessments come from their design to report on students’ levels of progress in terms of the student performances associated with the LP levels. These LP levels exemplify how students are likely to think and what they are likely to know together with their potential misunderstandings at particular levels along the progression.

The data from LP assessments can be analyzed using a deterministic method such as taking the mode as described above (e.g., by simply counting responses at each LP level). This is clearly a very practical approach for a teacher to take. However, it is affected by the extent that proposed LP levels capture the student learning and the quality of the items in LP assessment. It can be also challenging to interpret when data provides conflicting results (e.g., a student selects each LP level with equal frequency). Additionally, it may not represent the best way to make inferences about student learning in connection to LPs for large scale purposes. Applying a probabilistic modeling framework may be worthwhile to advance our understanding of how to capture the development of student learning so that teachers can use assessment data and the extent that it properly characterizes uncertainty in the inferences about students’ latent traits.

The diagnostic information extraction in connection to the assessments can be done using two different approaches:

- **a)** modeling a latent continuum directly and then breaking the continuum into hierarchical categories, and
- **b)** modeling a latent class directly (Wilson, 2012, p.326).

Researchers have brought a number of tools to bear on the problem of extracting diagnostic
information and diagnostic classification of respondents. In Figure 3.2, I provide a basic schema of the measurement models that can be used for these purposes from the two frameworks.
Figure 3.2. The Relationship between the Nature of Latent Variable and Modeling Frameworks.

Models used to extract diagnostic feedback on student learning

Continuous Latent Variable Models

Unidimensional IRT Models
e.g. Rasch, 1PL, 2PL, PCM (Embretson & Reise, 2000)

Multidimensional IRT Models
e.g. Compensatory (Reckase, 1997)
e.g. Multiplicative (Embretson, 1997)

Models use both continuous and discrete latent variables
e.g. LLTM (Fisher, 1995)

Discrete Latent Variable Models

Pattern recognition Models
e.g. RSM (Tatsuoka, 1990)
e.g. AHM (Leighton, Gierl, & Hunka, 2007)

Unified Probabilistic Models

Latent Class Analysis
e.g. LCA (Hagenaars & McCutcheon, 2002)

Specific Models
e.g. DINA, NIDA, R-RUM (Rupp et al., 2010)
e.g. Bayes Net (Mislevy et al., 1999)

Generalized Models
e.g. LDCM (Henson, Templin, & Willse, 2009)
e.g. GDM (von Davier, 2005)
It is clear from Figure 3.2 that there are a number of tools for summarizing evidence about student understanding. Notice that Figure 3.2 does not show all models used to extract information for diagnostic purposes, however it helps to understand the range of the models that can be used and the place of the models I use in my dissertation work among these models. As noted by some authors (e.g., Xu & von Davier, 2008; Heinen, 1996), the difference between the models blurs when the distribution of theta (i.e., person ability) is approximated by a discrete distribution (e.g., marginal maximum likelihood using the quadrature points). That is, the estimation of the latent variable is always discrete in practice.

As it is presented in the previous chapter, current attempts of modeling learning progressions mostly depend on the IRT models (latent trait/continuum models) although there are several novel attempts to use latent class approach related models. I use three particular models in this dissertation, one latent continuum and two latent class-based models, to investigate the relation that links student performance on LP assessment tasks/items to their levels on the LPs. Unlike other LPs, assessment tasks used in my work are based on OMC items, which introduce inherent challenges in relationship to these models.

In the next section, I present IRT modeling and its use in context of the learning progressions. Then, I cover diagnostic classification models and how they can relate to the learning progression work.

3.4 IRT Modeling

When modeling LP assessment data with IRT, there are general assumptions and characteristics of IRT models that violating them affects the interpretation of the student classification into the LP categories. In order to critically examine the information from IRT
modeling in the context of LPs it is important to have a review of these assumptions and characteristics.

In item response theory, the probability of an item response is characterized as a nonlinear function of person ability and item characteristics (difficulty, discrimination, and guessing). The probability can be modeled for items that are scored dichotomously or polytomously. Differences between IRT models are based on the nature of the items used to generate student responses (dichotomous vs. polytomous), number of dimensions they use to describe the item and student characteristics (unidimensional vs. multidimensional), and the number and type of item characteristics involved in relation to each dimension (Yen & Fitzpatrick, 2006). Consider the Rasch model (Rasch, 1980). Given a test consisting of dichotomously scored items, the probability of a correct response to an item i, is expressed as

$$p_i(\theta) = \frac{1}{1 + e^{-(\theta - b_i)}} \quad (3.2)$$

where $p_i(\theta)$ indicates probability that a student of ability θ responds correctly to item i, which is modeled by one item characteristic. Although θ is theoretically unbounded, it usually ranges from -3.0 to 3.0 for a population whose ability distribution is scaled to mean of zero and standard deviation of 1. This item parameter, b, refers to item difficulty or location. As a distinct feature of the Rasch model, the difference between a student’s ability and an item’s difficulty determines the probability of a correct response. The Rasch model makes it possible to present the distribution of items’ difficulty and students’ ability along the same unidimensional logit scale. Hence, it provides a theoretical basis for “item-mapping,” in which item difficulty and student ability are expressed relative to each other on a linear scale.
The use of IRT in general is grounded in two strong, related, assumptions: *local independence* and *unidimensionality*. Unidimensionality requires a test to measure only one construct. The assumption of local independence implies that the correlation between items should only be through the construct measured by the test (Lord & Novick, 1968). In order for this to hold, all of the items are required to measure a single dimension. When local item independence is not present, we expect inaccurate estimation of item parameters, test statistics, and student ability because of model misspecification (e.g., Hambleton, Swaminathan, & Rogers, 1991).

Two critical properties of IRT are *scale indeterminancy* and *parameter invariance*. The former implies that the probability of a correct response (e.g., Equation 3.2 on previous page) as a function of person and item parameters is invariant to any linear transformation of either set of parameters. The latter denotes that if assumptions are met and the model fits, item and person parameters should be the same, regardless of the group of persons and items used to estimate them (e.g., Hambleton, Swaminathan, & Rogers, 1991). Given these properties, IRT is attractive, especially for large scale assessments, because it makes it relatively easy to build item banks to create tailored tests.

The IRT modeling is likewise used for diagnostic purposes. In the modeling practices of learning progressions, the BEAR Assessment System (BAS; Wilson, 2005; Wilson & Sloane, 2000) is predominant and it uses IRT models, particularly those from the Rasch family. The BAS is organized around four “building blocks”: the construct map, the item design, item scoring and item response modeling.
A construct map constitutes one of the main building blocks of the BAS and represents a description of ordering of qualitatively different levels of student performance focusing on one characteristic (or construct). In many applications, the terms construct map and learning progression are used interchangeably. Sometimes, the learning progression includes only one construct, which is equivalent to a construct map (e.g., Plummer & Maynard, 2014). Or, a set of construct maps can comprise the learning progression (e.g., Draney, 2009).

The second building block is the item design, where assessment tasks are written to elicit evidence of a student’s location on the construct map. The third building block is item scoring (i.e., the outcome space) in which a rule is set up to connect a respondent’s answer to assessment tasks back to the levels of the construct map. The last building block is the measurement model, which defines how we can make inferences about student understandings from their observed scores. Ability measures and item difficulty measures are developed using the same scale which facilitates the interpretation of student ability measures on the construct. The IRT models used for the analyses in the context of learning progressions differ from binary models such as Rasch modeling (e.g., Liu, Waight, Gregorius, Smith, & Park, 2007) to Rasch-based polytomous models such as the Partial Credit Model (e.g., Lehrer, Wilson, Ayers, & Kim, 2011; Liu et al., 2012), and to multidimensional IRT models (e.g., Lehrer, Kim, Ayers, & Wilson, 2014; Walker, Wilson, Schwartz, & Irribarra, 2009).

A “Wright Map” serves as a visual and empirical representation of a construct map. It provides an advantage of easy communication of the results via the graphical placement of student ability and item difficulty on a common scale. Students with lower θ estimates and items with lower difficulty appear at the bottom of the scale, while higher difficulty items and higher proficiency persons are at the top. Using the information coming from the Wright map, the
classification of students into the qualitatively distinct levels of understanding that were hypothesized in the construct map is done as a post hoc process. A graphical example of a Wright map is presented in the following figure. The right hand side of the map in Figure 3.3 shows the calibrated item locations (corresponding to the difficulty parameters in Equation 3.2). On the left-hand side of the map, the locations of the respondents on the logits scale are indicated by X's.

Figure 3.3. An Example of a Wright Map for the Rasch Model.

For the OMC items, which have multiple response options that need to be considered independently (rather than one correct response of interest and a set of distractors which can be ignored), standard techniques for modeling responses for dichotomous items are inappropriate.
Several models are available for modeling ordinal polytomous data. My strategy is to use the Partial Credit Model (PCM; Masters, 1982).

3.4.1 Partial Credit Model

The goal of IRT modeling for polytomously scored items is to define the probability that a student responds in a particular category. The PCM parameterizes the interaction between student responses and items which have various response categories. This model is a divide-by-sum model where the probability of a response in each category is defined as an exponential divided by sum of exponentials. Let X_{ij} represent a random variable, the response of any given examinee to category j in item i. Given a test consisting of polytomously scored items, an observed response $X_{ij} = x$ is coded in terms of a sequence of numeric scores from 0 to m, where m represents the highest score. The total number of categories for any given item (indexed by i) is therefore $K_i = 1 + m_i$. For example, when an item has $X_{ij} = 0$ for a lowest level item response, and $X_{ij} = 3$ for a highest level response, the item would have 4 categories in total. The probability of observing a response in category j for an ability level of θ is

$$P_i(x = j|\theta) = \frac{\exp\left[\sum_{j=0}^{x}(\theta - \delta_{ij})\right]}{\sum_{r=0}^{m_i}\exp\left[\sum_{j=0}^{r}(\theta - \delta_{ij})\right]}$$

(3.3)

where $\sum_{j=0}^{0}(\theta - \delta_{ij}) \equiv 0$

The δ_{ij} ($j=1, \ldots, m_i$) parameters are the item category boundaries (also called category intersections) associated with a level score of j on item i. In the numerator of the formula, x is the count of the boundary locations up to the category under consideration. The argument r in the denominator goes from 0 to m_i (note that m_i allows a different category number for each item). It provides the sum of all $m+1$ possible numerators and so it assures the sum of the probabilities for
a person corresponding to each category is 1. Hence, the calculation of probability of a respondent of given \(\theta \) level in a particular category is obtained directly. The “where…” statement in the equation introduces a constraint in estimating the parameters that the sum of ability level minus the category boundary parameter for the first step should be zero. That is, the value of \(\delta_{i0} \) has no impact on the model.

When the response \(X_{ij} \) is coded using a set of responses starting from 1 instead of zero, then, \(m = 1, \ldots, m_i \) where \(m_i \) is equal to the total number of categories. The response probabilities can be modeled using the following formula,

\[
P_i(\theta) = \frac{\exp \left[\sum_{j=1}^{m_i} (\theta - \delta_{ij}) \right]}{\sum_{r=1}^{m} \exp \left[\sum_{j=1}^{r} (\theta - \delta_{ij}) \right]}
\]

The ratio of probabilities takes the form

\[
\frac{P_i(x = j|\theta)}{P_i(x = (j-1)|\theta)} = \exp (\theta - \delta_{ij}) \quad \text{and} \quad \frac{P_i(x = j|\theta)}{P_i(x = (j-1)|\theta) + P_i(x = j|\theta)} = \frac{\exp(\theta - \delta_{ij})}{1 + \exp(\theta - \delta_{ij})}
\]

Equation 3.5 is read as the probability of responding in category \(m \) over category \(m-1 \) is the function of the difference between latent ability, \(\theta \), and the item category boundary parameter, \(\delta_{ij} \). It also shows that the probability at adjacent categories has the form of the simple Rasch model for dichotomously scored items. That is, the item parameters estimated in the PCM are simply item difficulty parameters and they have the same interpretation as in dichotomous models.
The PCM compares the adjacent response categories. That makes a student’s probability of scoring m rather than $m-1$ independent of all other outcomes and each category boundary parameter relates to adjacent response categories only. Because of this independence there is not a constraint to ensure that the sequence of item category boundaries within a single item is ordered as categories increase. It is also important to note that estimated item parameters do not model the responses in independent pairs of categories (Nering & Ostini, 2010). For example, if any of the item parameters change, the response probability in other categories also changes.

My examination of the PCM in the context of the learning progression assessment composed of OMC items starts with investigation of dimensionality. Applying unidimensional IRT methods investigate the claims that LP levels can be placed on a continuum and aligns with student ability. According to the claim, the LP lies on a continuum along which students can be ordered and distances along this are meaningful and there should be a single dimension defined by the LP levels that accounts for a significant portion of the variance in student performance. Investigating dimensionality can provide insight whether the unidimensional claim is reasonable. It provides information on whether students use a single dominant ability or different abilities to answer the items.

Note that when we model a multidimensional assessment unidimensionally, interpretations of model parameter estimates as well as the placement of students into LP levels are likely to be distorted. As such, there may be a greater value in using DCMs to allow for examinations of mastery on different dimensions. DCM models assume that the data are multidimensional, and multidimensionality is expressed in the Q-matrix, which shows the match between items and specified attributes. That is, each test item is constructed to measure one or
more of the attributes. Because an item can measure more than one attribute, multidimensionality can exist within (i.e., complex structure) as well as between items (i.e., simple structure).

While there is not a consensus regarding which one works better to investigate the dimensionality of data, there are a number of approaches that can be classified as parametric (e.g., principal component analysis), and nonparametric (e.g., DIMTEST as test of local independence assumption). Two commonly used methods in practice are principal component analysis (PCA) and exploratory factor analyses. PCA together with eigenvalue plots is a commonly used method to assess test dimensionality and has been used for a long time (e.g., Hattie, 1985). The percentage of total variance explained by the first principle component is examined in a way that the higher percentage of total variance the first principle component accounts for, the closer the test is to unidimensionality. Several criteria have been proposed to decide the number of dimensions. For example, Kaiser (1970) recommended keeping the components with eigenvalues larger than 1.0, and Lord (1980) suggested checking the ratio of the first to the second eigenvalue, and compare that with the ratio of the second to any of the other eigenvalues. However, it is well noted in the literature regarding dimensionality that these approaches may not identify the correct number of dimensions (e.g., Zeng, 2010). As noted by Hambleton, Swaminathan, & Rogers (1991), the parallel analysis (Horn, 1965) with baseline plots has been very helpful in interpreting test dimensionality and the analysis has been used more recently.

Parallel analysis (Drasgow & Lissak, 1983) identifies the number of orthogonal components that are distinguishable from random noise. In parallel analyses, the value of one is replaced with the mean eigenvalues created by independent normal variates. The main idea is that even if all population eigenvalues of a correlation matrix are all one, any finite sample can
produce eigenvalues more than one because of the sampling variability. Note that we have 16 manifest ordered category items; however, they have a different number of categories (i.e., not all of the items K levels), and this introduces a complication into the interpretation. That is because the analysis depends on decomposing a correlation matrix across items.

Next, I examine the results of the category boundary estimates. Recall that in some studies using IRT methods in an LP context (e.g., Liu et al., 2012; Lehrer et al., 2011; Liu et al., 2007) there is a tendency to use cumulative item category difficulty parameters, also called thresholds. In this case, each threshold divides the response categories into two, up to and including m-1 and m and above. The use of cumulative item difficulty parameters ensures the increasing difficulty across scoring categories (which is same with LP levels). However, this approach masks the potential problems that ordered categories are working as intended. Examining category boundary parameters across items provide better information about the ordering of category difficulties. When category difficulties are not increasing monotonically, the interpretation that the selecting of a higher category aligns with higher trait level is not held anymore (e.g., Andrich, 2015). Therefore, an investigation is needed in the ordering of the category boundaries within items to check the alignment with the LP levels. But, note that it is challenging to apply the PCM to OMC data. OMC items are different from regular polytomous items. As mentioned previously, not all levels are available for each OMC item (floor and ceiling effects), and for some of the items, multiple response options map to the same level. Because of these features, the item category parameters will have different substantive interpretations from item to item.

Next, I examine the parameter invariance where parameter refers to the population quantities of the set of item parameters and the set of examinee parameters which are linked to a
specific model. Parameter invariance is critical for inferences to be equally valid for different populations of students or across different conditions (Rupp & Zumbo, 2006). Therefore, in order to check parameter invariance, we need at least two populations or two conditions for parameters. Because I have only one set of data, I randomly split the data into two samples and run PCM analyses for each subsample. Then, I repeat the process 100 times, and I summarize the resulting distribution of all possible pairwise correlation coefficients together with the standard deviation. A distribution with high average correlations and a low standard deviation provides evidence of invariance across samples.

Then, I examine the results from model fit which signals how accurately or predictably data fit the model. Fit investigation helps examine the question of whether there is evidence to reject the LP hypothesis or whether there is evidence to highlight some of the items for further check. Lack of model fit illustrates either there is a problem with the confirmatory LP hypothesis or there is a need to use another model. In the literature, the justification of model fit is usually done by monitoring the parameter-level fit statistics along with the global fit statistics (Wilson, 2005). Especially for polytomous data, there has been a considerable debate around the issue of what is the most appropriate fit statistic to use, what range of fit statistics should be employed when evaluating fit, and how fit statistics should be interpreted. Mean square fit statistics are commonly used in the literature related to Rasch Models (Smith, 2004). Both fit statistics are based on residuals (the differences between the observations and their expected values according to the Rasch-based model). They can be transformed into standardized form (Linacre, 2002) where fit statistics have an almost standard normal distribution (i.e., \(\sim N(0,1) \)) with an acceptable range of -2 to 2. Wu and Adams (2013) showed that the commonly used interval of 0.77 to 1.33 relates to a sample size of around 100 for outfit statistics. Hence, there is a need for adjustment
on an acceptable range based on the sample size we currently have. I follow their guideline and examine the item statistics for appropriate fit range. However, several problems are noted regarding the use of chi-squared based item fit statistics (Sinharay, 2006). The critics are based on properties of the chi-squared distribution when estimates of parameters from the original observations are used.

Based on the evaluation of model assumptions and model fit together with the close examination of the item parameter estimates, I examine the possibility of deciding cut off points on the latent continuum as a means of classifying students into LP levels based on a post-hoc analysis. All PCM analysis is conducted using the package called “eRm” in free R software.

3.5 Diagnostic Classification Models (DCM)

In this subsection, I provide the reader with a framework to understand the different types of models developed specifically for multivariate classifications of respondents on the basis of hypothesized sets of discrete latent skills. A more comprehensive depiction of the models and their relationship can be found in Rupp et al. (2010), Rupp and Templin (2008), and DiBello, Roussos, and Stout (2007).

The definition of DCMs I use in this work is given by Rupp and Templin (2008). They point out the key characteristic of these models is that they are confirmatory in nature, consist of discrete latent variables, and have complex loading structures (i.e. skills intended to be measured in the assessment) and even interactions between latent variables. In what follows, I refer to discrete latent variables as “attributes.”

DCMs are confirmatory in nature because the multiple attributes measured by the assessment are defined prior to the analyses. Each test item is written to measure one or more of
the attributes which allows a complex loading structure. The mapping of items to attributes is captured by a matrix, called a Q-matrix, in which rows represent items, and columns represent attributes. An entry of 1 in a cell of the matrix indicates that a given item measures a hypothesized attribute and an entry of 0 indicates that it does not. When single items are written to measure more than one construct, how the defined skills are assumed to interact with each other is specified in advance (Rupp et al., 2010). That is, it is hypothesized whether having a high level attribute can compensate a low level attribute or not. For example, say that attributes 1, 2, and 3 are deemed necessary to solve an item; in this case a student needs to hold all of the skills to have a high probability to answer the item correctly (or choose a specific option).

The comparison between two frameworks, IRT and DCM, can illuminate the differences between the models used. For example, we express science ability, \(\theta \), as a continuum in IRT modeling, but in DCMs we reconceptualize \(\theta \) as a set of attributes (e.g. force, motion, acceleration and gravity). In unidimensional IRT models, all items are assumed to measure the same latent variable, while in DCMs items don’t have to measure the same attributes and the relationship between attributes and items are designated via the Q-matrix. In IRT, we finely locate each respondent along a continuum of latent variable, in DCMs we coarsely classify each respondent with respect to each attribute (e.g., as masters or non-masters of the attribute).

DCMs estimate the probability of respondents’ mastery states (e.g., mastery or nonmastery) on the attributes of interests based on respondents’ observed response patterns. There are two distinct families of models distinguished by parameter estimation method - *pattern recognition models* or *probabilistic models* (DiBello et al., 2007). Pattern recognition models use classification/pattern recognition algorithms (e.g., Rule Space Methodology by Tatsuoka, 1983) as an approach for classifying respondents. The purpose of the analysis is to estimate the
probability that a respondent possess specific attribute combinations based on their observed item response patterns (Gierl, Cui, & Hunka, 2007). In such models there is not a link between individual latent variables and the probability of an observed response; that is to say we don’t model item responses in terms of specified skills and item parameters and then use this to estimate the parameters via a likelihood function. Probabilistic models are unified statistical models that are defined in a fully probabilistic framework. Probabilistic DCMs model the relationship between response probability in a latent class (e.g. latent class where none of the attributes are mastered) connected to item parameters and attributes measured in this item.

3.5.1 Probabilistic Models (DINA Example)

A probabilistic diagnostic classification model has a mathematical function specifying the probability of a particular item response in terms of the respondents’ skills and item characteristics (Dibello et al., 2007). There are a number of well-known models that have been developed: the DINA and NIDA (Junker & Sijtsma, 2001), DINO (Templin & Henson, 2006), NIDO (Rupp et al., 2010), Fusion model (Roussos et al., 2007), RUM (Hartz, 2002). In this section, I present one of the simplest and most commonly referenced models, the DINA model, as an example. The DINA model is a parsimonious model and it is nested within GDM that is used in the current study.

The Deterministic Input, Noisy “And” Gate (DINA) model assumes that all attributes required by an item must be mastered in order for an examinee to answer correctly on that item. In other words, missing any of the required attributes is equivalent to missing all of the required attributes, leading to an incorrect response. In technical terms, each item on a test which measures K attributes partitions 2^K attribute vectors into two latent classes (one group requires all specified attributes and other group lacks at least one of the attributes). For example, imagine
that item 1 requires two attributes to be answered correctly (A1 and A2). It follows that for this item we will have 4 different attribute vectors to consider ([00], [01], [10], and [11]). In the DINA model, we classify these vectors deterministically into two groups. The first group takes the vector including all required attributes and second group involves all three vectors which lack at least one of the attributes. The DINA assumes that vectors in the same group have the same correct response probability. Because of this, the model produces the same probability values for the attribute vectors of [00], [01], and [10] and a noticeably higher probability for the attribute vector [11].

There are three main elements in the DINA model. The deterministic input is the latent variable ξ_{ic} which is viewed as either having ($\xi_{ic} = 1$) or not having ($\xi_{ic} = 0$) a particular attribute for item i in a certain latent class c. That is, whether a respondent within a specific latent class possesses all the attributes required for item i. The Q-matrix (item-attribute mapping) serves as the link between the model and examinee’s responses to the items and allows inferences to be drawn about which skills have or have not been mastered by the examinees.

The probabilistic part of the DINA is modeled by slipping (s_i) and guessing (g_i) parameters at the item level. Slipping refers to the amount of incorrect application of the attribute even it is mastered. Similarly, guessing amounts to the correct application of the attribute although it is not mastered. Therefore, the latent response variable (correct response of a respondent in a latent class) is defined at the item level and only one slipping and guessing parameter is estimated for each item. The related formula is

6 c represents latent class rather than individual respondent this is because we can think the respondents are changeable in each latent class and diagnostic models group large number of individuals into small number of latent classes (Rupp & Templin, 2008)
\[\pi_{ic} = P(X_{ic} = 1|\xi_{ic}) = (1 - s_i)^{\xi_{ic}} g_i^{(1-\xi_{ic})} \text{ where } \xi_{ic} = \sum_{a=1}^{A} \alpha_{ca}^{q_{ia}} \quad (3.6) \]

In 3.6, \(\pi_{ic} \) represents the probability of a correct response for item \(i \) by a respondent in latent class \(c \). This probability depends on the values of \(s_i \) and \(g_i \) and whether a respondent in a latent class \(c \) possesses all the attributes required for item \(i \), namely \(\xi_{ic} \). The \(q_{ia} \) shows whether attribute \(a \) measured by item \(i \) and \(\alpha_{ca} \) represents whether respondents in class \(c \) mastered the attribute \(a \). Note that since the \(g_i \) and \(s_i \) denote item parameters, there are two parameters per item in the DINA model.

As an end product, respondents are located into latent classes showing the combinations of attributes that the students in that class mastered (e.g., if we had only 3 attributes measured in the test we would have 8 latent classes such as [000],[100],[010], [001], [110],[101],[011] and [111], where [000] represents a student that has not mastered any of the skills).

As in all psychometrics models, a well-fitting model is critical in DCMs for the interpretation of parameter estimates. The model checking process focuses on the assessment of the degree of fit between the estimated model and observed data. There are several fit statistics used for this purpose such as mean absolute difference (Roussos et al, 2006) and model fit via Bayes-net (Sinharay, 2006). Another standard global fit statistic used with probabilistic models is the log-likelihood statistic, especially to compare the nested models (e.g., von Davier, 2005).

General models that are much more flexible than the DINA (e.g., log-linear cognitive diagnostic model (LDCM; Henson, Templin, & Wilse, 2009; General Diagnostic model (GDM; von Davier, 2005) have also been introduced in recent years. A general model means that with an appropriate link function and restrictions it is possible to derive other commonly used models. I use the General Diagnostic Model (GDM) proposed by von Davier (2005, 2008) as the
probabilistic diagnostic classification model in my dissertation. GDM formulates the response probability in connection to item parameters. Hence, provides opportunities for comparisons across item parameters and model fit with PCM. While the PCM can be seen as a restricted version of the discrete skills GDM model and this relationship can be shown algebraically, doing so is beyond the scope of this work. Next, I present the details of the GDM model.

3.5.2 General Diagnostic Model

The GDM allows for polytomously scored items as opposed to other basic diagnostic classification models which only permit modeling of dichotomous data (though see de la Torre, 2009 as an exception). Data from several large-scale tests such as NAEP and TOEFL have been analyzed with this model (von Davier, 2005; Xu & von Davier, 2008) but the model has not yet been applied with an assessment developed for diagnostic purposes.

Before addressing the specifics of the GDM, it is important to be clear about how we can connect IRT modeling with latent class analysis in the context of GDM. The diagnostic use of GDM is based on the idea that theta (θ) can be modeled as discrete rather than continuous (Heinen, 1996). Recall that in IRT modeling, we typically assume a unidimensional continuous person variable (θ) as in the case of PCM. However, when we estimate the item parameters via the marginal maximum likelihood/ expectation maximization (MML/EM) algorithm we approximate this continuous person variable discretely. This approach requires certain assumptions with respect to the distribution of latent variable θ. For example, if we assume that θ has an underlying normal distribution, we can use Gauss-Hermite quadrature nodes (equally spaced θ values) and weights to approximate the normal distribution. This helps us to estimate the item parameters without jointly estimating the ability parameters by integrating out the unknown person parameters. Once the item parameters have been estimated, person parameters
can be estimated by treating item parameters as known and maximizing the log-likelihood with respect to the latent trait or, alternatively, using the expected value or the maximum value of the corresponding posterior distribution. Building on this, an IRT model can be made to approximate a latent class model if during estimation we specify the latent trait as discrete (e.g., 0/1 or 1,2,3,...m as the restricted version of -3.0, -2.5, ..., 2.5, 3.0 of Gauss-Hermite quadrature points). We conceptualize the latent trait composed of an ordered set of a limited number of latent groups which have a fixed latent ability level attached to them. In this case, we use a fixed number of node points on the latent axis and assign particular values to these nodes, and the weights (i.e., latent class portions belonging to the fixed latent node points) are no longer fixed and need to be estimated from the data. Instead of node points chosen along the continuous θ interval (e.g., -3 to +3) and assumed to be equally spaced on this interval, we specify two nodes, and the two values of -1 and +1 are selected. Additionally, note that the form of the latent distribution is fixed in a way that it can be approximated by a discrete distribution with a specific number of nodes.

With multiple random variables associated with the selection of a category in an item, we can use random vectors (e.g., θ₁, θ₂, θ₃,..., θᵣ where r indexes a dimension or attribute) with discrete distributions. We can allow for different parameterizations for the conditional distribution of the response variables given the latent traits - such as in the Partial Credit Model - depending on the constraints imposed on the item parameters (e.g., slope parameters are restricted to be 1 in PCM). In summary, the GDM makes it possible to specify what amounts to a multidimensional item response model(s) with discrete latent variables for polytomous item responses. Because the model is based on the extension of IRT models with the latent class models (LCA), it allows tools such as model fit and item parameters estimates (which do not exist with the AHM approach described below).
I fit the GDM to polytomous items with dichotomous skill mastery (i.e., mastered vs. non-mastered with two nodes on each discrete θ_z that we will represent with a_k to show different attributes). Let’s assume N students with observations on I ordinal response variables $x_n = (x_{n1}, x_{n2}, \ldots, x_{nl})$ each with outcomes $x_{ni} \in \{0, 1, \ldots, m_i\}$, and a set of K discrete attribute variables $a_n = (a_{n1}, a_{n2}, \ldots, a_{nK})$ with skill categories $a_{nk} \in \{s_k(0), s_k(1), \ldots, s_k(l_k)\}$.

Notice that x_n is observed and a_n is multidimensional and unobserved for all students ($n = 1, 2, \ldots, N$).

If the assumption of local independence holds, then the conditional probability of the response pattern x_n given the attribute vector a can be written as

$$p(x_{n1}, x_{n2}, \ldots, x_{nl}|a) = \prod_{i=1}^{I} p_i(x_{ni}|a),$$

showing that the conditional probability of students’ response pattern can be written as the product of the conditional probabilities of each response.

The Q matrix is defined as $Q = (q_{lk})_{l=1,\ldots,I; k=1,\ldots,K}$ where Q is a $I \times K$ matrix with I items and K attributes with real-valued q_{lk}. While the structure of the Q matrix is the same in all diagnostic classification models, its use differs. That is in contrast with the AHM (described below), where the Q-matrix is used primarily as a tool to get the ideal patterns of observed response patterns, the probabilistic GDM uses the Q matrix for specifying the conditional probability of an observed response vector given the latent variable vector. The formula for the GDM is

$$P_l(x|a) = P(x|\beta_l, q_l, \gamma_l, a) = \frac{\exp[\beta_{xl} + \gamma_{xl}^T h(q_l, a)]}{1 + \sum_{y=1}^{m_l} \exp[\beta_{yl} + \gamma_{yl}^T h(q_l, a)]},$$

(3.8)
where β_{xi} is the difficulty parameter and γ_{xi} is k-dimensional slope parameter\(^7\) ($\gamma_{xl} = \gamma_{x1l}, \gamma_{x2l}, ..., \gamma_{xKl}$) for $x \in \{0,1, ..., m_l\}$. In the formula, the conditional probability of response is expressed in two terms; a global difficulty parameter β_{xi} (as category boundary parameters in the case of polytomous items) and a combination of a_k and a Q matrix specified as $h(q_l, a) = (h_1(q_l, a), ..., h_k(q_l, a))$. When the Q matrix has a non-zero entry the slope parameters convey the contribution of the associated attributes ($a = (a_1, a_2, ..., a_K)$) to the response probability of item i.

The $h()$ function in the formula helps to determine how the Q-matrix entries q_{lk} and the skills a_k interact. That is, the function establishes how Q-matrix entries determine the effect of a particular skill on conditional response probabilities, which is $P_i (x|a) = P (x|\beta_i, q_i, \gamma_i, a)$ for item i. If the skill levels are 0/1, the commonly used general function is $h(q, a) = qa$.

In our case of polytomous items ($x \in \{0,1,2, ..., m_l\}$) with dichotomous attributes (i.e., Q-matrix entries are 0/1), Von Davier and Yamamoto (2004) assume a simpler form that extends well-known IRT models to diagnostic applications with multivariate latent skills. They put an additional restriction on γ where $\gamma_{xil} = x\gamma_{ilk}$ and $h(q_{lk}, a_k) = q_{lk} a_k$. The former allows the polytomous scores to have an effect on the item slopes per attribute. The parameter γ_{ilk} is a k-dimensional slope parameter ($\gamma_{ilk} = \gamma_{1l}, \gamma_{2l}, ..., \gamma_{Kl}$) for each item i. The latter means that when $q_{lk} = 0$, the student's mastery position on the attribute does not influence the probability of the

\[^7\] Note that in this notation $\gamma^T_{xl} h(q_l, a)$ term represents $\Sigma_{k=1}^K \gamma_{xil} h(q_{lk}, a_k)$.
particular response. If $q_{ik} = 1$, the response is influenced by the attribute8. The formula of conditional response is given as

$$P_l(x|\alpha) = P(x|\beta, q, \gamma, \alpha) = \frac{\exp[\beta x + \sum_{k=1}^{K} x\gamma_{ik} q_{ik} a_k]}{1 + \sum_{y=1}^{m_i} \exp[\beta y + \sum_{k=1}^{K} y\gamma_{ik} q_{ik} a_k]}$$ \hspace{1cm} (3.9)

Skill levels for a_k discrete skill levels are determined before estimation by assigning real numbers to the skill levels. For current purposes I selected $a_0 = -1$ and $a_1 = 1$ for my dichotomous skills (i.e., mastered vs non-mastered). I put the constraints of mean 1 for slope parameters and mean 0 for intercept parameters for the identification of the model. The intercepts βx_i can be viewed as item category difficulty parameters, for item i. Note that Equation 3.6 has an exponent with the inside expression of $\beta x_i + \sum_{k=1}^{K} x\gamma_{ik} q_{ik} a_k$ showing that the intercept parameters should be interpreted such that larger values represent item categories that are “easier” to select rather than more “difficult.” Slope parameters in the places where the Q-matrix does not have a zero entry can be viewed as the discrimination parameter for each item on each skill dimension. They have an interpretation that is analogous to factor loadings. The Q-matrix for FM LP data that is analyzed in this study is presented in the following table.

8 This member of the GDMs can be seen as a multivariate, discrete Generalized Partial Credit Model (von Davier, DiBello, & Yamamoto, 2006).
Table 3.3. *Q*-matrix for GDM.

<table>
<thead>
<tr>
<th>Item</th>
<th>Attribute 1</th>
<th>Attribute 2</th>
<th>Attribute 3</th>
<th>Attribute 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Item 2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Item 3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Item 4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Item 5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Item 6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Item 7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Item 8</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Item 9</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Item 10</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Item 11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Item 12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Item 13</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Item 14</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Item 15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Item 16</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The *Q*-matrix in Table 3.3 shows whether any of the four attributes is required for an item. For example, Attribute 1, Attribute 2, and Attribute 3 are equally required and they contribute to the response probabilities for this item.

The estimation of the parameters is done via marginal maximum likelihood (MML) estimation using the EM algorithm for the GDM developed by von Davier and Yamamoto (2004) using mldtm (multidimensional discrete latent trait models) software that was made available to the authors as a research license (von Davier, 2005).

My examination of the GDM model for the FM LP assessment data starts with examination of item parameter estimates (i.e., intercepts and slopes). The model also provides two information-based fit indices for relative model fit comparisons, the Akaike’s information criterion (AIC) (Akaike, 1974) and a Bayesian information criterion (BIC) (Schwarz, 1978). It also provides an item fit statistic (Item-fit Root Mean Square Error of Approximation-RMSEA),
which essentially compares the model-predicted item response probabilities for a selected response for respondents in different latent classes with the observed proportions of selected responses by the responses weighted by the proportion of respondents in each latent class. The item fit indices for the GDM are thought to have good fit when RMSEA < .05, moderate fit when RMSEA < .10), and poor fit when RMSEA > .10. Note however that assessing global model fit, local item fit, as well as the fit of nested and non-nested models is not currently well understood or well documented within the diagnostic classification models literature at this point.

The GDM provides for each student the probabilities of latent class membership for all of the $2^4 = 16$ theoretically possible latent classes as well as a marginal distribution of all these latent classes in the sample. That is, if we have 4 attributes (as in the case of the FM LP); there will be $2^4 = 16$ possible latent classes from nonmastery of all attributes to mastery of all (i.e. from [0000] to [1111]). Students are placed into one of these possible latent classes based on the highest marginal probability. While the hypothesized FM learning progression allows only four latent classes due to the hierarchical nature of levels (and attributes), I examined the distribution of latent classes without this restriction which provides a better understanding of the placement of students into latent classes by examining whether the hierarchical structure hypothesized by the learning progression is supported or not.

The latent correlations between the discrete latent attributes are likewise estimated. The relationships between skills provide information on whether we measure distinct but related components. That is, whether our attributes are related but also separable from each other.
3.5.3 Pattern Recognition Models (AHM Example)

The AHM is a pattern recognition model. It incorporates a cognitive model of structured attributes into the test design. A first step in the AHM process requires creating a hierarchy which defines the ordering of attributes that must be mastered in order to solve test items. For example, Figure 3.4 below represents a linear hierarchy where attribute 1 is viewed as the prerequisite of attribute 2, and attribute 1 and attribute 2 are prerequisites for attribute 3.

Figure 3.4. A Simple 3-Attribute Hierarchy.

![Attribute Hierarchy](image)

An attribute hierarchy uses formal representation of the hierarchy via different matrices. There are four matrices called adjacency (A), reachability (R), incidence (Q) and reduced incidence (Q_r). The A and R matrices represent direct and indirect relationships between attributes, respectively. They are used to create the Q_r matrix which shows required items representing specified combinations of attributes. The full Q-matrix would indicate the number of dichotomously scored items that would be needed for a potential item bank representing all possible attribute combinations. This would be calculated as $2^k - 1$ (in the case of 3 attributes, this would be $2^3 - 1 = 7$).

The hierarchical structure of the method leads to a decrease in the number of permissible items as presented by the Q_r matrix as well as the number of attribute profiles (Rupp et al., 2010;
Gierl et al., 2007; Leighton, Gierl, & Hunka, 2004). Similar to a Q-matrix, the attributes are indicated by columns and items by rows. The Q_r matrix for the attribute hierarchy shown in Figure 3.4 would be

$$Q_r = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

The Q_r matrix shows that at least three unique types of items are required. One item should measure first attribute, the next one requires both attribute 1 and 2 together, and the last one requires all three attributes.

Given the attribute hierarchy, expected response patterns representing the response patterns of students who don’t make slips with respect to attribute hierarchy are determined. For the attribute hierarchy shown in Figure 3.4, there will be three expected response patterns (i.e., response vectors of [100], [110], and [111] where [111] vector shows all items are answered correctly). Also, examinee attribute vectors presenting the possible latent classes (e.g., [100]) represent students in a class that only mastered the first attribute) are generated. In recent research, Artificial Neural Networks (ANNs) are used to estimate the latent class membership of students (Cui, Gierl, & Leighton, 2009). ANNs typically consist of three groups: one input layer, one hidden layer, and an output layer. Each layer consists of “neurons”, which have different interpretations depending upon the layer. For dichotomously scored test items, the number of neurons is equivalent to the total number of items on a test.

The neurons in the output layer are fixed to correspond to the different attributes hypothesized to comprise an attribute hierarchy. A hidden layer in a neural network makes it possible to examine the impact of input neurons interactions on output neurons. Figure 3.5 shows the mechanism within a neural network.
Figure 3.5. *Mechanism of Artificial Neural Network.*

The arrows connecting the neurons between layers represent weights. The idea is to assign probabilities to the output neurons (using the weights) given the input neurons. The weights are estimated iteratively such that they collectively minimize the difference between the known value of attributes for an expected response string, and the predicted value. Because the estimation process is iterative, all weights are usually initialized with random values drawn from a standardized normal distribution (Günther & Fritsch, 2010). The first step of this approach is to calculate the weighted sum of all input nodes. Suppose that one has an ANN with I input nodes, J hidden nodes, and K output nodes. Begin by computing
\[a_j = \sum_{t=1}^{I} W_{jt} X_t \]

where \(a_j \) is the weighted sum for hidden node \(j \). \(W_{jt} \) is the connecting weight from input to hidden node \(j \) and \(X_t \) is the value of input node \(t \). In the second step, the summed value is transformed via sigmoid function to calculate the value of the hidden node.

\[f(x) = \frac{1}{1 + exp^{-x}} \text{ and } h_j = f(a_j) = f \left(\sum_{t=1}^{I} W_{jt} X_t \right) \]

After calculating the values for hidden nodes, same process is applied to calculate the values of output nodes. It is worth noting that use of sigmoid function leads the range of values from 0 to 1 and allows for a probabilistic interpretation (Gierl et al., 2009). The iterative process continues until the output node values are stabilized and estimated weights are used for the calculation of probabilities of observed response patterns.

To sum up, in the AHM, once an analyst has specified an attribute hierarchy, \(Q \), matrix and expected response matrix, it can be deceivingly easy to train an ANN and generate attribute probabilities for observed item response patterns. This is a pattern recognition method which allows comparison of observed response patterns with trained patterns. When it is being used to estimate latent classification probabilities, no empirical data is necessary to estimate the parameters of an ANN—one only requires an expected response matrix, and this is generated from theory.

While all cognitive models are confirmatory in nature, the AHM is an extremely confirmatory approach. That is, the AHM is confirmatory both in terms of how items map to
attributes (here it is similar in nature to the DINA, described above), and also in terms of how attributes relate to each other in the hierarchy. Its utility rests upon the correctness of the attribute hierarchy that has been stipulated as well as the attributes specified in the Q-matrix.

The model uses a person-fit statistic called the hierarchy consistency index (HCI) (see Cui & Leighton, 2009) to evaluate the degree to which the response patterns of students are consistent with the ones constructed based on the attribute hierarchy representing the processes students used to solve the items. The underlying logic of the HCI index is that student who answered an item correctly needs to first answer its prerequisite items right. The values of the index range between -1 and 1, and it is suggested not to use a cognitive model in the case of really low values for inferences about students. Usually, the median value of the HCIs across all students is used to determine the overall model fit. Currently, in contrast to IRT models, this approach has not obtained item parameter estimates. Additionally, the estimated attribute probabilities for each student are not group invariant.

The AHM related research has grown in recent years with a number of applications (Gierl, Leighton, Wang, Zhou, Gokiert, & Tan, 2009; Broaddus, 2012; Wang & Gierl, 2011). The AHM does not parameterize item characteristics. Instead, as described above, it uses a pattern recognition approach to produce the expected response patterns specified by the hypothesized hierarchy.

The AHM framework is selected because the application of the AHM in the context of learning progressions has been previously suggested and illustrated by Briggs and Alonzo (2012). The authors presented potential challenges to modeling the OMC item responses to support diagnostic inferences with conventional IRT models and posited the use of the AHM
approach as an alternative. I follow their proposed method in my dissertation. The AHM approach modified for OMC items is presented in the following section.

3.5.3.1 AHM model: Extension to the ordered multiple choice items. As described above, the first step in the AHM requires creating a hierarchy which defines the ordering of attributes that must be mastered in order to solve test items. This is identical in structure to the hierarchy being conceptualized for the learning progressions. Briggs and Alonzo (2012) converted the qualitative descriptions of levels in the Earth and Solar System (ESS) learning progression (see Appendix C) into the attributes required in AHM (p. 305).

A1: Student recognizes that objects in the sky move systematically.
A2: Student knows that the Earth orbits the Sun, the Moon orbits the Earth, and the Earth rotates on its axis.
A3: Student can coordinate apparent and actual motions of objects in sky.
A4: Student can incorporate the motions of the Earth and Moon into a complete description of motion in the Solar System that explains the day/night cycle, phases of the Moon, and the seasons.

They specify a linear hierarchy among these four attributes which reflects the original hierarchies implied in the learning progression (A1 \(\rightarrow\) A2 \(\rightarrow\) A3 \(\rightarrow\) A4). Because there is a linear hierarchy the conjunctive nature of attributes is straightforward. That means a student must possess an attribute lower in the hierarchy (e.g., A1 and A2) in order to possess a higher attribute (e.g., A3). They specify the connection between LP levels and attributes as follow:

- Level 1 = No attributes
- Level 2 = A1
- Level 3 = A1 & A2
- Level 4 = A1 & A2 & A3
- Level 5 = A1 & A2 & A3 & A4
In the next step, the AHM requires a formal description of the attribute hierarchy in order to specify expected response patterns. The key matrix that must be formed is the Q_r matrix, a reduced form of the Q_r matrix (a standard quantity in diagnostic assessment). In the case of items with dichotomously coded items, the Q_r matrix indicates the number of items that would be needed to represent all possible attribute combinations. Importantly, the introduced hierarchy reduces the number of attribute combinations that are possible, and thereby the number of unique item types that need to be written. This distinguishes the Q_r matrix from the full Q matrix.

With the polytomously scored OMC items used in learning progressions, a Q_r matrix would need to be specified at the item option level (as described in Briggs & Alonzo, 2012 for ESS LP). This can be seen as a process to dichotomize polytomous item responses due to computational restrictions. For each item, item options matched with LP levels are taken as separate responses. This is illustrated for an excerpt of the Q_r matrix associated with Force and Motion LP. In Table 3.4, an example is shown for FM attribute hierarchy where columns show item options for Item 1 and Item 2.

Table 3.4. Excerpt of the Q_r Matrix Associated with FM LP Attribute Hierarchy.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Item Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1A</td>
</tr>
<tr>
<td>A1</td>
<td>1</td>
</tr>
<tr>
<td>A2</td>
<td>1</td>
</tr>
<tr>
<td>A3</td>
<td>0</td>
</tr>
<tr>
<td>A4</td>
<td>0</td>
</tr>
<tr>
<td>Level</td>
<td>2</td>
</tr>
</tbody>
</table>

With OMC items, the Q_r matrix is modified to show which item option a student would be expected to select as a function of the level of the LP that best characterizes the student’s thinking about the phenomenon of interest. As presented in the Table 3.4, I show how to connect...
each attribute into item options in the context of OMC items. As a following step, the Q_r matrix can be used to generate a matrix of expected response patterns for students at each level of the LP as it is presented in Table 3.5—assuming that the hierarchy of attributes specified within the LP is accurate.

Briggs and Alonzo (2012) notice an important complication which arises with options connected to the same LP levels. For example, options A and D for both Item 1 and Item 2 are both linked to Level 2 of the FM LP. For both items, the choice between the first and fourth responses should essentially be random. Therefore, when there are multiple response options at the same level across items, the number of distinct yet equally plausible response strings will increase.

Table 3.5. *Expected Response Patterns for Two OMC Items: Option Level.*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[0010] [1/4 1/4 1/4 1/4]</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>[1/2 0 0 1/2] [1/2 0 0 1/2]</td>
<td>1100</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>[0100] [0010]</td>
<td>1110</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>[1/4 1/4 1/4 1/4] [1000]</td>
<td>1111</td>
<td>4</td>
</tr>
</tbody>
</table>

In order to estimate the probability that students possess specific attributes measured by the LP assessment items, I employ the ANN approach that was described above. As presented in the previous section, for dichotomous items and a given student, each neuron in the input layer represents a scored response to a test item. With the polytomously scored OMC items, the number of neurons depends upon the number of item-options. Note that this modification which allows the use of polytomous items in the context of AHM has a critical effect on the estimation of probabilities for Attribute 1. That is, it is not possible for a student to have a response pattern with all zeros. A student also cannot have a response pattern with ones because of the ceiling and
floor effects in OMC items. We always observe a response pattern with a mixture of ones and twos, in a worst case scenario. Hence, even we train the ANN with an expected response pattern of all zeros or all ones; every student will be classified as mastered for the Attribute 1.

In order to examine AHM in the context of learning progression assessments, I again start with an examination of model fit. Again, this approach does not provide item parameter estimates based on observed student responses. Hence, it is not possible to examine item fit statistics. Instead, I adapt the notion of a person-fit statistic for dichotomously scored items (Cui, Leighton, Gierl, & Hunka, 2006). In the cases of LPs with OMC items, the index needs revision with adjustments that take into account the unique nature of OMC items. With OMC items, students ideally are expected to demonstrate consistent performance (i.e., provide responses at the same level(s) of a LP framework) across different items. OMC items specify an attribute hierarchy within an item (between item response options) rather than between items. For a given student, when student selects an item option corresponding to an attribute combination at the high end of the FM learning progression, the student has mastered all these attributes and s/he is expected to select the similar (higher level) option in another item. Hence, the conception of fit requires consistency among the student selection of options with same/similar attributes.

The simplest formula for a “Response Consistency Index” can be

\[
\text{RCI}_i = 1 - \frac{\text{# of misfits}}{\text{# of comparisons}}
\]
(3.12)

However this calculation would only be appropriate when applied to the response patterns for the OMC items for which there are no floor or ceiling effects. For my analysis, I use the idea of consistently selecting similar options with the formula;
\[
\text{RCI}_i = 1 - \frac{2 \times \text{number of misfits in the subset of items with the same possible option}}{\text{number of comparisons}}.
\]

(3.13)

Table 3.6 provides an example of how the formula works. In the example, there are 4 items with different possible LP levels. The fourth column represents an example response pattern to the four items.

Table 3.6. *The Concept of Misfit with OMC Items.*

<table>
<thead>
<tr>
<th>Item</th>
<th>Min Possible</th>
<th>Max Possible</th>
<th>Example Score</th>
<th>Misfits</th>
<th>Number of comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Item 2</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Item 3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Item 4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

For item 1, a response associated with a Level 2, Level 3 or Level 4 is possible and student selects the option at Level 4. I compare this item to the subset of remaining items which have an option associated with Level 4. In this case, there are 2 items (Item 2 and item 4). I then count the number of times where this student chose a response option other than Level 4. This is the case for both Item 2, and Item 4, so the number of misfits relative the first item response is 2 within two comparisons. The same process is repeated for the other three items. The sum of all misfits for this example is 8. The number of comparisons is 8. So, the RCI is \(=1-(2\times8/8)) = -1\) referring to an exact misfit.

I examine and present the characteristic of this formula with the FM LP data using the proposed strategy above.
Recall that there are not item parameters estimated in AHM. Hence, the examination of parameter item parameter invariance is not possible. The parameters estimated in AHM are the weights in ANN (see Figure 3.5) and they have an effect on the attribute probabilities of students. With the cautions put on the ANN approach, it is important to examine the consistency of the student attribute estimates across multiple trainings.

Later, I estimate attribute probabilities for the student sample responding to the Force and Motion OMC items on the basis of a neural net specification with one hidden layer, four hidden neurons, backpropagation algorithm and a learning rate of 0.01. The initial weights are selected randomly from a normal distribution. However, these random initial weights are noted to have potential problems of both local minima and slow convergence (c.f., Li, Alnuweiri, & Wu, 1993).

After computing attribute probabilities for each student by using their observed response patterns in neural network, one typically examines the mean and SD for each attribute probability estimate with the expectation that the mean values decrease with higher level attributes showing relative difficulty of mastering each attribute. That is, with linear FM LP hierarchy it should decrease from A1 (easiest) to A4 (most difficult). I also examine the correlation between attribute pairs at this stage where adjacent attributes are expected to have a higher correlation.

Finally, for placing a student into a mastery category for each attribute, I examine the mastery status of students for three thresholds; 0.5 (which is common in the literature), 0.65, and 0.75. Note that a high threshold means a more conservative approach to place students into higher level LP levels. For example, a lower threshold (such as 0.50) leads more students being
placed in the mastery category of attributes. After deciding mastery status of the students, I will place them into LP levels based on their mastery sequence.

In the context of diagnostic models, the comparison of DCMs with IRT model results is common. The comparisons mostly focus on the model fit (e.g., von Davier, 2008), but they do not come to the end point of how these models differ in terms of the inferences that are actually communicated to teachers or students. My second research question focuses on the comparison of the models on the inferences on student classifications into LP levels. For that purpose, I examine the differences and similarities in the student placements across different modeling approaches.

3.6 Chapter Summary

This chapter focused on the basics of the empirical data used in this dissertation and the modeling approaches that I will be applying for extracting diagnostic information about the students’ understanding of force and motion concept. It likewise presented the details of three models that I use in my dissertation together with the adjustments I need for analyses of LP assessments composed of OMC items. It presented the IRT framework, which is predominant in current psychometric modeling of learning progressions. It likewise presented the diagnostic classification models as promising, but which remain largely unexamined with small diagnostic assessments, and as tools to model the data from LP assessments composed of OMC items.

With the methods and methodological refinements that are required in mind, I provide the analysis results of the data for each model in the following chapter.
Chapter 4

Results

The primary goal of this chapter is to examine the FM LP data and present the results from different frameworks. In section 4.1, I start with a “naïve” non-probabilistic approach. I provide the results from the exploratory analysis of data and categorization of students into LP levels. For this first part, my examination of data aims to understand the data better for the later analyses and results. This is followed by an examination of the classification of students into LP levels from a modal analysis. A fundamental argument in favor of taking a probabilistic approach to classifying students for diagnostic purposes is that such an approach offers more nuanced insights into a student’s strengths and weaknesses than taking a more ad hoc or modal approach, such as simply classifying a student as a function of his or her modal response. Thus, the results from the modal approach aim to provide a basis for comparisons from the probabilistic models that I use in this dissertation to examine whether there are practical reasons to use more complicated models. Next, I continue with the results from three probabilistic models; PCM, AHM and GDM, respectively. The presentation of the results for each of the models includes the investigation of the model assumptions, item parameter estimates, attribute probabilities (person estimates), and the classification of students into the LP levels. This chapter ends with the comparisons across models to examine the differences produced in terms of classification of students into LP levels.
4.1 Examination of Data

When only item level descriptive statistics are available to evaluate the quality of the items, there is a challenge to incorporate common psychometric techniques for the OMC items. For example, the notion of difficulty does not provide the same information as in the case of traditional multiple choice items. This is because OMC items aim to capture the most representative understanding of students on the topic rather than selecting the correct option. They also introduce an additional challenge when items do not have options at all LP levels. The following table provides the mean level values for each item.

Table 4.1. Mean Level Values of FM LP Assessment.

<table>
<thead>
<tr>
<th>Items</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td>2.06</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Item 2</td>
<td>2.95</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Item 3</td>
<td>2.99</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Item 4</td>
<td>3.17</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Item 5</td>
<td>2.98</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Item 6</td>
<td>2.68</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Item 7</td>
<td>1.89</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Item 8</td>
<td>3.11</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Item 9</td>
<td>2.93</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Item 10</td>
<td>3.24</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Item 11</td>
<td>2.46</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Item 12</td>
<td>2.75</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Item 13</td>
<td>2.98</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Item 14</td>
<td>3.44</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Item 15</td>
<td>1.43</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Item 16</td>
<td>2.95</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

One way to think about these mean values is to view them as the representations on a continuous variable in the form of discrete levels. For instance, Item 11 has a mean level value of 2.46 which indicates a place between Level 2 and Level 3 with regards to the level of sophistication in student thinking. However, this interpretation is limited because the item does
not have an option at Level 4 which makes representation of students’ understanding at this level unclear.

Next, in order to evaluate the match between LP levels assigned by the assessment developers and observed data for each item, I examine both the point-biserial correlations at the option level, and the cross tabulation of items options where any unexpected order of response frequency is flagged as a mismatch. Since all items are written as (at least) ordinal categories, the point-biserial correlations are expected to increase monotonically on each level. This is the correlation between a response category coded as a dummy variable (a score of 1 for students that responded with the current LP level and a score of 0 for students in other response categories) and the total score. After applying this strategy, none of FM LP items satisfy the monotonic increase with increasing LP levels. The potential reasons for distorted point-biserials are the relatively small number of students at lower levels, also a result of a small number of lowest level options available.

Another important consideration is the extent to which the frequency of students responses align with expected frequency across different LP levels. I examine consistency across item options using the mean scores of each student group who selected the same option in an item. The results for each item are presented in Table 4.2. First four columns in the table illustrate the mean scores at specific level (e.g., mean total score is 41.07 for students who picked Level 1 option for Item 1). Multiple options column shows whether the item has multiple options linked to the same LP level (e.g., Item 1 has 2 options linked to the Level 2). Final column on Table 4.2 shows if there is an unexpected pattern across LP levels (e.g., for Item 7, mean total score of students selecting Level 1 option is higher than the mean total score of students who selected a Level 2 option and the item is flagged as ‘Yes’).
Overall, there is an increasing trend across levels for 7 out of 16 items but variability in mean total scores is small.

Table 4.2. Mean Total Score for Students Selecting Same LP Level Option in an Item.

<table>
<thead>
<tr>
<th>Item</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Multiple options (in any)</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td>41.07</td>
<td>41.18</td>
<td>43.62</td>
<td>.</td>
<td>L2</td>
<td>No</td>
</tr>
<tr>
<td>Item 2</td>
<td>.</td>
<td>40.95</td>
<td>40.01</td>
<td>41.91</td>
<td>L2</td>
<td>Yes</td>
</tr>
<tr>
<td>Item 3</td>
<td>.</td>
<td>39.76</td>
<td>41.41</td>
<td>41.07</td>
<td>L3</td>
<td>Yes</td>
</tr>
<tr>
<td>Item 4</td>
<td>.</td>
<td>39.58</td>
<td>40.14</td>
<td>42.26</td>
<td>L2</td>
<td>No</td>
</tr>
<tr>
<td>Item 5</td>
<td>38.73</td>
<td>38.67</td>
<td>41.19</td>
<td>41.26</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>Item 6</td>
<td>39.23</td>
<td>39.94</td>
<td>42.18</td>
<td>42.83</td>
<td>L2</td>
<td>No</td>
</tr>
<tr>
<td>Item 7</td>
<td>41.56</td>
<td>40.92</td>
<td>43.54</td>
<td>.</td>
<td>L1</td>
<td>Yes</td>
</tr>
<tr>
<td>Item 8</td>
<td>.</td>
<td>38.98</td>
<td>40.81</td>
<td>42.06</td>
<td>L3</td>
<td>No</td>
</tr>
<tr>
<td>Item 9</td>
<td>.</td>
<td>40.13</td>
<td>40.16</td>
<td>42.58</td>
<td>L2</td>
<td>No</td>
</tr>
<tr>
<td>Item 10</td>
<td>.</td>
<td>40.68</td>
<td>41.06</td>
<td>N/A</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Item 11</td>
<td>40.07</td>
<td>40.56</td>
<td>42.39</td>
<td>.</td>
<td>L2</td>
<td>No</td>
</tr>
<tr>
<td>Item 12</td>
<td>38.61</td>
<td>39.43</td>
<td>41.98</td>
<td>42.37</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>Item 13</td>
<td>.</td>
<td>39.66</td>
<td>41.50</td>
<td>41.19</td>
<td>L2</td>
<td>Yes</td>
</tr>
<tr>
<td>Item 14</td>
<td>.</td>
<td>.</td>
<td>40.12</td>
<td>44.15</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>Item 15</td>
<td>42.62</td>
<td>41.63</td>
<td>42.54</td>
<td>.</td>
<td>L1</td>
<td>Yes</td>
</tr>
<tr>
<td>Item 16</td>
<td>.</td>
<td>41.69</td>
<td>40.45</td>
<td>41.45</td>
<td>L3</td>
<td>Yes</td>
</tr>
<tr>
<td>Margin Mean</td>
<td>40.39</td>
<td>40.35</td>
<td>41.60</td>
<td>42.30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: *Mean performance across all level is 43.42. The mean values are calculated after item removed.

I will use the same strategy in the following sections with mean IRT theta estimates and DCM attribute probabilities, again, to check the alignment between LP levels and estimated student ability and student mastery.

4.1.2 Modal Classification Results

Of the 931 students in our sample, 858 (92%) could be classified into a level of the Forces and Motion LP on the basis of the OMC response option associated with the LP level selected most frequently. Some students (74) chose two levels at equal frequency. The distribution of students into the FM LP levels is given in Table 4.3.
Table 4.3. Basic FM LP Level Placement Results.

<table>
<thead>
<tr>
<th>Level</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>1</td>
</tr>
<tr>
<td>Level 2</td>
<td>84</td>
</tr>
<tr>
<td>Level 3</td>
<td>733</td>
</tr>
<tr>
<td>Level 4</td>
<td>39</td>
</tr>
<tr>
<td>Level 2 - Level 3</td>
<td>47</td>
</tr>
<tr>
<td>Level 2 - Level 4</td>
<td>4</td>
</tr>
<tr>
<td>Level 3 - Level 4</td>
<td>23</td>
</tr>
</tbody>
</table>

Looking at Table 4.3, the modal approach placed most of the students into the Level 3. From simplistic perspective, this shows that there is limited variability in this sample. There is only 1 student who selected Level 1 options the most frequently, which may be expected due to the fact that a Level 1 response option was not even possible for 9 out of 16 items. Almost 8% of the students could not be placed into a specific level because they selected an equal number of options at two levels.

The results from this “modal” approach will serve as a baseline contrast relative to the classifications made from the three models I use in this dissertation (i.e., PCM, AHM and GDM).

4.2 Unidimensional Partial Credit Item Response Theory Model

In this section, I start with examination of the dimensionality of the FM assessment items. Recall that models from the DCM and IRT framework have different assumptions of the underlying latent trait (continuous vs. discrete). That is IRT models assume that there is one underlying trait or a common composite of traits that explains students’ performance on the assessment items. However, DCMs conceptualize the latent trait(s) as an ordered set of a limited number of latent groups. They identify a mathematical model that can represent the connection between the probability of a response to an item and the location of a person in a multi-skill
discrete space. The examination of dimensionality helps us to provide support for the underlying latent trait assumptions for selected models. Then, I continue with the investigation of PCM item parameter estimation results. In the next subsection, I investigate model fit results where item statistics are considered as a gauge of the suitability of the model. Relatedly, item parameter invariance is examined across random samples. Finally, I present results from examination of a person-item map to show the challenges introduced by OMC items for the alignment of categories across items. The results did not support for putting meaningful cutoffs along the ability distribution to classify students into levels of the underlying LP.

4.2.1 Examination of Empirical Dimensionality

The use of the PCM depends on two assumptions: unidimensionality and local independence. The local independence assumption requires that when we condition on the latent ability of a respondent (i.e., for fixed values of theta) the responses to items are statistically independent. Unidimensionality is a prerequisite for this to hold. When these assumptions hold and the model fits the data, the property of parameter invariance should hold, meaning that item and person parameters are independent from each other. The issue of multidimensionality is related to the model misfit, where if we model multidimensional data unidimensionally, the parameter estimates are likely to be distorted. In contrast, DCMs assume a complex structure where the multidimensionality can exist within as well as between items. Using DCMs are recommended only if the model approximates data better than more parsimonious and computationally less demanding models (Sinharay & Haberman, 2009).

9 Multidimensional IRT models likewise assume a set of traits underlying the students’ responses and identify a mathematical model to place a student in a multidimensional space. However, they assume latent traits to be continuous in each dimension (Reckase, 2009).
For current purposes, I follow an exploratory approach where my goal is to investigate the underlying set of dimension(s). In order to examine the dimensional structure of the data, I will follow the steps;

(a) compute polychoric correlations based on the polytomous item responses,

(b) run a parallel analysis (PA) to examine the number of dimensions supported by the data,

(c) run an explanatory factor analysis (EFA) to examine and identify the items with strong loadings on specified number of factors.

The parallel analysis results for FM LP assessment are presented in the Figure 1. Parallel analysis identified 6 factors in FM LP assessment using polychoric correlation. That is, six simulated eigenvalues fall behind the corresponding, real eigenvalues.

Figure 4.1. Parallel Analysis Approach Scree Plot.

While the results from the exploratory analysis suggest that there may be multiple dimensions that underlie the FM LP assessment, the results need to be interpreted with caution.

10 I also ran the analysis by excluding Item 10 and Item 14 which only have categories 3 and 4. The result changed very little and the conclusion was same.
Note that, in practice, it is unlikely any empirical data will be purely unidimensional. That is, data may be considered basically as unidimensional when there is a “dominant” factor underlying the responses (e.g., Lord, 1980) where any other factors can be thought as nuisance dimensions. In FM LP assessment data, it is hard to say that there is one dominant factor. The eigenvalue for the first factor in Figure 4.1 is just 1.87, which is pretty small in comparison to values we observe in most testing situations (e.g., values between 6-20 for the first eigenvalue are highly likely in large scale administrations as for NAEP). However, there is a rule of thumb that is described by Lord (1980) and expanded by Divgi (1980) with the minimum value of 3 to defer the unidimensionality and commonly used in the large scale assessments (e.g., the 2008 technical report for the Illinois state). I find that the ratio of the difference of the first and second eigenvalues (1.87-0.57 = 1.3) over the difference of the second and third eigenvalues (0.57 – 0.49 =0.06) is to be 21.7. This approach supports the LP assessment to be calibrated with a unidimensional model.

A reasonable next step to examine the dimensional structure of FM LP assessment is to investigate the distribution of items across factors. For that purpose, I fit the data into a 1-factor solution first and examined the loadings. As I discussed above, from statistical view, PA analysis suggests 6 separate factors. However, when we consider practical significance, adding to the cumulative variation by an additional factor, we can conclude that a 4-factor structure is supportable in comparison to other higher number factor structure. Additionally, the eigenvalue of the fifth factor is close to the eigenvalue produced by resampled data and simulated data. In the next subsection, I will examine the loadings of 16 items on the 4-factor model.
4.2.1.1 EFA Analyses Results. In this section, I first ran a FA with 1-factor and then with 4-factor structure. I examine the loadings of items for the former and the number of items placed at each factor11 for the latter. Table 4.4 presents the loadings of each item on one factor.

Table 4.4. Factor Loadings from Oblique Exploratory Factor Analyses for 1-Factor Structure.

<table>
<thead>
<tr>
<th>Items</th>
<th>Factor 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 12</td>
<td>0.52</td>
</tr>
<tr>
<td>Item 6</td>
<td>0.51</td>
</tr>
<tr>
<td>Item 9</td>
<td>0.48</td>
</tr>
<tr>
<td>Item 1</td>
<td>0.46</td>
</tr>
<tr>
<td>Item 4</td>
<td>0.46</td>
</tr>
<tr>
<td>Item 11</td>
<td>0.46</td>
</tr>
<tr>
<td>Item 7</td>
<td>0.43</td>
</tr>
<tr>
<td>Item 8</td>
<td>0.30</td>
</tr>
<tr>
<td>Item 14</td>
<td>0.24</td>
</tr>
<tr>
<td>Item 13</td>
<td>0.22</td>
</tr>
<tr>
<td>Item 5</td>
<td>0.19</td>
</tr>
<tr>
<td>Item 3</td>
<td>0.18</td>
</tr>
<tr>
<td>Item 2</td>
<td>0.15</td>
</tr>
<tr>
<td>Item 10</td>
<td>0.07</td>
</tr>
<tr>
<td>Item 15</td>
<td>0.01</td>
</tr>
<tr>
<td>Item 16</td>
<td>-0.04</td>
</tr>
</tbody>
</table>

Half of the items are found to have little relevance in the 1-factor model (i.e., uniqueness close to 1 and low factor loadings)12. This suggests that our data does not support unidimensionality where each item of the assessment relates to only one unique latent dimension. Between-item multidimensionality where groups of items load on different latent dimensions or within-item multidimensionality where each item of the assessment relates to more than one latent dimension can be the case. For multi-factor structures, the hypothesized relationship

11 It can be considered that examining loading of options which are coded as 0-1 can be a better strategy; but the matrix is not convertible in this case which is common in practice (e.g., Flora & Curran, 2004).

12 Recall that in factor analysis, the greater ‘uniqueness’ the lower the relevance of the variable in the factor model. Also, factor loadings can be interpreted like standardized regression coefficients. Hence, the coefficients represent the relationship of observed variables with factors.
between factors, correlated (oblique) or uncorrelated (orthogonal), leads to the use of different rotations and may conclude in different loading results. The main goal of rotation is to simplify and clarify the data structure. In FM LP data, it is reasonable to think that the factors are correlated. Therefore, I ran the analysis with oblique rotation and maximum likelihood (ML) as the extraction method. The loadings for 16 items are presented in Table 4.5.

Table 4.5. *Factor Loadings from Oblique Exploratory Factor Analyses for 4-Factor Structure.*

<table>
<thead>
<tr>
<th>Items</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
<th>Factor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 3</td>
<td>0.3</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Item 4</td>
<td>1.1</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.1</td>
</tr>
<tr>
<td>Item 1</td>
<td>-0.1</td>
<td>0.9</td>
<td>0.0</td>
<td>-0.1</td>
</tr>
<tr>
<td>Item 7</td>
<td>0.0</td>
<td>0.6</td>
<td>-0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Item 6</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.8</td>
<td>-0.1</td>
</tr>
<tr>
<td>Item 9</td>
<td>0.1</td>
<td>0.0</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Item 12</td>
<td>0.0</td>
<td>0.0</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Item 8</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Item 10</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Item 14</td>
<td>-0.1</td>
<td>-0.1</td>
<td>-0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>Item 2</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Item 5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Item 11</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Item 13</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Item 15</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>Item 16</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>-0.1</td>
</tr>
</tbody>
</table>

The results for 4-factor structure showed that the correlations across factors were less than 0.5 for each factor combination and only 8 items out of 16 had loadings more the 0.3^{13}. The cumulative variance explained by 3 factors is found to be 29%. Therefore, the results may suggest more support *a priori* for a DCM approach relative to an IRT approach, but given the

13 4-factor solution is same as the number of levels in hypothesized FM LP. The poorly functioning items with low factor loadings may create convergence problems due to the severe item misfit. One solution can be excluding these items. However, because 6 of the items could not load any of the four factors, excluding them could have an effect on the accuracy of latent trait estimates as well as the item parameter estimates (e.g., DeMars, 2010). Still, I examine and present results for using 10 well-behaved items. A short summary is presented in Appendix D.
fact that items do not load on multiple factors and factors explain a small portion of the overall variability, there is not a clear-cut solution suggested by the explanatory methods. Hence, although the question of dimensionality is quite important, it turns out to be highly challenging to make a decision using current methods.

4.2.2 Item Parameter Estimation

In the PCM case, by incorporating a location parameter for each category boundary and each item (δ_{ij}) we obtain a flexible model where the number and structure of categories can vary across items in an assessment. However, the model requires polytomous items to be coded without missing categories. One design criterion of learning progression-based items is that, ideally, students at the same ability level will get the same level across all items. In the context of PCM, this means that the item category boundaries ($\delta_{i1}, \delta_{i2}, \delta_{i3}$) should be similar across items.

In the case of OMCs, we have natural missing categories (ceiling and floor effects) and also have multiple categories connected to the same LP levels. For example, when an item has all possible categories, an item that was supposed to be scored from 1 to 4 can be used to estimate category boundary parameters ($\delta_{i1}, \delta_{i2}, \delta_{i3}$). However, a challenge arises when an OMC item has only some of the possible categories. So, for example, instead of having a response that can be linked to levels 1, 2, 3, and 4, it may only be possible for respondents to select response options linked to levels 2, 3, and 4. In this latter case, the response vector needs to be recoded to become 1, 2, and 3 and category parameters of δ_{i1} and δ_{i2} are produced. Therefore, there appears a need to follow a strategy in how to compare the item parameters estimated across items which have different structures. For my current purposes, I reorganized the item parameter estimates with regard to their original categories. That is, if an item has options of 2, 3, and 4, I categorized the item parameter estimates as δ_{i2} and δ_{i3} rather than δ_{i1} and δ_{i2}. It is critical to note that I made a
strong assumption here. I expect the item category parameter estimates (δ_{ij}) to be similar across items when they have the same options. For example, both Item 12 and Item 13 ask about the forces acting on a stone. Item 12 has options associated with levels of 1, 2, 3 and 4 and Item 13 has options 2, 3 and 4. If we examine the options associated with level 2 (“Only the force that Derek put on the stone is acting on it.” and “There is no more force left from Derek’s throw.”) and level 3 (“Both gravity and the force that Derek put on the stone are acting on it.” and “The force of gravity is now equal to the force from Derek's throw.”), it can be argued that the similar options are measuring the same concepts and we may expect the category boundary parameters to be similar ($\delta_{12,2}, \delta_{13,1}$).

Table 4.6 contains the one to three δ_{ij} values for each item categorized as explained above. The estimates vary between -2.68 and 4.09, covering a wide range of ability distribution. In addition, the estimation results within each category boundary demonstrate a wide variation. The variation in the results suggests potential problems in using these results to classify students into LP levels.
Table 4.6. *Category Boundary Parameter Estimates of 16 Items.*

<table>
<thead>
<tr>
<th>Items</th>
<th>Level 1-Level 2(δ_{i1})</th>
<th>Level 2-Level 3(δ_{i2})</th>
<th>Level 3-Level 4(δ_{i3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 10</td>
<td>.</td>
<td>.</td>
<td>1.63</td>
</tr>
<tr>
<td>Item 14</td>
<td>.</td>
<td>.</td>
<td>0.71</td>
</tr>
<tr>
<td>Item 1</td>
<td>-0.03</td>
<td>0.72</td>
<td>.</td>
</tr>
<tr>
<td>Item 7</td>
<td>1.27</td>
<td>-0.05</td>
<td>.</td>
</tr>
<tr>
<td>Item 11</td>
<td>-0.59</td>
<td>-0.18</td>
<td>.</td>
</tr>
<tr>
<td>Item 15</td>
<td>4.09</td>
<td>-1.7</td>
<td>.</td>
</tr>
<tr>
<td>Item 2</td>
<td>.</td>
<td>0.96</td>
<td>0.11</td>
</tr>
<tr>
<td>Item 3</td>
<td>.</td>
<td>-0.78</td>
<td>1.74</td>
</tr>
<tr>
<td>Item 4</td>
<td>.</td>
<td>-0.19</td>
<td>0.48</td>
</tr>
<tr>
<td>Item 8</td>
<td>.</td>
<td>-2.12</td>
<td>2.01</td>
</tr>
<tr>
<td>Item 9</td>
<td>.</td>
<td>1.47</td>
<td>-0.38</td>
</tr>
<tr>
<td>Item 13</td>
<td>.</td>
<td>-0.61</td>
<td>1.65</td>
</tr>
<tr>
<td>Item 16</td>
<td>.</td>
<td>-0.05</td>
<td>1.16</td>
</tr>
<tr>
<td>Item 5</td>
<td>-0.81</td>
<td>-2.55</td>
<td>3.19</td>
</tr>
<tr>
<td>Item 6</td>
<td>-2.36</td>
<td>0.11</td>
<td>2.25</td>
</tr>
<tr>
<td>Item 12</td>
<td>-2.68</td>
<td>-0.48</td>
<td>3.14</td>
</tr>
</tbody>
</table>

Note: *Bold italics values indicate the items with disordered categories.*

It is also seen that the boundary orders vary (bold and italicized in Table 4.6). In Table 4.6, category difficulty estimates are reversed in 5 out of the 16 FM LP items. Consider now two FM items- Item 1 and Item 15- and their score structure more carefully. These two LP items selected as examples have a similar structure in terms of the task demand that they have options associated with LP levels of 1, 2 and 3. For Item 1, the boundaries are sequentially ordered, indicating an item functioning as expected; therefore, all three scores have some part of the latent trait distribution that a response in the score category is more probable than the other score categories. Figure 4.2 shows actual Item 1 which asks about a non-moving object on a table. This item has two options linked to LP level 2. Figure 4.3 illustrates item category response curves for Item 1 that shows the probability of the response of a student at any location on the latent ability.
Note that the intersections across curves represent the points where the probability of response in adjacent categories becomes identical.

Figure 4.2. *FM LP Item 1.*

<table>
<thead>
<tr>
<th>Item 1) The box sitting on the table above is not moving because</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. no forces are acting on the box.</td>
<td>2</td>
</tr>
<tr>
<td>B. the table pushes up with the same force that gravity pulls down.</td>
<td>3</td>
</tr>
<tr>
<td>C. gravity is keeping the box down on the table.</td>
<td>1</td>
</tr>
<tr>
<td>D. gravity is pulling down, but the table is in the way.</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 4.3. *Category Response Functions with Ordered Category Boundaries for Item 1.*

For Item 1, the ordered category difficulty parameters reflect a greater understanding on the adjacent levels. Hence, the second item parameter is more difficult than the first one.

However, for Item 15, category difficulties are out of order (i.e., lower category boundary has higher difficulty), which can be considered an indication that the item is not working as
intended (Andrich, 2005; 2015). Figure 4.4 presents the item where there are two Level 1 options, and this item also asks about the reasons for a non-moving object.

Figure 4.4. *FM LP Item 15.*

<table>
<thead>
<tr>
<th>Item 15</th>
<th>Maria pushes on a heavy rock, but the rock does not move. Why not?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Nothing is moving, so there are no forces acting.</td>
</tr>
<tr>
<td>B.</td>
<td>Maria is exerting a force on the rock, but the force from the rock is stronger.</td>
</tr>
<tr>
<td>C.</td>
<td>There must be another force on the rock, opposing Maria’s push.</td>
</tr>
<tr>
<td>D.</td>
<td>The rock is heavier than Maria.</td>
</tr>
</tbody>
</table>

As shown in Figure 4.5, the category response curves for Item 15 show an extreme case where the probability of category 1 (Level 2) is not highest at any points on the latent ability scale. For instance, from location 0.00 to 2.00, both the probability of choosing a category linked to Level 1 or Level 3 are higher than scoring 2, making the distribution bimodal. In other terms,
if students know the forces are available from both Maria and the rock with a Level 2 understanding, they will select the level 3 option. An actual explanation for the reversed category difficulties may be explored via cognitive interviews with students to understand their thinking process. This further investigation can help to understand whether there are potential problems such as wording associated with the option associated with Level 2 (option A).

The presence of the reversals for one third of the items suggests evidence for a potential misfit. Andrich (2015) notes that category order (LP levels associated with each option in our case) is a hypothesis to assess and mathematical structure of the PCM model allow testing it. That is, the reversed order suggests an anomaly and requires a deep investigation to find the reason and correct it without a direct reflection in the item fit statistics.

4.2.3 Model Fit

A direct statistical approach to evaluate the model fit is to examine whether or not items are performing in a satisfactory way. Especially for polytomous data, there has been a considerable debate around the issue of what is the most appropriate fit statistic to use, what range of fit statistics should be employed when evaluating fit, and how fit statistics should be interpreted. In the Rasch framework, chi-square fit statistics are commonly used (Wright, 1984; Wright & Masters, 1990; Bond & Fox, 2015). The statistics based on the residuals which are the differences between the observations and their expected values according to the Rasch model. The Outfit statistic is based on a sum of squared standardized residuals. It is formulated as

$$\sum_{n=1}^{N} \frac{(Z_{nl})^2}{N}$$

where n represents person, and Z_{nl} is standardized residuals with an approximate normal distribution and their sum of squares approximates a χ^2 distribution. Dividing this sum with the number of items which person n answered yields a mean-square value. The Infit statistic
is an information-weighted form of outfit with the formula of \(\frac{\sum_{n=1}^{N}(Z_{ni})^2 W_{ni}}{\sum_{n=1}^{N} W_{ni}} \) where \(W_{ni} \) represents the individual residual variance. These statistics have an expected value of 1 and can range from 0 to infinity. Fit statistics greater than 1 are interpreted as more variation between the model and the observed scores (e.g., 1.30 for an item illustrates 30% more variation) and illustrates an underfit. Similarly, statistics lower than 1 show less variation (e.g., a fit statistic of 0.70 for an item would indicate 30% less variation than predicted) and show an overfit. Items demonstrating more variation than predicted by the model can be considered as not conforming to the unidimensionality requirement of the Rasch model. In addition, the mean square statistics can be transformed into standardized form (Linacre, 2002) where fit statistics have almost standard normal distribution (i.e., ~N(0,1)) with an acceptable range of -2 to 2.

First, I considered the infit statistics (Wright & Masters, 1990) for the item parameter estimates (also known as the “weighted mean square” fit statistic). The weighted mean square fit statistics for the FM LP assessment show that none of 16 items had a weighted mean square fit statistic that was outside the range of the 95% confidence interval. However, this approach does not take the sample size into account. Wu and Adams (2013) showed that the commonly used interval of 0.77 to 1.33 relates to a sample size of around 100 for outfit statistics. The outfit statistics are based on conventional sum of squared standardized residuals (i.e., not weighted by individual variances). Wu and Adams (2013) emphasize the fact that misfit shows a relative fit (e.g., how an item differs from others) rather than an absolute fit to the theoretical ICC. They concluded that for larger samples the smaller the appropriate confidence interval and for large data sets examining effect size of fit mean square statistic is better. Following their guidelines (Wu & Adams, 2013, p.29), I examined the item outfit statistics with the confidence interval ~ 1 (+/-) 0.07. Note that we expect to see the misfit as a part of our relative support on the
multidimensional structure of the data. Supporting this expectation, I found that 10 out of 16 items show signs of misfit.

An indirect approach to evaluate model fit is examining the parameter invariance property of the IRT model (Green, Camilli, & Elmore, 2006). This model feature of IRT is never observed in the strictest sense in practice. Parameter invariance is specifically important for large scale testing applications. It refers to the inferences to be equally valid for different populations of students or across different conditions (Rupp & Zumbo, 2006). Therefore, in order to check parameter invariance, we need at least two populations or two conditions for parameters. Because I have only one data set, I randomly split the data into two samples and ran PCM analyses for each subsample. Then, I repeat the process 100 times, and I provide correlation coefficients together with standard deviation where high correlation and low standard deviation shows the invariance across samples. I provide correlation coefficients together with standard deviation in Table 4.7.

Table 4.7. Descriptives of Correlations for Parameter Invariance across 100 Sampled Groups.

<table>
<thead>
<tr>
<th>Category boundary</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category boundary 1</td>
<td>0.96</td>
<td>1.00</td>
<td>0.99</td>
<td>0.008</td>
</tr>
<tr>
<td>Category boundary 2</td>
<td>0.96</td>
<td>1.00</td>
<td>0.99</td>
<td>0.006</td>
</tr>
<tr>
<td>Category boundary 3</td>
<td>0.74</td>
<td>1.00</td>
<td>0.89</td>
<td>0.061</td>
</tr>
</tbody>
</table>

The results in Table 4.7 show that there is a high correlation between difficulty estimates across 100 trials of the sampled groups, except category boundary 3. In particular, the correlation of 0.89 shows that the estimates of category boundary 3 for three items are slightly fluctuating across samples. The distribution of correlations across 100 trials of estimates is presented in the following figure.
The lack of invariance for the category boundary is a cause for concern and again indicates failure to meet the assumptions of IRT. In the literature, the reasons for the lack of parameter invariance are attributed to different contextual effects, sample, and test characteristic (e.g., Chan, Drasgow, & Sawin, 1999).

4.2.4 Item-Person Map

The person ability estimates and the item category boundary estimates from the PCM analysis can be summarized graphically using an item-person map (i.e., Wright Map). By representing both the person abilities and category parameters (and the LP levels that they relate to) on the same scale, the results of the partial credit analysis can be related visually to the proposed theory of development presented by the LP. To be able to examine appropriate cut points on the ability distribution in order to align with LP levels, I also put the standard errors around the item category parameter estimates.

Because not all items have responses that map to the same number of LP levels, first I regrouped the items in a way that we can see the results for items with the same LP levels.
Figure 4.7. *Item-person Map for FM LP Items (regrouped items).*

Figure 4.7 presents the results for ordering of item category difficulties (on y axis) for each item across LP levels (on x axis).

The presentation of the items groups in Figure 4.7 gives us the opportunity to examine how the items with same LP levels work within these groups. Particularly, consider Item 10 and Item 14 that both have options connected to LP levels 3 and 4 and have one category difficulty parameter estimated. The difficulty parameters (δ_{11}) are 1.62 and 0.92 respectively. That is, they are not as close as we might have hypothesized. Similarly, in other item groups, we see that the same category thresholds do not align with each other. The results suggest that the levels of understanding are not similar across the items in the same clusters.

4.2.5 PCM-based Classification into LP Levels

The results from our examination of model assumptions as well as item characteristics raise some questions about the appropriateness of the PCM to model the LP assessments composed of OMC items (as also noted by Briggs and Alonzo, 2009). Even we ignore concerns about dimensionality, item parameter invariance, and model fit, the variation among the category
boundary estimates across items together with the reversals do not provide a clear solution for setting cut scores on the latent continuum. This makes the next step, to classify students into the qualitatively distinct levels of understanding that were hypothesized in the LP, extremely difficult.

To show the potential challenges with classification, I precede the steps to classify the students into LP categories. First, we need to decide the cut points. Because of the potential average out effect, I exclude the items with disordered category boundary parameters; thus, I use item parameters from 11 items (after excluding 5 with reversals) to decide cut points for placing students into LP levels as it is presented in Table 4.8.

Table 4.8. The Category Difficulty Parameters for 11 Items.

<table>
<thead>
<tr>
<th>Items</th>
<th>Level 1-Level 2 (δ_{i1})</th>
<th>Level 2-Level 3 (δ_{i2})</th>
<th>Level 3-Level 4 (δ_{i3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 10</td>
<td>.</td>
<td>.</td>
<td>1.63</td>
</tr>
<tr>
<td>Item 14</td>
<td>.</td>
<td>.</td>
<td>0.71</td>
</tr>
<tr>
<td>Item 1</td>
<td>-0.03</td>
<td>0.72</td>
<td>.</td>
</tr>
<tr>
<td>Item 11</td>
<td>-0.59</td>
<td>-0.18</td>
<td>.</td>
</tr>
<tr>
<td>Item 3</td>
<td>.</td>
<td>-0.78</td>
<td>1.74</td>
</tr>
<tr>
<td>Item 4</td>
<td>.</td>
<td>-0.19</td>
<td>0.48</td>
</tr>
<tr>
<td>Item 8</td>
<td>.</td>
<td>-2.12</td>
<td>2.01</td>
</tr>
<tr>
<td>Item 13</td>
<td>.</td>
<td>-0.61</td>
<td>1.65</td>
</tr>
<tr>
<td>Item 16</td>
<td>.</td>
<td>-0.05</td>
<td>1.16</td>
</tr>
<tr>
<td>Item 6</td>
<td>-2.36</td>
<td>0.11</td>
<td>2.25</td>
</tr>
<tr>
<td>Item 12</td>
<td>-2.68</td>
<td>-0.48</td>
<td>3.14</td>
</tr>
<tr>
<td>Mean</td>
<td>-1.41</td>
<td>-0.40</td>
<td>1.64</td>
</tr>
<tr>
<td>Mean (Item 6 & 12)</td>
<td>-2.52</td>
<td>-0.19</td>
<td>2.70</td>
</tr>
</tbody>
</table>

The mean values at the bottom of the Table 4.8 show the average values of the category difficulty parameters across items as they linked to the hypothetical LP levels. However, someone could easily argue that there are two items (Item 6 and Item 12) that we can estimate all
item category parameters and it is reasonable to use the average of these two items. The last row on Table 4.8 shows the means of item category parameters just for these two items. The demarcations of continuum look acceptable in both choices. If we classify students into the LP levels based on the cut-off scores determined in the ways described, the distribution of students into the FM LP levels would be highly different. As a result, I decided that results from applying the PCM cannot be used to reasonably or defensibly classify students into LP levels.

4.3 Attribute Hierarchy Model Results

This section presents the linear structure, model fit, and estimation results from the data analysis of the AHM. I likewise examine the relationship between attributes in order to check the hypothesized linear structure across attributes. This section ends with classification of students into mastery status for each attribute. Recall that AHM does not provide any item parameter estimation, hence the examination of item fit statistics or item parameter invariance is not available for this model.

4.3.1 Linear Hierarchy

The first step of AHM is the creation of the cognitive model14. This step includes the formation of attribute hierarchy. For my current study, I will model the LP as involving 4 levels represented by 4 attributes15 which are defined as

\begin{align*}
 A_1 &= \text{what the force is} \\
 A_2 &= \text{motion implies force} \\
 A_3 &= \text{net force associated with speed}
\end{align*}

14 The original FM LP levels are modified in different studies (see Alonzo & Steedle, 2009 for detailed descriptions) The final version has not fitted with linearity requirement of AHM (e.g., one of the attributes is appeared in all levels). Therefore, the hierarchy is modified for the purpose of this dissertation.

15 The level 1 is added in the current hierarchy while it is agreed that A1 (what a force) not in a conjunctive relationship with the rest of the attributes (personal communication Alonzo, 2013). The reason is that, the nature OMC items require the selection of an option, meaning that everyone has high probability to hold the first attribute.
A4 = net force associated with acceleration.

The descriptions of each level for this simplified LP are presented in Figure 4.8.

Figure 4.8. *FM Learning Progression from Alonzo & Steedle (2009)*.

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
</table>
| 4 | Student understands that
 • the net force applied to an object is proportional to its resulting acceleration (change in speed or direction) and that this force may not be in the direction of motion. |
| 3 | Student understands that
 • an object is stationary either because there are no forces acting on it or because there is no net force acting on it. Student has a partial understanding of forces acting on moving objects.
 Student recognizes that
 • objects may be moving even when no forces are being applied; however, the student does not believe that objects can continue moving at a constant speed without an applied force.
 Student recognizes that
 • there may be forces acting on an object that are not in the direction of its motion; however, he or she believes that an object cannot be moving at a constant speed in a direction in which a force is not being applied.
 Student believes that
 • the object’s speed (rather than its acceleration) is proportional to the net force in the direction of its motion. |
| 2 | Student believes that
 • motion implies a force in the direction of motion and that nonmotion implies no force. Conversely, student believes that force implies motion in the direction of the force. |
| 1 | Student believes that
 • force as a push or pull that may or may not involve motion |

Therefore, the attribute level relationships from hierarchy are as follows:

Level 1 = A1
Level 2 = A1 & A2
Level 3 = A1 & A2 & A3
Level 4 = A1 & A2 & A3 & A4

This implies a simple linear conjunctive model such that A1 → A2 → A3 → A4. It follows that a student at level 1 of the learning progression thinks the force is not necessarily
connected to motion (A1); a student at level 2 of the learning progression typically thinks that motion implies force (A2); a student at level 3 believes that the speed of motion is typically associated with net force (A3); and a student at level 4 understands that the acceleration of motion is associated with net force (A4). The model is conjunctive, not in the sense that each level requires a student to have mastered the preceding attribute, but in the sense that to master an attribute associated with a higher level of the progression (i.e., A3), a student must understand the context in which conceptions rooted in A1 and/or A2 would be insufficient to explain the relationship between force and motion in the physical sciences. Recall from our examination of the dimensional structure of FM LP data in subsection 4.2.1 that while there was not a clear dominant dimension as well as a support for a clear simple structure. That is, our data did not support either a strong unidimensional structure or a simple structure with multiple dimensions.

In the following subsection, first, I will examine the fit of the assumed hierarchy for OMC items relative to the FM LP. Then, I will use an artificial neural network (ANN) approach to estimate attribute probabilities for the sample students responding to the OMC items.

4.3.2 Model Fit Results

It is likewise critical to detect the misfitting response vectors for the LP data analyzed. As noted in Chapter 3, the AHM does not provide any item based fit statistics as well as the item parameters but there is a consistency index developed for dichotomously scored items comparing the response patterns of examinees into the hypothesized hierarchy based on the cognitive model. I used the modified response consistency index (RCI; as described in subsection 3.5.3) where the consistency of option selection is based on the availability of the similar options in remaining items in the assessment. The RCI used in this dissertation is

\[
RCI_i = 1 - \frac{2 \times \text{number of misfits in the subset of items with the same possible option}}{\text{number of comparisons}}
\]
This statistic can be used to evaluate response consistency, but the threshold for an acceptable fit is unclear. In order to establish this, I generated 1000 responses strings in which values between 1 and 4 were selected at random with equal probabilities.

The following figure represents the distribution of the observed RCI values for my empirical sample, and the mean RCI value from randomly created data is shown with a vertical line.

Figure 4.9. Observed Distribution of the RCI for 16 FM OMC Items.

![Force and Motion RCI](image)

Table 4.9 provides descriptive statistics comparing the RCI based on observed responses with those based on the randomly generated responses.

Table 4.9. Descriptive Statistics for RCI Index.

<table>
<thead>
<tr>
<th></th>
<th>Observed</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>-0.18</td>
<td>-0.34</td>
</tr>
<tr>
<td>Median</td>
<td>-0.22</td>
<td>-0.36</td>
</tr>
<tr>
<td>Min</td>
<td>-0.47</td>
<td>-0.48</td>
</tr>
<tr>
<td>Max</td>
<td>0.61</td>
<td>0.12</td>
</tr>
<tr>
<td>SD</td>
<td>0.20</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Figure 4.10 also presents the density distributions of RCI value where red colored density distribution belongs to randomly generated data. There is considerable overlap in the observed and randomly generated RCI values which indicates that this sample of students did not respond to these OMC items as consistently as would have been expected by the hypothesized learning progression.

Figure 4.10. *Overlap of RCI Values between Randomly Generated Data and FM LP Data.*

Results indicated that student response patterns rarely reflected the expected response patterns of the AHM. As it turns out, the lack of fit may complicate our ability to estimate attribute probabilities and classify students meaningfully along the FM LP.

4.3.3 Attribute Probability Estimation Results

Expected response patterns under the assumption that the FM attribute hierarchy is correct were created, replicated 20 times, and then used to train an ANN with a single hidden layer and four hidden units. Weights were estimated in R with neuralnet using a backpropagation algorithm and a conservative learning rate of 0.01. The sum of squared errors upon convergence after 12,272 steps was 0.052. Table 4.10 shows that the attribute probabilities estimated by the ANN for each of our expected response patterns indicated an almost exact match.
Table 4.10. *Example of Attribute Probabilities for Perfectly Fitting Response Patterns.*

<table>
<thead>
<tr>
<th>Levels combination</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>0.999</td>
<td>0.002</td>
<td>0.004</td>
<td>0.000</td>
</tr>
<tr>
<td>Level 2</td>
<td>1.000</td>
<td>0.993</td>
<td>0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>Level 3</td>
<td>0.999</td>
<td>0.988</td>
<td>0.993</td>
<td>0.008</td>
</tr>
<tr>
<td>Level 4</td>
<td>0.999</td>
<td>1.000</td>
<td>0.998</td>
<td>0.997</td>
</tr>
</tbody>
</table>

An advantage of the ANN approach is to learn the mapping between inputs and outputs and to generalize this learning to the unseen cases. Hence the next step is to enter the actual response patterns of 931 students and calculate the probabilities on each attribute. The resulting estimates, summarized in Table 4.11, all suggest a process that has worked the way it was intended. All of the students mastered Attribute 1 as expected, and within other attributes, there is a variation.

Table 4.11. *Descriptive Statistics of Attribute Probabilities for Real Students.*

<table>
<thead>
<tr>
<th></th>
<th>Attribute 1</th>
<th>Attribute 2</th>
<th>Attribute 3</th>
<th>Attribute 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.996</td>
<td>0.003</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>0.999</td>
<td>0.815</td>
<td>0.146</td>
<td>0.004</td>
</tr>
<tr>
<td>Median</td>
<td>0.999</td>
<td>0.981</td>
<td>0.750</td>
<td>0.013</td>
</tr>
<tr>
<td>Mean</td>
<td>0.999</td>
<td>0.794</td>
<td>0.584</td>
<td>0.119</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>0.999</td>
<td>0.990</td>
<td>0.972</td>
<td>0.025</td>
</tr>
<tr>
<td>Max.</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.997</td>
</tr>
<tr>
<td>SD</td>
<td>0.001</td>
<td>0.343</td>
<td>0.398</td>
<td>0.276</td>
</tr>
</tbody>
</table>

4.3.4 Attribute Relationships

The examination of the attribute relationships provide evidence about the assessment and hypothesized hierarchy. That is, in the case of a linear hierarchy, we expect attributes to be more strongly correlated with the adjacent attribute and less strongly correlated to the attributes at a
distance in the hierarchy. The correlations across four attributes to see whether there is evidence that supports the linear hierarchy (i.e., $A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow A_4$) are presented in Table 4.12.

Table 4.12. Correlations between Attributes.

<table>
<thead>
<tr>
<th></th>
<th>Attribute 1</th>
<th>Attribute 2</th>
<th>Attribute 3</th>
<th>Attribute 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute 1</td>
<td>1.00</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Attribute 2</td>
<td>0.83</td>
<td>1.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Attribute 3</td>
<td>0.44</td>
<td>0.64</td>
<td>1.00</td>
<td>.</td>
</tr>
<tr>
<td>Attribute 4</td>
<td>0.28</td>
<td>0.13</td>
<td>0.32</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Table 4.12 shows that the correlations across attributes support the linearity assumption in the hierarchy for the associations between A_1-A_2, A_1-A_3, A_1-A_4, A_2-A_3, and A_2-A_4 while the relation between Attribute 3 and Attribute 4 is not as high as expected.

4.3.5 Distribution of Attribute Mastery with Different Cutoff Values

In order to place students into the LP levels, we need to decide the mastery status of each student on each attribute. At that point, the choice of the cutoff values used for mastery status decision is critical because they affect the classification results. Hence, examination of the LP level distributions with different cutoff values helps us to understand this effect. Specifically, I will examine three selected cutoff values; 0.5 (as most common value in AHM literature), 0.65, and 0.75 (as the most conservative for the purpose of highest accuracy). The classification results into LP levels based on these three cutoff values are presented in Table 4.13.

Table 4.13. The Distribution of Levels with Different Cutoff Values.

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Attribute 1</th>
<th>Attribute 2</th>
<th>Attribute 3</th>
<th>Attribute 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Freq</td>
<td>%</td>
<td>Freq</td>
<td>%</td>
</tr>
<tr>
<td>0.50</td>
<td>931</td>
<td>100</td>
<td>753</td>
<td>80.88</td>
</tr>
<tr>
<td>0.65</td>
<td>931</td>
<td>100</td>
<td>731</td>
<td>78.52</td>
</tr>
<tr>
<td>0.75</td>
<td>931</td>
<td>100</td>
<td>709</td>
<td>76.16</td>
</tr>
</tbody>
</table>

Notes: *Freq stands for frequency.*
As expected, Table 4.13 shows that as the mastery cutoff thresholds increase, the number of the students categorized as having mastered each attribute decrease.

4.3.6 The Prediction Variance of Attribute Probabilities from ANNs

After specifying attribute hierarchy and producing the expected response matrix, it is an easy process to train an ANN and generate attribute probabilities for observed item response patterns. However, it is critical to underline that we do not need empirical data to estimate the parameters of an ANN. The training of an ANN is based on the data generated from theory. The estimation of latent classification probabilities are done in a second step. This is the reason that the creation of attribute hierarchy is critical for the rest of the process, but there is not a direct empirical way to check the appropriateness of the hierarchy.

There is no doubt that the most desirable property of a network is its ability to generalize to new cases. However, as noted in the literature (e.g., Panchal, Ganatra, Shah, & Panchal, 2011; Intrator & Intrator, 2001), there are important reasons to be cautious about the results from applying an ANN. These can be applied under two sections: a) structure of the network and b) algorithm used to train the ANN. The former includes decisions on the configuration of the ANN structure, such as number of hidden layers and hidden neurons and use of random initial values versus fixed initial values. The potential problems in relation to these concerns are estimated ANN weights ending in the local minima solution, and potential fluctuations in the estimation of unseen data. The latter is also related to the algorithm chosen for ANN to ‘learn’ the mapping between inputs and outputs. Specialized learning algorithms are used for adaptation of the weight values connecting inputs to outputs; there are a number of algorithms used in the literature where the backpropagation algorithm is one of the most popular in the domain (e.g., Zurada, 1992).
Due to all these concerns, it is reasonable to examine the consistency of the estimates across multiple ANN runs. For this purpose, I repeated the training of ANN 100 different times using the same set of expected response patterns and calculated the estimates for actual student response patterns. That is, every student had 100 estimates for each attribute and 400 estimates in total for 4 attributes. Notice that the only thing that varied in each run was the random starting values for the weight matrices. The summary of variation of the estimated attribute probabilities across 100 unique ANN trainings is presented in Table 4.14.

<table>
<thead>
<tr>
<th>Attribute 1</th>
<th>Attribute 2</th>
<th>Attribute 3</th>
<th>Attribute 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>0.002</td>
<td>0.157</td>
<td>0.244</td>
</tr>
<tr>
<td>Median</td>
<td>0.002</td>
<td>0.256</td>
<td>0.340</td>
</tr>
<tr>
<td>Mean</td>
<td>0.002</td>
<td>0.244</td>
<td>0.304</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>0.003</td>
<td>0.336</td>
<td>0.388</td>
</tr>
<tr>
<td>Max.</td>
<td>0.008</td>
<td>0.419</td>
<td>0.429</td>
</tr>
</tbody>
</table>

Table 4.14 shows that there is almost no variation in A1 estimates while there is large variation in the other three attributes. For example, the highest variation in Attribute 2 is 0.42, showing that some estimates can deviate by 0.42, meaning that there is a good amount of variation in the estimates. The results show that 88%, 94%, and 86% of the estimates deviate more than 0.1 in A2, A3, and A4, respectively. These results suggest that making diagnostic classifications based on a single ANN training can lead to different interpretations and that these classifications are not reliable.

Recall that I found support for the linear relationships between attributes from a single trial, as presented in Table 4.12. Because of the large variation in attribute estimates, I also examine the correlations between attributes across 100 trials to test their robustness.
Table 4.15. Correlations between Attributes across 100 ANN Trials.

<table>
<thead>
<tr>
<th></th>
<th>Attr. 1 vs. Attr. 2</th>
<th>Attr. 1 vs. Attr. 3</th>
<th>Attr. 1 vs. Attr. 4</th>
<th>Attr. 2 vs. Attr. 3</th>
<th>Attr. 2 vs. Attr. 4</th>
<th>Attr. 3 vs. Attr. 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>-0.57</td>
<td>-0.83</td>
<td>-0.93</td>
<td>0.06</td>
<td>0.06</td>
<td>0.10</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>-0.01</td>
<td>-0.19</td>
<td>-0.25</td>
<td>0.36</td>
<td>0.19</td>
<td>0.39</td>
</tr>
<tr>
<td>Median</td>
<td>0.16</td>
<td>0.05</td>
<td>-0.10</td>
<td>0.47</td>
<td>0.29</td>
<td>0.50</td>
</tr>
<tr>
<td>Mean</td>
<td>0.17</td>
<td>0.02</td>
<td>-0.10</td>
<td>0.46</td>
<td>0.29</td>
<td>0.51</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>0.34</td>
<td>0.23</td>
<td>0.07</td>
<td>0.57</td>
<td>0.38</td>
<td>0.61</td>
</tr>
<tr>
<td>Max.</td>
<td>0.74</td>
<td>0.72</td>
<td>0.50</td>
<td>0.82</td>
<td>0.58</td>
<td>0.88</td>
</tr>
<tr>
<td>SD</td>
<td>0.27</td>
<td>0.33</td>
<td>0.27</td>
<td>0.15</td>
<td>0.12</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Table 4.15 shows that there is variation in the correlations between attribute pairs in 100 trials. This shows that it is possible to get different attribute correlations per trial, and this may affect the interpretations of the results in connection to the LP. That is to say, one trial can provide support for the linear relationship proposed in the LP while the results of another trial do not.

These volatile estimates are prone to be results of a combination of students with poor fit to the hypothesized hierarchy and ANN weight parameter estimates susceptible to local minima as a function of randomly generated starting values. This underscores the importance of the model fit, and, in the next subsection, I investigate this issue in more detail.

Lastly, I examine the consistency between the assessment developers’ item level ordering and AHM attribute estimates. For this purpose, I calculated the mean of the attribute estimates for each item option from a single run AHM analysis. For example, consider the first item which has 3 levels (i.e., three attributes in additive form); the means of the attribute estimates for each item option across all students are presented in the following table. Results show that all items have increasing trends of mean values across levels in AHM.
Table 4.16. Example of AHM Derived LP Levels.

<table>
<thead>
<tr>
<th>Levels</th>
<th>Attributes</th>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
<th>Overall mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>A1</td>
<td>1.00</td>
<td>0.49</td>
<td>0.32</td>
<td>0.11</td>
<td>0.48</td>
</tr>
<tr>
<td>Level 2</td>
<td>A1 + A2</td>
<td>1.00</td>
<td>0.87</td>
<td>0.61</td>
<td>0.14</td>
<td>0.66</td>
</tr>
<tr>
<td>Level 3</td>
<td>A1+A2 + A3</td>
<td>1.00</td>
<td>0.94</td>
<td>0.76</td>
<td>0.10</td>
<td>0.70</td>
</tr>
</tbody>
</table>

4.4 Generalized Diagnostic Model Results

This section presents the results produced from the application of the two-parameter General Diagnostic Model (GDM; von Davier, 2005) with four skills and two ability levels for the FM assessment. Recall that the aim of diagnostic models is to classify examinees based on their observed response patterns as a function of attributes that are assumed to drive the probability of selected responses. First, I describe the Q matrix used in the GDM. Next, I present the key parameters of the GDM: the intercept (similar to the category difficulty parameters presented for the PCM) and slope (similar to a loading in a factor analysis). Next, I investigate item fit statistics (as described by von Davier, 2005; cited in Kunina-Habenicht, Rupp & Wilhelm, 2012). Then, I examine the parameter invariance property by dividing the sample randomly in two and exploring the item parameter estimates from 100 samples descriptively. High mean values and small standard deviations represent the high degree of invariance. Finally, I present the relationship between attributes and student classifications into latent classes along with the attribute probabilities.

4.4.1 GDM

Recall from Chapter 3 that DCMs can be seen as the discrete alternatives to traditional multidimensional latent variable models like factor analysis (e.g., Heinen, 1999) or multidimensional item response theory (e.g., Ackerman, Gierl, & Walker, 2003) models. That is,
all of these models assume that interaction between a person and an assessment item can be modeled using a specific mathematical expression. The approach taken by von Davier (2005, 2008) makes the same assumption and is based on extensions of latent class, item response theory and multivariate profile models. In this study, I use the GDM for partial credit data which defines the probability of a student selecting a specific response option as:

\[
P_i(x|a) = P(x|\beta_i, q_i, \gamma_i, a) = \frac{\exp[\beta_{xi} + \sum_{k=1}^{K} \gamma_{ik} q_{ik} a_k]}{1 + \sum_{y=1}^{m_i} \exp[\beta_{yi} + \sum_{k=1}^{K} \gamma_{ik} q_{ik} a_k]}.
\] (4.1)

In the above equation \(k\) is the index for the \(K\) attributes and \(i\) is the index for item. There are five parameters in the model: the response option selected by a student is \(x \in \{0,1, \ldots, m_i\}\); the difficulty or threshold for selecting each response category for item \(i\) is \(\beta_{xi}\); the relationship between the probability of selecting a category response for item \(i\) and attribute \(k\), i.e., a slope, \(\gamma_{ik}\); the entry in the Q-matrix for item \(i\) for attribute \(k\) is \(q_{ik}\); and a student’s level of the attribute \(a_k\). The item slopes have an interpretation that is analogous to factor loading where they capture the degree of association between a response option and an attribute.

To apply (4.1) to the FM assessment data, I set the Q-matrix to take values of 0 or 1, where a zero indicates that an attribute does not affect the probability of a category response and 1 indicates that an attribute does (see Table 3.3). Similarly, I define \(a_k\) to take two values, -1 or 1, corresponding to non-mastery or mastery of the attribute \(k\). For the FM assessment, there are four attributes, so \(K = 4\). Model (4.8) does not match the format of the FM assessment items exactly, though. The assessment is built using OMC items, in which each response option corresponds to an LP level. However, because \(q_{ik}\) is not indexed by response option, the attribute \(k\) influences the response probability of all of the \(0,1,\ldots, m_i\) responses, even though it is hypothesized that each response option should be influenced by the matched attributes (e.g.,
Level 2 option is influenced by Attribute 1 and Attribute 2). This issue is valid with each and every item that has a non-zero value in the Q-matrix. Ideally, q_{ik} as well as γ_{ik} would be indexed with x to match the OMC design. This specification leads to estimation problems with the current available software, and thus, I do not examine it. To identify the model, I fix the mean of the difficulty parameters to be 0 and the mean of the slope parameters to be 1.

It is worth noting that Equation 4.8 requires the item options start from zero (i.e., $x \in \{0,1,\ldots,m_i\}$) and it provides the slope estimates for $x \in \{1,\ldots,m_i\}$. With these requirements, the FM learning progression OMC items present similar challenges to the ones we had in PCM. That is, we need to align item parameters so they are comparable with respect to the underlying LP.

4.4.2 Parameter estimates

In the GDM, β_{xi} is an intercept parameter that can be viewed as the category boundary parameter for item i, γ_i is a slope parameter that can be viewed as the discrimination parameter for each item on each skill dimension (or attribute).
Table 4.17. Category Easiness Parameters for FM LP Items.

<table>
<thead>
<tr>
<th>Items</th>
<th>Level 1-Level 2 (β_{1i})</th>
<th>Level 2-Level 3 (β_{2i})</th>
<th>Level 3-Level 4 (β_{3i})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 10</td>
<td>.</td>
<td>.</td>
<td>-1.20</td>
</tr>
<tr>
<td>Item 14</td>
<td>.</td>
<td>.</td>
<td>-0.28</td>
</tr>
<tr>
<td>Item 1</td>
<td>0.43</td>
<td>-0.92</td>
<td>.</td>
</tr>
<tr>
<td>Item 7</td>
<td>-0.87</td>
<td>-0.12</td>
<td>.</td>
</tr>
<tr>
<td>Item 11</td>
<td>1.26</td>
<td>0.61</td>
<td>.</td>
</tr>
<tr>
<td>Item 15</td>
<td>-4.97</td>
<td>0.63</td>
<td>.</td>
</tr>
<tr>
<td>Item 2</td>
<td>.</td>
<td>-0.55</td>
<td>0.32</td>
</tr>
<tr>
<td>Item 3</td>
<td>.</td>
<td>1.21</td>
<td>-1.24</td>
</tr>
<tr>
<td>Item 4</td>
<td>.</td>
<td>0.81</td>
<td>-0.38</td>
</tr>
<tr>
<td>Item 8</td>
<td>.</td>
<td>2.61</td>
<td>-1.63</td>
</tr>
<tr>
<td>Item 9</td>
<td>.</td>
<td>-0.94</td>
<td>0.83</td>
</tr>
<tr>
<td>Item 13</td>
<td>.</td>
<td>1.04</td>
<td>-1.16</td>
</tr>
<tr>
<td>Item 16</td>
<td>.</td>
<td>0.41</td>
<td>-0.74</td>
</tr>
<tr>
<td>Item 5</td>
<td>2.94</td>
<td>4.02</td>
<td>1.72</td>
</tr>
<tr>
<td>Item 6</td>
<td>3.69</td>
<td>3.35</td>
<td>0.49</td>
</tr>
<tr>
<td>Item 12</td>
<td>5.08</td>
<td>2.09</td>
<td>1.68</td>
</tr>
</tbody>
</table>

The examination of average item difficulty parameters produced similar results to those from the PCM analysis with one exception. In GDM analysis, Item 2 does not have item categories with a reversal in difficulty. There is a wide range of difficulty estimates for each item category parameter. Item 12 and 5 have the most extreme item category parameters of the set. Item 12 is the least difficult ($\delta_{1,12}, \delta_{2,12}, \delta_{3,12}$ are 5.08, 2.09, and 1.68, respectively). Only 5 out of 16 items have parameters disordered in difficulty across categories. However, it is worth noting that in a similar case with a continuous θ within the multidimensional IRT models for polytomous items (Reckase, 2009), the interpretation of the item category parameters is not well examined and may not be exactly feasible with a discrete GDM approach. Hence, interpretation of the intercepts to order items with respect to difficulty (which load on the same attribute) can be more meaningful. Table 4.18 shows the slope parameter estimates of the FM LP items.
Table 4.18. *Slope Parameters for Each FM LP Item.*

<table>
<thead>
<tr>
<th>Items</th>
<th>Attribute 1</th>
<th>Attribute 2</th>
<th>Attribute 3</th>
<th>Attribute 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td>1.19</td>
<td>2.06</td>
<td>0.84</td>
<td>.</td>
</tr>
<tr>
<td>Item 2</td>
<td>.</td>
<td>0.46</td>
<td>1.22</td>
<td>0.77</td>
</tr>
<tr>
<td>Item 3</td>
<td>.</td>
<td>0.28</td>
<td>0.64</td>
<td>0.45</td>
</tr>
<tr>
<td>Item 4</td>
<td>.</td>
<td>0.71</td>
<td>1.34</td>
<td>0.91</td>
</tr>
<tr>
<td>Item 5</td>
<td>1.27</td>
<td>1.24</td>
<td>1.04</td>
<td>1.99</td>
</tr>
<tr>
<td>Item 6</td>
<td>0.87</td>
<td>1.09</td>
<td>1.17</td>
<td>1.09</td>
</tr>
<tr>
<td>Item 7</td>
<td>1.23</td>
<td>1.97</td>
<td>0.74</td>
<td>.</td>
</tr>
<tr>
<td>Item 8</td>
<td>.</td>
<td>0.33</td>
<td>1.29</td>
<td>1.10</td>
</tr>
<tr>
<td>Item 9</td>
<td>.</td>
<td>0.45</td>
<td>1.23</td>
<td>0.98</td>
</tr>
<tr>
<td>Item 10</td>
<td>.</td>
<td>.</td>
<td>0.57</td>
<td>0.52</td>
</tr>
<tr>
<td>Item 11</td>
<td>0.21</td>
<td>1.59</td>
<td>1.10</td>
<td>.</td>
</tr>
<tr>
<td>Item 12</td>
<td>1.20</td>
<td>2.03</td>
<td>1.13</td>
<td>1.29</td>
</tr>
<tr>
<td>Item 13</td>
<td>.</td>
<td>0.30</td>
<td>0.53</td>
<td>0.35</td>
</tr>
<tr>
<td>Item 14</td>
<td>.</td>
<td>.</td>
<td>1.07</td>
<td>1.23</td>
</tr>
<tr>
<td>Item 15</td>
<td>0.98</td>
<td>0.90</td>
<td>0.91</td>
<td>.</td>
</tr>
<tr>
<td>Item 16</td>
<td>.</td>
<td>0.38</td>
<td>0.90</td>
<td>0.39</td>
</tr>
</tbody>
</table>

The estimated slope parameters range from 0.21 to 2.06 across FM LP items. Recall that they show the effect of the attribute on each item or they can be viewed as the discrimination parameter for each item on each attribute between mastered and non-mastered. In our original Q-matrix, we have values of 1 on the cells that we estimated slopes. I interpret the slope parameter estimates as the factor loadings where the slope parameters show the contribution of each predefined attribute on the item. The lower slope values indicate that some items appear to be weak measures of the hypothesized attributes that comprise the levels of the FM LP. For example, Item 3 has a small slope parameter for Attribute 2. This means that Attribute 2 is not contributing to the response probabilities of Item 3 as much as Attribute 3 and Attribute 4. The estimated slopes for other items can be interpreted similarly. Overall, there is found variation across the slopes parameters within each item. This variation suggests that the hypothesized Q-
matrix is not fully recovered. Therefore, there may be a possible mismatch between the Q-matrix and underlying LP progress levels.

4.4.3 Model Fit

As noted by Jurich and Bradshaw (2013), global model fit indices have not been developed thoroughly for DCMs. GDM item fit statistics are predicted as a chi squared based measure in the model. The item fit indices for the GDM showed that 12 of the items showed good fit (RMSEA < .05), 4 of the items showed moderate fit (RMSEA < .10), and none of the items showed poor fit (RMSEA > .10). Note that the impact of such item misfit on subsequent inferences about respondents and items has not been established in detail for the GDM at this point. The simplest interpretation of these results is that the items with moderate fit require more examination (e.g., Item 13) and it is not advisable to use the model for high-stakes purposes in the learning progression context.
Table 4.19. *Item Fit Results for GDM.*

<table>
<thead>
<tr>
<th>Items</th>
<th>RMSEA</th>
<th>Item fit decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td>0.02</td>
<td>Good</td>
</tr>
<tr>
<td>Item 2</td>
<td>0.05</td>
<td>Moderate</td>
</tr>
<tr>
<td>Item 3</td>
<td>0.06</td>
<td>Moderate</td>
</tr>
<tr>
<td>Item 4</td>
<td>0.03</td>
<td>Good</td>
</tr>
<tr>
<td>Item 5</td>
<td>0.02</td>
<td>Good</td>
</tr>
<tr>
<td>Item 6</td>
<td>0.02</td>
<td>Good</td>
</tr>
<tr>
<td>Item 7</td>
<td>0.03</td>
<td>Good</td>
</tr>
<tr>
<td>Item 8</td>
<td>0.03</td>
<td>Good</td>
</tr>
<tr>
<td>Item 9</td>
<td>0.05</td>
<td>Moderate</td>
</tr>
<tr>
<td>Item 10</td>
<td>0.02</td>
<td>Good</td>
</tr>
<tr>
<td>Item 11</td>
<td>0.03</td>
<td>Good</td>
</tr>
<tr>
<td>Item 12</td>
<td>0.01</td>
<td>Good</td>
</tr>
<tr>
<td>Item 13</td>
<td>0.08</td>
<td>Moderate</td>
</tr>
<tr>
<td>Item 14</td>
<td>0.02</td>
<td>Good</td>
</tr>
<tr>
<td>Item 15</td>
<td>0.01</td>
<td>Good</td>
</tr>
<tr>
<td>Item 16</td>
<td>0.04</td>
<td>Good</td>
</tr>
</tbody>
</table>

I also examine relative fit indices of AIC and BIC that take the number of parameters into account as a penalty term. Note that the number of parameters required is larger for the four-skill GDM than for the PCM. I compare the results across these two models. Because both of them are likelihood-based, the comparison of relative fit can provide additional information about the fit of the GDM to the data. The results show that GDM has a better fit than PCM\(^{16}\).

Table 4.20. *Comparison of Model Fit of 4 skills GDM and PCM.*

<table>
<thead>
<tr>
<th></th>
<th>PCM</th>
<th>GDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>26031.3</td>
<td>24142.49</td>
</tr>
<tr>
<td>BIC</td>
<td>26229.7</td>
<td>24665.13</td>
</tr>
</tbody>
</table>

\(^{16}\) I also fit another version of GDM that slope parameters are fixed to be 1 across all attributes. The AIC value is found to be 26201.2 and BIC is 26510.7. This shows that if we force the attribute contributions to be same across items, model fit is worse than the unidimensional PCM model.
4.4.4 Parameter Invariance

Currently, there is very little research about invariance testing in DCMs. In a similar manner to the IRT modeling, a few studies focus on the differential item functioning (e.g., Bozard, 2010). De la Torre and Lee (2010) examined the item parameter invariance of the deterministic inputs, noisy “and” gate (DINA) model using the simulated data and concluded that the DINA model parameters are invariant when the model perfectly fits the data. For the purposes of the current study, I examined the invariance property of the FM LP item parameters across 100 randomly divided groups via correlations. Table 4.21 presents the descriptive statistics across 100 trials.

Table 4.21. Descriptives of Item Parameter Correlations for GDM across 100 Pairs of Groups.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope (γ_{i1})</td>
<td>0.93</td>
<td>0.90</td>
<td>0.91</td>
<td>0.01</td>
</tr>
<tr>
<td>Slope (γ_{i2})</td>
<td>0.92</td>
<td>0.91</td>
<td>0.91</td>
<td>0.01</td>
</tr>
<tr>
<td>Slope (γ_{i3})</td>
<td>0.93</td>
<td>0.92</td>
<td>0.91</td>
<td>0.01</td>
</tr>
<tr>
<td>Slope (γ_{i4})</td>
<td>0.95</td>
<td>0.82</td>
<td>0.95</td>
<td>0.04</td>
</tr>
<tr>
<td>Intercept (β_{i1})</td>
<td>0.92</td>
<td>0.96</td>
<td>0.94</td>
<td>0.02</td>
</tr>
<tr>
<td>Intercept (β_{i2})</td>
<td>0.93</td>
<td>0.95</td>
<td>0.92</td>
<td>0.02</td>
</tr>
<tr>
<td>Intercept (β_{i3})</td>
<td>0.93</td>
<td>0.98</td>
<td>0.95</td>
<td>0.02</td>
</tr>
<tr>
<td>Intercept (β_{i4})</td>
<td>0.93</td>
<td>0.96</td>
<td>0.95</td>
<td>0.01</td>
</tr>
</tbody>
</table>

The results for item parameter estimates in GDM are consistent with de la Torre and Lee’s (2009) findings for the DINA model. There have been found high correlations across all item parameters. It is important to note this property of the model is advantageous for large-scale purposes, but the exact interpretation of the parameter invariance (i.e., across parameters representing the same parameters) is challenging due to the complexity model.
4.4.4 Relationship between Attributes

The latent correlations between the discrete latent skill variables are also estimated and shown in Table 4.22. The correlation pattern of the discrete individual skill estimates for the GDM was found to be highly different from AHM results while both models use discrete latent variables as opposed to continuous trait assumption in PCM. The absolute magnitude of these correlations is higher in the GDM than in the AHM model, which is likely a result of the fact that the latter forces a hierarchy using expected response patterns while the former does not put any constraints on the relationship between attributes.

Table 4.22. Relationship between Attributes (GDM).

<table>
<thead>
<tr>
<th></th>
<th>Attribute 1</th>
<th>Attribute 2</th>
<th>Attribute 3</th>
<th>Attribute 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute 1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attribute 2</td>
<td>-0.47</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attribute 3</td>
<td>0.61</td>
<td>-0.82</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Attribute 4</td>
<td>-0.40</td>
<td>0.81</td>
<td>-0.84</td>
<td>1.00</td>
</tr>
</tbody>
</table>

The correlation between attributes ranged from -0.84 to 0.81. Commonly, in the DCM literature moderate to high correlations across attributes have been found that support several distinct, yet related, attributes in different subdomains (e.g., Bradshaw, Izhak, Templin, & Jacobson, 2014). The analysis of the FM LP assessment results suggests that the specified attributes do not have a patterned relationship such as a linear hierarchy, as in the case of AHM, nor do they strongly coexist together, which may support a unidimensional modeling approach. In contrast, either they suggest that it is not plausible for several attribute pairs to exist together or some attributes can compensate for the lack of other in pairs. For example, between Attribute 3 and Attribute 4, there is a strong negative correlation. That is, students who have high probabilities of mastering Attribute 4 (the net force applied to an object is proportional to its
resulting acceleration and this force may not be in the direction of motion) show low probabilities for mastering Attribute 3 (that objects are either at rest or moving with constant speed when forces are balanced). One way to think about this is that a student who passes a threshold for mastering more complex understanding does not need to master the lower-level understanding (e.g., negative correlations between the pairs of A1-A2, A2-A3, A3-A4). But this interpretation is challenged by the fact that there are high correlations across attribute pairs of 2-4 and 1-3. These two findings together can be interpreted as the distinct existence of the attribute pairs rather than increasing complexity of student understanding with each mastered attribute.

For example, students require having the factual knowledge of what a force is (Attribute 1), in order to express Attribute 3: that an object moving with constant speed requires a net force in the direction of motion. In such a case, Attribute 2 can be skipped. This kind of interpretation leads to the fact that students can make different connections to master attributes, rather than following a systematic application of attributes in order. That is, students can have pieces of loosely related knowledge of force and motion, which leads to non-linear combinations of attributes for particular contextual representations of force and motion tasks as in FM LP assessment.

However, it is worth reiterating that we have already had great challenges when modeling FM data composed of OMC items with GDM. These challenges further complicated our attempt to interpret the results on the relationship between attributes and classification of the students into the latent classes in the next section.

4.4.5 Classifications into Latent Classes

Even though there are a total of $2^4 = 16$ latent classes that can be theoretically distinguished without postulating any conditional relationships among the latent skill variables, fewer latent classes could be empirically distinguished for the FM LP data. The examination of
the proportions for all possible latent classes leads to students being placed mainly in three classes ([1010], [0101], [1101]). The results are presented in Table 4.23.

Table 4.23. Percent of Students across 16 Possible Latent Classes.

<table>
<thead>
<tr>
<th>Latent Class</th>
<th>Percent placement</th>
<th>Number of Students in the class</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>0.12</td>
<td>1</td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>0.14</td>
<td>1</td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>57.49</td>
<td>528</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>1.7</td>
<td>14</td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>0.31</td>
<td>3</td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>0.36</td>
<td>3</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>21.59</td>
<td>209</td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>15.71</td>
<td>150</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>0.09</td>
<td>0</td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>1.39</td>
<td>11</td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>0.66</td>
<td>6</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>0.43</td>
<td>5</td>
</tr>
</tbody>
</table>

The most prevalent latent class membership is observed for the latent class where Attributes 1 and 3 were mastered (57.5%). Attribute 3 is the attribute for students with understanding that motion implies a net force in the direction of motion and that balanced forces imply that an object is at rest. This is followed by a latent class where Attribute 2 and Attribute 4 skills were mastered (21.6%). This is where students tend to express that motion implies a net force in the direction of motion and net force is associated with acceleration. Another 15.7% of the students mastered Attribute 1, Attribute 2, and Attribute 4.

The predominant patterns found above are atypical for empirical analyses using DCMs where a majority of respondents are typically classified into the two latent classes that represent complete non-mastery of all skills and complete mastery of all skills (e.g., Jurich & Bradshaw,
2014). Yet, most of these studies have used dichotomous data. Hence, the variation in latent classes can be a result of using polytomous items, which are more informative when we place students into latent classes. For FM LP assessment data, the most populated classes do not support the alignment with the proposed LPs. For example, no students are placed into the latent classes of \([1,0,0,0]\) representing the mastery of only Attribute 1 or \([1,1,1,0]\) representing mastery of the first three attributes. These results suggest that there may be several problems with the proposed learning progression. It seems that the proposed learning progression can have levels where different attribute combinations are possible to be mastered. These results may also suggest that students carry some of the misconceptions across levels, and therefore the definitions of the levels are not supported by the student responses. Another potential reason can be that attributes do not generalize across different problem contexts (e.g., Steedle & Shavelson, 2009). Direct interpretation of the levels may lead to a conclusion that LP levels are not properly ordered with additive structure of attributes. However, as I mentioned before, the challenges introduced by OMC items may prevent us from making clear conclusions with regard to the FM LP.

GDM produces the posterior latent class probabilities for \(2^4\) possible classes. To get the individual skill/attribute probabilities I calculated the expected value for each across all latent classes. That is, I summed the probabilities of a latent class membership across all latent classes for which a specific attribute is mastered. I did this by following the formula:

\[
P (\text{Attribute 1} \mid \text{latent class membership}) = \sum_{\text{latent class}=1}^{16} \text{Att}_1. \quad \text{Posterior latent class} \tag{4.2}
\]

The summary of the marginal skill probabilities is presented in the following table.
Table 4.24. Summary of Attribute Mastery Probabilities.

<table>
<thead>
<tr>
<th></th>
<th>Attribute1</th>
<th>Attribute2</th>
<th>Attribute3</th>
<th>Attribute4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>0.52</td>
<td>0.00</td>
<td>0.18</td>
<td>0.00</td>
</tr>
<tr>
<td>Median</td>
<td>0.94</td>
<td>0.22</td>
<td>0.80</td>
<td>0.24</td>
</tr>
<tr>
<td>Mean</td>
<td>0.76</td>
<td>0.40</td>
<td>0.62</td>
<td>0.41</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>1.00</td>
<td>0.86</td>
<td>1.00</td>
<td>0.86</td>
</tr>
<tr>
<td>Max.</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

As it is reflected in the posterior latent class probabilities, there is variation across marginal probabilities of all attributes. This diversity is well represented in the following plots.

Figure 4.11. Distribution of Marginal Attribute Probabilities.

Note that the latent class placement results from GDM do not allow us to place students into LP levels as the LP levels are defined in the additive form of the attributes. That is, GDM produces the latent class memberships for the majority of the students in different mastery combinations of the attributes such as [1010] where Attribute 1 and Attribute 3 are mastered.
4.5 Comparison of Models

The ultimate aim of LPs is to provide information about the level of sophistication in student thinking as described in the LP levels. Therefore, in order to examine whether probabilistic models added value over the descriptive methods, I compare the results of student classifications into LP levels from all three probabilistic models with the simpler modal approach. Recall that I concluded not to use PCM for placing students into LP levels in subsection 4.2.4 and GDM placed only six students into the latent classes which are consistent with the LP levels (one student in latent class [1100] and 5 students in latent class [1111]). At that point, we could examine the similarity of student placements into the LP levels between only the modal approach and AHM. Hence, this section starts with the placement comparisons between modal approach and AHM. Then, I provide results of agreement between classifications across these two approaches, with a simple percent agreement. While it is not possible to examine the consistency between the modal approach - GDM and GDM - AHM, it is interesting to examine the latent class distributions in GDM for those students classified into LP levels by AHM and modal approach. Thus, I present the distribution of GDM latent classes in comparison to AHM and the modal approach, respectively. Finally, I present the results on the comparison of total raw scores with ability estimates from PCM and skill probabilities from both DCMs\(^\text{17}\).

4.5.1 Comparison between AHM and Modal Classification

Before proceeding to the comparison, I provide the classification results of students into the LP categories using a cutoff of 0.75. I found that 17 of the students were not placed into any of the LP levels because of the inconsistent probability estimates with the proposed hierarchy.

\(^{17}\)It is unclear if those parameters on the same continuum exactly. However, we can still examine their associations.
For example, one student had skill probabilities higher than 0.75 for skills 1, 2 and 4 but not skill 3. Hence, this student was not placed into any LP level. Table 4.25 presents the number of students categorized in each LP level with the respective cutoff.

Table 4.25. *LP Level Placements with AHM.*

<table>
<thead>
<tr>
<th></th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>208</td>
<td>246</td>
<td>392</td>
<td>68</td>
<td>914</td>
</tr>
<tr>
<td>Percent of students</td>
<td>23%</td>
<td>27%</td>
<td>43%</td>
<td>7%</td>
<td>100</td>
</tr>
</tbody>
</table>

When the modal classifications are compared to probabilistic classifications from a single ANN training, the two methods have exact agreement for only about 44% of the students. The cross classification of the AHM and modal levels is presented in Table 4.26.

Table 4.26. *Cross Examination of LP Level Classification (Modal and AHM).*

<table>
<thead>
<tr>
<th>Modal</th>
<th>AHM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level 1</td>
</tr>
<tr>
<td>Level 1</td>
<td>1</td>
</tr>
<tr>
<td>Level 2</td>
<td>20</td>
</tr>
<tr>
<td>Level 3</td>
<td>160</td>
</tr>
<tr>
<td>Level 4</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 4.26 shows that there are a variety of switches across levels: 43% of the students are classified in a lower level in AHM. Recall that a few students chose OMC options linked to two LP levels at equal frequency in the modal approach. I examine these students separately, as presented in Table 4.27.
4.5.2 Comparison between GDM and Modal Classifications, AHM

The distribution of the GDM latent classes in comparison to the level classifications done via the modal approach is presented in Table 4.28.

Table 4.28. Cross Examination of LP Level Classification (Modal and GDM).

<table>
<thead>
<tr>
<th>GDM Latent Classes</th>
<th>[0001]</th>
<th>[0101]</th>
<th>[0110]</th>
<th>[1100]</th>
<th>[0100]</th>
<th>[1111]</th>
<th>[0111]</th>
<th>[1001]</th>
<th>[1011]</th>
<th>[1010]</th>
<th>[0101]</th>
<th>[1001]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Level 2</td>
<td>2</td>
<td>81</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Level 3</td>
<td>0</td>
<td>370</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>148</td>
<td>193</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Level 4</td>
<td>0</td>
<td>18</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Level 2 - Level 3</td>
<td>0</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Level 3 - Level 4</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Level 2 - Level 4</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4.28 shows that GDM placed most of the students into the [0101] class and students who classified into Level 3 in the modal approach are distributed across different latent classes in GDM.

Similarly, the distribution of GDM latent classes are examined for the students who were placed into LP levels by the AHM model. As expected, most of the students who are classified in different LP levels using AHM are placed into the latent class [1010]. The results are presented in Table 4.29.
Table 4.29. Cross Examination of LP Level Classification (AHM and GDM).

<table>
<thead>
<tr>
<th></th>
<th>[1001]</th>
<th>[0101]</th>
<th>[1101]</th>
<th>[1011]</th>
<th>[0111]</th>
<th>[1111]</th>
<th>[0100]</th>
<th>[1100]</th>
<th>[1010]</th>
<th>[0110]</th>
<th>[0010]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHM</td>
<td>Level 1</td>
<td>3</td>
<td>49</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>132</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Level 2</td>
<td>0</td>
<td>46</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>187</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Level 3</td>
<td>0</td>
<td>90</td>
<td>133</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>146</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Level 4</td>
<td>0</td>
<td>19</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

4.5.3 Comparison of Person Parameter Estimates across Models

Another way of comparing the models is to investigate the person parameter estimate produced by them. That is, there is value in examining the distributions of attribute probabilities from DCMs (in logits) with the total scores and PCM ability estimates. Because the total scores are the sufficient statistics for PCM analysis, the correlation between the two scores is close to perfect as expected, 0.996. Also, note that Figure 4.12 has an S shape.

Figure 4.12. Relationship between Total Score and PCM Ability Estimates.

For the comparison of attribute probabilities from AHM with total scores, the results range across attributes and the highest correlation (r = 0.639) was found to be with Attribute 3. Recall that both modal classification and AHM based classification have most students at LP Level 3.
For transformed skill probabilities of GDM, I found positive relationships between total score and Attributes 2 and 4, while this relationship is reversed for Attributes 1 and 3.

The correlations across different scores are presented in the following table.
Table 4.30. *Correlations of Person Estimates across Models.*

<table>
<thead>
<tr>
<th></th>
<th>Pearson Correlation (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Score - Theta Estimates</td>
<td>0.996</td>
</tr>
<tr>
<td>Total Score - AHM Attribute 1</td>
<td>NA</td>
</tr>
<tr>
<td>Total Score - AHM Attribute 2</td>
<td>0.386</td>
</tr>
<tr>
<td>Total Score - AHM Attribute 3</td>
<td>0.639</td>
</tr>
<tr>
<td>Total Score - AHM Attribute 4</td>
<td>0.430</td>
</tr>
<tr>
<td>Total Score - GDM Attribute 1</td>
<td>-0.300</td>
</tr>
<tr>
<td>Total Score - GDM Attribute 2</td>
<td>0.584</td>
</tr>
<tr>
<td>Total Score - GDM Attribute 3</td>
<td>-0.408</td>
</tr>
<tr>
<td>Total Score - GDM Attribute 4</td>
<td>0.524</td>
</tr>
</tbody>
</table>

Note: Because all cases for Attribute 1 in AHM are almost 1, SD is 0.

For AHM, there are positive correlations between students’ total scores and attributes. This shows that AHM results have relatively similar trends with total scores but also provide different information than the total score of students. For GDM, the results are mixed: there are positive correlations with attribute probabilities of 2 and 4 while the associations are negative with attribute probabilities of 1 and 3. That is, for less able students on Attribute 1 or Attribute 3, their total score tended to be higher, whereas for more able students, the total score is higher. These results are difficult to interpret in the sense that a high total score requires students to pick item options more at Level 3 and Level 4. Similarly, we could examine the relationship between PCM theta estimates and probabilities for each attribute from AHM and GDM. However, because PCM ability estimates have almost perfect correlation with total scores, the results and interpretations would stay the same. Hence, I continue with the comparisons of the attribute probabilities from AHM and GDM.
Figure 4.15. Relationship between GDM and AHM Attribute Estimates in Logits.

The relationships between GDM and AHM attribute estimates are found to be really weak. The results show that the correlations among estimates for Attribute 2, Attribute 3, and Attribute 4 are 0.15, -0.30 and 0.13, respectively. In all, the results from the model comparisons, both across student classifications and scores, support the argument that the choice of models is highly critical. This is because different models lead to extremely different results on the mastery status of students. This is not surprising given the fact that the models have different assumptions and approaches to estimate the attribute mastery probabilities. This is likewise a result of estimating GDM with an unconstrained number of latent classes rather than allowing only classes aligned with LP levels. In turn, they yield different classroom practices or provide different information for curriculum development. For large-scale purposes, it is even more complicated because classifications of students are so different and the aggregated results at the school or state level can suggest completely different implementations. Hence, the degree of similarity, as well as difference, in the inferences is critical to informing the practitioners about the potential results of model selection.
While modeling is one major strand of LP work, it was limited because of inferential challenges, including (a) selecting methodology which will be used to make inferences about students’ learning progression levels in connection with student performance on a set of assessment tasks, (b) deciding how students’ inconsistent patterns can be explained, and (c) understanding how the substance of learning progressions and assessment tasks could be refined.

Many LPs are developed with a strong base of research, standards, curriculum, and teaching practices, but few LPs are empirically validated (Heritage, 2013). This connects to the inferential challenges above. How can we connect the student performance to the LP progression levels? The challenge in this dissertation was to understand how existing data from OMC (tasks) on assessments could inform us about LPs. Understanding this relationship between tasks and LPs required examining response data using models from different approaches to inform different uses of LPs.

There are also various challenges in working with probabilistic models from different approaches to model LP assessments that are composed of OMC items. The models, if they work, provide critical information at varying degrees for an LP for different intended uses. The challenge lies in knowing when to use these tools and when something simpler might be nearly as effective.
This dissertation is an attempt to better understand the use of models from different modeling frameworks by showing their potential benefits and challenges when investigating the relationship between student responses and LP levels. This examination demonstrated how and to what extent the assessment data can be used to validate a learning progression via different statistical modeling approaches. The quality of assessment items were examined within each approach and it was demonstrated how students could be classified into LP levels based on their assessment results.

My first research question is: “What information does each model provide to the researcher about the quality of the learning progression hypothesis and assessment items?” This question refers to the information each model provides about the quality of learning progression hypotheses and assessment items. Through the course of this study, it was discovered that responding effectively to this research question requires evaluating results regarding model characteristics for all of the models, so these conclusions are discussed in section 5.1. My second research question is: “What are the qualitative differences in student classification across different models?” This research question focuses on the classification of students into LP levels across different models and the results are discussed in section 5.2.

Recall that as the first step, I used a modal approach to examine the learning progression data, which is conceptually easy to understand, communicate, and utilize in the classroom. With the presence of OMC items, it is clear that useful interpretations of learning progression level diagnoses are possible, when students select consistent responses reflecting a single learning progression level. However, in FM LP data, if students select options inconsistently, this makes the interpretation of student understanding difficult for both teachers and researchers.
Given the intended use of the LPs in the classroom, the use of the simplistic approach can be the best option. At the classroom level, LPs provide a guideline on how learning progresses. Teachers can use LP assessments to determine a student’s level relative to an LP and use this information to tailor their instruction planning and to enrich their formative assessment practices. They can also use individual items to attend to their students’ thinking. However, the utility of simplistic approach is balanced against appropriateness of the progression in the LP and the quality of the items. Therefore, the use of the psychometric models for assessing LPs and LP assessments remains important, but less urgent for classroom applications. For large scale purposes, the use of modal approach is less appropriate because the approach is not robust (e.g., for item parameters, and classification of students into LP levels). Hence, examination of different models in order to get probabilistic inferences about students’ understanding is valuable as they are in the current study.

It is worth reiterating that the models selected for this study differ in their conceptual standpoints because one of them is an IRT model (PCM), another is an IRT-based diagnostic classification model (GDM), and the last one is a non-IRT based diagnostic classification model (AHM). However, it is important to examine different models from different approaches that can be adapted to model the LP assessment data. The information provided by models can be connected with the intended use of LPs. Therefore, in order to understand the ways these models are working similarly and differently, I summarize the factors that I will discuss in the following table across all three models. Note that columns 2 to 5 are used to examine the first research question and the final column is used to examine the second research question. When there are notable differences in the classification of students into the LP levels made on the basis of each model, it is highly possible that the results are combined effects of these factors.
Table 5.1. *Information Provided by Three Models.*

<table>
<thead>
<tr>
<th>Latent variable hypothesis</th>
<th>Item parameter estimates</th>
<th>Model fit</th>
<th>Parameter invariance</th>
<th>Attribute relationships</th>
<th>Student classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCM Continuous (simple)</td>
<td>Available</td>
<td>Examined</td>
<td>Not available</td>
<td>Not conducted</td>
<td></td>
</tr>
<tr>
<td>GDM Discrete (complex)</td>
<td>Available</td>
<td>Examined</td>
<td>Conducted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHM Discrete hierarchical (complex)</td>
<td>Not available</td>
<td>Examined person fit</td>
<td>Not available</td>
<td>Conducted</td>
<td></td>
</tr>
</tbody>
</table>

5.1 Model Evaluations in the Context of FM LP Assessment

As it turns out, some of the interesting results from this study arose from my analysis of the dimensionality of the OMC assessment items. The results from exploratory analysis suggest that there may be more than one factor that underlies the FM LP assessment with a simple structure (i.e., item groups loaded on different factors). These results did not clearly favor either unidimensional modeling or diagnostic modeling where DCMs are promising when items are measured by multiple attributes (i.e., complex structure). Therefore, this issue is critical when considering modeling options for the learning progression assessments. That is because the underlying dimensional structure of the data has an effect on the usefulness of the models such that use of DMCs is more beneficial when the data supports a complex multidimensional structure.

Both PCM and GDM provide item-level statistics that help to investigate the quality of the items to the extent that they were appropriate for the students and they measured students’
latent trait. The AHM does not parameterize item characteristics. This is a limitation, especially for the large-scale applications such as assessment development, item banking, and test equating.

PCM and GDM produced item category estimates. The comparison of parameters showed that they produce similar information with regard to OMC items in FM LP assessments. The correlation among the item category parameters of the two models was found to be high: \(r = -0.71 \) (recall that GDMs produce item easiness parameters). This relationship suggests that the PCM is a restricted version of the four skills two-parameter GDM model. While it is likely that this relationship can be shown algebraically, doing so is beyond the scope of this work.

Additionally, GDM produces slope parameters for each item representing the effect of each attribute on the probability of student response (as indicated by non-zero entries in the Q-matrix). The results from GDM slope parameters provide unique information with regard to the items and the Q-matrix. The low values of the slopes within items suggested a need to revisit the relationship between items and hypothesized attributes.

Next, the model fitting results are critical to understand the relative viability of the probabilistic models where viability refers to a criterion reflecting substantively meaningful inferences about the placement of the students into the LP levels. I examined the item fit in both PCM and GDM, and person fit for the AHM. The results from the item fit examination showed that there were no poorly fitting items in PCM using a conventional range, but that 10 out of 16 items were out of range when the interval was adjusted for the sample size. For GDM, the examination of the RMSEA values suggested no poorly fitting items. For AHM, I created a modified version of the originally proposed hierarchy consistency index to examine the extent of

18 When I fit GDM model with slope parameters set to 1 across all items, the correlation between PCM and GDM item parameters are found to be -0.75.
consistency across student answers with the options they selected. The simulation designed to analyze the statistical properties of the modified consistency index suggested that students did not respond to the OMC items as consistently as expected. However, it is unclear whether this lack of fit is due to the actual inconsistencies present in the observed data or the proposed index. This is because the number of expected response patterns is enormously high when we model the options rather than the items themselves, and the proposed RCI index does not take this into account. Additionally, the linear structure proposed is noted as a potential cause for the poor fit. That is, a branching hierarchy, with a more complex cognitive representation, is usually observed to yield better model fit than purely linear hierarchies (Roberts, 2014, personal communication).

In addition, examination of the relative fit between GDM and PCM favored the GDM. Examination of the fit results from three models provides evidence that the PCM model has worse fit than the GDM model, while the results of the AHM model are not clear.

As an indirect approach to the model fit examination, I likewise conducted the examination of parameter invariance in both PCM and GDM models. The results from the parameter invariance investigation provided high correlations across 100 randomly divided samples for both models. This evidence suggested that the item parameter estimates for PCM and GDM were invariant. This finding is somewhat surprising for PCM given that several misfitting items were found. This examination overall suggests that the GDM model can be a better choice than the PCM model in the context of LP assessments composed of OMC items.

Investigating the extent of the relationship between attributes in diagnostic classification models helps to inform the LP and LP levels. In the context of AHM, the results from the examination of the attribute relationships from one trial suggest that there is a possible linear hierarchy between proposed attributes. This is supported by the high correlations between
adjacent attributes and low correlations between distant attributes. However, the examination of the results across 100 trials has shown varying results and has made the inferences about the proposed LP structure unclear. The results for GDM provided mixed results for correlations across attributes. An inspection of the correlation patterns illustrated that there exist high correlations between attribute pairs of 1 and 3, and 2 and 4. These results suggest that the specified attributes are clustered rather than forming a linear hierarchy or becoming highly connected or distinct. Put simply, with the current form of the FM LP assessment, two pairs of latent attributes contribute unique information over and above the other pair. The results suggest that core concepts are related in a different way than hypothesized in the FM LP. Given the definition of attributes, it is interesting to have a high correlation between Attribute 1 (“what the force is”) and Attribute 3 (“the net force associated with speed”), without mastering Attribute 2 (“motion implies force”). A reasonable explanation for this kind of clustering can be the context of FM LP tasks such that a student can connect the notion of force, specifically in one direction, with the speed of the objects, rather than recognizing that motion implies force. However, as noted before, these results are affected by the restrictions I put in the GDM model (e.g., estimation of one slope parameter per attribute per item) and the way that model estimates the response probability.

Overall, the results of the three models regarding the Force and Motion learning progression hypotheses indicate that students may not follow the hypothesized progression. That is, the relationships across the four skills may not maintain a strict hierarchy as specified in the FM LP or there can be other attributes interfering with students’ response processes. Hence, a revision in LP is suggested with the information at hand. The PCM provides mixed item fit results across 16 items while the GDM, which uses separate attributes as input, shows acceptable
fits for all items. In both models, I found large variation in item category estimates within each category and several item category parameters are disordered. These results suggest a detailed examination of the item stems and options in the assessment. Hence, a practitioner may want to be cautious about using the LP and LP assessment results for both classroom and high stakes situations. On the other hand, one can interpret the results as, given the data, none of the models used in current study could recover underlying progress levels. That is, there can be other models that would do better to support hypothesized progression levels.

5.2 Inferences across Models

All told, the second research question points out the differences across models with respect to the inferences on student learning. Recall that the value of the learning progression assessment is to place students into LP levels. After that, the descriptions in the levels can be used to provide a detailed explanation of student understanding reflecting a set of coherent ideas. Placement of students into LP levels across models shows that there was considerable variation across the modal approach, AHM and GDM. Remember that I decided not to place students into LP levels with PCM.

The conclusions from the modal classifications show that most of the students express Level 3 understanding. The underrepresentation of Level 1 classifications is partially due to the lack of options at this level in 9 out of 16 items. Additionally, for a small portion of students, it is difficult to place them into any unique LP level. It is true that this would not introduce a challenge for the use of LP assessments at the classroom level, where teachers can make decisions about students’ understanding on the topic even using a single high quality item. The modal approach provides a practical way to scan student understanding and place them into LP levels for classroom purposes. However, again, this practicality of the modal approach is
challenged with the need for a valid LP and high quality LP assessment. The use of psychometric models fulfills this purpose by providing a systematic way to collect evidence on LPs and LP assessments. Also, the possibility of incorporating or using LP assessments for large-scale purposes motivates the exploration of the probabilistic models.

The examination of the PCM model characteristics together with the item parameter estimates led me to conclude that there is not enough supporting evidence for deciding cutoff points on the continuous latent trait and, in turn, for the meaningful placement of students into discrete LP levels. My conclusion regarding the PCM analysis in the context of OMC items is a result of evaluating different model properties. The conclusion regarding the potential flaws in the use of PCM model-to-model OMC items is consistent with that suggested by Briggs and Alonzo (2009).

The AHM approach provides probability estimates for each attribute. For 17 students, it did not produce monotonically decreasing probabilities for each attribute (e.g., 0.9, 0.1, 0.4, and 0.7). When I examine the response patterns of these students, I did not find any similarity between response patterns. That is, it is not clear what the reason is for these attribute probabilities. Next, the classification of students into LP levels requires choosing the cutoff values in order to decide the students’ mastery status for each attribute. Students are placed into LP levels using different cutoff values. As expected, when the value cutoff increases, the number of students categorized as “mastered” within higher-level attributes decreases. These results suggest that there may be a need to examine the most appropriate cutoff points in relation to the selected topic because AHM does not provide any item parameters that allow for item evaluation. The agreement between AHM (using a cutoff of 0.75) and modal classification is found to be moderate (44%) when AHM placed almost half of the students into a lower level.
Based on the results in Chapter 4, there are strong reasons to suspect that the placement of students into LP levels may not be consistent, in particular due to the fluctuating results of attribute mastery estimates. However, this is particularly important given that much of the current research on AHM as well as learning progressions does not utilize a detailed examination similar to the one I conducted in this study. For both classroom and large-scale applications of this model, there is a need for more research on the use of the Artificial Neural Network (ANN) approach and specifications of the guidelines (e.g., use of random initial values versus fixed values). Hence, practitioners who want to use the AHM approach in the context of LP work should be careful with all of the points discussed in this study.

In GDM, I allowed the model to produce probabilities for all possible latent classes (i.e., 16 classes). The results were used to check the alignment of the proposed LP with the latent classes. The attribute combinations representing the LP levels with near-zero latent class proportions (i.e., [1,0,0,0], [1,1,0,0], and [1,1,1,0]) suggest a potential misalignment across levels in LP. For example, there was no group of students who systematically applied the notion that motion implies force. Therefore, LP Level 2 (i.e., [1100]) was not among the latent classes that could be distinguishable for FM LP assessment data. Similarly, LP Level 3 [1110] did have a zero latent class proportion because no students systematically applied the notion that an object is not moving either because there are no forces acting on it or because there is no net force acting on it. Finally, FM LP Level 1 was not estimated because none of the students showed the notion of force as a push or pull that may or may not involve motion alone.

In GDM, as a consequence of having LP levels with zero latent class proportions, large heterogeneous groups of students get bunched into different latent classes with the mastery of different attribute combinations. This results in further misalignments between the fitted model
and the proposed FM LP. That is, one could conclude that these results suggest a misalignment for the proposed LP. However, note that due to practical reasons I restricted the item category slope parameters to be the same within each item in the GDM model. Therefore, I could not examine the effect of the attributes on the item categories but I did investigate their contributions to items. Some challenges due to the ceiling and floor effects of OMC items also intervene with the interpretation of results. The use of GDM with discrete skills seems advantageous especially for large scale purposes. It provides item parameters with which difficulty and slopes of items can be examined. However, the interpretation of these parameters is not straightforward and further research is needed to understand the use of this model with a small number of items.

In sum, all three probabilistic models are differently formulated attempts to model the learning progression assessment data. Yet they have varying issues that make their application and interpretation of results challenging. The results from the FM LP data analysis via three probabilistic models show that one source of challenges is the use of low quality items. That is, items that are not working well may be decided and eliminated from further analyses. Descriptive statistics and explanatory factor analysis can help for this purpose. I found slightly improved results using high quality items but all of the methodology related challenges remained (see Appendix D). Another source of challenges is the ceiling and floor effects in the OMC items in the context of FM LP assessment. In all models, the interpretation of the estimated parameters, both item and person, have become more challenging due to a lack of options associated with the lowest LP levels. While OMC options have the potential to provide much more diagnostic information about student understanding in LP assessments, their potential is restricted when writing options linked to each LP level is not possible. When there are OMC options associated with a restricted range of learning progression levels, they have the potential to under or over
predict students’ real learning progression levels, but quantifying this effect is not possible with the current data at hand. So, the effect of the use of OMC items regarding the effectiveness of the models stayed unclear in the current study. The development of items with options representing the lowest level of the LP or the inclusion of misconceptions at the lowest level (and scoring them as the lowest level across all items) can help make better use of the probabilistic approaches. However, it is well-known that one of the obstacles with regard to OMC items is to write options at the lowest and highest achievement levels without using specific genres (Anderson, Alonzo, Smith, & Wilson, 2009). The use of more coarse topics can help solve this problem, but at the expense of detailed feedback.

5.3 Limitations

This study is only a beginning of investigations into applying different models to LPs and examining the information provided by different modeling approaches. There are at least four important limitations to this work, 1) choice of learning progression, 2) interpretation of model parameters, 3) generalizability, and 4) retrofitting.

First, the results of this study are limited by the choice of data. There are two related issues. First, originally items in the FM LP assessment had options with the intermediate levels of 2A and 3A. For the purpose of this study, I recoded them as Level 2 and Level 3 to decrease the computational burden and make the interpretation of results more distinct. For example, students at Level 2 and at the corresponding sublevel 2A have the same understanding about the relationship between force and motion. However, students at Level 2A have a more “impetus view” of the notion of force (i.e., the effect of initial force to start the motion, Alonzo and Steedle, 2009). Second, the context of the items in this LP assessment limits the use of OMC items in a way that not all of the items have options connected to each LP level. It could very
well be the case that the interpretations would differ if all of the items had similar options available.

Next, as it is presented in Chapter 4, relative interpretations of the item parameters across items for the PCM and GDM models could be misleading. Because OMC items do not have similar options associated with the LP levels and some of them have multiple options linked to the same LP levels, it requires strong assumptions to compare estimated item parameters. A different limitation is introduced by the very nature of AHM. This approach did not provide item parameter estimates to inform the quality of assessment tasks and the item model fit. Hence, all models are concluded to pose practical challenges to inform the LP refinement. While the use of well-behaved subset of items are slightly improved the comparison results across models, most of the challenges regarding each model stayed the same (see Appendix D).

An additional limitation from the modeling side is the examination of the dimensional structure using an exploratory approach. IRT and DCM models assume different underlying structures with respect to the latent variable. My examination of the dimensional structure stayed limited to the exploratory approaches selected, and results did not provide clear guidance in favor of any of the modeling approaches. The question of whether exploratory or confirmatory approaches should be used remains unanswered. A further limitation related to the models is the lack of criteria with which to compare all models used. That is, while IRT and GDM allow for comparison based on relative model fit indices, there is no way to compare these models with AHM.

Generalizability is another limitation of this study because only data from a convenient sample for one learning progression were analyzed. It is possible that with another set of items, models would yield different latent classes. Also, with another learning progression (e.g., with
different content or different item types), it is clear that our conclusions about the viability of the models could be different.

Fourth, one common limitation in the application of the diagnostic classification models is the use of a post-hoc or retrofitting type approach. As discussed earlier, while the LP assessments are developed for diagnostic purposes, they are not developed with a specific modeling framework in mind. Hence, in this dissertation, I retrofitted the DCM models to pre-existing LP assessment forms. While this is common practice in diagnostic assessment (Tatsuoka, 1983), it brings several limitations (Gierl et al., 2009). From a technical viewpoint, Rupp and Templin (2008) state that retrofitting can lead to convergence problems and poor item, person or model fit. Hence, it is subject to many threats to its validity (e.g., Borsboom & Mellenberg, 2007) that the intended use of assessment results may not be appropriate. However, examining the new models to feed the learning progressions with different types of information helps both practitioners and researchers in terms of the development, evaluation, and use of LP assessments.

5.4 Implications and Future Research

The results of this dissertation have implications for both the use of learning progressions in science education and diagnostic classification models. A practitioner who is using LP and LP assessment for measuring student understanding may want to understand how different modeling options provide information. At the classroom level, the use of LPs is mostly formative assessment oriented where teachers try to attend to student understanding. This can happen if the progression in the LP is validated and the items in the LP assessment are well-aligned with the LP levels. For large-scale use of LPs, a practitioner may want to determine if the selected model can be used for consistent classification of students into LP levels as well as checking the item
quality and evaluating the appropriateness of the progression in the LP. For both of the intended uses, the examination and comparison of different models are useful. But, none of the models used in this dissertation is a panacea to model the LP assessment composed of OMC items. It is not exactly clear from my findings that the results are due to the structural problems with the learning progression or the construction of OMC items in a Force and Motion context. For the former, all models provide some evidence that students’ performance paths differ from what is hypothesized in the LP. For the latter, usefulness of the probabilistic models may be affected by the OMC items when they do not have options at all levels, especially at the lowest LP level. Because options for the OMC items are a result of the item context selected for the LP assessment, decisions about the item selection may need to be reconsidered together with the modeling approach. Moreover, selection of the models is critical and different models lead to different LP level placement results. The results of this study suggest a number of areas that warrant further exploration.

Because of both theoretical and practical reasons, I selected PCM from the IRT framework. However, the use of OMC items, especially with multiple options linked to the same LP level, introduces extra challenges in the interpretation of item parameters and the determination of cutoff points on the continuous scale. Examination of models that do not assume an order of all response categories, such as the ordered partition model (Wilson, 1992), may provide better fit and additional information about the relative difficulty of the levels.

For AHM, I suggested a workable approach as an extended version of model fit for polytomous OMC items. Yet further examination of the model fit is required in order to test the effect of test length, number of attributes models, and number of items per attribute. The modified version of AHM used in this study can be seen as an approach based on the
dichotomization of items. Recall that use of the dichotomized items led to a significantly increased number of expected response patterns, which may complicate the training of ANN. Further modifications of AHM for polytomous items would be beneficial to researchers extracting richer information about student learning.

There is relatively less research on the use of the GDM model in comparison to PCM and AHM. Current research focuses on the use of large-scale data with a large number of items. Further examination of the model with small numbers of items and comparisons with regard to interpretation of item parameter estimation, evaluation of the violation of model assumptions, and model fit, can specifically help practitioners make model selection decisions.

The challenges of this study are further complicated by the items connected to common stems. The OMC items in LPs are not completely independent items. None of the models selected for this dissertation handle this nested nature of items. Therefore, by examining the robustness of different models with respect to local dependency, it may be possible to more clearly articulate the dimensional structure of LP assessments and interpret the item level parameter estimates.

In general, more studies should be conducted to apply diagnostic classification models such as the AHM and GDM to different assessment situations. Given that there is an increasing interest in the use of different assessment types such as performance assessments (e.g., Davey, Ferrara, Holland, Shavelson, Webb & Wise, 2015), researchers and assessment developers should continue to investigate the application of assessments and measurement models that effectively provide feedback on student learning. While the focus of this study was on the use of OMC items, similar studies would benefit from using different types of items.
Although most of the models have been investigated with well-known data sets composed of traditional item types, there is an increasing need to respond to new assessment types such as the ones consisting of OMC items. That is, more studies are needed to explore how currently available psychometric models can be used to evaluate the quality of assessments. Moreover, additional studies should investigate topics in different fields (e.g., mathematics or social sciences) to compare results with this study.

5.5 Conclusion

It is quite challenging to develop and use learning progression assessments. It requires a considerable amount of work with a number of decisions to be made at each step. Modeling LP assessment data via probabilistic approaches raises the question: “is it worth it?” That is, can the use of raw data provide the same information for student learning and quality of the LP and assessment items, or does using statistically burdensome models make a difference? For classroom use, a simple approach (e.g., counting the most frequently selected options by each student) can be easier for a teacher to understand and use. However, the use of LPs in the classroom will be more efficient with validated LPs. Additionally, given the current interest in learning progressions as learning environments align curriculum, instruction and assessment, and attempts to implement LPs in large-scale contexts, examination of psychometric modeling options can help the revision of LPs and assessment items and provide information on how to extract more detailed feedback on student understanding. Investigating the use of probabilistic models in the context of a learning progression also helps highlight the caveats in the psychometric models intended to model LP assessment data.

This study makes contributions to a broad spectrum of research areas. These contributions include examining the available models with more than two latent classes and
polytomous item responses, exploring the latent structure of diagnostic science assessment data, identifying particularly challenging areas in the use of different models from two modeling approaches, and informing decisions regarding the development of new assessments. I hope that these contributions help advance efforts to align the use of diagnostic assessments with the development of psychometric models.
References

de la Torre J., & Karellitz T. M. (2009). Impact of diagnosticity on the adequacy of models for

based tools for reasoning in teaching about water in environmental systems. Paper presented at the 2014 Annual International Conference of the National Association for Research in Science Teaching. Pittsburgh, PA.

Hestness, J. E., McGinnis, R., Breslyn, W., McDonald, R. C., Mouza, C., Shea, N., &

Mislevy, R. J., Almond, R. G., Yan, D., & Steinberg, L. S. (1999). Bayes nets in educational
assessment: Where do the numbers come from? In K. B. Laskey & H. Prade (Eds.), Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (pp. 437-446). San Francisco: Morgan Kaufmann.

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
<th>Force</th>
<th>No Force</th>
<th>Motion</th>
<th>No Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Student understands that the net force applied to an object is proportional to its resulting acceleration (change in speed or direction) and that this force may not be in the direction of motion.</td>
<td>If there is a nonzero net force acting on an object, it will accelerate.</td>
<td>If there is no net force acting upon an object, it will move with constant velocity.</td>
<td>If an object is accelerating, a nonzero net force is acting upon it. If an object is moving with constant velocity, no net force is acting upon it.</td>
<td>If an object is not moving, the net force acting upon the object is zero.</td>
</tr>
</tbody>
</table>
| 3 | Student understands that an object is stationary either because there are no forces acting on it or because there is no net force acting on it. Student has a partial understanding of forces acting on moving objects.
 - Student recognizes that objects may be moving even when no forces are being applied; however, the student does not believe that objects can continue moving at a constant speed without an applied force.
 - Student recognizes that there may be forces acting on an object that are not in the direction of its motion. However, he or she believes that an object cannot be moving at a constant speed in a direction in which a force is not being applied. | If there is a nonzero net force acting on an object, it will move with constant velocity. | If there is no net force acting upon an object, it is either slowing down or stopped.
 3A: The zero net force could result from opposing forces coming into balance (e.g., through one force dissipating). | If an object is moving with constant velocity, a nonzero net force is acting upon it. If an object is slowing down, no net force is acting upon it. | If an object is not moving, the net force acting upon the object is zero. |
<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
<th>Force</th>
<th>No Force</th>
<th>Motion</th>
<th>No Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Student believes that the object's speed (rather than its acceleration) is proportional to the net force in the direction of its motion. Common Errors: • An object's speed and direction are proportional to the nonzero net force acting on it. ○ 3A: An object may come to rest when opposing forces (e.g., the force which put the object into motion initially and gravity) come into balance. • A constant force causes constant speed. • Without an applied force, all objects will slow down and eventually come to rest. 2</td>
<td>Student believes that motion implies a force in the direction of motion and that nonmotion implies no force. Conversely, student believes that force implies motion in the direction of the force.</td>
<td>If a force is acting upon an object, it is moving. 2A: The force acting on an object could be the initial force (which is carried with the object and may dissipate over time).</td>
<td>If no force is acting upon an object, it is not moving.</td>
<td>If an object is moving, a force is acting upon it.</td>
<td>If an object is not moving, no force is acting upon it.</td>
</tr>
<tr>
<td>Level</td>
<td>Description</td>
<td>Force</td>
<td>No Force</td>
<td>Motion</td>
<td>No Motion</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td>Student understands force as a push or pull that may or may not involve motion.</td>
<td>If a force is acting on an object, it is moving unless the object is immovable.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Common Errors:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Forces are caused by living things.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Force is an internal property of objects related to their weight. (There is a force on all objects that is not due to gravity or because of their motion.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Forces prevent the natural movement of objects (i.e., gravity prevents objects from flying off into space).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Objects cannot move in the absence of friction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Way off track</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B: 16 Force and Motion Items

1) The box sitting on the table above is not moving because

A. no forces are acting on the box.
B. the table pushes up with the same force that gravity pulls down.
C. gravity is keeping the box down on the table
D. gravity is pulling down, but the table is in the way.

Level
2
3
1
2

2) Amelia hits a puck on a flat frictionless surface. She then observes the speed of the puck. Which of the following observations is most likely?

A. The speed is constant because the force from Amelia’s hit is still acting on the puck.
B. The speed is constant because there is no force acting on the side of the puck.
C. The speed is decreasing because there is no force acting on the side of the puck.
D. The speed is zero because there is no force acting on the side of the puck.

Level
2a
4
3
2

Use the following information to answer questions 3 and 4.

Jeff’s car ran out of gas, so he has to push it along a flat icy road. There is no friction between the car and the ice.

3) As long as Jeff pushes with a constant force, how will his car move?

A. It will move faster and faster across the ice.
B. It will keep moving until Jeff stops pushing.
C. It will move at a constant speed across the ice.
D. It will speed up and then move at its maximum speed.

Level
4
2
3
3
4) If Jeff stops pushing, what will happen to his car?

A. It will gradually slow down because there is no force to keep it going.
B. It will gradually slow down as the force of Jeff’s push decreases.
C. It will keep moving at the same speed because there is no force to slow it down.
D. It will stop moving as soon as Jeff stops pushing because there is no force to keep it going.

Level

2
2a
3
4

Use the figure below to answer questions 5 and 6.

5) When the ball is on its way down through point A, what force(s) are acting on it?

A. There are no forces acting on the ball.
B. Only the force from Lisa’s push is acting on the ball.
C. Only gravity is acting on the ball.
D. Both gravity and the force from Lisa’s push are acting on the ball.

Level

1
2a
4
3a

6) When the ball is on its way back up through point B, what force(s) are acting on it?

A. Only gravity is acting on the ball.
B. Only the force from the floor is acting on the ball.
C. Only the force from Lisa’s push is acting on the ball.
D. Both gravity and the force from the floor are acting on the ball.
E. There are no forces acting on the ball.

Level

3a
2a
4
1
7) The boulder in the picture above is not moving because

A. the boulder is too heavy for other forces to affect it. 1
B. no forces are acting on the boulder. 2
C. gravity is holding it down to the ground. 1
D. the ground pushes up with the same force that gravity pulls down. 3

Use the following information to answer questions 8 and 9.

A rocket in outer space is traveling toward a far off planet. An astronaut turns on the rocket’s engines, which exert a constant force on the rocket. You may assume that there is no gravity or air resistance.

8) While the engines are on, how will the rocket move?

A. The rocket will move at a constant speed. 3
B. The rocket will move faster and faster as long as the engines are on. 4
C. The rocket will move faster and faster until it reaches its maximum speed. 3
D. The rocket will move only while the engines are on. 2

8) While the engines are on, how will the rocket move?

A. The rocket will move at a constant speed. 3
B. The rocket will move faster and faster as long as the engines are on. 4
C. The rocket will move faster and faster until it reaches its maximum speed. 3
D. The rocket will move only while the engines are on. 2

9) When the astronaut turns off the engines, what will happen to the rocket?

A. It will steadily slow down until the force from the engines is gone. 2a
B. It will steadily slow down because no forces are acting on it. 3
C. It will continue moving with a constant speed because no forces are acting on it. 4
D. It will continue moving with a constant speed because the force from the engines is still acting on it. 2a
10) José drops a ball from the top of a tall building. There is no air resistance, but gravity is acting on the ball. What will happen to the speed of the ball as it falls?

A. The ball’s speed will be constant because the force of gravity is constant.
B. The ball’s speed will increase until it reaches a constant speed because the force of gravity is constant.
C. The ball’s speed will increase as it falls because the force of gravity is constant.
D. The ball’s speed will increase as it falls because the force of gravity is increasing.

Level 3

11) On a visit to a science lab, Madison observes a blob of shiny material, which appears to be floating in the air. The blob isn’t moving. What can she conclude about the force(s) acting on the blob?

A. Gravity cannot be acting on the blob because it isn’t falling down.
B. Gravity must be acting on the blob or it would float away.
C. There are no forces acting on the blob because it isn’t moving.
D. Each force acting on the blob has another one to cancel it out.

Level 2

Use the following information to answer questions 12 and 13.

Derek throws a stone straight up into the air. It leaves his hand, goes up through point A, gets as high as point B and then comes back down through A again.
12) Ignoring air resistance, what force(s) are acting on the stone when it is moving up through point A?

A. Only gravity is acting on the stone.
B. Only the force that Derek put on the stone is acting on it.
C. Both gravity and the force that Derek put on the stone are acting on it.
D. There are no forces acting on the stone.

13) Ignoring air resistance, why does the stone come to a stop at point B?

A. There are no forces acting on the stone at point B.
B. The force of gravity is now equal to the force from Derek’s throw.
C. There is no more force left from Derek’s throw.
D. Gravity has slowed the stone until it stops.

A rocket sled is traveling on a very long frictionless track.

14) The sled travels faster and faster when the engine is on. What is true about the force exerted by the engine?

A. The force exerted by the engine is constant as the sled travels faster and faster.
B. The force exerted by the engine increases as the sled travels faster and faster.

15) Maria pushes on a heavy rock, but the rock does not move. Why not?

A. Nothing is moving, so there are no forces acting.
B. Maria is exerting a force on the rock, but the force from the rock is stronger.
C. There must be another force on the rock, opposing Maria’s push.
D. The rock is heavier than Maria.
16) A spacecraft moves at a constant speed in outer space. If there is no friction or gravity, what force(s) are acting on the spacecraft?

 A. There is an unbalanced force acting on the spacecraft.
 B. The spacecraft must have an engine which is exerting a constant force on it.
 C. There are no forces acting on the spacecraft.
 D. The force that launched the spacecraft into outer space is still acting on it.

Was the content of questions 1-16 (force & motion) covered in a science class you've taken? (Circle your response below.)

 Yes No I'm not sure

If you circled Yes, please write the name of the class here: ______________________________
Appendix C: Earth and Solar System Learning Progression Levels and Descriptions

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
</table>
| 5 8th grade | Student is able to put the motions of the Earth and Moon into a complete description of motion in the Solar System which explains:
- the day/night cycle
- the phases of the Moon (including the illumination of the Moon by the Sun)
- the seasons |
| 4 5th grade | Student is able to coordinate apparent and actual motion of objects in the sky. Student knows that
- the Earth is both orbiting the Sun and rotating on its axis
- the Earth orbits the Sun once per year
- the Earth rotates on its axis once per day, causing the day/night cycle and the appearance that the Sun moves across the sky
- the Moon orbits the Earth once every 28 days, producing the phases of the Moon
COMMON ERROR: Seasons are caused by the changing distance between the Earth and Sun.
COMMON ERROR: The phases of the Moon are caused by a shadow of the planets, the Sun, or the Earth falling on the Moon. |
| 3 | Student knows that:
- the Earth orbits the Sun
- the Moon orbits the Earth
- the Earth rotates on its axis
However, student has not put this knowledge together with an understanding of apparent motion to form explanations and may not recognize that the Earth is both rotating and orbiting simultaneously.
COMMON ERROR: It gets dark at night because the Earth goes around the Sun once a day. |
| 2 | Student recognizes that:
- the Sun appears to move across the sky every day
- the observable shape of the Moon changes every 28 days
Student may believe that the Sun moves around the Earth.
COMMON ERROR: All motion in the sky is due to the Earth spinning on its axis.
COMMON ERROR: The Sun travels around the Earth.
COMMON ERROR: It gets dark at night because the Sun goes around the Earth once a day.
COMMON ERROR: The Earth is the center of the universe. |
| 1 | Student does not recognize the systematic nature of the appearance of objects in the sky. Students may not recognize that the Earth is spherical.
COMMON ERROR: It gets dark at night because something (e.g., clouds, the atmosphere, “darkness”) covers the Sun.
COMMON ERROR: The phases of the Moon are caused by clouds covering the Moon.
COMMON ERROR: The Sun goes below the Earth at night. |
| 0 | No evidence or off-track |
Appendix D: Summary of Results from Well-behaved Subset of Items

The following presents the findings from analyses using 10 well-behaved items. Item selection is based on the results of factor analysis in Section 4.2.1. Hence, six items are excluded from further analyses (Item 2, Item 5, Item 11, Item 13, Item 15, and Item 16).

D.1 Partial Credit Model.

The results from the item fit examination showed that there were no poorly fitting items in PCM using a conventional range, but all of the items were out of range when the interval was adjusted for the sample size. Additionally, two item category parameters were disordered (Item 7 and item 9). Similar to results obtained from 16 items, the same category thresholds do not align with each other. Hence, the results from well-behaved items also suggest that the levels of understanding are not similar across the items in the same clusters.

Table D1.1. Category Boundary Parameter Estimates for 10 Items.

<table>
<thead>
<tr>
<th>Items</th>
<th>Level 1-Level 2(δ₁₁)</th>
<th>Level 2-Level 3(δ₂₂)</th>
<th>Level 3-Level 4(δ₃₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 10</td>
<td>.</td>
<td>.</td>
<td>1.83</td>
</tr>
<tr>
<td>Item 14</td>
<td>.</td>
<td>.</td>
<td>0.89</td>
</tr>
<tr>
<td>Item 1</td>
<td>0.06</td>
<td>0.93</td>
<td>.</td>
</tr>
<tr>
<td>Item 7</td>
<td>1.37</td>
<td>0.18</td>
<td>.</td>
</tr>
<tr>
<td>Item 3</td>
<td>.</td>
<td>-0.68</td>
<td>1.98</td>
</tr>
<tr>
<td>Item 4</td>
<td>.</td>
<td>-0.11</td>
<td>0.68</td>
</tr>
<tr>
<td>Item 8</td>
<td>.</td>
<td>-2.01</td>
<td>2.23</td>
</tr>
<tr>
<td>Item 9</td>
<td>.</td>
<td>1.58</td>
<td>-0.17</td>
</tr>
<tr>
<td>Item 6</td>
<td>-2.32</td>
<td>0.24</td>
<td>2.54</td>
</tr>
<tr>
<td>Item 12</td>
<td>-2.57</td>
<td>-0.35</td>
<td>3.42</td>
</tr>
</tbody>
</table>

Note: 'Bold italics values indicate the items with disordered categories.'
The overall results also suggest that there is not enough supporting evidence for deciding cutoff points on the continuous latent trait and, in turn, for the meaningful placement of students into discrete LP levels using 10 well-behaved items.

D.2 Attribute Hierarchy Model.

The results from person fit examination (via RCI calculations) that students did not respond to the OMC items as consistently as expected. While the attribute probabilities estimated by the ANN for each of our expected response patterns indicated an almost exact match, there is found variation in the attribute estimates with the actual student response data across different trials.

Table D2.1. *The Summary of Standard Deviations in Estimates across 100 ANN Trials for 10 Items.*

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Attribute 2</th>
<th>Attribute 3</th>
<th>Attribute 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>0.002</td>
<td>0.031</td>
<td>0.109</td>
</tr>
<tr>
<td>Median</td>
<td>0.003</td>
<td>0.092</td>
<td>0.247</td>
</tr>
<tr>
<td>Mean</td>
<td>0.003</td>
<td>0.128</td>
<td>0.220</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>0.003</td>
<td>0.213</td>
<td>0.341</td>
</tr>
<tr>
<td>Max.</td>
<td>0.008</td>
<td>0.396</td>
<td>0.401</td>
</tr>
</tbody>
</table>

Table D2.1 shows that there is almost no variation in A1 estimates while there is large variation in the other three attributes. The magnitude of the variation in attribute estimates across 100 trials using 10 well-behaved items are smaller than that of the variation found using 16 FM LP assessment items (see Table 4.14). However, these results still suggest that making diagnostic classifications based on a single ANN training can lead to different interpretations and that these classifications are not reliable.
Table D2.2. *LP Level Placements with AHM Based on 10 Items.*

<table>
<thead>
<tr>
<th></th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>197</td>
<td>296</td>
<td>310</td>
<td>127</td>
<td>930</td>
</tr>
<tr>
<td>Percent of students</td>
<td>21%</td>
<td>31%</td>
<td>33%</td>
<td>13.6%</td>
<td>100</td>
</tr>
</tbody>
</table>

LP level placement results between AHM and the modal approach are similar with results obtained from 16 items. The agreement between AHM and modal classification using 10 items is found to be moderate (48.4%).

Table D2.3. *Cross Examination of LP Level Classification Using 10 Items (Modal and AHM).*

<table>
<thead>
<tr>
<th></th>
<th>AHM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level 1</td>
</tr>
<tr>
<td>Modal</td>
<td></td>
</tr>
<tr>
<td>Level 1</td>
<td>1</td>
</tr>
<tr>
<td>Level 2</td>
<td>20</td>
</tr>
<tr>
<td>Level 3</td>
<td>146</td>
</tr>
<tr>
<td>Level 4</td>
<td>4</td>
</tr>
</tbody>
</table>

D.3 Generalized Diagnostic Model.

The examination of the RMSEA values for item fit suggests 9 good fitting items and 1 moderately fitting item. Item parameter examinations of well-behaved items show similar results to 16-item results. There is found a wide range of difficulty estimates for each item category parameter.
Table D3.1. *Category Easiness Parameters for 10 Items.*

<table>
<thead>
<tr>
<th>Items</th>
<th>Level 1-Level 2 (β_{1i})</th>
<th>Level 2-Level 3 (β_{2i})</th>
<th>Level 3-Level 4 (β_{3i})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 10</td>
<td>.</td>
<td>.</td>
<td>-1.23</td>
</tr>
<tr>
<td>Item 14</td>
<td>.</td>
<td>-1.10</td>
<td>.</td>
</tr>
<tr>
<td>Item 1</td>
<td>0.44</td>
<td>.</td>
<td>-0.34</td>
</tr>
<tr>
<td>Item 7</td>
<td>-0.89</td>
<td>-0.48</td>
<td>.</td>
</tr>
<tr>
<td>Item 3</td>
<td>.</td>
<td>1.16</td>
<td>-1.38</td>
</tr>
<tr>
<td>Item 4</td>
<td>.</td>
<td>0.70</td>
<td>-0.45</td>
</tr>
<tr>
<td>Item 8</td>
<td>.</td>
<td>2.58</td>
<td>-1.71</td>
</tr>
<tr>
<td>Item 9</td>
<td>.</td>
<td>-1.06</td>
<td>0.51</td>
</tr>
<tr>
<td>Item 6</td>
<td>10.00</td>
<td>4.73</td>
<td>0.12</td>
</tr>
<tr>
<td>Item 12</td>
<td>10.00</td>
<td>4.86</td>
<td>1.11</td>
</tr>
</tbody>
</table>

The lower slope values show that some items appear to be weak measures of the hypothesized attributes that comprise the levels of the FM LP.

Table D3.2. *Slope Parameters for 10 Items.*

<table>
<thead>
<tr>
<th>Items</th>
<th>Attribute 1</th>
<th>Attribute 2</th>
<th>Attribute 3</th>
<th>Attribute 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td>1.23</td>
<td>1.47</td>
<td>0.30</td>
<td>.</td>
</tr>
<tr>
<td>Item 3</td>
<td>.</td>
<td>0.13</td>
<td>0.53</td>
<td>0.40</td>
</tr>
<tr>
<td>Item 4</td>
<td>.</td>
<td>0.80</td>
<td>1.77</td>
<td>0.99</td>
</tr>
<tr>
<td>Item 6</td>
<td>0.77</td>
<td>1.45</td>
<td>0.96</td>
<td>1.47</td>
</tr>
<tr>
<td>Item 7</td>
<td>1.34</td>
<td>1.70</td>
<td>0.55</td>
<td>.</td>
</tr>
<tr>
<td>Item 8</td>
<td>.</td>
<td>0.17</td>
<td>0.65</td>
<td>0.62</td>
</tr>
<tr>
<td>Item 9</td>
<td>.</td>
<td>0.48</td>
<td>1.56</td>
<td>1.20</td>
</tr>
<tr>
<td>Item 10</td>
<td>.</td>
<td>.</td>
<td>0.51</td>
<td>0.40</td>
</tr>
<tr>
<td>Item 12</td>
<td>0.67</td>
<td>1.79</td>
<td>1.74</td>
<td>1.54</td>
</tr>
<tr>
<td>Item 14</td>
<td>.</td>
<td>.</td>
<td>1.45</td>
<td>1.38</td>
</tr>
</tbody>
</table>

The examination of the proportions for all possible latent classes in GDM using 10 well-behaved items leads to students being placed mainly in three classes ([1010], [0101], [1101]). These classes are the same with classes resulted using 16 FM LP items. Interestingly, I found that using well-behaved items lead some students to be placed into hypothesized LP categories.
Of the 931 students in our sample, 94 (10%) could be classified into a latent class that aligns with a level of the Forces and Motion LP.

Table D3.3. Percent of Students across 16 Possible Latent Classes for 10 Items.

<table>
<thead>
<tr>
<th>Latent Class</th>
<th>Percent placement</th>
<th>Number of Students in the class</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>1.2</td>
<td>11</td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>1.4</td>
<td>13</td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>1.1</td>
<td>10</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>37.8</td>
<td>352</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>5.4</td>
<td>50</td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>6.2</td>
<td>58</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>1.4</td>
<td>13</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>31.2</td>
<td>291</td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>8.9</td>
<td>83</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>0.8</td>
<td>7</td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>2.1</td>
<td>20</td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>2.4</td>
<td>23</td>
</tr>
</tbody>
</table>

D4. Overall Findings.

The examination of the three models regarding the Force and Motion learning progression hypotheses using 10 well-behaved items show similar results to those using 16 original FM LP assessment items. All models yield evidence that the hierarchical progression hypothesized in the learning progression is not followed by students’ responses to well-behaved OMC items. These results provide more evidence that suggest revisions for both learning progression itself and assessment tasks. Hence, a practitioner should be cautious about using the LP for both classroom and high stakes situations. The findings from additional analyses of 10 items also strengthen concerns about using the selected models in modeling FM LP assessment
data composed of OMC items. The PCM model was found to be inappropriate for the classification of students into the LP levels. AHM produced instable attribute estimates across different trials and the interpretation of the parameters in GDM remained obscure. The results from all three models indicated that the promise of the OMC items to reflect student understanding associated with the LP levels is clouded by the ceiling and floor effects inherent in the context of Force and Motion tasks. Hence, there is a need to examine the effect of structure of OMC items in a separate study. Overall, results of this dissertation suggest some rethinking on the progression and granularity of the LP for the effective use of psychometric models.