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Saraiva, Paulo Quinderé (Ph.D., Economics)

GMM Estimation of Spatial Autoregressive Models in a System of Simultaneous Equations

Thesis directed by Prof. Xiaodong Liu

This dissertation proposes a generalized method of moments (GMM) estimation framework

for the spatial autorregressive (SAR) model in a system of simultaneous equations with homoskedas-

tic and heteroskedastic disturbances. It includes two chapters based on joint work with Prof.

Xiaodong Liu.

The first chapter extends the GMM estimator in Lee (2007) to estimate SAR models with

endogenous regressors and homoskedastic disturbances. We propose a new set of quadratic moment

equations exploring the correlation of the spatially lagged dependent variable with the disturbance

term of the main regression equation and with the endogenous regressor. The proposed GMM

estimator is more efficient than the IV-based linear estimators in the literature, and computationally

simpler than the ML estimator. With carefully constructed quadratic moment equations, the GMM

estimator can be asymptotically as efficient as the full information ML estimator. Monte Carlo

experiment shows that the proposed GMM estimator performs well in finite samples.

The second chapter proposes a GMM estimator for the SAR model in a system of simulta-

neous equations with heteroskedastic disturbances. Besides linear moment conditions, the GMM

estimator also utilizes quadratic moment conditions based on the covariance structure of model

disturbances within and across equations. Compared with the QML approach considered in Yang

and Lee (2014), the GMM estimator is easier to implement and robust under heteroskedasticity of

an unknown form. We also derive a heteroskedasticity-robust estimator for the asymptotic covari-

ance of the GMM estimator. Monte Carlo experiments show that the proposed GMM estimator

performs well in finite samples.
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Chapter 1

Efficient GMM Estimation of SAR Models with Endogenous Regressors

1.1 Introduction

In recent years, spatial econometric models play a vital role in empirical research on regional

and urban economics. By expanding the notion of space from geographic space to “economic”

space and “social” space, these models can be used to study cross-sectional interactions in much

wider applications including education (e.g. Lin, 2010; Sacerdote, 2011; Carrell et al., 2013), crime

(e.g. Patacchini and Zenou, 2012; Lindquist and Zenou, 2014), industrial organization (e.g. König

et al., 2014), finance (e.g. Denbee et al., 2014), etc.

Among spatial econometric models, the spatial autoregressive (SAR) model introduced by

Cliff and Ord (1973, 1981) has received the most attention. In this model, the cross-sectional de-

pendence is modeled as the weighted average outcome of neighboring units, typically referred to

as the spatially lagged dependent variable. As the spatially lagged dependent variable is endoge-

nous, likelihood- and moment-based methods have been proposed to estimate the SAR model (e.g.

Kelejian and Prucha, 1998; Kelejian and Prucha, 1999; Lee, 2004; Lee, 2007; Lee and Liu, 2010). In

particular, for the SAR model with exogenous regressors, Lee (2007) proposes a generalized method

of moments (GMM) estimator that combines linear moment conditions, with the (estimated) mean

of the spatially lagged dependent variable as the instrumental variable (IV), and quadratic moment

conditions based on the covariance structure of the spatially lagged dependent variable and the

model disturbance term. The GMM estimator improves estimation efficiency of IV-based linear

estimators and is computational simple relative to the maximum likelihood (ML) estimator. Fur-
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thermore, Lin and Lee (2010) show that a sub-class of the GMM estimators is consistent in the

presence of an unknown form of heteroskedasticity in model disturbances, and thus more robust

relative to the ML estimator.

For SAR models with endogenous regressors, Liu (2012) and Liu and Lee (2013) consider, re-

spectively, the limited information maximum likelihood (LIML) and two stage least squares (2SLS)

estimators, in the presence of many potential IVs. Liu and Lee (2013) also propose a criterion

based on the approximate mean square error of the 2SLS estimator to select the optimal set of IVs.

In this paper, we extend the GMM estimator in Lee (2007) to estimate SAR models with

endogenous regressors. We propose a new set of quadratic moment equations exploring (i) the

covariance structure of the spatially lagged dependent variable and the disturbance term of the

main regression equation and (ii) the covariance structure of the spatially lagged dependent variable

and the endogenous regressor. The proposed GMM estimator is thus a “full information” estimator

as it uses information across equations. Compare to other full information estimators for a system

of simultaneous equations with spatial interdependence, the GMM estimator is more efficient than

the three stage least squares (3SLS) estimator in Kelejian and Prucha (2004), and computationally

simpler than the ML estimator in Yang and Lee (2014). With carefully constructed quadratic

moment equations, the GMM estimator can be asymptotically as efficient as the full information

ML estimator. We also conduct a limited Monte Carlo experiment to show that the proposed GMM

estimator performs well in finite samples.

The rest of the paper is organized as follows. In Section 2, we introduce the SAR model with

endogenous regressors. In Section 3, we define the GMM estimator and discuss the identification

of model parameters. In Section 4, we study the asymptotic properties of the GMM estimator and

discuss the optimal moment conditions to use. Section 5 reports Monte Carlo experiment results.

Section 6 briefly concludes. The proofs are collected in the appendix.

Throughout the paper, we adopt the following notation. For an n×nmatrix A = [aij ]i,j=1,··· ,n,

let A(s) = A + A′, vecD(A) = (a11, · · · , ann)′, and diag(A) = diag(a11, · · · , ann). The row

(or column) sums of A are uniformly bounded in absolute value if maxi=1,··· ,n
∑n

j=1 |aij | (or
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maxj=1,··· ,n
∑n

i=1 |aij |) is bounded.

1.2 Model

Consider a SAR model with an endogenous regressor1 given by

y1 = λ0Wy1 + φ0y2 + X1β0 + u1, (1.1)

where y1 is an n× 1 vector of observations on the dependent variable, W is an n×n nonstochastic

spatial weights matrix with a zero diagonal, y2 is an n× 1 vector of observations on an endogenous

regressor, X1 is an n ×K1 matrix of observations on K1 nonstochastic exogenous regressors, and

u1 is an n × 1 vector of i.i.d. innovations.2 Wy1 is usually referred to as the spatially lagged

dependent variable. Let X = [X1,X2], where X2 is an n × K2 matrix of observations on K2

excluded nonstochastic exogenous variables. The reduced form of the endogenous regressor y2 is

assumed to be

y2 = Xγ0 + u2, (1.2)

where u2 is an n × 1 vector of i.i.d. innovations. Let θ0 = (δ′0,γ
′
0)′, with δ0 = (λ0, φ0,β

′
0)′,

denote the vector of true parameter values in the data generating process (DGP). The following

regularity conditions are common in the literature of SAR models (see, e.g., Lee, 2007; Kelejian

and Prucha, 2010).

Assumption 1.1 Let u1,i and u2,i denote, respectively, the i-th elements of u1 and u2. (i)

(u1,i, u2,i)
′ is i.i.d.(0,Σ), where

Σ =

 σ2
1 σ12

σ12 σ2
2

 .
(ii) E|uk,iul,iur,ius,i|1+η is bounded for k, l, r, s = 1, 2 and some small constant η > 0.

1 In this paper, we focus on the model with a single endogenous regressor for exposition purpose. The model and
proposed estimator can be easily generalized to accommodate any fixed number of endogenous regressors.

2 y1,y2,u1,u2,X,W are allowed to depend on the sample size n, i.e., to formulate triangular arrays as in Kelejian
and Prucha (2010). Nevertheless, we suppress the subscript n to simplify the notation.
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Assumption 1.2 (i) The elements of X are uniformly bounded constants. (ii) X has full column

rank KX = K1 +K2. (iii) limn→∞ n
−1X′X exists and is nonsingular.

Assumption 1.3 (i) All diagonal elements of the spatial weights matrix W are zero. (ii) λ0 ∈

(−λ, λ) with 0 < λ, λ ≤ cλ <∞. (iii) S(λ) = In − λW is nonsingular for all λ ∈ (−λ, λ). (iv) The

row and column sums of W and S(λ0)−1 are uniformly bounded in absolute value.

Assumption 1.4 θ0 is in the interior of a compact and convex parameter space Θ.

1.3 GMM Estimation

1.3.1 Estimator

Let S = S(λ0) = In − λ0W and G = WS−1. Under Assumption 1.3, model (1.1) has a

reduced form

y1 = S−1X1β0 + φ0S
−1Xγ0 + S−1u1 + φ0S

−1u2, (1.3)

which implies that

Wy1 = GX1β0 + φ0GXγ0 + Gu1 + φ0Gu2. (1.4)

As Wy1 and y2 are endogenous, consistent estimation of (1.1) requires IVs for Wy1 and y2. From

(2.8), the deterministic part of Wy1 is a linear combination of the columns in GX = [GX1,GX2].

Therefore, GX can be used as an IV matrix for Wy1.3 From (1.2), X can be used as an IV

matrix for y2. In general, let Q be an n ×KQ matrix of IVs such that E(Q′u1) = E(Q′u2) = 0.

Let u1(δ) = S(λ)y1 − φy2 −X1β and u2(γ) = y2 −Xγ, where δ = (λ, φ,β′)′. The linear moment

function for the GMM estimation is given by

g1(θ) = (I2 ⊗Q)′u(θ),

where ⊗ denotes the Kronecker product, u(θ) = [u1(δ)′,u2(γ)′]′, and θ = (δ′,γ ′)′.4

3 The IV matrix GX is not feasible as G involves the unknown parameter λ0. Under Assumption 1.3, GX =
WX + λ0W

2X + λ2
0W

3X + · · · . Therefore, we can use the leading order terms WX,W2X,W3X of the series
expansion as feasible IVs for Wy.

4 In practice, we could use two different IV matrices Q1 and Q2 to construct linear moment functions Q′1u1(δ) and
Q′2u2(δ). The GMM estimator with g1(θ) is (asymptotically) no less efficient than that with Q′1u1(δ) and Q′2u2(δ)
if Q includes all linearly indepedent columns of Q1 and Q2.
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Besides the linear moment functions, Lee (2007) proposes to use quadratic moment functions

based on the covariance structure of the spatially lagged dependent variable and model disturbances

to improve estimation efficiency. We generalize this idea to SAR models with endogenous regressors.

Substitution of (1.2) into (1.1) leads to a “pseudo” reduced form

y1 = λ0Wy1 + φ0Xγ0 + X1β0 + u1 + φ0u2. (1.5)

By exploring the covariance structure of the spatially lagged dependent variable Wy1 and the

disturbances of (1.5), we propose the following quadratic moment functions

g2(θ) = [g2,11(δ)′,g2,12(θ)′,g2,21(θ)′,g2,22(γ)′]′

with

g2,11(δ) = [Ξ′1u1(δ), · · · ,Ξ′mu1(δ)]′u1(δ)

g2,12(θ) = [Ξ′1u1(δ), · · · ,Ξ′mu1(δ)]′u2(γ)

g2,21(θ) = [Ξ′1u2(γ), · · · ,Ξ′mu2(γ)]′u1(δ)

g2,22(γ) = [Ξ′1u2(γ), · · · ,Ξ′mu2(γ)]′u2(γ)

where Ξj is an n× n constant matrix with tr(Ξj) = 0 for j = 1, · · · ,m.5 Possible candidates for

Ξj are W, W2−n−1E(W2)In, etc.6 These quadratic moment functions are based on the moment

conditions that E(u′1Ξju1) = E(u′1Ξju2) = E(u′2Ξju1) = E(u′2Ξju2) = 0 for j = 1, · · · ,m.

Let

g(θ) = [g1(θ)′,g2(θ)′]′, (1.6)

and Ω = Var[g(θ0)]. The following assumption is from Lee (2007).

Assumption 1.5 (i) The elements of Q are uniformly bounded constants. (ii) Ξj is an n × n

constant matrix with tr(Ξj) = 0 for j = 1, · · · ,m. The row and column sums of Ξj are uniformly

bounded in absolute value. (iii) limn→∞ n
−1Ω exists and is nonsingular.

5 In practice, we could use different sets of weighting matrices {Ξ11,j}m11
j=1 , {Ξ12,j}m12

j=1 , {Ξ21,j}m21
j=1 and {Ξ22,j}m22

j=1

for the quadratic moment functions g2,11(θ), g2,12(θ), g2,21(θ) and g2,22(θ) respectively. The quadratic moment func-
tions g2(θ) are (asymptotically) no less efficient than that with {Ξ11,j}m11

j=1 , {Ξ12,j}m12
j=1 , {Ξ21,j}m21

j=1 and {Ξ22,j}m22
j=1

if {Ξ1, . . . ,Ξm} = {Ξ11,j}m11
j=1 ∪ {Ξ12,j}m12

j=1 ∪ {Ξ21,j}m21
j=1 ∪ {Ξ22,j}m22

j=1 .
6 We discuss the optimal Q and Ξ in Section 1.4.2.
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Combining both linear and quadratic moment functions, the GMM estimator of θ0 is given

by

θ̃gmm = arg minθ∈Θ g(θ)′F′Fg(θ), (1.7)

for some matrix F such that limn→∞F exists and has full row rank greater than or equal to dim(θ).

In the GMM literature, F′F is known as the GMM weighting matrix. For instance, one can use

the identity matrix as the weighting matrix to implement the GMM. The asymptotic efficiency of

the GMM estimator depends on the choice of the weighting matrix as discussed in Section 1.4.1.

1.3.2 Identification

For θ0 to be identified through the moment functions g(θ), limn→∞ n
−1E[g(θ)] = 0 needs to

have a unique solution at θ = θ0 (Hansen, 1982). As S(λ)S−1 = In + (λ0 − λ)G, it follows from

(1.2) and (2.7) that

u1(δ) = d1(δ) + [In + (λ0 − λ)G]u1 + [(φ0 − φ)In + φ0(λ0 − λ)G]u2

and

u2(γ) = d2(γ) + u2,

where d1(δ) = [GX1β0 + φ0GXγ0,Xγ0,X1](δ0 − δ) and d2(γ) = X(γ0 − γ).

For the linear moment functions, we have

lim
n→∞

n−1E[Q′u1(δ)] = lim
n→∞

n−1Q′d1(δ) = lim
n→∞

n−1Q′[GX1β0 + φ0GXγ0,Xγ0,X1](δ0 − δ)

and

lim
n→∞

n−1E[Q′u2(γ)] = lim
n→∞

n−1Q′d2(γ) = lim
n→∞

n−1Q′X(γ0 − γ)

Therefore, limn→∞ n
−1E[g1(θ)] = 0 has a unique solution at θ = θ0, if

Q′[GX1β0 + φ0GXγ0,Xγ0,X1]

and Q′X have full column rank for large enough n. This sufficient rank condition implies the

necessary rank condition that [GX1β0 + φ0GXγ0,Xγ0,X1] and X have full column rank and the

rank of Q is at least max{dim(δ),KX}, for large enough n.
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Suppose [Xγ0,X1] has full column rank for large enough n.7 The necessary rank condition

for identification does not hold if GX1β0 + φ0GXγ0 and [Xγ0,X1] are asymptotically linearly

dependent.8 GX1β0 + φ0GXγ0 and [Xγ0,X1] are linearly dependent if there exist a constant

scalar c1 and a K1 × 1 constant vector c2 such that GX1β0 + φ0GXγ0 = c1Xγ0 + X1c2, which

implies that

d1(δ) = [(λ0 − λ)c1 + (φ0 − φ)]Xγ0 + X1[(λ0 − λ)c2 + (β0 − β)].

Hence, the solutions of the linear moment equations limn→∞ n
−1E[Q′u1(δ)] = 0 are characterized

by

φ = φ0 + (λ0 − λ)c1 and β = β0 + (λ0 − λ)c2 (1.8)

as long as Q′[Xγ0,X1] has full column rank for large enough n. In this case, φ0 and β0 can be

identified if and only if λ0 can be identified from the quadratic moment equations.

Given (1.8), we have

E[u1(δ)′Ξju1(δ)] = (λ0 − λ)(σ2
1 + φ0σ12)tr(Ξ

(s)
j G)

+(λ0 − λ)2[(σ2
1 + 2φ0σ12 + φ2

0σ
2
2)tr(G′ΞjG)− c1(σ12 + φ0σ

2
2)tr(Ξ

(s)
j G)]

and

E[u1(δ)′Ξju2(γ)] = (λ0 − λ)(σ12 + φ0σ
2
2)tr(Ξ′jG)

E[u2(γ)′Ξju1(δ)] = (λ0 − λ)(σ12 + φ0σ
2
2)tr(ΞjG)

for j = 1, · · · ,m. If (σ2
1 + φ0σ12) limn→∞ n

−1tr(Ξ
(s)
j G) 6= 0 for some j ∈ {1, · · · ,m}, the quadratic

moment equation

lim
n→∞

n−1E[u1(δ)′Ξju1(δ)] = 0

has two roots λ = λ0 and

λ = λ0 +
(σ2

1 + φ0σ12)

(σ2
1 + 2φ0σ12 + φ2

0σ
2
2) limn→∞[tr(G′ΞjG)/tr(Ξ

(s)
j G)]− c1(σ12 + φ0σ2

2)
.

7 As Xγ0 = X1γ10 + X2γ20, a necessary condition for (Xγ0,X1) to have full column rank is γ20 6= 0.
8 A necessary condition for GX1β0 + φ0GXγ0 and [Xγ0,X1] to be asymptotically linearly independent is

(φ0,β
′
0)′ 6= 0.
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As (σ2
1 + 2φ0σ12 + φ2

0σ
2
2) > 0, if limn→∞[tr(G′ΞjG)/tr(Ξ

(s)
j G)] 6= limn→∞[tr(G′ΞkG)/tr(Ξ

(s)
k G)]

for some j 6= k, the moment equations

lim
n→∞

n−1E[u1(δ)′Ξju1(δ)] = 0 and lim
n→∞

n−1E[u1(δ)′Ξku1(δ)] = 0

have a unique common root λ = λ0. On the other hand, if (σ12 + φ0σ
2
2) limn→∞ n

−1tr(Ξ′jG) 6= 0

for some j ∈ {1, · · · ,m}, the quadratic moment equation

lim
n→∞

n−1E[u1(δ)′Ξju2(γ)] = 0

has a unique root λ = λ0; and if (σ12 + φ0σ
2
2) limn→∞ n

−1tr(ΞjG) 6= 0 for some j ∈ {1, · · · ,m},

the quadratic moment equation

lim
n→∞

n−1E[u2(γ)′Ξju1(δ)] = 0

has a unique root λ = λ0. To wrap up, the sufficient identification condition of θ0 is summarized

in the following assumption.

Assumption 1.6 limn→∞ n
−1Q′X and limn→∞ n

−1Q′[Xγ0,X1] both have full column rank, and

at least one of the following conditions is satisfied. (i) limn→∞ n
−1Q′[GX1β0 +φ0GXγ0,Xγ0,X1]

has full column rank. (ii) (σ2
1 + φ0σ12) limn→∞ n

−1tr(Ξ
(s)
j G) 6= 0 for some j ∈ {1, · · · ,m}, and

limn→∞ n
−1[tr(Ξ

(s)
1 G), · · · , tr(Ξ(s)

m G)]′ is linearly independent of

lim
n→∞

n−1[tr(G′Ξ1G), · · · , tr(G′ΞmG)]′.

(iii) (σ12 + φ0σ
2
2) limn→∞ n

−1tr(ΞjG) 6= 0 or (σ12 + φ0σ
2
2) limn→∞ n

−1tr(Ξ′jG) 6= 0 for some j ∈

{1, · · · ,m}.

1.4 Asymptotic Properties

1.4.1 Consistency and Asymptotic Normality

The GMM estimator defined in (1.7) falls into the class of Z-estimators (see Newey and

McFadden, 1994). Therefore, to establish the consistency and asymptotic normality, it suffices to
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show that the GMM estimator satisfies the sufficient conditions for Z-estimators to be consistent and

asymptotically normally distributed when properly normalized and centered. A similar argument

has been adopted by Lee (2007) to establish the asymptotic normality of the GMM estimator for

the SAR model with exogenous regressors.

Let µr,s = E(ur1,iu
s
2,i) for r + s = 3, 4. By Lemmas 1.1 and 1.2 in the Appendix, we have

Ω = Var[g(θ0)] =

 Ω11 Ω12

Ω′12 Ω22

 (1.9)

with Ω11 = Var[g1(θ0)] = Σ⊗ (Q′Q),

Ω12 = E[g1(θ0)g2(θ0)′] =

 µ3,0 µ2,1 µ2,1 µ1,2

µ2,1 µ1,2 µ1,2 µ0,3

⊗ (Q′ω)

and

Ω22 = Var[g2(θ0)]

=



µ4,0 − 3σ4
1 µ3,1 − 3σ2

1σ12 µ3,1 − 3σ2
1σ12 µ2,2 − σ2

1σ
2
2 − 2σ2

12

∗ µ2,2 − σ2
1σ

2
2 − 2σ2

12 µ2,2 − σ2
1σ

2
2 − 2σ2

12 µ1,3 − 3σ12σ
2
2

∗ ∗ µ2,2 − σ2
1σ

2
2 − 2σ2

12 µ1,3 − 3σ12σ
2
2

∗ ∗ ∗ µ0,4 − 3σ4
2


⊗ (ω′ω)

+



σ4
1 σ2

1σ12 σ2
1σ12 σ2

12

∗ σ2
12 σ2

1σ
2
2 σ12σ

2
2

∗ ∗ σ2
12 σ12σ

2
2

∗ ∗ ∗ σ4
2


⊗∆1 +



σ4
1 σ2

1σ12 σ2
1σ12 σ2

12

∗ σ2
1σ

2
2 σ2

12 σ12σ
2
2

∗ ∗ σ2
1σ

2
2 σ12σ

2
2

∗ ∗ ∗ σ4
2


⊗∆2,

where ω = [vecD(Ξ1), · · · , vecD(Ξm)] and

∆1 =


tr(Ξ1Ξ1) · · · tr(Ξ1Ξm)

...
. . .

...

tr(ΞmΞ1) · · · tr(ΞmΞm)

 and ∆2 =


tr(Ξ′1Ξ1) · · · tr(Ξ′1Ξm)

...
. . .

...

tr(Ξ′mΞ1) · · · tr(Ξ′mΞm)

 .
Let

D = −E[
∂

∂θ′
g(θ0)] = [D′1,D

′
2]′, (1.10)
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where

D1 = −E[
∂

∂θ′
g1(θ0)] =

 Q′(GX1β0 + φ0GXγ0) Q′Xγ0 Q′X1 0

0 0 0 Q′X


and

D2 = −E[
∂

∂θ′
g2(θ0)] =



(σ2
1 + φ0σ12)tr(Ξ

(s)
1 G) 01×(KX+K1+1)

...
...

(σ2
1 + φ0σ12)tr(Ξ

(s)
m G) 01×(KX+K1+1)

(σ12 + φ0σ
2
2)tr(Ξ′1G) 01×(KX+K1+1)

...
...

(σ12 + φ0σ
2
2)tr(Ξ′mG) 01×(KX+K1+1)

(σ12 + φ0σ
2
2)tr(Ξ1G) 01×(KX+K1+1)

...
...

(σ12 + φ0σ
2
2)tr(ΞmG) 01×(KX+K1+1)

0m×1 0m×(KX+K1+1)



.

The following proposition establishes the consistency and asymptotic normality of the GMM esti-

mator.

Proposition 1.1 Suppose Assumptions 1.1-1.6 hold. Then θ̃gmm defined in (1.7) is a consistent

estimator of θ0 and has the following asymptotic distribution

√
n(θ̃gmm − θ0)

d→ N(0,AsyVar(θ̃gmm))

where

AsyVar(θ̃gmm) = lim
n→∞

[(n−1D)′F′F(n−1D)]−1(n−1D)′F′F(n−1Ω)F′F(n−1D)[(n−1D)′F′F(n−1D)]−1

with Ω and D defined in (1.13) and (2.14) respectively.

Close inspection of AsyVar(θ̃gmm) reveals that the optimal F′F is (n−1Ω)−1 by the gener-

alized Schwarz inequality. The following proposition establishes the consistency and asymptotic

normality of the GMM estimator with the estimated optimal weighting matrix. It also suggests a

over-identifying restrictions (OIR) test based on the proposed GMM estimator.
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Proposition 1.2 Suppose Assumptions 1.1-1.6 hold and n−1Ω̂ is a consistent estimator of n−1Ω

defined in (1.13). Then,

θ̂gmm = arg minθ∈Θ g(θ)′Ω̂−1g(θ) (1.11)

is a consistent estimator of θ0 and

√
n(θ̂gmm − θ0)

d→ N(0, [ lim
n→∞

n−1D′Ω−1D]−1),

where D is defined in (1.10). Furthermore

g(θ̂gmm)′Ω̂−1g(θ̂gmm)
d→ χ2

dim(g)−dim(θ).

1.4.2 Asymptotic Efficiency

When only the linear moment function g1(θ0) is used for the GMM estimation, the GMM

estimator defined in (1.11) reduces to the generalized spatial 3SLS in Kelejian and Prucha (2004)

because

θ̂3SLS = arg min g1(θ)′Ω̂−1
11 g1(θ) = arg min u(θ)′(Σ̂−1⊗P)u(θ) = [Z′(Σ̂−1⊗P)Z]−1Z′(Σ̂−1⊗P)y,

where Σ̂ is a consistent estimator of Σ, P = Q(Q′Q)−1Q′, y = (y′1,y
′
2)′, and

Z =

 Wy1 y2 X1 0

0 0 0 X

 .
It follows from Proposition 1.2 that

√
n(θ̂3SLS − θ0)

d→ N(0, [ lim
n→∞

n−1D′1Ω
−1
11 D1]−1).

As

D′Ω−1D−D′1Ω
−1
11 D1 = (D2 −Ω′12Ω

−1
11 D1)′(Ω22 −Ω′12Ω

−1
11 Ω12)−1(D2 −Ω′12Ω

−1
11 D1),

which is positive semi-definite, the proposed GMM estimator is asymptotically more efficient than

the 3SLS estimator.
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The asymptotic efficiency of the proposed GMM estimator depends on the choices of Q and

Ξ1, · · · ,Ξm. Following Lee (2007), our discussion on the asymptotic efficiency focuses on two cases:

(i) u = (u′1,u
′
2)′ ∼ N(0,Σ ⊗ In), and (ii) Ξj has a zero diagonal for all j = 1, · · · ,m. Let P be

a subset of all Ξ’s satisfying Assumption 1.5 such that diag(Ξ) = 0 for all Ξ ∈ P. The sub-class

of quadratic moment functions using Ξ ∈ P is of a particular interest because these quadratic

moment functions could be robust against unknown form of heteroskedasticity as shown in Lin and

Lee (2010).

Let

g∗(θ) = [g∗1(δ)′,g∗2(θ)′]′, (1.12)

where g∗1(δ) = (I2 ⊗Q∗)′u(θ) and

g∗2(θ) = [u1(δ)′Ξ∗u1(δ),u1(δ)′Ξ∗u2(γ),u2(γ)′Ξ∗u1(δ),u2(γ)′Ξ∗u2(γ)]′.

In cases (i) and (ii),

Ω∗ = Var[g∗(θ0)] =

 Σ⊗ (Q∗′Q∗) 0

0 Ω∗22

 (1.13)

where

Ω∗22 =



σ4
1 σ2

1σ12 σ2
1σ12 σ2

12

∗ σ2
12 σ2

1σ
2
2 σ12σ

2
2

∗ ∗ σ2
12 σ12σ

2
2

∗ ∗ ∗ σ4
2


⊗ tr(Ξ∗Ξ∗) +



σ4
1 σ2

1σ12 σ2
1σ12 σ2

12

∗ σ2
1σ

2
2 σ2

12 σ12σ
2
2

∗ ∗ σ2
1σ

2
2 σ12σ

2
2

∗ ∗ ∗ σ4
2


⊗ tr(Ξ∗′Ξ∗).

The following proposition gives the infeasible best GMM (BGMM) estimator

θ̃bgmm = arg minθ∈Θ g∗(θ)′Ω∗−1g∗(θ) (1.14)

with the optimal Q∗ and Ξ∗ in cases (i) and (ii) respectively.

Proposition 1.3 Suppose Assumptions 1.1-1.6 hold. Let G = WS−1.

(i) Suppose u ∼ N(0,Σ ⊗ In). The BGMM estimator defined in (1.14) with Q∗ = [GX,X]

and Ξ∗ = G−n−1tr(G)In is the most efficient one in the class of GMM estimators defined in (1.7).
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(ii) Without the normality assumption on u, the BGMM estimator defined in (1.14) with

Q∗ = [GX,X] and Ξ∗ = G−diag(G) is the most efficient one in the sub-class of GMM estimators

defined in (1.7) with Ξj ∈ P for all j = 1, · · · ,m.

Under normality, the model can be efficiently estimated by the ML estimator. To get some

intuition of the optimal Q∗ and Ξ∗ in case (i), we compare the linear and quadratic moment

functions utilized by the GMM estimator with the first order partial derivatives of the log likelihood

function. Let G(λ) = WS(λ)−1, where S(λ) = In− λW. The log likelihood function based on the

joint normal distribution of y = (y′1,y
′
2)′ is9

L(θ,Σ) = −n ln(2π)− 1

2
ln |Σ⊗ In|+ ln |S(λ)| − 1

2
u(θ)′(Σ⊗ In)−1u(θ)

with the first order partial derivatives

∂

∂λ
L(θ, Σ̂) = [(φXγ + X1β)′G(λ)′,01×n]′(Σ̂⊗ In)−1u(θ)

+
σ̂2

2

|Σ̂|
u1(δ)′[G(λ)− n−1tr(G(λ))In]u1(δ)

− σ̂
2
12

|Σ̂|
u2(γ)′[G(λ)− n−1tr(G(λ))In]u1(δ)

+φ
σ̂2

2

|Σ̂|
u1(δ)′[G(λ)− n−1tr(G(λ))In]u2(γ)

−φσ̂12

|Σ̂|
u2(γ)′[G(λ)− n−1tr(G(λ))In]u2(γ)

and

∂

∂φ
L(θ,Σ) = [γ ′X′,01×n](Σ̂⊗ In)−1u(θ)

∂

∂β
L(θ,Σ) = [X′1,0K1×n](Σ̂⊗ In)−1u(θ)

∂

∂γ
L(θ,Σ) = [0KX×n,X

′](Σ̂⊗ In)−1u(θ)

where Σ̂ is the ML estimator for Σ given by

Σ̂ =

 σ̂2
1 σ̂12

σ̂12 σ̂2
2

 = n−1

 u1(δ)′u1(δ) u1(δ)′u2(γ)

u1(δ)′u2(γ) u2(γ)′u2(γ)

 .
9 The detailed derivation of the log likelihood function and its partial derivatives can be found in Appendix 1.1.
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Close inspection reveals the similarity between the ML and BGMM estimators under normality,

as the first order partial derivatives of the log likelihood function can be treated as linear combi-

nations of the moment functions Q∗(λ)′u1(δ), Q∗(λ)′u2(γ), u1(δ)′Ξ∗(λ)u1(δ), u1(δ)′Ξ∗(λ)u2(γ),

u2(γ)′Ξ∗(λ)u1(δ), and u2(γ)′Ξ∗(λ)u2(γ) with Q∗(λ) = [G(λ)X,X] and

Ξ∗(λ) = G(λ)− n−1tr(G(λ))In.

The optimal Q∗ and Ξ∗ are not feasible as G involves the unknown parameter λ0. Suppose

there exists a
√
n-consistent preliminary estimator λ̂ for λ0 (say, the 2SLS estimator with IV matrix

Q = [WX,X]). Then, the feasible optimal Q̂∗ and Ξ̂∗ can obtained by replacing λ0 in Q∗ and

Ξ∗ by λ̂. Furthermore, suppose σ̂2
1, σ̂12, σ̂

2
2 are consistent preliminary estimators for σ2

1, σ12, σ
2
2.

Then, n−1Ω̂∗ is a consistent estimator of n−1Ω∗ defined in (1.13) with the unknown parameters

λ, σ2
1, σ12, σ

2
2 in Ω∗ replaced by λ̂, σ̂2

1, σ̂12, σ̂
2
2. Then, the feasible BGMM estimator is given by

θ̂bgmm = arg minθ∈Θ ĝ∗(θ)′Ω̂∗−1ĝ∗(θ), (1.15)

where ĝ∗(θ) is obtained by replacing Q∗ and Ξ∗ in g∗(θ) with Q̂∗ and Ξ̂∗. Following a similar

argument in the proof of Proposition 3 in Lee (2007), the feasible BGMM estimator θ̂bgmm can be

shown to have the same limiting distribution as its infeasible counterpart θ̃bgmm.

Proposition 1.4 Suppose Assumptions 1.1-1.6 hold, λ̂ is a
√
n-consistent estimator of λ0, and Σ̂ is

a consistent estimator of Σ. The feasible BGMM estimator θ̂bgmm defined in (1.15) is asymptotically

equivalent to the corresponding infeasible BGMM estimator θ̃bgmm.

Under Assumption 1.3, G = WS−1 = W + λ0W
2 + λ2

0W
3 + · · · . Thus, G can be approxi-

mated by the leading order terms of the series expansion, i.e. W,W2,W3, · · · . Therefore, a conve-

nient alternative to the BGMM estimator under normality for empirical researchers would be the

GMM estimator with Q = [WX, · · · ,WmX,X] and Ξ1 = W,Ξ2 = W2−n−1tr(W2)In, · · · ,Ξm =

Wm − n−1tr(Wm)In, for some fixed m.
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1.5 Monte Carlo Experiments

We conduct a small Monte Carlo simulation experiment to study the finite sample perfor-

mance of the proposed GMM estimator. The DGP considered in the experiment follows equations

(1.1) and (1.2) with K1 = K2 = 1. In the DGP, we set λ0 = 0.6 and γ0 = (0, 1)′, and generate

X = [X1,X2] and u = (u′1,u
′
2)′ as X1 ∼ N(0, In), X2 ∼ N(0, In), and u ∼ N(0,Σ⊗ In), where

Σ =

 1 σ12

σ12 1

 .
We conduct 1000 replications in the simulation experiment for different specifications with n ∈

{245, 490}, σ12 ∈ {0.1, 0.5, 0.9}, and (φ0, β0) ∈ {(0.5, 0.5), (0.2, 0.2)}. From the reduce form equa-

tion (2.8), E(Wy1) = GX1β0 + φ0GXγ0. Therefore, φ0 = β0 = 0.5 corresponds to the case that

the IVs based on E(Wy1) are relatively informative and φ0 = β0 = 0.2 corresponds to the case

that the IVs based on E(Wy1) are less informative. Let W0 denote the spatial weights matrix

for the study of crimes across 49 districts in Columbus, Ohio, in Anselin (1988). For n = 245, we

set W = I5 ⊗W0, and for n = 490, we set W = I10 ⊗W0. Let Ĝ = W(In − λ̂W)−1, where λ̂

is the 2SLS estimator of λ0 using the IV matrix Q = [WX,W2X,X]. Let Q̂ = [ĜX,X]. In the

experiment, we consider the following estimators.

(a) The 2SLS estimator of equation (1.1) with the linear moment function Q̂′u1(δ).

(b) The 3SLS estimator of equations (1.1) and (1.2) with the linear moment function (I2⊗Q̂)′u(θ).

(c) The single-equation GMM (GMM-1) estimator of equation (1.1) with the linear moment func-

tion Q̂′u1(δ) and the quadratic moment function u1(δ)′[Ĝ− n−1tr(Ĝ)In]u1(δ).

(d) The system GMM (GMM-2) estimator of equations (1.1) and (1.2) with the linear moment

function (I2 ⊗ Q̂)′u(θ) and the quadratic moment functions u1(δ)′[Ĝ− n−1tr(Ĝ)In]u1(δ),

u1(δ)′[Ĝ− n−1tr(Ĝ)In]u2(γ), u2(γ)′[Ĝ− n−1tr(Ĝ)In]u1(δ), and

u2(γ)′[Ĝ− n−1tr(Ĝ)In]u2(γ).
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Although the 2SLS estimator and the single-equation GMM estimator only use “limited

information” in equation (1.1) and thus may not be as efficient as their counterparts (i.e. the 3SLS

estimator and the system GMM estimator respectively) that use “full information” in the whole

system, these estimators require weaker assumptions on the reduced form equation (1.2) and thus

may be desirable under certain circumstances. The estimation results of equation (1.1) are reported

in Tables 1.1-1.4. We report the mean and standard deviation (SD) of the empirical distributions of

the estimates. To facilitate the comparison of different estimators, we also report their root mean

square errors (RMSE). The main observations from the experiment are summarized as follows.

(i) The 2SLS and 3SLS estimators of λ0 are upwards biased with large SDs when the IVs for

Wy1 are less informative. For example, when n = 245 and σ12 = 0.1, the 2SLS and 3SLS

estimates of λ0 reported in Table 1.3 are upwards biased by about 10%. The biases and

SDs reduce as sample size increases. The 3SLS estimators of λ0 and β0 perform better as

σ12 increases.

(ii) The single-equation GMM (GMM-1) estimator of λ0 is upwards biased when the IVs for Wy1

are less informative. When n = 245 and σ12 = 0.1, the GMM-1 estimates of λ0 reported in

Table 1.3 are upwards biased by about 6%. The bias reduces as sample size increases. The

GMM-1 estimator of λ0 reduces the SD of the 2SLS estimator. The SD reduction is more

significant when the IVs for Wy1 are less informative. In Table 1.1, when σ12 = 0.1, the

GMM-1 estimator reduces the SD of the 2SLS estimator by about 60%. In Table 3, when

σ12 = 0.1, the GMM-1 estimator reduces the SD of the 2SLS estimator by about 65%.

(iii) The system GMM (GMM-2) estimator of λ0 is upwards biased when the sample size is moder-

ate (n = 245) and the IVs for Wy1 are less informative. The bias reduces as σ12 increases.

When n = 490, the GMM-2 estimator is essentially unbiased even if the IVs are weak.

The GMM-2 estimators of λ0 and β0 have smaller SDs than the corresponding GMM-1

estimators. The reduction in the SD is more significant when the endogeneity problem is

more severe (i.e. σ12 is larger) and/or the IVs for Wy1 are less informative. For example,
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in Table 1.2, when σ12 = 0.9, the GMM-2 estimator of λ0 reduces the SD of the GMM-1

estimator by about 42%. In Table 1.4, when σ12 = 0.9, the GMM-2 estimator of λ0 reduces

the SD of the GMM-1 estimator by about 75%. In both cases, the GMM-2 estimator of β0

reduces the SD of the corresponding GMM-1 estimator by about 56%.

1.6 Conclusion

In this paper, we propose a general GMM framework for the estimation of SAR models with

endogenous regressors. We introduce a new set of quadratic moment conditions to construct the

GMM estimator, based on the correlation structure of the spatially lagged dependent variable with

the model disturbance term and with the endogenous regressor. We establish the consistency and

asymptotic normality of the proposed GMM estimator and discuss the optimal choice of moment

conditions. We also conduct a Monte Carlo experiment to show the GMM estimator works well in

finite samples.

The proposed GMM estimator utilizes correlation across equations (1.1) and (1.2) to con-

struct moment equations and thus can be considered as a “full information” estimator. If we only

use the moment equations based on u1(δ), i.e., the residual function of equation (1.1), the proposed

GMM estimator becomes a single-equation GMM estimator. Although the single-equation GMM

estimator may not be as efficient as the “full information” GMM estimator, the single-equation

GMM estimator requires weaker assumptions on the reduced form equation (1.2) and thus may

be desirable under certain circumstances. The Monte Carlo experiment shows that the “full infor-

mation” GMM estimator improves the efficiency of the single-equation GMM estimator when the

endogeneity problem is severe and/or the IVs for the spatially lagged dependent variable are weak.
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Appendix 1.1 Likelihood Function of the SAR Model with Endogenous

Regressors

Let

µy(θ) =

 S−1(λ)(φXγ + X1β)

Xγ

 and R(φ, λ) =

 S−1(λ) φS−1(λ)

0 In

 ,
where S(λ) = In − λW. From the reduced form equations (1.2) and (2.7), y = (y′1,y

′
2)′ =

µy(θ0) + R(φ0, λ0)u where u = (u′1,u
′
2)′. Under normality, u ∼ N(0,Σ ⊗ In), and thus y ∼

N(µy,R(Σ⊗ In)R′), where µy = µy(θ0) and R = R(φ0, λ0). Hence, the log likelihood function of

(1.1) and (1.2) is given by

L(θ,Σ) = −n ln(2π)− 1

2
ln |R(φ, λ)(Σ⊗ In)R′(φ, λ)|

−1

2
[y − µy(θ)]′[R(φ0, λ0)(Σ⊗ In)R(φ0, λ0)′]−1[y − µy(θ)].

As u(θ) = R−1(φ, λ)[y − µy(θ)] and |R−1(φ, λ)| = |S(λ)|. Then, the log likelihood function can

be written as

L(θ,Σ) = −n ln(2π)− 1

2
ln |(Σ⊗ In)|+ ln |S(λ)| − 1

2
u(θ)′(Σ⊗ In)−1u(θ).

The first order partial derivatives of the log likelihood function are

∂

∂λ
L(θ,Σ) = −tr(G(λ)) + [y′1W

′,0](Σ⊗ In)−1u(θ)

∂

∂φ
L(θ,Σ) = [y′2,0](Σ⊗ In)−1u(θ)

∂

∂β
L(θ,Σ) = [X′1,0](Σ⊗ In)−1u(θ)

∂

∂γ
L(θ,Σ) = [0,X′](Σ⊗ In)−1u(θ)

and

∂

∂(Σ⊗ In)−1
L(θ,Σ) =

1

2
(Σ⊗ In)− 1

2
u(θ)u(θ)′, (1.16)

where G(λ) = WS(λ)−1. Since Wy1 = G(λ)(u1(δ) + φu2(γ)) + G(λ)(φXγ + X1β) and y2 =
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Xγ + u2(γ), then

∂

∂λ
L(θ,Σ) = −tr(G(λ)) + [(φXγ + X1β)′G(λ)′,0]′(Σ⊗ In)−1u(θ) (1.17)

+[(u1(δ) + φu2(γ))′G(λ)′,0]′(Σ⊗ In)−1u(θ)

and

∂

∂φ
L(θ,Σ) = [γ ′X′,0](Σ⊗ In)−1u(θ) + [u2(γ)′,0](Σ⊗ In)−1u(θ). (1.18)

From (1.16), the ML estimator for Σ is given by

Σ̂ =

 σ̂2
1 σ̂12

σ̂12 σ̂2
2

 = n−1

 u1(δ)′u1(δ) u1(δ)′u2(γ)

u1(δ)′u2(γ) u2(γ)′u2(γ)

 .
Substitution of Σ̂ into (1.17) and (1.18) gives

∂

∂λ
L(θ, Σ̂) = [(φXγ + X1β)′G(λ)′,0]′(Σ̂⊗ In)−1u(θ)

+
σ̂2

2

|Σ̂|
u1(δ)′[G(λ)− n−1tr(G(λ))In]u1(δ)

− σ̂
2
12

|Σ̂|
u2(γ)′[G(λ)− n−1tr(G(λ))In]u1(δ)

+φ
σ̂2

2

|Σ̂|
u1(δ)′[G(λ)− n−1tr(G(λ))In]u2(γ)

−φσ̂12

|Σ̂|
u2(γ)′[G(λ)− n−1tr(G(λ))In]u2(γ)

and

∂

∂φ
L(θ,Σ) = [γ ′X′,0](Σ̂⊗ In)−1u(θ).

Appendix 1.2 Lemmas

For ease of reference, we list some useful results without proofs. Lemmas 1.1-1.6 can be found

(or are straightforward extensions of the lemmas) in Lee (2007). Lemma 1.7 is a special case of

Lemma 3 in Yang and Lee (2014). Lemmas 1.8 and 1.9 are from Breusch et al. (1999).
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Lemma 1.1 Let A and B be n× n nonstochastic matrices such that tr(A) = tr(B) = 0. Then,

(i) E(u′1Au1u
′
1Bu1) = (µ4,0 − 3σ4

1)vecD(A)′vecD(B) + σ4
1tr(AB(s))

(ii) E(u′1Au1u
′
1Bu2) = (µ3,1 − 3σ2

1σ12)vecD(A)vecD(B) + σ2
1σ12tr(AB(s))

(iii) E(u′1Au1u
′
2Bu2) = (µ2,2 − σ2

1σ
2
2 − 2σ2

12)vecD(A)′vecD(B) + σ2
12tr(AB(s))

(iv) E(u′1Au2u
′
1Bu2) = (µ2,2 − σ2

1σ
2
2 − 2σ2

12)vecD(A)′vecD(B) + σ2
1σ

2
2tr(AB′) + σ2

12tr(AB)

(v) E(u′1Au2u
′
2Bu2) = (µ1,3 − 3σ12σ

2
2)vecD(A)′vecD(B) + σ12σ

2
2tr(AB(s))

(vi) E(u′2Au2u
′
2Bu2) = (µ0,4 − 3σ4

2)vecD(A)′vecD(B) + σ4
2tr(AB(s))

Lemma 1.2 Let A be an n × n nonstochastic matrix and c be an n × 1 nonstochastic vector.

Then,

(i) E(u′1Au1u
′
1c) = µ3,0vecD(A)′c

(ii) E(u′1Au1u
′
2c) = E(u′1Au2u

′
1c) = µ2,1vecD(A)′c

(iii) E(u′1Au2u
′
2c) = E(u′2Au2u

′
1c) = µ1,2vecD(A)′c

(iv) E(u′2Au2u
′
2c) = µ0,3vecD(A)′c.

Lemma 1.3 Let A be an n × n nonstochastic matrix with row and columns sums uniformly

bounded in absolute value. Then, (i) n−1u′1Au1 = Op(1), n−1u′1Au2 = Op(1); and (ii) n−1[u′1Au1−

E(u′1Au1)] = op(1), n−1[u′1Au2 − E(u′1Au2)] = op(1).

Lemma 1.4 Let A be an n × n nonstochastic matrix with row and columns sums uniformly

bounded in absolute value. Let c be an n×1 nonstochastic vector with uniformly bounded elements.

Then, n−1/2c′Aur = Op(1) and n−1c′Aur = op(1). Furthermore, if limn→∞ n
−1c′AA′c exists and

is positive definite, then n−1/2c′Aur
d→ N(0, σ2

r limn→∞ n
−1c′AA′c), for r = 1, 2.

Lemma 1.5 Suppose n−1[Γ(θ) − Γ0(θ)] = op(1) uniformly in θ ∈ Θ, where Γ0(θ) is uniquely

identified at θ0. Define θ̂ = arg minθ∈Θ Γ(θ) and θ̂
∗

= arg minθ∈Θ Γ∗(θ). If n−1[Γ(θ) − Γ∗(θ)] =

op(1) uniformly in θ ∈ Θ then both θ̂ and θ̂
∗

are consistent estimators of θ0. Furthermore, assume
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that 1
n

∂2

∂θ∂θ′
Γ(θ) converges uniformly to a matrix which is nonsingular at θ0 and 1√

n
∂
∂θ′

Γ(θ) =

Op(1). If 1
n [ ∂2

∂θ∂θ′
Γ∗(θ)− ∂2

∂θ∂θ′
Γ(θ)] = op(1) and 1√

n
[ ∂
∂θ′

Γ∗(θ)− ∂
∂θ′

Γ(θ)] = op(1) uniformly in Θ,

then
√
n(θ̂ − θ0)−

√
n(θ̂

∗ − θ0) = op(1).

Lemma 1.6 Let A and B be n×n nonstochastic matrices with row and columns sums uniformly

bounded in absolute value, c1 and c2 be n × 1 nonstochastic vectors with uniformly bounded

elements. G∗ is either G, G−n−1tr(G)In or G−diag(G), and Ĝ∗ is obtained by replacing λ0 in G∗

by its
√
n-consistent estimator λ̂. Suppose Assumption 1.3 holds. Then, n−1c′1(Ĝ∗−G)c2 = op(1),

n−1/2c′1(Ĝ∗ −G)Aur = op(1), n−1u′rA
′(Ĝ∗ −G)Bus = op(1), and n−1/2u′r(Ĝ

∗ −G)us = op(1),

for r, s = 1, 2.

Lemma 1.7 Let Ar,s be an n × n nonstochastic matrix with row and column sums uniformly

bounded in absolute value for r, s = 1, 2. Let c1 and c2 be n×1 nonstochastic vectors with uniformly

bounded elements. Let σ2 = Var(ε), where ε =
∑2

r=1 c′rur +
∑2

s=1

∑2
r=1(u′sAr,sur −E[u′sAr,sur]).

Suppose σ2 = O(n) and n−1σ2 is bounded away from zero. Then, σ−1ε
d→ N(0, 1).

Lemma 1.8 Consider the set of moment conditions E[g(θ0)] = 0 with g(θ) = [g1(θ)′,g2(θ)′]′.

Define Di = −E[ ∂
∂θ′

gi(θ)] and Ωij = E[gi(θ)gj(θ)′] for i, j = 1, 2. The following statements are

equivalent (i) g2 is redundant given g1; (ii) D2 = Ω21Ω
−1
11 D1 and (iii) there exists a matrix A such

that D2 = Ω21A and D1 = Ω11A.

Lemma 1.9 Consider the set of moment conditions E[g(θ0)] = 0 with

g(θ) = [g1(θ)′,g2(θ)′,g3(θ)′]′.

Then (g′2,g
′
3)′ is redundant given g1 if and only if g2 is redundant given g1 and g3 is redundant

given g1.
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Appendix 1.3 Proofs

Proof of Proposition 1.1: To prove consistency, first we need to show the uniform convergence

of n−2g(θ)′F′Fg(θ) in probability. For some typical row Fi· of F

Fi·g(θ) = f1,i·Q
′u1(δ) + f2,i·Q

′u2(γ) + u1(δ)′

 m∑
j=1

f1,ijΞj

u1(δ) + u1(δ)′

 m∑
j=1

f2,ijΞj

u2(γ)

+u2(γ)′

 m∑
j=1

f3,ijΞj

u1(δ) + u2(γ)′

 m∑
j=1

f4,ijΞj

u2(γ)

where Fi· = (f1,i·, f2,i·, f1,i1, · · · , f1,im, · · · , f4,i1, · · · , f4,im) and f1,i· and f2,i· are row sub-vectors. As

u1(δ) = d1(δ) + r1(δ), where d1(δ) = (λ0−λ)G(φ0Xγ0 + X1β0) + (φ0−φ)Xγ0 + X1(β0−β) and

r1(δ) = u1 + (λ0 − λ)(Gu1 + φ0Gu2) + (φ0 − φ)u2, we have

u1(δ)′

 m∑
j=1

f1,ijΞj

u1(δ) = d1(δ)′

 m∑
j=1

f1,ijΞj

d1(δ) + l1(δ) + q1(δ)

where l1(δ) = d1(δ)′
(∑m

j=1 f1,ijΞ
(s)
j

)
r1(δ) and q1(δ) = r1(δ)′

(∑m
j=1 f1,ijΞj

)
r1(δ). It follows by

Lemmas 1.3 and 1.4 that n−1l1(δ) = op(1) and n−1q1(δ) − n−1E[q1(δ)] = op(1) uniformly in Θ,

where

E[q1(δ)] = (λ0 − λ)[σ2
1 + σ12(2φ0 − φ) + σ2

2φ0(φ0 − φ)]

m∑
j=1

f1,ijtr(GΞ
(s)
j )

+(λ0 − λ)2(σ2
2φ

2
0 + 2σ12φ0 + σ2

1)
m∑
j=1

f1,ijtr(G
′ΞjG).

Hence, n−1u1(δ)′
(∑m

j=1 f1,ijΞj

)
u1(δ) − n−1E[u1(δ)′

(∑m
j=1 f1,ijΞj

)
u1(δ)] = op(1) uniformly in

Θ, where E[u1(δ)′
(∑m

j=1 f1,ijΞj

)
u1(δ)] = d1(δ)′

(∑m
j=1 f1,ijΞj

)
d1(δ) + E[q1(δ)]. As u2(γ) =

d2(γ) + u2, where d2(γ) = X(γ0 − γ), we have

u1(γ)′

 m∑
j=1

f2,ijΞj

u2(δ) = d1(γ)′

 m∑
j=1

f2,ijΞj

d2(δ) + l2(θ) + q2(θ)

where l2(θ) = r1(δ)′
(∑m

j=1 f2,ijΞj

)
d2(γ) + d1(δ)′

(∑m
j=1 f2,ijΞj

)
u2 and

q2(δ) = r1(δ)′

 m∑
j=1

f2,ijΞj

u2.
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It follows by Lemmas 1.3 and 1.4 that n−1l2(θ) = op(1) and n−1q2(θ) − n−1E[q2(θ)] = op(1)

uniformly in Θ, where

E[q2(θ)] = (λ0 − λ)(σ12 + σ2
2φ0)

m∑
j=1

f2,ijtr(GΞj).

Hence, n−1u1(γ)′
(∑m

j=1 f2,ijΞj

)
u2(δ)− n−1E[u1(γ)′

(∑m
j=1 f2,ijΞj

)
u2(δ)] = op(1) uniformly in

Θ, where E[u1(γ)′
(∑m

j=1 f2,ijΞj

)
u2(δ)] = d1(γ)′

(∑m
j=1 f2,ijΞj

)
d2(δ) + E[q2(θ)]. Similarly,

n−1u2(γ)′

 m∑
j=1

f3,ijΞj

u1(δ)− n−1E[u2(γ)′

 m∑
j=1

f3,ijΞj

u1(δ)] = op(1),

n−1u2(γ)′

 m∑
j=1

f4,ijΞj

u2(γ)− n−1E[u2(γ)′

 m∑
j=1

f4,ijΞj

u2(γ)] = op(1),

n−1f1,i·Q
′u1(δ)− n−1E[f1,i·Q

′u1(δ)] = op(1), and

n−1f2,i·Q
′u2(γ)− n−1E[f2,i·Q

′u2(γ)] = op(1)

uniformly in Θ. Therefore, n−1Fg(θ)− n−1FE[g(θ)] = op(1) uniformly in Θ, and hence,

1

n2
g(θ)′F′Fg(θ)

converges in probability to a well defined limit uniformly in Θ. As g(θ) is a quadratic function of

θ, n−1FE[g(θ)] is uniformly equicontinuous on Θ by Assumption 1.4. The identification condition

and the uniform equicontinuity of n−1FE[g(θ)] imply that the identification uniqueness condition

for n−2E[g(θ)′]F′FE[g(θ)] must be satisfied. The consistency of θ̂ follows by Theorem 15.1 of

Peracchi (2001).

For the asymptotic normality of θ̃gmm, by the mean value theorem,

√
n(θ̃gmm − θ0) = −

[
n−1 ∂

∂θ
g(θ̃gmm)′F′n−1F

∂

∂θ′
g(θ̄)

]−1

n−1 ∂

∂θ
g(θ̃gmm)′F′n−1/2Fg(θ0)
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where θ̄ = tθ̃gmm + (1− t)θ0 for some t ∈ [0, 1] and

− ∂

∂θ′
g(θ) =



Q′Wy1 Q′y2 Q′X1 0

0 0 0 Q′X

u1(δ)′Ξ
(s)
1 Wy1 u1(δ)′Ξ

(s)
1 y2 u1(δ)′Ξ

(s)
1 X1 0

...
...

...
...

u1(δ)′Ξ
(s)
m Wy1 u1(δ)′Ξ

(s)
m y2 u1(δ)′Ξ

(s)
m X1 0

u2(γ)′Ξ′1Wy1 u2(γ)′Ξ′1y2 u2(γ)′Ξ′1X1 u1(δ)′Ξ1X

...
...

...
...

u2(γ)′Ξ′mWy1 u2(γ)′Ξ′my2 u2(γ)′Ξ′mX1 u1(δ)′ΞmX

u2(γ)′Ξ1Wy1 u2(γ)′Ξ1y2 u2(γ)′Ξ1X1 u1(δ)′Ξ′1X

...
...

...
...

u2(γ)′ΞmWy1 u2(γ)′Ξmy2 u2(γ)′ΞmX1 u1(δ)′Ξ′mX

0 0 0 u2(γ)′Ξ
(s)
1 X

...
...

...
...

0 0 0 u2(γ)′Ξ
(s)
m X



.

Using Lemmas 1.3 and 1.4, it follows by a similar argument in the proof of Proposition 1 in Lee

(2007) that −n−1 ∂
∂θ′

g(θ̂)−n−1D = op(1) and −n−1 ∂
∂θ′

g(θ̄)−n−1D = op(1) with D given by (1.10).

By Lemma 1.7 and the Cramer-Wald device, we have n−1/2Fg(θ0)
d→ N(0, limn→∞ n

−1FΩF′) with

Ω given by (1.13). The desired result follows.

Proof of Proposition 1.2: Note that

n−1g(θ)′Ω̂−1g(θ) = n−1g(θ)′Ω−1g(θ) + n−1g(θ)′(Ω̂−1 −Ω−1)g(θ).

With F = (n−1Ω)−1/2, uniform convergence of n−1g(θ)′Ω−1g(θ) in probability follows by a similar

argument in the proof of Proposition 1.1. On the other hand,∥∥∥n−1g(θ)′(Ω̂−1 −Ω−1)g(θ)
∥∥∥ ≤ (n−1‖g(θ)‖

)2 ∥∥∥(n−1Ω̂)−1 − (n−1Ω)−1
∥∥∥

where ‖ · ‖ is the Euclidean norm for vectors and matrices. By a similar argument in the proof of

Proposition 1.1, we have n−1g(θ) − n−1E[g(θ)] = op(1) and n−1E[g(θ)] = O(1) uniformly in Θ,
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which in turn implies that n−1‖g(θ)‖ = Op(1) uniformly in Θ. Therefore,
∥∥∥n−1g(θ)′(Ω̂−1 −Ω−1)g(θ)

∥∥∥ =

op(1) uniformly in Θ. The consistency of θ̂gmm follows.

For the asymptotic normality of
√
n(θ̂gmm−θ0), note that from the proof of Proposition 1.1

we have −n−1 ∂
∂θ′

g(θ̂gmm) − n−1D = op(1), since θ̂gmm is consistent. Let θ̄ = tθ̂gmm + (1 − t)θ0

for some t ∈ [0, 1], then by the mean value theorem,

√
n(θ̂gmm − θ0)

= −
[
n−1 ∂

∂θ
g(θ̂gmm)′(n−1Ω̂)−1n−1 ∂

∂θ′
g(θ̂)

]−1

n−1 ∂

∂θ
g(θ̂gmm)′(n−1Ω̂)−1n−1/2g(θ0)

=
[
n−1D′

(
n−1Ω

)−1
n−1D

]−1
n−1D′

(
n−1Ω

)−1
n−1/2g(θ0) + op(1)

which concludes the first part of the proof, since in the proof of Proposition 1.1 it is established

that n−1/2g(θ0) converges in distribution.

For the overidentification test, by the mean value theorem, for some t ∈ [0, 1] and θ̄ =

tθ̂gmm + (1− t)θ0

n−1/2g(θ̂gmm) = n−1/2g(θ0) + n−1/2 ∂

∂θ′
g(θ̄)(θ̂gmm − θ0)

= n−1/2g(θ0)− n−1D
√
n(θ̂gmm − θ0) + op(1)

= An−1/2g(θ0) + op(1)

where A = Idim(g) − n−1D
[
n−1D′

(
n−1Ω

)−1
n−1D

]−1
n−1D′

(
n−1Ω

)−1
. Therefore

g(θ̂gmm)′Ω̂−1g(θ̂gmm) = n−1/2g(θ̂gmm)′(n−1Ω)−1n−1/2g(θ̂gmm) + op(1)

= n−1/2g(θ0)′A′(n−1Ω)−1An−1/2g(θ0) + op(1)

= [
(
n−1Ω

)−1/2
n−1/2g(θ0)]′B[

(
n−1Ω

)−1/2
n−1/2g(θ0)] + op(1)

where B = Idim(g) −
(
n−1Ω

)−1/2
n−1D

[
n−1D′

(
n−1Ω

)−1
n−1D

]−1
n−1D′

(
n−1Ω

)−1/2
. Therefore

g(θ̂gmm)′Ω̂−1g(θ̂gmm)
d→ χ2

tr(B),

where tr(B) = dim(g)− dim(θ).



26

Proof of Proposition 1.3: To establish the asymptotic efficiency, we use an argument by Breusch

et al. (1999) to show that any additional moment conditions g defined in (1.6) given g∗ defined in

(2.4) will be redundant. Following Breusch et al. (1999), g is redundant given g∗ if the asymptotic

variance of an estimator based on moment equations E[g(θ)] = 0 and E[g∗(θ)] = 0 is the same as

an estimator based on E[g∗(θ)] = 0. In cases (i) and (ii),

Ω# = E[g(θ0)g∗(θ0)′] =

 (Σ⊗Q′Q∗) 0

0 Ω#
22


where

Ω#
22 =



σ4
1 σ2

1σ12 σ2
1σ12 σ2

12

σ2
1σ12 σ2

12 σ2
1σ

2
2 σ2

2σ12

σ2
1σ12 σ2

1σ
2
2 σ2

12 σ2
2σ12

σ2
12 σ2

2σ12 σ2
2σ12 σ4

2


⊗


tr(Ξ1Ξ

∗)

...

tr(ΞmΞ∗)



+



σ4
1 σ2

1σ12 σ2
1σ12 σ2

12

σ2
1σ12 σ2

1σ
2
2 σ2

12 σ2
2σ12

σ2
1σ12 σ2

12 σ2
1σ

2
2 σ2

2σ12

σ2
12 σ2

2σ12 σ2
2σ12 σ4

2


⊗


tr(Ξ′1Ξ

∗)

...

tr(Ξ′mΞ∗)

 .

Let

A =
1

σ2
1σ

2
2 − σ2

12



σ2
2(Cβ0 + φ0γ0) 0 0 0

0 σ2
2γ0 σ2

2C −σ12IKX

−σ12(Cβ0 + φ0γ0) 0 0 0

0 −σ12γ0 −σ12C σ2
1IKX

σ2
2 0 0 0

φ0σ
2
2 0 0 0

−σ12 0 0 0

−φ0σ12 0 0 0



,

where C = [IK1 ,0]′ and X1 = XC. Then D = Ω#A, where D is defined in (1.10). Based on

Lemma 1.8 g is redundant given g∗. Furthermore, Lemma 1.9 tells us that any subset of g is
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redundant given g∗.

Proof of Proposition 1.4: To show the desired result, we only need to show Γ̂(θ) = ĝ∗(θ)′Ω̂∗−1ĝ∗(θ)

and Γ(θ) = g∗(θ)′Ω∗−1g∗(θ) satisfy the conditions of Lemma 1.5. First, n−1[ĝ∗1(θ) − g∗1(θ)] =

n−1[I2 ⊗ (Q̂∗ −Q∗)]′u(θ), n−1[ĝ∗2,rs(θ)− g∗2,rs(θ)] = n−1ur(θ)′(Ξ̂∗ −Ξ∗)us(θ),

∂

∂θ′
g∗(θ) = −



Q∗′Wy1 Q∗′y2 Q∗′X1 0

0 0 0 Q∗′X

u1(δ)′Ξ∗(s)Wy1 u1(δ)′Ξ∗(s)y2 u1(δ)′Ξ∗(s)X1 0

u2(γ)′Ξ∗′Wy1 u2(γ)′Ξ∗′y2 u2(γ)′Ξ∗′X1 u1(δ)′Ξ∗X

u2(γ)′Ξ∗Wy1 u2(γ)′Ξ∗y2 u2(γ)′Ξ∗X1 u1(δ)′Ξ∗′X

0 0 0 u2(γ)′Ξ∗(s)X


,

and

∂2

∂θ∂θ′
g∗(θ) =



0

∂
∂θu1(δ)′Ξ∗ ∂

∂θ′
u1(δ)

∂
∂θu1(δ)′Ξ∗ ∂

∂θ′
u2(γ)

∂
∂θu2(γ)′Ξ∗ ∂

∂θ′
u1(δ)

∂
∂θu2(γ)′Ξ∗ ∂

∂θ′
u2(γ)


,

where Q∗ = [GX,X], Ξ∗ is either G−n−1tr(G)In or G−diag(G), ∂
∂θ′

u1(δ) = −[Wy1,y2,X1,0],

and ∂
∂θ′

u2(γ) = −[0,0,0,X]. By inspection of each term of the above matrices, we conclude

n−1[ĝ∗(θ)− g∗(θ)] = op(1), n−1[ ∂
∂θ′

ĝ∗(θ)− ∂
∂θ′

g∗(θ)] = op(1) and n−1[ ∂2

∂θ∂θ′
ĝ∗(θ)− ∂2

∂θ∂θ′
g∗(θ)] =

op(1) uniformly in Θ by Lemma 1.6. Second, as Ĝ −G = (λ̂ − λ0)G2 + (λ̂ − λ0)2ĜG
2
, we have

n−1tr(Ξ̂∗Ξ̂∗) − n−1tr(Ξ∗Ξ∗) = op(1) and n−1tr(Ξ̂∗′Ξ̂∗) − n−1tr(Ξ∗′Ξ∗) = op(1). Therefore, as

Σ̂ is a consistent estimator of Σ, we have n−1(Ω̂ − Ω∗) = op(1). Hence, we can conclude that

n−1[Γ̂(θ) − Γ(θ)] = op(1) and n−1[ ∂2

∂θ∂θ′
Γ̂(θ) − ∂2

∂θ∂θ′
Γ(θ)] = op(1) uniformly in Θ. Finally, since

n−1/2g∗(θ0) = Op(1) by a similar argument in the proof of Proposition 1.1 and n−1/2[ĝ∗(θ0) −
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g∗(θ0)] = op(1) by Lemma 1.6,

n−1/2[
∂

∂θ′
Γ̂(θ0)− ∂

∂θ′
Γ(θ0)]

= 2
∂

∂θ
ĝ∗(θ0)′Ω̂−1n−1/2[ĝ∗(θ0)− g∗(θ0)] + 2[

∂

∂θ
ĝ∗(θ0)′Ω̂−1 − ∂

∂θ
g∗(θ0)′Ω−1]n−1/2g∗(θ0)

= op(1).

The desired result follows.

Appendix 1.4 Tables

Table 1.1: 2SLS, 3SLS and GMM Estimation (n = 245)

λ0 = 0.3 φ0 = 1.0 β0 = 0.5

σ12 = 0.1
2SLS 0.601(0.128)[0.128] 0.497(0.068)[0.068] 0.496(0.066)[0.066]
3SLS 0.601(0.126)[0.126] 0.497(0.068)[0.068] 0.496(0.066)[0.066]
GMM-1 0.602(0.052)[0.052] 0.499(0.066)[0.066] 0.498(0.065)[0.065]
GMM-2 0.607(0.051)[0.051] 0.497(0.067)[0.068] 0.498(0.065)[0.065]

σ12 = 0.5
2SLS 0.601(0.138)[0.138] 0.496(0.068)[0.068] 0.495(0.066)[0.066]
3SLS 0.602(0.111)[0.111] 0.496(0.068)[0.068] 0.498(0.057)[0.057]
GMM-1 0.602(0.046)[0.046] 0.501(0.066)[0.066] 0.498(0.065)[0.065]
GMM-2 0.604(0.045)[0.045] 0.495(0.068)[0.068] 0.499(0.057)[0.057]

σ12 = 0.9
2SLS 0.601(0.170)[0.170] 0.495(0.070)[0.070] 0.494(0.067)[0.067]
3SLS 0.603(0.059)[0.059] 0.497(0.068)[0.068] 0.500(0.029)[0.029]
GMM-1 0.603(0.050)[0.050] 0.503(0.066)[0.066] 0.498(0.065)[0.065]
GMM-2 0.601(0.023)[0.023] 0.495(0.070)[0.070] 0.500(0.028)[0.028]

Mean(SD)[RMSE]
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Table 1.2: 2SLS, 3SLS and GMM Estimation (n = 490)

λ0 = 0.3 φ0 = 1.0 β0 = 0.5

σ12 = 0.1
2SLS 0.600(0.080)[0.080] 0.497(0.047)[0.047] 0.497(0.046)[0.046]
3SLS 0.599(0.079)[0.079] 0.497(0.047)[0.047] 0.497(0.046)[0.046]
GMM-1 0.600(0.035)[0.035] 0.498(0.047)[0.047] 0.498(0.046)[0.046]
GMM-2 0.602(0.034)[0.034] 0.497(0.047)[0.047] 0.498(0.045)[0.046]

σ12 = 0.5
2SLS 0.600(0.081)[0.081] 0.496(0.048)[0.048] 0.497(0.046)[0.046]
3SLS 0.600(0.068)[0.068] 0.496(0.047)[0.047] 0.499(0.040)[0.040]
GMM-1 0.600(0.030)[0.030] 0.499(0.047)[0.047] 0.498(0.046)[0.046]
GMM-2 0.601(0.029)[0.029] 0.496(0.047)[0.048] 0.499(0.040)[0.040]

σ12 = 0.9
2SLS 0.601(0.082)[0.082] 0.496(0.048)[0.048] 0.496(0.046)[0.046]
3SLS 0.601(0.034)[0.034] 0.496(0.047)[0.048] 0.500(0.020)[0.020]
GMM-1 0.600(0.026)[0.026] 0.500(0.047)[0.047] 0.498(0.045)[0.045]
GMM-2 0.600(0.015)[0.015] 0.494(0.048)[0.049] 0.500(0.020)[0.020]

Mean(SD)[RMSE]

Table 1.3: 2SLS, 3SLS and GMM Estimation (n = 245)

λ0 = 0.3 φ0 = 1.0 β0 = 0.2

σ12 = 0.1
2SLS 0.667(0.464)[0.469] 0.196(0.075)[0.076] 0.194(0.070)[0.071]
3SLS 0.660(0.482)[0.486] 0.195(0.076)[0.076] 0.195(0.070)[0.070]
GMM-1 0.637(0.163)[0.167] 0.201(0.067)[0.067] 0.198(0.066)[0.066]
GMM-2 0.640(0.145)[0.150] 0.199(0.068)[0.068] 0.198(0.065)[0.065]

σ12 = 0.5
2SLS 0.678(0.439)[0.446] 0.195(0.070)[0.070] 0.194(0.068)[0.068]
3SLS 0.653(0.357)[0.361] 0.195(0.069)[0.069] 0.197(0.058)[0.059]
GMM-1 0.648(0.189)[0.195] 0.202(0.067)[0.067] 0.198(0.066)[0.066]
GMM-2 0.624(0.109)[0.112] 0.196(0.068)[0.068] 0.199(0.057)[0.057]

σ12 = 0.9
2SLS 0.688(0.389)[0.399] 0.194(0.070)[0.070] 0.194(0.068)[0.068]
3SLS 0.627(0.168)[0.170] 0.196(0.067)[0.068] 0.199(0.029)[0.029]
GMM-1 0.646(0.178)[0.184] 0.204(0.067)[0.067] 0.198(0.065)[0.065]
GMM-2 0.608(0.052)[0.053] 0.196(0.068)[0.069] 0.200(0.029)[0.029]

Mean(SD)[RMSE]
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Table 1.4: 2SLS, 3SLS and GMM Estimation (n = 490)

λ0 = 0.3 φ0 = 1.0 β0 = 0.2

σ12 = 0.1
2SLS 0.625(0.251)[0.253] 0.195(0.047)[0.048] 0.195(0.046)[0.047]
3SLS 0.624(0.252)[0.253] 0.195(0.047)[0.048] 0.195(0.046)[0.046]
GMM-1 0.610(0.094)[0.094] 0.198(0.047)[0.047] 0.198(0.046)[0.046]
GMM-2 0.610(0.071)[0.072] 0.197(0.047)[0.047] 0.198(0.045)[0.045]

σ12 = 0.5
2SLS 0.633(0.227)[0.230] 0.195(0.048)[0.048] 0.195(0.046)[0.047]
3SLS 0.620(0.195)[0.196] 0.195(0.047)[0.048] 0.197(0.040)[0.040]
GMM-1 0.611(0.092)[0.092] 0.199(0.047)[0.047] 0.198(0.046)[0.046]
GMM-2 0.604(0.043)[0.043] 0.196(0.047)[0.047] 0.199(0.040)[0.040]

σ12 = 0.9
2SLS 0.628(0.280)[0.282] 0.195(0.048)[0.048] 0.194(0.047)[0.047]
3SLS 0.607(0.100)[0.100] 0.196(0.047)[0.048] 0.200(0.020)[0.020]
GMM-1 0.612(0.097)[0.098] 0.200(0.047)[0.047] 0.198(0.046)[0.046]
GMM-2 0.602(0.024)[0.024] 0.195(0.048)[0.048] 0.200(0.020)[0.020]

Mean(SD)[RMSE]



Chapter 2

GMM Estimation of SAR Simultaneous Equation Models with Unknown

Heteroskedasticity

2.1 Introduction

The spatial autoregressive (SAR) model introduced by Cliff and Ord (1973, 1981) has re-

cently received considerable attention in different fields of economics as it provides a convenient

framework to model the interaction between economic agents. However, with a few exceptions

(e.g., Kelejian and Prucha, 2004; Baltagi and Pirotte, 2011; Yang and Lee, 2014), most theoretical

works in the spatial econometrics literature focus on the single-equation SAR model, which assumes

that an economic agent’s choice (or outcome) in a certain activity is isolated from her and other

agents’ choices (or outcomes) in related activities. This restrictive assumption potentially limits

the usefulness of the SAR model in many contexts.

To incorporate the interdependence of economic agents’ choices and outcomes across different

activities, Kelejian and Prucha (2004) extends the single-equation SAR model to the simultaneous-

equation SAR model. They propose both limited information two stage least squares (2SLS) and

full information three stage least squares (3SLS) estimators for the estimation of model parame-

ters and establish the asymptotic properties of the estimators. In a recent paper, Yang and Lee

(2014) study the identification and estimation of the simultanenous-equation SAR model by the

full information quasi-maximum likelihood (QML) approach. They give identification conditions

for the simultanenous-equation SAR model that are analogous to the rank and order conditions for

the classical simultanenous-equation model and derive asymptotic properties of the QML estima-
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tor. The QML estimator is asymptotically more effecient than the 3SLS estimator as the former

implicitly uses additional information on the covariance sturcture of model disturbances.

In this paper, we propose a generalized method of moments (GMM) estimator for the iden-

tification and estimation of simultaneous-equation SAR models with heteroskedastic disturbances.

Similar to the GMM estimator proposed by Lee (2007) and Lin and Lee (2010) for single-equation

SAR models, the GMM estimator utilizes both linear moment conditions based on the orthog-

onality condition between the instrumental variable (IV) and model disturbances and quadratic

moment conditions based on the covariance structure of model disturbances. While the single-

equation GMM estimator can be considered as an equation-by-equation limited information estima-

tor for a system of simultaneous equations,1 the simultaneous-equation GMM estimator proposed

in this paper exploits the correlation structure of disturbances within and across equations and thus

is a full information estimator. We study the identification of model parameters under the GMM

framework and derive asymptotic properties of the GMM estimator under heteroskedasticity of an

unknown form. Furthermore, we propose a heteroskedascity-robust estimator for the asymptotic

covariance of the GMM estimator in the spirit of White (1980). The GMM estimator is asymptot-

ically more efficient than the 3SLS estimator. Compared with the QML estimator considered in

Yang and Lee (2014), the GMM estimator is easier to implement and robust under heteroskedas-

ticity. Monte Carlo experiments show that the proposed GMM estimator performs well in finite

samples.

The remaining of this paper is organized as follows. In Section 2.2, we describe the model

and give the moment conditions used to construct the GMM estimator. In Section 2.3, we establish

the identification for the model under the GMM framework. We derive the asymptotic properties

of the GMM estimator in Section 2.4. Results of Monte Carlo simulation experiments are reported

in Section 2.5. Section 2.6 briefly concludes. Proofs are collected in the Appendix.

Throughout the paper, we adopt the following notation. For an n×nmatrix A = [aij ]i,j=1,··· ,n,

1 To apply the single-equation GMM approach in Lee (2007) and Lin and Lee (2010) to estimate an equation in the
simultaneous-equation SAR model, both the optimal GMM weighting matrix and the estimator for the asymptotic
covariance of the GMM estimator need to be adjusted for the additional endogenous regressors in the equation.
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let A(s) = A + A′ and diag(A) denote an n × n diagonal matrix with the i-th diagonal element

being aii, i.e., diag(A) = diag(a11, · · · , ann). For an n×m matrix B = [bij ], the vectorization of B

is denoted by vec(B) = (b11, · · · , bn1, b12, · · · , bnm)′.2 Let In denote the n× n identity matrix and

in,k denote the k-th column of In.

2.2 Model and Moment Conditions

The model considered in this paper is described by a system of m simultaneous equations for

n cross sectional units,

Y = YΓ0 + WYΛ0 + XB0 + U, (2.1)

where Y = [y1, · · · ,ym] is an n ×m matrix of endogenous variables, X is an n × KX matrix of

exogenous variables, and U = [u1, · · · ,um] is an n ×m matrix of disturbances.3 W is an n × n

nonstochastic matrix of spatial weights, with its (i, j)-th element represents the proximity between

cross sectional units i and j.4 The diagonal elements of W are normalized to be zeros. In the

literature, WY is usually referred to as the spatial lag. Γ0, Λ0 and B0 are, respectively, m ×m,

m×m and KX×m matrices of true parameters in the data generating process (DGP). The diagonal

elements of Γ0 are normalized to be zeros.

In general, the identification of simultaneous-equation models needs exclusion restrictions.

Let γk,0, λk,0 and βk,0 denote vectors of nonzero elements of the k-th columns of Γ0, Λ0 and

B0 respectively under some exclusion restrictions. Let Yk, Ȳk and Xk denote the corresponding

matrices containing columns of Y (except yk), Ȳ = WY and X that appear in the k-th equation.

Then, the k-th equation of model (2.1) is

yk = Ykγk,0 + Ȳkλk,0 + Xkβk,0 + uk.

Throughout the paper, we maintain the following assumptions regarding the DGP.

2 If A, B, C are conformable matrices, then vec(ABC) = (C′ ⊗ A)vec(B), where ⊗ denotes the Kronecker
product.

3 In this paper, all variables are allowed to depend on the sample size, i.e., are allowed to formulate triangular
arrays as in Kelejian and Prucha (2010). Nevertheless, we suppress the subscript n to simplify the notation.

4 For SAR models, the notion of proximity is not limited to the geographical sense. It can be economic proximity,
technology proximity, or social proximity. Hence the SAR has a broad range of applications.
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Assumption 2.1 Let uik denote the (i, k)-th element of U and u denote the vectorization of U,

i.e., u = vec(U). (i) (ui1, · · · , uim) are independently distributed across i with zero mean. (ii)

Σ ≡ E(uu′) =


Σ11 · · · Σ1m

...
. . .

...

Σm1 · · · Σmm


is nonsingular, with Σkl = Σlk = diag(σ1,kl, · · · , σn,kl). (iii) E|uikuiluisuit|1+η is bounded for any

i = 1, · · · , n and k, l, s, t = 1, · · · ,m, for some positive constant η.

Assumption 2.2 The elements of X are uniformly bounded constants. X has full column rank

KX . limn→∞ n
−1X′X exists and is nonsingular.

Assumption 2.3 Γ0 is nonsingular with a zero diagonal. ρ(Λ0(Im−Γ0)−1) < 1/ρ(W) where ρ(·)

denotes the spectral radius of a square matrix.

Assumption 2.4 W has a zero diagonal. The row and column sums of W and (Imn −Γ′0 ⊗ In −

Λ′0 ⊗W)−1 are uniformly bounded in absolute value.

Assumption 2.5 θk,0 = (γ ′k,0,λ
′
k,0,β

′
k,0)′ is in the interior of a compact and convex parameter

space for k = 1, · · · ,m.

The above assumptions are based on some standard assumptions in the literature of SAR

models (see, e.g., Kelejian and Prucha, 2004; Lee, 2007; Lin and Lee, 2010). In particular, As-

sumption 2.3 is from Yang and Lee (2014). Under this assumption, Imn − (Γ′0 ⊗ In) − (Λ′0 ⊗W)

is nonsingular, and hence the simultaneous-equation SAR model (2.1) has a well defined reduced

form

y = [Imn − (Γ′0 ⊗ In)− (Λ′0 ⊗W)]−1[(B′0 ⊗ In)x + u], (2.2)

where y = vec(Y) and x = vec(X). Note that, when m = 1, we have Γ0 = 0 and Λ0 = λ11,0. Then,

ρ(Λ0(Im − Γ0)−1) < 1/ρ(W) becomes the familiar parameter space constraint |λ11,0| < 1/ρ(W)

for the single-equation SAR model.
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Following Lee (2007) and Lin and Lee (2010), for the estimation of the simultaneous-equation

SAR model (2.1), we consider both linear moment conditions

E(Q′uk) = 0, (2.3)

where Q is an n×KQ matrix of IVs, and quadratic moment conditions

E(u′kΞrul) = tr(ΞrΣkl), for r = 1, · · · , p,

where Ξr’s are n× n constant matrices. Note that, if the diagonal elements of Ξr’s are zero, then

the quadratic moment conditions become

E(u′kΞrul) = 0, for r = 1, · · · , p. (2.4)

As an example, we could use Q = [WX, · · · ,WpX] and Ξ1 = W,Ξ2 = W2−diag(W2), · · · ,Ξp =

Wp − diag(Wp), where p is some predetermined positive integer, to construct the linear and

quadratic moment conditions. The quadratic moment condition (2.4) exploits the covariance struc-

ture of model disturbances both within and across equations, and hence is more general than the

quadratic moment condition used by the single-equation GMM estimator in Lee (2007) and Lin

and Lee (2010).

Let the residual function for the k-th equation be

uk(θk) = yk −Ykγk,0 − Ȳkλk,0 −Xkβk,0.

Then, the empirical linear moment function based on (2.3) can be written as

g1,k ≡ g1,k(θk) = Q′uk(θk) (2.5)

and the empirical quadratic moment function based on (2.4) can be written as

g2,kl ≡ g2,kl(θk,θl) = [Ξ′1uk(θk), · · · ,Ξ′puk(θk)]′ul(θl) (2.6)

for k, l = 1, · · · ,m. Combining both linear and quadratic moment functions by defining

g(θ) =

 g1(θ)

g2(θ)

 ,
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where θ = (θ′1, · · · ,θ′m)′, g1(θ) = (g′1,1, · · · ,g′1,m)′, and g2(θ) = (g′2,11, · · · ,g′2,1m,g′2,21, · · · ,g′2,mm)′.

The identification and estimation of the simultaneous-equation SAR model (2.1) is based on the

moment conditions E[g(θ0)] = 0. We maintain the following assumption regarding the moment

conditions.

Assumption 2.6 (i) The elements of Q are uniformly bounded. (ii) The diagonal elements of Ξr

are zeros, and the row and column sums of Ξr are uniformly bounded, for r = 1, · · · , p. (iii) Let

Ω = Var[g(θ0)]. limn→∞ n
−1Ω exists and is nonsingular.

2.3 Identification

Following Yang and Lee (2014), we establish the identification of the simultaneous-equation

SAR model in two steps. In the first step, we consider the identification of the reduced form

parameters. In the second step, we recover the structural parameters from the reduced form

parameters.

2.3.1 Identification of the “pseudo” reduced form parameters

When Γ0 is nonsingular, the simultaneous-equation SAR model (2.1) has a “pseudo” reduced

form

Y = WYΨ0 + XΠ0 + V, (2.7)

where Ψ0 = Λ0(Im − Γ0)−1, Π0 = B0(Im − Γ0)−1, and V = U(Im − Γ0)−1. Model (2.7) has the

specification of a multivariate SAR model (see, Yang and Lee, 2014; Liu, 2015). First, we consider

the identification of the “pseudo” reduced form parameters Ψ0 = [ψlk,0] and Π0 = [π1,0, · · · ,πm,0]

under the GMM framework.

The k-th equation in model (2.7) is given by

yk =

m∑
l=1

ψlk,0Wyl + Xπk,0 + vk,

where

Wyl = Hl(B
′
0 ⊗ In)x + Hlv (2.8)
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with Hl = (i′m,l ⊗W)[Imn − (Ψ′0 ⊗W)]−1, x = vec(X), and v = vec(V). Hence, the residual

function for the k-th equation can be written as

vk(δk) = yk −
m∑
l=1

ψlkWyl −Xπk = dk(δk) + vk +
m∑
l=1

(ψlk,0 − ψlk)Hlv, (2.9)

where δk = (ψ1k, · · · , ψmk,π′k)′ and

dk(δk) =

m∑
l=1

(ψlk,0 − ψlk)E(Wyl) + X(πk,0 − πk).

The “pseudo” reduced form parameters in model (2.7) can be identified by the moment

conditions described in the previous section. Similar to (2.5) and (2.6), the linear moment function

can be written as

f1,k ≡ f1,k(δk) = Q′vk(δk)

and the quadratic moment function can be written as

f2,kl ≡ f2,kl(δk, δl) = [Ξ′1vk(δk), · · · ,Ξ′pvk(δk)]′vl(δl)

for k, l = 1, · · · ,m. Let f(δ) = [f1(δ)′, f2(δ)′]′, where δ = (δ′1, · · · , δ′m)′, f1(δ) = (f ′1,1, · · · , f ′1,m)′,

and f2(δ) = (f ′2,11, · · · , f ′2,1m, f ′2,21, · · · , f ′2,mm)′. For δ0 to be identified by the moment conditions

E[f(δ0)] = 0, the moment equations limn→∞ n
−1E[f(δ)] = 0 need to have a unique solution at

δ = δ0 (Hansen, 1982).

It follows from (2.9) that

lim
n→∞

n−1E[f1,k(δk)] = lim
n→∞

n−1Q′dk(δk) = lim
n→∞

n−1Q′[E(Wy1), · · · ,E(Wym),X](δk,0 − δk)

for k = 1, · · · ,m. The linear moment equation, limn→∞ n
−1E[f1,k(δk)] = 0, has a unique solution

at δk = δk,0, if Q′[E(Wy1), · · · ,E(Wym),X] has full column rank for n sufficiently large. A

necessary condition for this rank condition is that [E(Wy1), · · · ,E(Wym),X] has full column rank

of m+KX and rank(Q) ≥ m+KX for n sufficiently large.

If, however, [E(Wy1), · · · ,E(Wym),X] does not have full column rank,5 then the model may

still be identifiable via the quadratic moment condition. Suppose for some m̄ ∈ {0, 1, · · · ,m− 1},
5 From (2.8), E(Wyk) = Hk(B′0 ⊗ In)x. For example, if B0 = 0, then E(Wyk) = 0 for k = 1, . . . ,m, and thus

[E(Wy1), . . . ,E(Wym),X] does not have full column rank.
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E(Wyl) and the columns of [E(Wy1), · · · ,E(Wym̄),X] are linearly dependent for some l ∈ {m̄+

1, · · · ,m},6 i.e., E(Wyl) =
∑m̄

k=1 c1,klE(Wyk) + Xc2,l for some vector of constants

(c1,1l, · · · , c1,m̄l, c
′
2,l) ∈ Rm̄+KX .

In this case,

dk(θk) =
m̄∑
j=1

E(Wyj)[ψjk,0 − ψjk +
m∑

l=m̄+1

(ψlk,0 − ψlk)c1,jl] + X[πk,0 −πk +
m∑

l=m̄+1

(ψlk,0 − ψlk)c2,l],

and hence limn→∞ n
−1E[f1,k(δk)] = 0 implies that

ψjk = ψjk,0 +

m∑
l=m̄+1

(ψlk,0 − ψlk)c1,jl (2.10)

πk = πk,0 +

m∑
l=m̄+1

(ψlk,0 − ψlk)c2,l,

for j = 1, · · · , m̄ and k = 1, · · · ,m, provided that Q′[E(Wy1), · · · ,E(Wym̄),X] has full column

rank for n sufficiently large. Therefore, (ψ1k,0, · · · , ψm̄k,0,π′k,0) can be identified if ψlk,0 (for l =

m̄+ 1, · · · ,m) can be identified from the quadratic moment condition.

When δk is characterized by (2.10), we have

E[vk(δk)
′Ξrvl(δl)] =

m∑
i=1

(ψik,0 − ψik)tr[H′iΞrE(vlv
′)] +

m∑
j=1

(ψjl,0 − ψjl)tr[ΞrHjE(vv′k)]

+
m∑
i=1

m∑
j=1

(ψik,0 − ψik)(ψjl,0 − ψjl)tr[H′iΞrHjE(vv′)],

where E(vv′) = [(Im−Γ′0)−1⊗ In]Σ[(Im−Γ0)−1⊗ In] and E(vkv
′) = E(vv′k)

′ = (i′m,k⊗ In)E(vv′).

Therefore, the quadratic moment equations, limn→∞ n
−1E[f2,kl(δk, δl)] = 0 for k, l = 1, · · · ,m,

have a unique solution at Ψ0, if the equations

lim
n→∞

n−1{
m∑
i=1

(ψik,0 − ψik)tr[H′iΞrE(vlv
′)] +

m∑
j=1

(ψjl,0 − ψjl)tr[ΞrHjE(vv′k)] (2.11)

+

m∑
i=1

m∑
j=1

(ψik,0 − ψik)(ψjl,0 − ψjl)tr[H′iΞrHjE(vv′)]} = 0,

6 We adopt the convention that [E(Wy1), · · · ,E(Wym̄),X] = X for m̄ = 0.
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for r = 1, · · · , p and k, l = 1, · · · ,m, have a unique solution at Ψ0.7 To wrap up, sufficient

conditions for the identification of the “pseudo” reduced form parameters are summarized in the

following assumption.

Assumption 2.7 At least one of the following conditions holds.

(i) limn→∞ n
−1Q′[E(Wy1), · · · ,E(Wym),X] exists and has full column rank.

(ii) limn→∞ n
−1Q′[E(Wy1), · · · ,E(Wym̄),X] exists and has full column rank for some 0 ≤

m̄ ≤ m − 1. The equations (2.11), for r = 1, · · · , p and k, l = 1, · · · ,m, have a unique solution at

Ψ0.

2.3.2 Identification of the structural parameters

Provided that the “pseudo” reduced form parameters Ψ0 and Π0 can be identified from the

linear and quadratic moment conditions as discussed above. Then, the identification problem of

the structural parameters in Θ0 = [(Im − Γ0)′,−Λ′0,−B′0]′ through the linear restrictions Ψ0 =

Λ0(Im − Γ0)−1 and Π0 = B0(Im − Γ0)−1 is essentially the same one as in the classical linear

simultaneous equations model (see, e.g., Schmidt, 1970). Let ϑk,0 denote the k-th column of Θ0.

Suppose there are Rk restrictions on ϑk,0 of the form Rkϑk,0 = 0 where Rk is a Rk × (2m+KX)

matrix of known constants. Following a similar argument in Yang and Lee (2014), the sufficient and

necessary rank condition for identification with the restrictions Rkϑk,0 = 0 is rank(RkΘ0) = m−1,

and the necessary order condition is Rk ≥ m− 1.

Assumption 2.8 For k = 1, · · · ,m, Rkϑk,0 = 0 for some Rk × (2m + KX) constant matrix Rk

with

rank(RkΘ0) = m− 1.

7 A weaker identification condition can be derived based on (2.10) and (2.11) if the constants c1,1l, · · · , c1,m̄l, c2,l

are known to the researcher.
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2.4 GMM Estimation

2.4.1 Consistency and asymptotic normality

Based on the moment conditions E[g(θ0)] = 0, the GMM estimator for the simultaneous-

equation SAR model (2.1) is given by

θ̃gmm = arg min g(θ)′F′Fg(θ) (2.12)

where F is some conformable matrix such that limn→∞F exists with full row rank greater than or

equal to dim (θ).

To characterize the asymptotic distribution of the GMM estimator, first we need to derive

Ω = Var[g(θ0)] and D = −E[ ∂
∂θ′

g(θ0)]. As Ξr’s have zero diagonals for r = 1, · · · , p, it follows by

Lemmas 2.1 and 2.2 in the Appendix that

Ω = Var[g(θ0)] =

 Ω11 0

0 Ω22

 , (2.13)

where

Ω11 = Var[g1(θ0)] = (Im ⊗Q′)Σ(Im ⊗Q) =


Q′Σ11Q · · · Q′Σ1mQ

...
. . .

...

Q′Σ1mQ · · · Q′ΣmmQ


and Ω22 = Var[g2(θ0)] with a typical block matrix in Ω22 given by

E(g2,ijg
′
2,kl)|θ=θ0 =


tr(ΣilΞ1ΣjkΞ1) + tr(ΣikΞ1ΣjlΞ

′
1) · · · tr(ΣilΞ1ΣjkΞ1) + tr(ΣikΞpΣjlΞ

′
p)

...
. . .

...

tr(ΣilΞpΣjkΞ1) + tr(ΣikΞpΣjlΞ
′
1) · · · tr(ΣilΞpΣjkΞp) + tr(ΣikΞpΣjlΞ

′
p)

 .

The explicit expression for D depends on the specific restrictions imposed on the model

parameters. Let Zk = [Yk, Ȳk,Xk]. Then,

D = −E[
∂

∂θ′
g(θ0)] = [D′1,D

′
2]′, (2.14)
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where

D1 = −E[
∂

∂θ′
g1(θ0)] =


Q′E(Z1)

. . .

Q′E(Zm)


and

D2 = −E[
∂

∂θ′
g2 (θ0)] =



Υ1,11

...

Υ1,1m

. . .

Υ1,m1

...

Υ1,mm



+



Υ2,11

. . .

Υ2,1m

...

Υ2,m1

. . .

Υ2,mm



,

with Υ1,kl = [E(Z′kΞ1ul), · · · ,E(Z′kΞpul)]
′ and Υ2,kl = [E(Z′lΞ

′
1uk), · · · ,E(Z′lΞ

′
puk)]

′. In the fol-

lowing proposition we establish consistency and asymptotic normality of the GMM estimator θ̃gmm

defined in (2.12).

Proposition 2.1 Suppose Assumptions 2.1-2.8 hold, Then,

√
n(θ̃gmm − θ0)

d→ N(0,AsyVar(θ̃gmm))

where

AsyVar(θ̃gmm) = lim
n→∞

[(n−1D)′F′F(n−1D)]−1(n−1D)′F′F(n−1Ω)F′F(n−1D)[(n−1D)′F′F(n−1D)]−1

with Ω and D given in (2.13) and (2.14) respectively.

With F′F in (2.12) replaced by (n−1Ω)−1, AsyVar(θ̃gmm) reduces to (limn→∞ n
−1D′Ω−1D)−1.

Therefore, by the generalized Schwarz inequality, (n−1Ω)−1 is the optimal GMM weighting marix.

However, since Ω depends on the unknown matrix Σ, the GMM estimator with the optimal weight-

ing matrix (n−1Ω)−1 is infeasible. The following proposition extends the result in Lin and Lee

(2010) to the simultaneous-equation SAR model by suggesting consistent estimators for n−1Ω and
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n−1D as inspired by White (1980). With consistently estimated n−1Ω and n−1D, a feasible optimal

GMM estimator and a heteroskedasticity-robust estimator of its covariance can be obtained.

Proposition 2.2 Suppose Assumptions 2.1-2.8 hold. Let θ̃ be a consistent estimator of θ0 and

Σ̃kl = diag(ũ1kũ1l, · · · , ũnkũnl) where ũik is the i-th element of ũk = uk(θ̃k). Let n−1D̃ and n−1Ω̃

be estimators of n−1Ω and n−1D, with θ0 and Σkl in Ω and D replaced by θ̃ and Σ̃kl respectively.

Then n−1D̃− n−1D = op(1) and n−1Ω̃− n−1Ω = op(1).

Finally Proposition 2.3 establishes asymptotic normality of the feasible optimal GMM esti-

mator.

Proposition 2.3 Suppose Assumptions 2.1-2.8 hold. The optimal GMM estimator is given by

θ̂gmm = arg min g(θ)′Ω̃g(θ), (2.15)

where n−1Ω̃ is a consistent estimator of n−1Ω such that n−1Ω̃−n−1Ω = op(1). Then
√
n(θ̂gmm−

θ0)
d→ N(0, (limn→∞ n

−1D′ΩD)−1).

Note that, the 3SLS estimator can be treated as a special case of the optimal GMM estimator

using only linear moment conditions, i.e.,

θ̂3SLS = arg min g1(θ)′Ω̃−1
11 g1(θ) = (Z′P̃Z)−1Z′P̃y,

where

Z =


Z1

. . .

Zm


and P̃ = (Im⊗Q)[(Im⊗Q′)Σ̃(Im⊗Q)]−1(Im⊗Q′). Similar to Proposition 2.3, we can show that

√
n(θ̂3SLS − θ0)

d→ N(0, ( lim
n→∞

n−1D′1Ω
−1
11 D−1

1 )).

Since D′Ω−1D − D′1Ω
−1
11 D1 = D′2Ω

−1
22 D2, which is positive semi-definite, the proposed GMM

estimator is asymptotically more efficient than the 3SLS estimator.
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2.4.2 Best moment conditions under homoskedasticity

The above optimal GMM estimator is only “optimal” given the moment conditions. The

asymptotic efficiency of the optimal GMM estimator can be improved by using the “best” moment

conditions. As discussed in Lin and Lee (2010), under heteroskedasticity of an unknown form, the

best moment conditions may not be available. However, under homoskedasticity, it is possible to

find the best Q and Ξr’s that satisfy Assumption 2.6. In general, the best Q and Ξr’s depend

on the specification of the simultaneous-equation model. For expositional purpose, we consider a

two-equation SAR model given by

y1 = γ21,0y2 + λ11,0Wy1 + λ21,0Wy2 + X1β1,0 + u1 (2.16)

y2 = γ12,0y1 + λ12,0Wy1 + λ22,0Wy2 + X2β2,0 + u2

where X1 and X2 are respectively n ×K1 and n ×K2 submatrices of X. Suppose u1 and u2 are

n× 1 vectors of i.i.d. random variable with zero mean and E(u1u
′
1) = σ11In, E(u2u

′
2) = σ22In and

E(u1u
′
2) = σ12In.

With the residual functions

u1(θ1) = y1 − γ21y2 − λ11Wy1 − λ21Wy2 −X1β1

u2(θ2) = y2 − γ12y1 − λ12Wy1 − λ22Wy2 −X2β2,

the moment functions are given by g(θ) = [g1(θ)′,g2(θ)′]′, where

g1(θ) =

 Q′u1(θ1)

Q′u2(θ2)


and

g2(θ) =



g2,11(θ1,θ1)

g2,12(θ1,θ2)

g2,21(θ2,θ1)

g2,22(θ2,θ2)


,
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with g2,kl(θk,θl) = [Ξ′1uk(θk), · · · ,Ξ′puk(θk)]′ul(θl). Then, the asymptotic covariance matrix for

the optimal GMM estimator defined in (2.15) is AsyVar(θ̂gmm) = (limn→∞ n
−1D′ΩD)−1. Under

homoskedasticity,

Ω = Var[g(θ0)] =

 Ω11 0

0 Ω22

 ,
where

Ω11 = Var[g1(θ0)] =

 σ11Q
′Q σ12Q

′Q

σ12Q
′Q σ22Q

′Q


and

Ω22 = Var[g2(θ0)]

=



σ2
11 σ11σ12 σ11σ12 σ2

12

σ11σ12 σ2
12 σ11σ22 σ22σ12

σ11σ12 σ11σ22 σ2
12 σ22σ12

σ2
12 σ22σ12 σ22σ12 σ2

22


⊗∆1 +



σ2
11 σ11σ12 σ11σ12 σ2

12

σ11σ12 σ11σ22 σ2
12 σ22σ12

σ11σ12 σ2
12 σ11σ22 σ22σ12

σ2
12 σ22σ12 σ22σ12 σ2

22


⊗∆2,

with

∆1 =


tr(Ξ1Ξ1) · · · tr(Ξ1Ξp)

...
. . .

...

tr(ΞpΞ1) · · · tr(ΞpΞp)

 and ∆2 =


tr(Ξ1Ξ

′
1) · · · tr(Ξ1Ξ

′
p)

...
. . .

...

tr(ΞpΞ
′
1) · · · tr(ΞpΞ

′
p)

 .
Furthermore,

D = −E[
∂

∂θ′
g(θ0)] = [D′1,D

′
2]′,

where

D1 = −E[
∂

∂θ′
g1(θ0)] =

 Q′E(Z1)

Q′E(Zm)


and

D2 = −E[
∂

∂θ′
g2 (θ0)] =



Υ1,11

Υ1,12

Υ1,21

Υ1,22


+



Υ2,11

Υ2,12

Υ2,21

Υ2,22


,
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with Υ1,kl = [E(Z′kΞ1ul), · · · ,E(Z′kΞpul)]
′ and Υ2,kl = [E(Z′lΞ

′
1uk), · · · ,E(Z′lΞ

′
puk)]

′.

Let

g∗(θ) = [g∗1(θ)′,g∗2(θ)′]′

and Ω∗ = Var[g∗(θ0)], where g∗1(θ) = (I2 ⊗Q∗)′u(θ) and

g∗2(θ) = [g∗2,11(θ1,θ1)′,g∗2,12(θ1,θ2)′,g∗2,21(θ2,θ1)′,g∗2,22(θ2,θ2)′]′

with

g∗2,kl(θk,θl) = [uk(θk)
′Ξ∗1ul(θl), . . . ,uk(θk)

′Ξ∗p∗ul(θl)]
′.

The following equation gives the best GMM (BGMM) estimator

θ̃bgmm = arg min g∗(θ)′Ω∗−1g∗(θ) (2.17)

with the optimal Q∗ and {Ξ∗j : j = 1, . . . , p∗}.

Setting p∗ = 8, the equations bellow define the optimal choice of IV matrix and weights for

the quadratic moment functions,

Q∗ = [G11X1,G12X2,G21X1,G22X2,S
−1
11 X1,S

−1
12 X2,S

−1
12 X1,S

−1
22 X2,X] (2.18)

Ξ∗1 = (i′2,1 ⊗W)S−1(i2,1 ⊗ In)− diag[(i′2,1 ⊗W)S−1(i2,1 ⊗ In)] (2.19)

Ξ∗2 = (i′2,2 ⊗W)S−1(i2,2 ⊗ In)− diag[(i′2,2 ⊗W)S−1(i2,2 ⊗ In)] (2.20)

Ξ∗3 = (i′2,1 ⊗W)S−1(i2,2 ⊗ In)− diag[(i′2,1 ⊗W)S−1(i2,2 ⊗ In)] (2.21)

Ξ∗4 = (i′2,2 ⊗W)S−1(i2,1 ⊗ In)− diag[(i′2,2 ⊗W)S−1(i2,1 ⊗ In)] (2.22)

Ξ∗5 = (i′2,1 ⊗ In)S−1(i2,1 ⊗ In)− diag[(i′2,1 ⊗ In)S−1(i2,1 ⊗ In)] (2.23)

Ξ∗6 = (i′2,2 ⊗ In)S−1(i2,2 ⊗ In)− diag[(i′2,2 ⊗ In)S−1(i2,2 ⊗ In)] (2.24)

Ξ∗7 = (i′2,1 ⊗ In)S−1(i2,2 ⊗ In)− diag[(i′2,1 ⊗ In)S−1(i2,2 ⊗ In)] (2.25)

Ξ∗8 = (i′2,2 ⊗ In)S−1(i2,1 ⊗ In)− diag[(i′2,2 ⊗ In)S−1(i2,1 ⊗ In)] (2.26)

where S = [(Γ′0⊗ In)− (Λ′0⊗W)]; S−1
rs = (i′2,r⊗ In)S−1(i2,s⊗ In) and Grs = WS−1

rs , for r, s = 1, 2.

The following proposition establish efficiency of the BGMM estimator constructed with Q∗

and {Ξ∗j}8j=1.
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Proposition 2.4 Suppose Assumptions 2.2-2.7 hold. Suppose u has zero mean and variance Σ⊗In,

where Σ is a 2 × 2 symmetric positive definite matrix. The BGMM estimator in equation (2.17)

constructed with Q∗ and {Ξ∗j}8j=1 defined in equations (2.18)-(2.26) is efficient in the class of GMM

estimators defined in equation (2.12).

2.5 Monte Carlo

In this section we perform a small Monte Carlo simulation study. We consider the following

model

y1 = λ11,0Wy1 + λ21,0Wy2 + γ21,0y2 + x1β1,0 + u1

y2 = λ12,0Wy1 + λ22,0Wy2 + γ12,0y1 + x2β2,0 + u2

with x1,x2 ∼ N(1, 1); β1,0 = β2,0 = 0.6; λ11,0 = λ22,0 = λ12,0 = λ21,0 = 0.1; and γ21,0 =

γ12,0 = 0.2. We consider both the conditional heteroskedastic case with Var[us,i|xs,i] = σss,i = x2
s,i

and Cov[u1,i, u2,i|x1,i, x2,i] = σ12,i = ρ
√
σ11,iσ22,i; and the homoskedastic case with σss,i = 2 and

σ12,i = ρ, where ρ = 0.1, 0.5 and 0.9. In both heteroskedastic and homoskedastic cases, disturbances

are conditionally normally distributed centered at 0. Note that the parameter choices are such that

the homoskedastic and heteroskedastic cases are comparable. Let W0 denote the spatial weights

matrix for the study of crimes across 49 districts in Columbus, Ohio, in Anselin (1988). For n = 98,

we set W = I2 ⊗W0, and for n = 490, we set W = I10 ⊗W0. We conduct 1000 replications in

the simulation experiment for each of the different specifications. Eight estimators are considered

a) two stages least squares (2SLS) with linear moment condition Q′u1(θ1);

b) three stages least squares (3SLS-ht) taking into account the possibility of heteroskedasticity

in construction of Ω based on moment conditions (I2 ⊗Q′)u(θ);

c) three stages least squares (3SLS-hm) ignoring the possibility of heteroskedasticity in con-

struction of Ω based on moment conditions (I2 ⊗Q′)u(θ);
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d) “single equation” generalized method of moments (GMM1-ht) estimation taking into ac-

count the possibility of heteroskedasticity in construction of Ω based on linear moment

condition Q′u1(θ1) and quadratic moment condition u1(θ1)′Ξu1(θ1);

e) “single equation” generalized method of moments (GMM1-hm) estimation ignoring the

possibility of heteroskedasticity in construction of Ω based on Q′u1(θ1) and u1(θ1)′Ξu1(θ1)

moment conditions;

f) “simultaneous equation” generalized method of moments (GMM2-ht) estimation taking

into account the possibility of heteroskedasticity in construction of Ω based on the lin-

ear moment conditions (I2 ⊗ Q′)u(θ) and quadratic moment conditions u1(θ1)′Ξu1(θ1),

u1(θ1)′Ξu2(θ2), u2(θ2)′Ξu1(θ1) and u2(θ2)′Ξu2(θ2);

g) “simultaneous equation” generalized method of moments (GMM2-hm) estimation ignoring

the possibility of heteroskedasticity in construction of Ω based on linear moment condi-

tions (I2 ⊗ Q′)u(θ), and quadratic moment conditions u1(θ1)′Ξu1(θ1), u1(θ1)′Ξu2(θ2),

u2(θ2)′Ξu1(θ1) and u2(θ2)′Ξu2(θ2) and;

h) maximum likelihood estimator (MLE).

We use Q = [WX,W2X,X], where X = [x1,x2], and Ξ = W − diag(W). The Ω matrix was

constructed using 2SLS residuals. Results are reported in tables 2.1-2.4 in the appendix. We

summarize the main observations bellow.

(i) Construction of Ω using the sandwich method introduced in Proposition 2.2 does not signifi-

cantly reduce efficiency of estimators even under homoskedasticity. Under heteroskedastic-

ity, the results do not indicate efficiency gain in using the sandwich method.

(ii) Efficiency follows the following order, from most efficient to least efficient, MLE, GMM2,

GMM1, 3SLS and 2SLS.

(iii) For the sample size of n = 490 under heteroskedasticity reported in Table 2.2, mean of GMM2
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estimates are in general closer to true parameter values than MLE, especially in the esti-

mation of λ12,0. In particular, the percentage bias8 of the MLE of λ12,0 is given by roughly

26%, 23% and 19% for ρ equal to 0.1, 0.5 and 0.9 respectively. Under homoskedasticity, we

observe from Table 2.4, those numbers drop to approximately 4%, 4% and 3%. The per-

centage bias of all GMM2-ht estimate for n = 490 fall below the 5%. These results suggests

that GMM2-ht is robust under heteroskedasticity, whereas MLE tend to be biased.

(iv) On an early 2011 13-inch display MacBook Pro with 2.3 Gz Intel Core i5 processor and 8GB

of memory, the simulation took 49 hours to run. The GMM estimators and MLE where

calculated in MATLAB using fminuc optimization procedure with user provided gradient.

Excluding MLE from the simulation, running time drops to about 12 hours. This implies

that about 75% of the time to run the simulation was dedicated to running MLE. Fur-

thermore, for n = 98, GMM2-ht averaged 0.248(0.171) seconds per estimation while MLE

averaged 1.311(0.372) seconds and for n = 490, GMM2-ht averaged 1.328(0.173) seconds

per estimation whereas MLE averaged 11.219(1.608) seconds, where the values in paren-

thesis correspond to the standard deviation in running time. This is mainly due to the fact

that the GMM estimators considered in this simulation have objective functions that are

polynomial, whereas the objective function of the MLE is considerably more cumbersome.

Due to the computational ease of optimizing polynomial functions, it takes considerably

less time to compute the GMM estimators considered in this paper.

2.6 Conclusion

In this paper, we propose a general GMM framework for the estimation of System of Si-

multaneous Equations SAR models with unknown heteroskedasticity. We introduce a new set of

quadratic moment conditions to construct the GMM estimator, based on the correlation struc-

ture of the spatially lagged dependent variable with the model disturbance term and with the

endogenous regressors. We establish the consistency and asymptotic normality of the proposed the

8 The percentage bias is given by bias divided by the true parameter value.
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GMM estimator and discuss the optimal choice of moment conditions. We also provide a method

for consistently estimate the variance covariance matrix of the GMM estimator under unknown

heteroskedasticity. The approach taken for variance covariance estimation follows closely White

(1980), which has been referred as the sandwich method by applied researchers.

Our Monte Carlo study show that the proposed estimator perform well in finite samples.

In particular, the estimator in Proposition 2.3 constructed with Ω̃ in Proposition 2.2 is robust

under heteroskedasticity with no apparent loss in efficiency under homoskedasticity. The simulation

suggests that MLE is biased in the presence of heteroskedasticity, whereas our GMM estimator’s

unbiasedness is not affected by the presence of heteroskedasticity. Furthermore, the computational

cost imposed by the proposed estimator is drastically smaller than MLE’s. We believe that the gain

in precision in the case of unknown heteroskedastic error, the computational ease and consistency

of variance estimation of our estimator more than offsets the efficiency gains of MLE.

Appendix 2.1 Lemmas

In the following, we list some lemmas useful for proving the main results in this paper.

Lemma 2.1 Let A = [aij ] and B = [bij ] be n× n nonstochastic matrices with zero diagonals. Let

ε1, ε2, ε3, ε4 be n× 1 vectors of independent random variables with zero mean. Let Σkl = E(εkε
′
l)

for k, l = 1, 2, 3, 4. Then,

E(ε′1Aε2ε
′
3Bε4) = tr(Σ13AΣ24B

′) + tr(Σ14AΣ23B).
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Proof: As aii = bii = 0 for all i,

E(ε′1Aε2ε
′
3Bε4)

= E(
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

aijbklε1,iε2,jε3,kε4,l)

=

n∑
i=1

aiibiiE(ε1,iε2,iε3,iε4,i) +

n∑
i=1

n∑
j 6=i

aiibjjE(ε1,iε2,i)E(ε3,jε4,j)

+
n∑
i=1

n∑
j 6=i

aijbijE(ε1,iε3,i)E(ε2,jε4,j) +
n∑
i=1

n∑
j 6=i

aijbjiE(ε1,iε4,i)E(ε2,jε3,j)

= tr(Σ13AΣ24B
′) + tr(Σ14AΣ23B).

Lemma 2.2 Let A = [aij ] be an n × n nonstochastic matrix with a zero diagonal and c =

(c1, · · · , cn) be an n×1 nonstochastic vector. Let ε1, ε2, ε3 be n×1 vectors of independent random

variables with zero mean. Then,

E(ε′1Aε2ε
′
3c) = 0.

Proof: As aii = 0 for all i,

E(ε′1Aε2ε
′
3c) = E(

n∑
i=1

n∑
j=1

n∑
k=1

aijckε1,iε2,jε3,k) =
n∑
i=1

aiiciE(ε1,iε2,iε3,i) = 0.

Lemma 2.3 Let A be an mn ×mn nonstochastic matrix with row and column sums uniformly

bounded in absolute value. Suppose u satisfies Assumption 2.1. Then (i) n−1u′Au = Op(1) and

(ii) n−1[u′Au− E(u′Au)] = op(1).

Proof: A trivial extension of Lemma A.3 in Lin and Lee (2010).

Lemma 2.4 Let A be an mn ×mn nonstochastic matrix with row and column sums uniformly

bounded in absolute value. Let c be an mn × 1 nonstochastic vector with uniformly bounded
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elements. Suppose u satisfies Assumption 2.1. Then n−1/2c′Au = Op(1) and n−1c′Au = op(1).

Furthermore, if limn→∞ n
−1c′AΣA′c exists and is positive definite, then

n−1/2c′Au
d→ N(0, lim

n→∞
n−1c′AΣA′c).

Proof: A trivial extension of Lemma A.4 in Lin and Lee (2010).

Lemma 2.5 Let Akl be an n × n nonstochastic matrix with row and column sums uniformly

bounded in absolute value and ck an n× 1 nonstochastic vector with uniformly bounded elements

for k, l = 1, · · · ,m. Suppose u satisfies Assumption 2.1. Let σ2
ε = Var(ε), where ε =

∑m
k=1 c′kuk +∑m

k=1

∑m
l=1[u′kAklul − tr(AklΣkl)]. If n−1σ2

ε is bounded away from zero, then σ−1
ε ε

d→ N(0, 1).

Proof: A trivial extension of Lemma 3 in Yang and Lee (2014).

Lemma 2.6 Let c1 and c2 be mn×1 nonstochastic vectors with uniformly bounded elements. Let

S = Imn− (Γ′0⊗ In)− (Λ′0⊗W) and S̃ = Imn− (Γ̃′⊗ In)− (Λ̃′⊗W), where Γ̃ and Λ̃ are consistent

estimators of Γ0 and Λ0 respectively. Then, n−1c′1(S̃−1 − S−1)c2 = op(1).

Proof: A trivial extension of Lemma A.9 in Lee (2007).

Lemma 2.7 Let f(θ) = [g1(θ)′, f2(θ)′]′ with E[f(θ0)] = 0. Define Di = −E[ ∂
∂θ′

fi(θ)] and Ωij =

E[fi(θ)fj(θ)′] for i, j = 1, 2. The following statements are equivalent (i) f2 is redundant given f1;

(ii) D2 = Ω21Ω
−1
11 D1 and (iii) there exists a matrix A such that D2 = Ω21A and D1 = Ω11A.

Proof: See Breusch et al. (1999).

Lemma 2.8 Consider the set of moment conditions f(θ) = [f1(θ)′, f2(θ)′, f3(θ)′]′ with E[f(θ0)] = 0.

Then (f ′2, f
′
3)′ is redundant given f1 if and only if f2 is redundant given f1 and f3 is redundant given

f1.

Proof: See Breusch et al. (1999).
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Appendix 2.2 Proofs

Proof of Proposition 2.1: For consistency, we first need to show that n−1Fg(θ)−n−1E[Fg(θ)] =

op(1) uniformly in θ. Suppose the i-th row of F can be written as

Fi = [fi,1, · · · , fi,m, fi,11,1, · · · , fi,11,p, · · · , fi,mm,1, · · · , fi,mm,p].

Then,

Fig(θ) =

m∑
k=1

fi,kQ
′uk(θk) +

m∑
k=1

m∑
l=1

p∑
r=1

fi,kl,ruk(θk)
′Ξrul(θl).

Let γ̄k,0 = (γ̄1k,0, · · · , γ̄mk,0)′ and λ̄k,0 = (λ̄1k,0, · · · , λ̄mk,0)′ denote, respectively, the k-th column

of Γ0 and Λ0, including the restricted parameters. From the reduced form (2.2),

uk(θk) = yk −Ykγk − Ȳkλk −Xkβk (2.27)

= Yk(γk,0 − γk) + Ȳk(λk,0 − λk) + Xk(βk,0 − βk) + uk

= Y(γ̄k,0 − γ̄k) + WY(λ̄k,0 − λ̄k) + Xk(βk,0 − βk) + uk

= dk(θk) + uk +
m∑
l=1

[(γ̄lk,0 − γ̄lk)(i′m,l ⊗ In) + (λ̄lk,0 − λ̄lk)(i′m,l ⊗W)]S−1u

where

dk(θk) =
m∑
l=1

[(γ̄lk,0 − γ̄lk)(i′m,l ⊗ In) + (λ̄lk,0 − λ̄lk)(i′m,l ⊗W)]S−1(B′0 ⊗ In)x + Xk(βk,0 − βk)

and S = (Γ′0 ⊗ In)− (Λ′0 ⊗W). This implies that

E[Q′uk(θk)] = Q′dk(θk)
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and

E[uk(θk)
′Ξrul(θl)] = dk(θk)

′Ξrdl(θl)

+
m∑
j=1

(γ̄jl,0 − γ̄jl)tr[Ξr(i
′
m,j ⊗ In)S−1E(uu′k)] +

m∑
j=1

(λ̄jl,0 − λ̄jl)tr[Ξr(i
′
m,j ⊗W)S−1E(uu′k)]

+

m∑
i=1

(γ̄ik,0 − γ̄ik)tr[Ξ′r(i′m,i ⊗ In)S−1E(uu′l)] +
m∑
i=1

(λ̄ik,0 − λ̄ik)tr[Ξ′r(i′m,i ⊗W)S−1E(uu′l)]

+
m∑
i=1

m∑
j=1

(γ̄ik,0 − γ̄ik)(γ̄jl,0 − γ̄jl)tr[S′−1(i′m,i ⊗ In)′Ξr(i
′
m,j ⊗ In)S−1Σ]

+

m∑
i=1

m∑
j=1

(λ̄ik,0 − λ̄ik)(γ̄jl,0 − γ̄jl)tr[S′−1(i′m,i ⊗W)′Ξr(i
′
m,j ⊗ In)S−1Σ]

+

m∑
i=1

m∑
j=1

(γ̄ik,0 − γ̄ik)(λ̄jl,0 − λ̄jl)tr[S′−1(i′m,i ⊗ In)′Ξr(i
′
m,j ⊗W)S−1Σ]

+

m∑
i=1

m∑
j=1

(λ̄ik,0 − λ̄ik)(λ̄jl,0 − λ̄jl)tr[S′−1(i′m,i ⊗W)′Ξr(i
′
m,j ⊗W)S−1Σ].

As Fig(θ) is a quadratic function of θ and the parameter space of θ is bounded, it follows by Lemmas

2.3 and 2.4 that n−1Fig(θ) − n−1E[Fig(θ)] = op(1) uniformly in θ. Furthermore, n−1E[Fg(θ)]

is uniformly equicontinuous in θ. The identification condition and the uniform equicontinuity of

n−1E[Fg(θ)] imply that the identification uniqueness condition for n−2E[g(θ)′]F′FE[g(θ)] holds.

Therefore, θ̃gmm is a consistent estimator of θ0 (White, 1994).

For the asymptotic normality, we use the mean value theorem to write

√
n(θ̃gmm − θ0) = −

[
1

n

∂

∂θ
g(θ̃gmm)′F′

1

n
F
∂

∂θ′
g(θ)

]−1 1

n

∂

∂θ
g(θ̃gmm)′F′

1√
n

Fg(θ0)

where θ is as convex combination of θ̃gmm and θ0. By Lemma 2.5 together with the Cramer Wald

device, 1√
n
Fg(θ0) converges in distribution to N(0, limn→∞ n

−1FΩF′). Furthermore, consistency

of θ̃gmm implies that θ also converges in probability to θ0. Therefore it suffices to show that

n−1 ∂
∂θ′

g(θ)− limn→∞ n
−1E[ ∂

∂θ′
g(θ)] = op(1) uniformly in θ. We divide the remainder of the proof

into two parts focusing respectively on the partial derivatives of g1(θ) and g2(θ).
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First, note that

∂

∂θ′
g1(θ) =


Q′Z1

. . .

Q′Zm

 .
From the reduced form (2.2), we have

yl = (i′m,l ⊗ In)S−1[(B′0 ⊗ In)x + u].

By Lemma 2.4, we have n−1Q′yl − n−1E(Q′yl) = op(1) and n−1Q′Wyl = n−1E(Q′Wyl) + op(1),

which implies that that n−1 ∂
∂θ′

g1(θ)− n−1E[ ∂
∂θ′

g1(θ)] = op(1).

Next, note that

∂

∂θ′
g2 (θ) = −



Ῡ1,11(θ1)

...

Ῡ1,1m(θm)

. . .

Ῡ1,m1(θ1)

...

Ῡ1,mm(θm)



−



Ῡ2,11(θ1)

. . .

Ῡ2,1m(θ1)

...

Ῡ2,m1(θm)

. . .

Ῡ2,mm(θm)



,

where Ῡ1,kl(θl) = [Z′kΞ1ul(θl), · · · ,Z′kΞpul(θl)]
′ and Ῡ2,kl(θk) = [Z′lΞ

′
1uk(θk), · · · ,Z′lΞ′puk(θk)]′.

As uk(θk) can be expanded as (2.27), it follows by Lemmas 2.3 and 2.4 that n−1Z′kΞrul(θl) −

n−1E[Z′kΞrul(θl)] = op(1) and n−1Z′lΞ
′
ruk(θk)−n−1E[Z′lΞ

′
ruk(θk)] = op(1) uniformly in θ. There-

fore, n−1 ∂
∂θ′

g2(θ)− n−1E[ ∂
∂θ′

g2(θ)] = op(1) and the desired result follows.

Proof of Proposition 2.2: We divide the proof into two parts. First we prove the consistency

of n−1Ω̃. Then we prove the consistency of n−1D̃.

(1) To show n−1Ω̃− n−1Ω = op(1), we need to show that (1a) n−1Q′Σ̃klQ− n−1Q′ΣklQ =

op(1) and (1b) n−1tr(Σ̃klA1Σ̃stA2)−n−1tr(ΣklA1ΣstA2) = op(1), for k, l, s, t = 1, · · · ,m, for n×n

zero-diagonal matrices A1 = [a1,ij ] and A2 = [a2,ij ] that are uniformly bounded in row and column
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sums. The consistency of n−1Q′Σ̃klQ in (1a) can be shown by a similar argument as in White

(1980). Thus, we focus on the consistency of n−1tr(Σ̃klA1Σ̃stA2) = n−1
∑n

i,j=1 a1,ija2,jiũikũilũjsũjt.

It follows by a similar argument as in Lin and Lee (2010) that n−1
∑n

i,j=1 a1,ija2,jiuikuilujsujt −

n−1
∑n

i,j=1 a1,ija2,jiσi,klσj,st = op(1). Therefore, to show (1b) holds, we only need to show that

n−1
∑n

i,j=1 a1,ija2,jiũikũilũjsũjt − n−1
∑n

i,j=1 a1,ija2,jiuikuilujsujt = op(1).

Note that

n−1
n∑

i,j=1

a1,ija2,jiũikũilũjsũjt − n−1
n∑

i,j=1

a1,ija2,jiuikuilujsujt

= n−1
n∑

i,j=1

a1,ija2,ji(ũikũil − uikuil)ujsujt + n−1
n∑

i,j=1

a1,ija2,jiuikuil(ũjsũjt − ujsujt)

+n−1
n∑

i,j=1

a1,ija2,ji(ũikũil − uikuil)(ũjsũjt − ujsujt).

From (2.27), we have

ũk = uk(θ̃k) = yk −Ykγ̃k − Ȳkλ̃k −Xkβ̃k = dk(θ̃k) + uk + ek(θ̃k)

where

dk(θ̃k) =
m∑
l=1

[(γ̄lk,0 − ˜̄γlk)(i′m,l ⊗ In) + (λ̄lk,0 − ˜̄λlk)(i′m,l ⊗W)]S−1(B′0 ⊗ In)x + Xk(βk,0 − β̃k)

ek(θ̃k) =
m∑
l=1

[(γ̄lk,0 − ˜̄γlk)(i′m,l ⊗ In) + (λ̄lk,0 − ˜̄λlk)(i′m,l ⊗W)]S−1u

and S = Imn− (Γ′0⊗ In)− (Λ′0⊗W). Let dik and eik denote the i-th element of dk(θ̃k) and ek(θ̃k)

respectively. Then,

ũikũil = uikuil + dikdil + eikeil + (uikdil + dikuil) + (uikeil + eikuil) + (dikeil + eikdil).

To show n−1
∑n

i,j=1 a1,ija2,ji(ũikũil − uikuil)ujsujt = op(1), we focus on terms that are of higher

orders in uil. One of such terms is

n−1
n∑

i,j=1

a1,ija2,jieikuilujsujt =

m∑
r=1

(γ̄rk,0 − ˜̄γrk)n−1
n∑

i,j=1

a1,ija2,jiuilujsujt(i
′
m,r ⊗ i′n,i)S

−1u

+

m∑
r=1

(λ̄rk,0 − ˜̄λrk)n−1
n∑

i,j=1

a1,ija2,jiuilujsujt(i
′
m,r ⊗wi)S

−1u,
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where wi denotes the i-th row of W. By Assumption 2.1, we can show E|uhkuilujsujt| ≤ c for some

constant c using Cauchy’s inequality, which implies E|n−1
∑n

i,j=1

∑m
r=1 a1,ija2,jiuilujsujt(i

′
m,r ⊗

i′n,i)S
−1u| = O(1) and E|n−1

∑n
i,j=1

∑m
r=1 a1,ija2,jiuilujsujt(i

′
m,r ⊗ wi)S

−1u| = O(1) because A1,

A2, W and S−1 are uniformly bounded in row and column sums. Hence,

n−1
n∑

i,j=1

a1,ija2,jieikuilujsujt = op(1).

Similarly, we can show other terms in n−1
∑n

i,j=1 a1,ija2,ji(ũikũil − uikuil)ujsujt are of order op(1).

With a similar argument as above or as in Lin and Lee (2010),

n−1
n∑

i,j=1

a1,ija2,jiuikuil(ũjsũjt − ujsujt) = op(1)

and n−1
∑n

i,j=1 a1,ija2,ji(ũikũil − uikuil)(ũjsũjt − ujsujt) = op(1). Therefore, the consistency of

n−1tr(Σ̃klA1Σ̃stA2) in (1b) follows.

(2) Some typical entries in D that involve unknown parameters are Q′E(yk) = Q′(i′m,k ⊗

In)S−1(B′0 ⊗ In)x, Q′E(Wyk) = Q′(i′m,k ⊗Wn)S−1(B′0 ⊗ In)x, E(u′lAyk) = tr[(im,l ⊗A)(i′m,k ⊗

In)S−1Σ] and E(u′lAWyk) = tr[(im,l ⊗ A)(i′m,k ⊗W)S−1Σ], where A = [aij ] is an n × n zero-

diagonal matrix uniformly bounded in row and column sums. To show n−1D̃ − n−1D = op(1),

we need to show that (2a) n−1Q′(i′m,k ⊗ In)S̃−1(B̃′0 ⊗ In)x − n−1Q′(i′m,k ⊗ In)S−1(B′0 ⊗ In)x =

op(1) and n−1Q′(i′m,k ⊗ W)S̃−1(B̃′0 ⊗ In)x − n−1Q′(i′m,k ⊗ W)S−1(B′0 ⊗ In)x = op(1); (2b)

n−1tr[(im,l ⊗ A)(i′m,k ⊗ In)S̃−1Σ̃] − n−1tr[(im,l ⊗ A)(i′m,k ⊗ In)S−1Σ] = op(1) and n−1tr[(im,l ⊗

A)(i′m,k⊗W)S̃−1Σ̃]−n−1tr[(im,l⊗A)(i′m,k⊗W)S−1Σ] = op(1). where S̃ = Imn−(Γ̃′⊗In)−(Λ̃′⊗W)

and

Σ̃ =


Σ̃11 · · · Σ̃1m

...
. . .

...

Σ̃m1 · · · Σ̃mm

 .
As (2a) follows by Lemma 2.6 and (2b) follows by a similar argument as in Lin and Lee (2010), we

conclude n−1D̃− n−1D = op(1).

Proof of Proposition 2.3: For consistency, note that

g(θ)′Ω̃−1g(θ) = g(θ)′Ω−1g(θ) + g(θ)′(Ω̃−1 −Ω−1)g(θ).
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From the proof of Proposition 2.1, n−1g(θ)′Ω−1g(θ) − n−1E[g(θ)′Ω−1g(θ)] = op(1) uniformly in

θ. Hence, it suffices to show that n−1g(θ)′(Ω̃−1−Ω−1)g(θ) = op(1) uniformly in θ. Let ‖·‖ denote

the euclidian norm for vectors and matrices. Then,∥∥∥∥ 1

n
g(θ)′(Ω̃−1 −Ω−1)g(θ)

∥∥∥∥2

≤
(

1

n
‖g(θ)‖

)2
∥∥∥∥∥
(

1

n
Ω̃

)−1

−
(

1

n
Ω

)−1
∥∥∥∥∥ .

From the proof of Proposition 2.1, n−1g(θ)− n−1E[g(θ)] = op(1) uniformly in θ. As

n−1E[Q′uk(θk)] = n−1Q′dk(θk) = O(1)

and

n−1E[uk(θk)
′Ξrul(θl)] = n−1dk(θk)

′Ξrdl(θl) + n−1tr[Gk(θk)
′ΞrGl(θl)Σ] = O(1)

uniformly in θ, where

dk(θk) =
m∑
l=1

[(γ̄lk,0 − γ̄lk)(i′m,l ⊗ In) + (λ̄lk,0 − λ̄lk)(i′m,l ⊗W)]S−1(B′0 ⊗ In)x + Xk(βk,0 − βk)

and Gk(θk) =
∑m

l=1[(γ̄lk,0− ˜̄γlk)(i′m,l⊗In)+(λ̄lk,0− ˜̄λlk)(i′m,l⊗W)]S−1, it follows that n−1‖g(θ)‖ =

Op(1) uniformly in θ. Therefore, n−1g(θ)′(Ω̃−1 −Ω−1)g(θ) = op(1) uniformly in θ.

For the asymptotic distribution, by the mean value theorem, for some convex combination

of θ̂gmm and θ0 denoted by θ,

√
n(θ̂gmm − θ0) = −

[
1

n

∂

∂θ
g(θ̂gmm)′

(
1

n
Ω̃

)−1 1

n

∂

∂θ′
g(θ)

]−1
1

n

∂

∂θ
g(θ̂gmm)′

(
1

n
Ω̃

)−1 1√
n

g(θ0)

=

[
1

n
D

(
1

n
Ω

)−1 1

n
D

]−1
1

n
D

(
1

n
Ω

)−1 1√
n

g(θ0) + op(1)

d→ N

(
0,
[

lim
n→∞

n−1D′ΩD
]−1
)

where the asymptotic distribution statement is implied by Lemma 2.5.

Proof of Proposition 2.4: Similar to Liu et al. (2010) and Liu and Saraiva (2015), we use

Breusch et al. (1999), to show that any additional linear and/or quadratic moments are redundant.

In order to obtain the desired result, we need to closer inspect the matrix D, for Lemma 2.6
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establishes that if D = E[g(θ0)g∗(θ0)′]A, any moment condition of the form in g will be redundant

given g∗. Furthermore, if g will be redundant given g∗, then by Lemma 2.8 any sub-set of moment

conditions of g will also be redundant given g∗.

Defining θk = (λ1k, λ2k, φk,β
′
k)
′ and

∂

∂θ′k
uk(θk) = Zk = [Wy1,Wy2,ys,Xk]

leads to the following sub-matrix associated with the linear moment conditions,

D1 = −E

[
∂

∂θ′
g1(θ0)

]

=

 Q′E(Z1) 0

0 Q′E(Z2)

 .
Combining yk = (i′2,k ⊗ In)S−1[vec(XB0) + u] and the definition of Zk, we obtain

E(Zk) =
[
G11X1β1,0 + G12X2β2,0, G21X1β1,0 + G22X2β2,0, S−1

s1 X1β1,0 + S−1
s2 X2β2,0, Xk

]
for k = 1, 2 and s 6= k.

For the quadratic moment conditions, note that Ῡ1,kl = [E(Z′kΞ1ul), · · · ,E(Z′kΞpul)]
′ and

Ῡ2,kl = [E(Z′lΞ
′
1uk), · · · ,E(Z′lΞ

′
puk)]

′. Using the definition of Zk, we have that

E(Z′kΞjul) =



E([(i′2,1 ⊗W)S−1u]′Ξj(i
′
2,l ⊗ In)u)

E([(i′2,2 ⊗W)S−1u]′Ξj(i
′
2,l ⊗ In)u)

E([(i′2,s ⊗ In)S−1u]′Ξj(i
′
2,l ⊗ In)u)

0Kk×1



′

=



tr(Ξ′j(i
′
2,1 ⊗W)S−1(Σi2,l ⊗ In))

tr(Ξ′j(i
′
2,2 ⊗W)S−1(Σi2,l ⊗ In))

tr(Ξ′j(i
′
2,s ⊗ In)S−1(Σi2,l ⊗ In))

0Kk×1



′

.
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Similarly

E(Z′kΞ
′
jul) =



tr(Ξj(i
′
2,1 ⊗W)S−1(Σi2,l ⊗ In))

tr(Ξj(i
′
2,2 ⊗W)S−1(Σi2,l ⊗ In))

tr(Ξj(i
′
2,s ⊗ In)S−1(Σi2,l ⊗ In))

0Kk×1



′

for k, l = 1, 2 and s 6= k. To ease visualization we look at each sub-matrix of

D2 = [D′2,11,D
′
2,12,D

′
2,21,D

′
2,22]′

separately. Substituting Ῡ1,kl and Ῡ2,kl into D2, we have

D2,11 = −E

[
∂

∂θ′
g2,11(θ0)

]
=
[
Ῡ1,11 + Ῡ2,11, 0p×K2+3

]

=



tr[Ξ
(s)
1 WH1(Σi2,1 ⊗ In)] · · · tr[Ξ

(s)
p WH1(Σi2,1 ⊗ In)]

tr[Ξ
(s)
1 WH2(Σi2,1 ⊗ In)] · · · tr[Ξ

(s)
p WH2(Σi2,1 ⊗ In)]

tr[Ξ
(s)
1 H2(Σi2,1 ⊗ In)] · · · tr[Ξ

(s)
p H2(Σi2,1 ⊗ In)]

0(K1+K2+3)×1 · · · 0(K1+K2+3)×1



′

=



tr[Ξ
(s)
1 (σ11Ξ

∗
1 + σ12Ξ

∗
3)] · · · tr[Ξ

(s)
p (σ11Ξ

∗
1 + σ12Ξ

∗
3)]

tr[Ξ
(s)
1 (σ11Ξ

∗
4 + σ12Ξ

∗
2)] · · · tr[Ξ

(s)
p (σ11Ξ

∗
4 + σ12Ξ

∗
2)]

tr[Ξ
(s)
1 (σ11Ξ

∗
8 + σ12Ξ

∗
6)] · · · tr[Ξ

(s)
p (σ11Ξ

∗
8 + σ12Ξ

∗
6)]

0(K1+K2+3)×1 · · · 0(K1+K2+3)×1



′

;
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D2,12 = −E

[
∂

∂θ′
g2,12(θ0)

]
=
[
Ῡ1,12, Ῡ2,12

]

=



tr[Ξ′1(σ12Ξ
∗
1 + σ22Ξ

∗
3)] · · · tr[Ξ′p(σ12Ξ

∗
1 + σ22Ξ

∗
3)]

tr[Ξ′1(σ12Ξ
∗
4 + σ22Ξ

∗
2)] · · · tr[Ξ′p(σ12Ξ

∗
4 + σ22Ξ

∗
2)]

tr[Ξ′1(σ12Ξ
∗
8 + σ22Ξ

∗
6)] · · · tr[Ξ′p(σ12Ξ

∗
8 + σ22Ξ

∗
6)]

0K1×1 · · · 0K1×1

tr[Ξ1(σ11Ξ
∗
1 + σ12Ξ

∗
3)] · · · tr[Ξp(σ11Ξ

∗
1 + σ12Ξ

∗
3)]

tr[Ξ1(σ11Ξ
∗
4 + σ12Ξ

∗
2)] · · · tr[Ξp(σ12Ξ

∗
4 + σ22Ξ

∗
2)]

tr[Ξ1(σ11Ξ
∗
5 + σ12Ξ

∗
7)] · · · tr[Ξp(σ12Ξ

∗
5 + σ22Ξ

∗
7)]

0K2×1 · · · 0K2×1



′

;

D2,21 = −E

[
∂

∂θ′
g2,21(θ0)

]
=
[
Ῡ2,21, Ῡ1,21

]

=



tr[Ξ1(σ12Ξ
∗
1 + σ22Ξ

∗
3)] · · · tr[Ξp(σ12Ξ

∗
1 + σ22Ξ

∗
3)]

tr[Ξ1(σ12Ξ
∗
4 + σ22Ξ

∗
2)] · · · tr[Ξp(σ12Ξ

∗
4 + σ22Ξ

∗
2)]

tr[Ξ1(σ12Ξ
∗
8 + σ22Ξ

∗
6)] · · · tr[Ξp(σ12Ξ

∗
8 + σ22Ξ

∗
6)]

0K1×1 · · · 0K1×1

tr[Ξ′1(σ11Ξ
∗
1 + σ12Ξ

∗
3)] · · · tr[Ξ′p(σ11Ξ

∗
1 + σ12Ξ

∗
3)]

tr[Ξ′1(σ11Ξ
∗
4 + σ12Ξ

∗
2)] · · · tr[Ξ′p(σ12Ξ

∗
4 + σ22Ξ

∗
2)]

tr[Ξ′1(σ11Ξ
∗
5 + σ12Ξ

∗
7)] · · · tr[Ξ′p(σ12Ξ

∗
5 + σ22Ξ

∗
7)]

0K2×1 · · · 0K2×1



′

;
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and

D2,22 = −E

[
∂

∂θ′
g2,22(θ0)

]
=
[
0p×K1+3, Ῡ1,22 + Ῡ2,22

]

=



0(K1+3)×1 · · · 0(K1+3)×1

tr[Ξ
(s)
1 (σ12Ξ

∗
1 + σ22Ξ

∗
3)] · · · tr[Ξ

(s)
p (σ12Ξ

∗
1 + σ22Ξ

∗
3)]

tr[Ξ
(s)
1 (σ12Ξ

∗
4 + σ22Ξ

∗
2)] · · · tr[Ξ

(s)
p (σ12Ξ

∗
4 + σ22Ξ

∗
2)]

tr[Ξ
(s)
1 (σ12Ξ

∗
5 + σ22Ξ

∗
7)] · · · tr[Ξ

(s)
p (σ12Ξ

∗
5 + σ22Ξ

∗
7)]

0K2×1 · · · 0K2×1



′

;

with Hk = (i′2,k ⊗ In)S−1.
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Let

A1 =
1

|Σ|



σ22β1,0 0 0 0 −σ12β1,0 0 0 0

σ22β2,0 0 0 0 −σ12β2,0 0 0 0

0 σ22β1,0 0 0 0 −σ12β1,0 0 0

0 σ22β2,0 0 0 0 −σ12β2,0 0 0

0 0 σ22β1,0 0 0 0 0 0

0 0 σ22β2,0 0 0 0 0 0

0 0 0 0 0 0 −σ12β1,0 0

0 0 0 0 0 0 −σ12β2,0 0

0 0 0 σ22C1 0 0 0 −σ12C2

−σ12β1,0 0 0 0 σ11β1,0 0 0 0

−σ12β2,0 0 0 0 σ11β2,0 0 0 0

0 −σ12β1,0 0 0 0 σ11β1,0 0 0

0 −σ12β2,0 0 0 0 σ11β2,0 0 0

0 0 −σ12β1,0 0 0 0 0 0

0 0 −σ12β2,0 0 0 0 0 0

0 0 0 0 0 0 σ11β1,0 0

0 0 0 0 0 0 σ11β2,0 0

0 0 0 −σ12C1 0 0 0 σ11C2


and

A2 =

[
(π11 ⊗ i8,1) (π12 ⊗ i8,2) (π12 ⊗ i8,6) 0 (π21 ⊗ i8,1) (π22 ⊗ i8,2) (π21 ⊗ i8,5) 0

]
+

[
(π12 ⊗ i8,3) (π11 ⊗ i8,4) (π11 ⊗ i8,8) 0 (π22 ⊗ i8,3) (π21 ⊗ i8,4) (π22 ⊗ i8,7) 0

]
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where

π11 =



σ2
11 σ11σ12 σ11σ12 σ2

12

σ11σ12 σ11σ22 σ2
12 σ22σ12

σ11σ12 σ2
12 σ11σ22 σ22σ12

σ2
12 σ22σ12 σ22σ12 σ2

22



−1 

σ11

σ12

0

0


=

1

σ11σ22 − σ2
11



σ22

0

−σ12

0



π12 =



σ2
11 σ11σ12 σ11σ12 σ2

12

σ11σ12 σ11σ22 σ2
12 σ22σ12

σ11σ12 σ2
12 σ11σ22 σ22σ12

σ2
12 σ22σ12 σ22σ12 σ2

22



−1 

σ12

σ22

0

0


=

1

σ11σ22 − σ2
11



0

σ22

0

−σ12


.

π21 =



σ2
11 σ11σ12 σ11σ12 σ2

12

σ11σ12 σ11σ22 σ2
12 σ22σ12

σ11σ12 σ2
12 σ11σ22 σ22σ12

σ2
12 σ22σ12 σ22σ12 σ2

22



−1 

0

0

σ11

σ12


=

1

σ11σ22 − σ2
11



−σ12

0

σ11

0


and

π22 =



σ2
11 σ11σ12 σ11σ12 σ2

12

σ11σ12 σ11σ22 σ2
12 σ22σ12

σ11σ12 σ2
12 σ11σ22 σ22σ12

σ2
12 σ22σ12 σ22σ12 σ2

22



−1 

0

0

σ12

σ22


=

1

σ11σ22 − σ2
11



0

−σ12

0

σ11





64

The following inverse is essential to verifying the definitions of π11, π12, π21 and π22.

σ2
11 σ11σ12 σ11σ12 σ2

12

σ11σ12 σ11σ22 σ2
12 σ22σ12

σ11σ12 σ2
12 σ11σ22 σ22σ12

σ2
12 σ22σ12 σ22σ12 σ2

22



−1

=

1

(σ11σ22 − σ2
12)2



σ2
22 −σ22σ12 −σ22σ12 σ2

12

−σ22σ12 σ11σ22 σ2
12 −σ11σ12

−σ22σ12 σ2
12 σ11σ22 −σ11σ12

σ2
12 −σ11σ12 −σ11σ12 σ2

11


Defining A = [A′1,A

′
2]′, note that since D = E [g(θ0)g∗(θ0)′] A, by Lemma 2.6 g is redundant

given g∗.
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Appendix 2.3 Tables
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Table 2.1: 2SLS, 3SLS, GMM and MLE Estimation (n = 98, under Heteroskedasticity)

φ21,0 = 0.2 λ11,0 = 0.1 λ21,0 = 0.1 β1,0 = 0.6

ρ = 0.1
2SLS .228(.293)[.294] .114(.523)[.523] .082(.538)[.538] .580(.211)[.212]
3SLS-ht .237(.356)[.358] .121(.569)[.569] .080(.587)[.587] .560(.227)[.230]
3SLS-hm .234(.356)[.358] .119(.564)[.564] .090(.575)[.575] .563(.222)[.225]
GMM1-ht .232(.234)[.236] .052(.194)[.200] .125(.312)[.313] .580(.197)[.198]
GMM1-hm .229(.238)[.240] .045(.199)[.207] .134(.330)[.332] .584(.196)[.196]
GMM2-ht .274(.322)[.331] .081(.232)[.233] .089(.236)[.236] .548(.216)[.222]
GMM2-hm .268(.310)[.318] .075(.209)[.210] .093(.257)[.257] .561(.210)[.213]
MLE .174(.233)[.234] .086(.079)[.080] .145(.105)[.114] .596(.189)[.189]

ρ = 0.5
2SLS .242(.322)[.325] .097(.535)[.535] .088(.607)[.608] .572(.206)[.208]
3SLS-ht .237(.435)[.436] .109(.590)[.590] .093(.704)[.705] .558(.219)[.223]
3SLS-hm .226(.409)[.410] .108(.586)[.586] .104(.683)[.683] .561(.216)[.219]
GMM1-ht .258(.227)[.234] .051(.211)[.216] .115(.325)[.325] .571(.193)[.196]
GMM1-hm .255(.227)[.233] .045(.220)[.226] .125(.336)[.337] .575(.191)[.193]
GMM2-ht .277(.327)[.336] .080(.259)[.260] .088(.278)[.278] .546(.210)[.217]
GMM2-hm .262(.333)[.339] .079(.268)[.269] .090(.295)[.295] .562(.205)[.208]
MLE .168(.242)[.244] .087(.079)[.080] .138(.101)[.108] .597(.190)[.190]

ρ = 0.9
2SLS .251(.293)[.298] .106(.528)[.528] .080(.533)[.533] .564(.210)[.213]
3SLS-ht .232(.352)[.353] .126(.544)[.545] .085(.564)[.564] .556(.219)[.224]
3SLS-hm .215(.357)[.357] .123(.559)[.559] .103(.578)[.578] .562(.216)[.219]
GMM1-ht .278(.206)[.221] .057(.223)[.227] .100(.305)[.305] .561(.192)[.196]
GMM1-hm .282(.217)[.231] .050(.232)[.238] .109(.318)[.318] .563(.190)[.194]
GMM2-ht .272(.303)[.312] .090(.270)[.270] .087(.307)[.308] .543(.212)[.219]
GMM2-hm .249(.300)[.304] .085(.254)[.255] .092(.309)[.309] .564(.205)[.208]
MLE .139(.671)[.673] .098(.177)[.177] .133(.125)[.129] .601(.254)[.254]

Mean(SD)[RMSE]
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Table 2.2: 2SLS, 3SLS, GMM and MLE Estimation (n = 490, under Heteroskedasticity)

φ21,0 = 0.2 λ11,0 = 0.1 λ21,0 = 0.1 β1,0 = 0.6

ρ = 0.1
2SLS .203(.103)[.103] .105(.187)[.187] .099(.195)[.195] .599(.092)[.092]
3SLS-ht .203(.106)[.106] .102(.189)[.189] .100(.195)[.195] .599(.092)[.092]
3SLS-hm .202(.106)[.106] .105(.188)[.188] .099(.196)[.196] .598(.092)[.092]
GMM1-ht .202(.098)[.098] .085(.085)[.086] .120(.135)[.137] .599(.091)[.091]
GMM1-hm .206(.104)[.104] .072(.098)[.102] .139(.152)[.157] .593(.091)[.091]
GMM2-ht .209(.093)[.093] .098(.072)[.072] .099(.097)[.097] .597(.090)[.090]
GMM2-hm .207(.093)[.094] .098(.072)[.072] .100(.097)[.097] .599(.089)[.089]
MLE .188(.082)[.083] .095(.022)[.022] .126(.033)[.042] .600(.086)[.086]

ρ = 0.5
2SLS .204(.102)[.102] .105(.188)[.188] .097(.195)[.195] .598(.092)[.092]
3SLS-ht .200(.108)[.108] .105(.189)[.189] .100(.196)[.196] .599(.092)[.092]
3SLS-hm .198(.107)[.107] .107(.188)[.188] .099(.196)[.196] .599(.092)[.092]
GMM1-ht .208(.093)[.093] .086(.096)[.097] .115(.140)[.141] .598(.089)[.089]
GMM1-hm .209(.097)[.098] .076(.104)[.107] .132(.153)[.157] .593(.088)[.088]
GMM2-ht .208(.091)[.092] .098(.083)[.083] .100(.108)[.108] .596(.089)[.089]
GMM2-hm .204(.091)[.091] .099(.083)[.083] .101(.108)[.108] .600(.088)[.088]
MLE .187(.081)[.082] .097(.020)[.021] .123(.033)[.040] .600(.086)[.086]

ρ = 0.9
2SLS .204(.102)[.103] .107(.189)[.190] .095(.196)[.196] .597(.092)[.092]
3SLS-ht .198(.110)[.110] .107(.191)[.191] .099(.197)[.197] .599(.092)[.092]
3SLS-hm .194(.109)[.109] .110(.190)[.191] .100(.198)[.198] .599(.092)[.092]
GMM1-ht .213(.091)[.092] .088(.113)[.113] .109(.150)[.151] .596(.088)[.088]
GMM1-hm .213(.092)[.093] .088(.118)[.118] .110(.158)[.159] .595(.086)[.086]
GMM2-ht .207(.091)[.091] .099(.099)[.099] .101(.122)[.122] .596(.088)[.088]
GMM2-hm .200(.090)[.090] .100(.100)[.100] .101(.122)[.122] .601(.087)[.087]
MLE .187(.080)[.081] .098(.018)[.018] .119(.029)[.035] .601(.086)[.086]

Mean(SD)[RMSE]
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Table 2.3: 2SLS, 3SLS, GMM and MLE Estimation (n = 98, under Homoskedasticity)

φ21,0 = 0.2 λ11,0 = 0.1 λ21,0 = 0.1 β1,0 = 0.6

ρ = 0.1
2SLS .215(.264)[.264] .137(.495)[.496] .064(.516)[.518] .575(.158)[.161]
3SLS-ht .216(.308)[.308] .137(.548)[.549] .075(.571)[.571] .560(.175)[.179]
3SLS-hm .216(.315)[.315] .138(.539)[.541] .077(.565)[.565] .558(.172)[.177]
GMM1-ht .226(.225)[.226] .059(.200)[.204] .125(.320)[.321] .575(.149)[.151]
GMM1-hm .222(.214)[.215] .055(.199)[.204] .133(.319)[.321] .577(.146)[.148]
GMM2-ht .253(.274)[.279] .087(.218)[.218] .094(.255)[.255] .558(.163)[.169]
GMM2-hm .254(.273)[.278] .082(.193)[.193] .100(.250)[.250] .556(.159)[.165]
MLE .174(.221)[.222] .084(.073)[.075] .146(.108)[.118] .593(.140)[.140]

ρ = 0.5
2SLS .221(.267)[.267] .122(.482)[.482] .073(.498)[.498] .573(.157)[.159]
3SLS-ht .203(.315)[.315] .133(.533)[.534] .086(.555)[.555] .564(.171)[.175]
3SLS-hm .201(.323)[.323] .131(.521)[.522] .093(.547)[.547] .563(.169)[.173]
GMM1-ht .247(.217)[.222] .059(.226)[.230] .114(.337)[.338] .570(.145)[.148]
GMM1-hm .244(.212)[.217] .058(.219)[.223] .120(.333)[.334] .572(.143)[.146]
GMM2-ht .244(.268)[.272] .090(.248)[.248] .094(.286)[.286] .564(.156)[.161]
GMM2-hm .244(.266)[.269] .088(.243)[.243] .098(.277)[.277] .563(.152)[.156]
MLE .165(.222)[.225] .088(.074)[.075] .142(.101)[.110] .599(.143)[.143]

ρ = 0.9
2SLS .227(.275)[.276] .105(.470)[.470] .084(.494)[.494] .572(.152)[.155]
3SLS-ht .191(.330)[.330] .122(.509)[.509] .100(.546)[.546] .572(.165)[.168]
3SLS-hm .187(.331)[.331] .121(.491)[.491] .107(.528)[.528] .572(.161)[.164]
GMM1-ht .269(.210)[.221] .060(.249)[.253] .101(.339)[.339] .567(.138)[.142]
GMM1-hm .265(.205)[.215] .059(.246)[.249] .107(.338)[.338] .569(.135)[.139]
GMM2-ht .235(.267)[.269] .089(.250)[.250] .095(.311)[.312] .573(.148)[.151]
GMM2-hm .232(.257)[.259] .089(.242)[.243] .100(.301)[.301] .573(.143)[.145]
MLE .157(.229)[.233] .089(.078)[.079] .140(.100)[.108] .604(.145)[.145]

Mean(SD)[RMSE]
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Table 2.4: 2SLS, 3SLS, GMM and MLE Estimation (n = 490, under Homoskedasticity)

φ21,0 = 0.2 λ11,0 = 0.1 λ21,0 = 0.1 β1,0 = 0.6

ρ = 0.1
2SLS .202(.103)[.103] .104(.186)[.186] .097(.190)[.190] .598(.067)[.067]
3SLS-ht .202(.107)[.107] .104(.188)[.188] .098(.193)[.193] .598(.068)[.068]
3SLS-hm .202(.106)[.106] .104(.187)[.187] .098(.191)[.191] .597(.067)[.067]
GMM1-ht .206(.103)[.104] .072(.101)[.105] .138(.155)[.159] .592(.071)[.071]
GMM1-hm .204(.103)[.103] .075(.098)[.101] .136(.152)[.156] .592(.070)[.071]
GMM2-ht .208(.096)[.096] .098(.074)[.074] .100(.101)[.101] .598(.065)[.065]
GMM2-hm .207(.095)[.095] .098(.074)[.074] .101(.101)[.101] .597(.064)[.064]
MLE .187(.090)[.091] .096(.023)[.023] .125(.036)[.044] .599(.060)[.060]

ρ = 0.5
2SLS .203(.102)[.103] .103(.186)[.186] .097(.190)[.190] .598(.067)[.067]
3SLS-ht .199(.107)[.107] .104(.188)[.188] .099(.193)[.193] .599(.068)[.068]
3SLS-hm .198(.106)[.106] .105(.187)[.187] .098(.191)[.191] .598(.067)[.067]
GMM1-ht .209(.098)[.099] .081(.105)[.107] .124(.156)[.158] .595(.066)[.067]
GMM1-hm .209(.098)[.098] .077(.105)[.107] .130(.155)[.158] .592(.066)[.066]
GMM2-ht .204(.094)[.094] .099(.085)[.085] .101(.110)[.110] .600(.063)[.063]
GMM2-hm .204(.093)[.093] .099(.084)[.084] .101(.109)[.109] .599(.063)[.063]
MLE .187(.089)[.090] .097(.020)[.021] .123(.032)[.039] .600(.060)[.060]

ρ = 0.9
2SLS .204(.102)[.102] .103(.186)[.186] .096(.190)[.190] .598(.067)[.067]
3SLS-ht .195(.107)[.107] .105(.189)[.189] .099(.193)[.193] .600(.068)[.068]
3SLS-hm .195(.107)[.107] .106(.187)[.187] .099(.191)[.191] .600(.067)[.067]
GMM1-ht .212(.094)[.095] .090(.119)[.119] .109(.158)[.159] .596(.064)[.064]
GMM1-hm .212(.094)[.094] .090(.119)[.119] .109(.159)[.159] .596(.063)[.063]
GMM2-ht .201(.092)[.092] .099(.099)[.099] .102(.120)[.120] .601(.062)[.062]
GMM2-hm .201(.091)[.091] .099(.098)[.098] .102(.119)[.119] .601(.062)[.062]
MLE .187(.089)[.090] .098(.019)[.019] .119(.030)[.036] .602(.061)[.061]

Mean(SD)[RMSE]
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