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Saraiva, Paulo Quinderé (Ph.D., Economics)
GMM Estimation of Spatial Autoregressive Models in a System of Simultaneous Equations

Thesis directed by Prof. Xiaodong Liu

This dissertation proposes a generalized method of moments (GMM) estimation framework
for the spatial autorregressive (SAR) model in a system of simultaneous equations with homoskedas-
tic and heteroskedastic disturbances. It includes two chapters based on joint work with Prof.
Xiaodong Liu.

The first chapter extends the GMM estimator in Lee (2007) to estimate SAR models with
endogenous regressors and homoskedastic disturbances. We propose a new set of quadratic moment
equations exploring the correlation of the spatially lagged dependent variable with the disturbance
term of the main regression equation and with the endogenous regressor. The proposed GMM
estimator is more efficient than the IV-based linear estimators in the literature, and computationally
simpler than the ML estimator. With carefully constructed quadratic moment equations, the GMM
estimator can be asymptotically as efficient as the full information ML estimator. Monte Carlo
experiment shows that the proposed GMM estimator performs well in finite samples.

The second chapter proposes a GMM estimator for the SAR model in a system of simulta-
neous equations with heteroskedastic disturbances. Besides linear moment conditions, the GMM
estimator also utilizes quadratic moment conditions based on the covariance structure of model
disturbances within and across equations. Compared with the QML approach considered in Yang
and Lee (2014), the GMM estimator is easier to implement and robust under heteroskedasticity of
an unknown form. We also derive a heteroskedasticity-robust estimator for the asymptotic covari-
ance of the GMM estimator. Monte Carlo experiments show that the proposed GMM estimator

performs well in finite samples.
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Chapter 1

Efficient GMM Estimation of SAR Models with Endogenous Regressors

1.1 Introduction

In recent years, spatial econometric models play a vital role in empirical research on regional
and urban economics. By expanding the notion of space from geographic space to “economic”
space and “social” space, these models can be used to study cross-sectional interactions in much
wider applications including education (e.g. Lin, 2010; Sacerdote, 2011; Carrell et al., 2013), crime
(e.g. Patacchini and Zenou, 2012; Lindquist and Zenou, 2014), industrial organization (e.g. Konig
et al., 2014), finance (e.g. Denbee et al., 2014), etc.

Among spatial econometric models, the spatial autoregressive (SAR) model introduced by
Cliff and Ord (1973, 1981) has received the most attention. In this model, the cross-sectional de-
pendence is modeled as the weighted average outcome of neighboring units, typically referred to
as the spatially lagged dependent variable. As the spatially lagged dependent variable is endoge-
nous, likelihood- and moment-based methods have been proposed to estimate the SAR model (e.g.
Kelejian and Prucha, 1998; Kelejian and Prucha, 1999; Lee, 2004; Lee, 2007; Lee and Liu, 2010). In
particular, for the SAR model with exogenous regressors, Lee (2007) proposes a generalized method
of moments (GMM) estimator that combines linear moment conditions, with the (estimated) mean
of the spatially lagged dependent variable as the instrumental variable (IV), and quadratic moment
conditions based on the covariance structure of the spatially lagged dependent variable and the
model disturbance term. The GMM estimator improves estimation efficiency of IV-based linear

estimators and is computational simple relative to the maximum likelihood (ML) estimator. Fur-



thermore, Lin and Lee (2010) show that a sub-class of the GMM estimators is consistent in the
presence of an unknown form of heteroskedasticity in model disturbances, and thus more robust
relative to the ML estimator.

For SAR models with endogenous regressors, Liu (2012) and Liu and Lee (2013) consider, re-
spectively, the limited information maximum likelihood (LIML) and two stage least squares (2SLS)
estimators, in the presence of many potential IVs. Liu and Lee (2013) also propose a criterion
based on the approximate mean square error of the 2SLS estimator to select the optimal set of I'Vs.

In this paper, we extend the GMM estimator in Lee (2007) to estimate SAR models with
endogenous regressors. We propose a new set of quadratic moment equations exploring (i) the
covariance structure of the spatially lagged dependent variable and the disturbance term of the
main regression equation and (ii) the covariance structure of the spatially lagged dependent variable
and the endogenous regressor. The proposed GMM estimator is thus a “full information” estimator
as it uses information across equations. Compare to other full information estimators for a system
of simultaneous equations with spatial interdependence, the GMM estimator is more efficient than
the three stage least squares (3SLS) estimator in Kelejian and Prucha (2004), and computationally
simpler than the ML estimator in Yang and Lee (2014). With carefully constructed quadratic
moment equations, the GMM estimator can be asymptotically as efficient as the full information
ML estimator. We also conduct a limited Monte Carlo experiment to show that the proposed GMM
estimator performs well in finite samples.

The rest of the paper is organized as follows. In Section 2, we introduce the SAR model with
endogenous regressors. In Section 3, we define the GMM estimator and discuss the identification
of model parameters. In Section 4, we study the asymptotic properties of the GMM estimator and
discuss the optimal moment conditions to use. Section 5 reports Monte Carlo experiment results.
Section 6 briefly concludes. The proofs are collected in the appendix.

Throughout the paper, we adopt the following notation. For an nxn matrix A = [a;;i j=1,... n.
let A®) = A + A/, vecp(A) = (a11, - ,ann), and diag(A) = diag(ai1,--- ,anm). The row

(or column) sums of A are uniformly bounded in absolute value if max;—; ..., Z?Zl laij| (or



MAax;—1,.. n Y iy |aij]) is bounded.

1.2 Model

1

Consider a SAR model with an endogenous regressor' given by

y1 = AWy, + ¢oy2 + X108 + uy, (1.1)

where y1 is an n x 1 vector of observations on the dependent variable, W is an n X n nonstochastic
spatial weights matrix with a zero diagonal, y9 is an n x 1 vector of observations on an endogenous
regressor, X1 is an n X K; matrix of observations on K7 nonstochastic exogenous regressors, and

u; is an n x 1 vector of i.i.d. innovations.?

Wy, is usually referred to as the spatially lagged
dependent variable. Let X = [Xj,Xj3], where X5 is an n x Ky matrix of observations on Kj
excluded nonstochastic exogenous variables. The reduced form of the endogenous regressor yo is

assumed to be

y2 = X7( + ug, (1.2)

where uy is an n x 1 vector of i.i.d. innovations. Let 8y = (8p,~(), with 69 = (Mo, @0, 3p),
denote the vector of true parameter values in the data generating process (DGP). The following
regularity conditions are common in the literature of SAR models (see, e.g., Lee, 2007; Kelejian

and Prucha, 2010).

Assumption 1.1 Let u;; and ug; denote, respectively, the i-th elements of u; and up. (i)

(w1, u2;) is 1.i.d.(0, X), where

2
0'1 012
2:
2
012 0'2

(ii) E|uk7iul7iur’ius,i|l+n is bounded for k,1,7, s = 1,2 and some small constant 1 > 0.

! In this paper, we focus on the model with a single endogenous regressor for exposition purpose. The model and
proposed estimator can be easily generalized to accommodate any fixed number of endogenous regressors.

2 y1,y2,u1,uz, X, W are allowed to depend on the sample size n, i.e., to formulate triangular arrays as in Kelejian
and Prucha (2010). Nevertheless, we suppress the subscript n to simplify the notation.



Assumption 1.2 (i) The elements of X are uniformly bounded constants. (ii) X has full column

rank Kx = K1 + K. (iii) lim, ;o n ' X’X exists and is nonsingular.
Assumption 1.3 (i) All diagonal elements of the spatial weights matrix W are zero. (ii) A\g €

(=, ) with 0 < A\, A < ey < oo. (iii) S(A) = I, — AW is nonsingular for all A € (—=A, A). (iv) The

row and column sums of W and S(\g) ™! are uniformly bounded in absolute value.

Assumption 1.4 6 is in the interior of a compact and convex parameter space ©.

1.3 GMM Estimation

1.3.1 Estimator

Let S = S(\g) = I, — A\oW and G = WS™L. Under Assumption 1.3, model (1.1) has a
reduced form

y1 = S*1X1ﬁ0 + d’OSilX’YO +S7tu; + (ﬁosfllu, (1.3)

which implies that

Wy, = GX 18y + ¢0GX~vy + Guy + ¢oGus. (1.4)
As Wy, and ys are endogenous, consistent estimation of (1.1) requires IVs for Wy, and y,. From
(2.8), the deterministic part of Wy, is a linear combination of the columns in GX = [GX, GX3].
Therefore, GX can be used as an IV matrix for Wy;.>  From (1.2), X can be used as an IV
matrix for ys. In general, let Q be an n x Kg matrix of IVs such that E(Q'u;) = E(Q'uz) = 0.
Let ui(6) = S(\)y1 — ¢y2 — X108 and us(v) = y2 — X, where § = (), ¢, 3’)". The linear moment

function for the GMM estimation is given by

g1(0) = (I ® Q)'u(0),

where ® denotes the Kronecker product, u(@) = [ui(8)’,uz(v)")’, and 8 = (§',~')" .4

3 The IV matrix GX is not feasible as G involves the unknown parameter Ag. Under Assumption 1.3, GX =
WX + AMW?2X + AM2W3X + ... Therefore, we can use the leading order terms WX, W2X, W3X of the series
expansion as feasible IVs for Wy.

4 In practice, we could use two different TV matrices Q; and Q2 to construct linear moment functions Qju; (8) and
Q5u2(8). The GMM estimator with g1(0) is (asymptotically) no less efficient than that with Qju;(d) and Qu2(4d)
if Q includes all linearly indepedent columns of Q; and Q2.



Besides the linear moment functions, Lee (2007) proposes to use quadratic moment functions
based on the covariance structure of the spatially lagged dependent variable and model disturbances
to improve estimation efficiency. We generalize this idea to SAR models with endogenous regressors.

Substitution of (1.2) into (1.1) leads to a “pseudo” reduced form
y1 =AWy + ¢oXvo + X180 + ui + ¢ous. (1.5)

By exploring the covariance structure of the spatially lagged dependent variable Wy, and the

disturbances of (1.5), we propose the following quadratic moment functions

g2(0) = [2,11(0)', 82,12(0), 82,21 (0)', 82,22(7)"]

with
g211(0) = [Ejwi(9),-,E,u1(d)]'wi(9)
g212(0) = [Ejwi(9), -, Eui(d)]ua(v)
g221(0) = [Elua(y), -, Euz(y)]'wi(d)
g222(7) = [Eluz(y), - B ue(y)]u2(y)
where E; is an n X n constant matrix with tr(2;) =0 for j=1,--- ,m.> Possible candidates for

Ejare W, W2 - 'E(W?)I,,, etc. These quadratic moment functions are based on the moment
conditions that E(ujE;u;) = E(u]|Ejuz) = E(u4E;u;) = E(ub8;u) =0for j=1,--- ,m.
Let
2(0) = [1(0)', 82(0)"T', (1.6)
and © = Var[g(6)]. The following assumption is from Lee (2007).
Assumption 1.5 (i) The elements of Q are uniformly bounded constants. (i) E; is an n x n

constant matrix with tr(2;) =0 for j =1,--- ,m. The row and column sums of =; are uniformly

bounded in absolute value. (iii) lim, o, 7~ 1€ exists and is nonsingular.

® In practice, we could use different sets of weighting matrices {E11, 120 {812, }27, {B21,5 1721 and {Ea2,; 17237
for the quadratic moment functions g2,11(0), g2,12(0), g2,21(0) and g2 22(0) respectively. The quadratic moment func-
tions g2(@) are (asymptotically) no less efficient than that with {E11,;}721, {E12,;}27, {221,172 and {822,517
{81, Bm} = {811, }721 U{E12,;}27 U {821,512 U{Ba2, ;2.

5 We discuss the optimal Q and Z in Section 1.4.2.



Combining both linear and quadratic moment functions, the GMM estimator of @ is given

0 gmm = arg mingco g(0)'F'Fg(6), (1.7)
for some matrix F such that lim,,_,~ F exists and has full row rank greater than or equal to dim(8).
In the GMM literature, F'F is known as the GMM weighting matrix. For instance, one can use
the identity matrix as the weighting matrix to implement the GMM. The asymptotic efficiency of

the GMM estimator depends on the choice of the weighting matrix as discussed in Section 1.4.1.

1.3.2 Identification

For 6 to be identified through the moment functions g(8), lim, .. n 'E[g(8)] = 0 needs to
have a unique solution at 8 = 8y (Hansen, 1982). As S(A\)S™! = I, + (A — \)G, it follows from

(1.2) and (2.7) that
w1 (8) = di(8) + [L, + (Mo — N)Gluy + [(¢0 — &)L, + do(Xo — A)Glug
and
uy(y) = da(y) + ug,
where d;(6) = [GX1 8, + ¢0GXg, X0, X1](60 — &) and da(y) = X(vo —7)-

For the linear moment functions, we have

lim n'E[Qu,(d)] = lim n1Q'd(6) = lim n Q' [GX 18, + poGXvy, X0, X1](60 — )

n—oo
and

lim 7~ 'E[Quz(y)] = lim n~'Q'da(y) = lim n~'Q'X(vo —7)

n—oo

Therefore, lim,, o, n 'E[g1(8)] = 0 has a unique solution at 8 = 8, if

QI[GXIIBO + 00 GXyp, X, Xl]

and Q'X have full column rank for large enough n. This sufficient rank condition implies the
necessary rank condition that [GX18y + ¢oGX~yy, X7y, X1] and X have full column rank and the

rank of Q is at least max{dim(d), Kx}, for large enough n.



7 The necessary rank condition

Suppose [ X7, X1] has full column rank for large enough n.
for identification does not hold if GX;8, + ¢oGX~vy, and [X~,, X;] are asymptotically linearly
dependent.®  GX;8, + ¢oGX~, and [X~,, X;] are linearly dependent if there exist a constant
scalar ¢; and a K x 1 constant vector cg such that GX;83, + ¢oGXvy, = c1Xv, + Xjc2, which

implies that

d1(d) = [(Mo — Ne1 + (o — )] Xvp + X1[(Ao — A)ea + (B — B)]-

Hence, the solutions of the linear moment equations lim,, o n 'E[Q'u; ()] = 0 are characterized
by

¢=¢o+ (Ao —A)er and B =G+ (Ao — Az (1.8)
as long as Q'[X~y, X1] has full column rank for large enough n. In this case, ¢y and 3, can be

identified if and only if Ay can be identified from the quadratic moment equations.

Given (1.8), we have

E[ul(a)lajul (0)] = (ho~— )\)(U% + (ﬁoUlg)tr(Egs)G)

+(ho = N2[(0% + 200012 + $R03)tr(G'E;G) — c1 (012 + dood)tr(E Q)]
and

E[u(0)Zjuz(v)] = (Ao —A)(012 + oo3)tr(E;G)

E[u(v)Ejui(8)] = (Ao —A)(o12 + ¢oo3)tr(E;G)

for j =1, ,m. If (67 + ¢po12) lim, 00 niltr(Eg.s)G) # 0 for some j € {1,--- ,m}, the quadratic
moment equation

lim n 'E[u;(6)'Eu1(6)] =0

n—oo
has two roots A = Ay and

(01 4 ¢oo12)

A= X+ . .
(03 + 260012 + 6303) limp o0 [tr(G/'E; G) /t1(ES) G)] — 1012 + P00

T As X, = X179 + X274, & necessary condition for (X~,, X1) to have full column rank is 7, # O.
8 A necessary condition for GX18, + ¢oGX~v, and [Xv,,X1] to be asymptotically linearly independent is

(¢0,85)" # 0.
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As (03 + 200012 + $303) > 0, if limy, oo [t2(G'E;G) /tr(EV) Q)] # limysoo[tr(G'ERG) /12(E} G)]

for some j # k, the moment equations

lim n 'E[ui(6)E;u1(8)] =0 and lim n 'E[ui(d)Epui(8)] =0

n—oo n—oo

have a unique common root A = Ag. On the other hand, if (012 + ¢903) limy, 0 niltr(EgG) # 0

for some j € {1, -+ ,m}, the quadratic moment equation

lim n'E[u;(6)'Ejuz(v)] = 0

n—oo

has a unique root A\ = \g; and if (o12 + ¢903) limy, o0 n_ltr(EjG) # 0 for some j € {1,---,m},

the quadratic moment equation

lim n 'Elus(v)'Eju1(6)] =0

n—oo

has a unique root A = Ag. To wrap up, the sufficient identification condition of @y is summarized

in the following assumption.

Assumption 1.6 lim, . 7 'Q'X and lim,_ o n~'Q’ [X7p,X1] both have full column rank, and
at least one of the following conditions is satisfied. (i) lim, . n 1Q'[GX1 8, + »0GX~y, X0, X1]
has full column rank. (ii) (02 + ¢oo12) lim, oo nfltr(Egs)G) # 0 for some j € {1,---,m}, and

limy, 00 nfl[tr(E.gs)G), e ,tr(EﬁfL)G)]’ is linearly independent of

lim n tr(G'E,G),--- ,tr(G'E,,G)]’.

n—oo
(iii) (012 + ¢003) limy—yoo n 11 (E;G) # 0 or (012 + ¢o03) limy,—yeo n_ltr(E;G) # 0 for some j €

{1, ,m}.
1.4 Asymptotic Properties

1.4.1 Consistency and Asymptotic Normality

The GMM estimator defined in (1.7) falls into the class of Z-estimators (see Newey and

McFadden, 1994). Therefore, to establish the consistency and asymptotic normality, it suffices to



show that the GMM estimator satisfies the sufficient conditions for Z-estimators to be consistent and
asymptotically normally distributed when properly normalized and centered. A similar argument
has been adopted by Lee (2007) to establish the asymptotic normality of the GMM estimator for
the SAR model with exogenous regressors.

Let prs = E(u{ﬂu;l) for r + s = 3,4. By Lemmas 1.1 and 1.2 in the Appendix, we have

Qi Q2
Q = Varlg(60)] = (19)
Q) Qo

with Q1; = Var[g1(60)] = T ® (Q'Q),

H30 HM2,1 H2,1 M1,2

Q12 = E[g1(00)g2(00)] = ® (Qw)
H21 M12 H1,2 HO,3
and
Q99 = Var[ga(6o)]
pap — 3071 p31 — 30101 pz1 — 307012 p22 — 0503 — 207,
* fi22 — 0705 — 207y fiop — 0705 — 207y 3 — 301203 ,
= ® (w'w)
* * pop — 0703 =207, p13— 301203
* * * poa — 303
0.411 0'%0'12 0'%0'12 0'%2 O'il O'%O']_Q 0'%0'12 0'%2
x 02 0202 o903 x 0202 o2, o103
+ ® A+ ® Ag,
* * oty 01203 * * 0?02 o1903
* * * o5 * * * e
where w = [vecp(E1), - ,vecp(E,,)] and
tI‘(Elal) tI‘(ElEm) tI‘(E&El) tI‘(EIIEm)
Ay = and Ag =
tr(E,21) tr(EmEm) tr(2),21) tr(2,2mn)
Let
a / 17/
D = —E[Wg(é’o)] = D, DyJ, (1.10)
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where

0 Q/(GXIBO+¢OGX70) Q/X'Yo Q'Xy 0

D, = —E[-81(00)] =
00 0 0 0 QX

and

(0F + <Z50012)'51"(E§8)G) 015 (K x+K1+1)

(oF + <Z50<712)t1"(5$2)G) 015 (K x+K1+1)

(012 + dood)tr(BIG)  O1x(kytki+1)

S
|

E[ 0 g2(60)] =
T e S T _
(012 4+ Goo)tr(E,G)  Opy(kx+i1+1)

(012 + dood)tr(B1G)  O1x(kytki+1)

(012 + POt (B G) 01y (K y+Hy+1)

Ole OmX(Kx+K1+1)

The following proposition establishes the consistency and asymptotic normality of the GMM esti-

mator.

Proposition 1.1 Suppose Assumptions 1.1-1.6 hold. Then égmm defined in (1.7) is a consistent

estimator of 8y and has the following asymptotic distribution

V(B gim — 00) > N(0, AsyVar(B gmm))
where

AsyVar(8ymm) = lim [(n'D)F'F(n D) ' (n 'D)F'F(n 'Q)FF(n'D)[(n 'D)FFn D)

n—oo

with @ and D defined in (1.13) and (2.14) respectively.

Close inspection of AsyVar(égmm) reveals that the optimal F'F is (n~'192)~! by the gener-
alized Schwarz inequality. The following proposition establishes the consistency and asymptotic
normality of the GMM estimator with the estimated optimal weighting matrix. It also suggests a

over-identifying restrictions (OIR) test based on the proposed GMM estimator.
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Proposition 1.2 Suppose Assumptions 1.1-1.6 hold and n~'€2 is a consistent estimator of n=1Q

defined in (1.13). Then,

-

Hgmm = arg mingece g(e)lﬂ—lg(a) (111)

is a consistent estimator of 8y and

V(B gmm — 00) 5 N(0, [ lim n~'D'Q~'D] ™),

n—oo

where D is defined in (1.10). Furthermore

" Al1 oz d
8(Ogmm)' 28O gmm) = Xiim(g)—dim(o)-

1.4.2 Asymptotic Efficiency

When only the linear moment function g;(6p) is used for the GMM estimation, the GMM
estimator defined in (1.11) reduces to the generalized spatial 3SLS in Kelejian and Prucha (2004)

because

~

03515 = argmin g (0)'Q'g1(0) = argminu(8) (1@ P)u(d) = [Z' (X 'eP)Z] 12 (E 'eP)y,
where 3 is a consistent estimator of £, P = Q(Q'Q)™'Q’, y = (¥4, y5), and

Wy, y2 X; O
Z:

0 0 0 X

It follows from Proposition 1.2 that
A d . _ _ —
V(355 — 60) = N(0, [ lim n DDy ).
D'Q7'D — D9 D; = (D2 — 23,92, D1)’(Q22 — 2,07, 12) " (D2 — 21,92 D),

which is positive semi-definite, the proposed GMM estimator is asymptotically more efficient than

the 3SLS estimator.
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The asymptotic efficiency of the proposed GMM estimator depends on the choices of Q and

—

B, , B, Following Lee (2007), our discussion on the asymptotic efficiency focuses on two cases:

(i) u = (u},uy) ~N(0,2®1,), and (ii) E; has a zero diagonal for all j = 1,---,m. Let P be

a subset of all E’s satisfying Assumption 1.5 such that diag(E) = 0 for all E € P. The sub-class

of quadratic moment functions using 2 € P is of a particular interest because these quadratic

moment functions could be robust against unknown form of heteroskedasticity as shown in Lin and

Lee (2010).
Let
g"(0) = [g1(9)",83(0)7, (1.12)
where g} (d) = (I ® Q*)'u(0) and
g5(0) = [u1(6)'E u1(9), ur () E uz(7), u2()'E'ur (9), uz(v) E*uz ()]
In cases (i) and (ii),
Q" = Var[g*(6y)] = (1.13)
0 Q5
where
ot o019 oo o ot o001y oPon o
2 2 2 2 2 2 2 2
% 0y 0705 012095 x  07(05 01y 01209
Q5 = ® tr(E*E") + ® tr(EYE").
* * o2y 01203 * * 0?02 o903
* * * o5 * * * o5
The following proposition gives the infeasible best GMM (BGMM) estimator
ébgmm = arg min@e@ g*(e)lﬂ*_lg* (0) (114)
with the optimal Q* and E* in cases (i) and (ii) respectively.
Proposition 1.3 Suppose Assumptions 1.1-1.6 hold. Let G = WS~
(i) Suppose u ~ N(0,X ® I,,). The BGMM estimator defined in (1.14) with Q* = [GX, X]

and Z* = G —n~!tr(G)I,, is the most efficient one in the class of GMM estimators defined in (1.7).
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(ii) Without the normality assumption on u, the BGMM estimator defined in (1.14) with

Q* = [GX, X] and E* = G — diag(G) is the most efficient one in the sub-class of GMM estimators
defined in (1.7) with 25 € P forall j =1,--- ,m.

Under normality, the model can be efficiently estimated by the ML estimator. To get some
intuition of the optimal Q* and =* in case (i), we compare the linear and quadratic moment

functions utilized by the GMM estimator with the first order partial derivatives of the log likelihood

function. Let G(\) = WS(A)~!, where S()\) = I, — AW. The log likelihood function based on the

joint normal distribution of y = (y},y5)’ is”
1 1 ! -1
L(6,X) = —nln(27) — 3 2L, +In|S\\)| — iu(G) (E®I,) u()

with the first order partial derivatives

;\L(H, $) = [(6Xvy+X1B8)G(N),010) (£ © L) u(6)
. ’;3‘ i (8)[G(A) —n~ tr(G(A)L;Jui (8)
Tm ws(rY GO — 1M (GON L (6)
+¢|‘§| L(8YIG(N) —n (G Jus()
—qsf; 2()[GO) — 0 (G ua ()
and
;L(o, 2) = KX, 01)(E®1,) ud)
HLO.3) = (X}, 0k B0 L) u(6)
;/L(e, ) = Ok XS @ L) u(®)

where 3 is the ML estimator for ¥ given by

. 51 612 | wm(8)ui(6)  ui(d)uz(y)
Y= =n

612 03 ug(6)'ua(y) uz(y)ua(vy)

9 The detailed derivation of the log likelihood function and its partial derivatives can be found in Appendix 1.1.
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Close inspection reveals the similarity between the ML and BGMM estimators under normality,
as the first order partial derivatives of the log likelihood function can be treated as linear combi-
nations of the moment functions Q*(A)'u1(d), Q*(A) uz(y), u1(0)'E*(N)u1(d), u1(0)'E*(N)ua(y),

wy (7)'E*(N)uy(8), and ua(y)'E*(N)uz(y) with Q*(\) = [G(M)X, X] and
E*(\) = G(\) — n Hr(GO)I,.

The optimal Q* and E* are not feasible as G involves the unknown parameter Ag. Suppose
there exists a y/n-consistent preliminary estimator A for A\ (say, the 2SLS estimator with IV matrix
Q = [WX,X]). Then, the feasible optimal Q* and E* can obtained by replacing Ao in Q* and
=* by . Furthermore, suppose &%,612,6% are consistent preliminary estimators for o2, 012, 03.
Then, n~'Q* is a consistent estimator of n~'Q* defined in (1.13) with the unknown parameters

X, 02, 012,03 in Q* replaced by X, 62,619, 55. Then, the feasible BGMM estimator is given by
ébgmm = arg minGE@ g*(a)/ﬂ*_lg*(e)v (115)

where §*(0) is obtained by replacing Q* and =* in g*() with Q* and E*. Following a similar
argument in the proof of Proposition 3 in Lee (2007), the feasible BGMM estimator 9bgmm can be

shown to have the same limiting distribution as its infeasible counterpart ébgmm.

Proposition 1.4 Suppose Assumptions 1.1-1.6 hold, Aisa v/n-consistent estimator of \g, and 3 s
a consistent estimator of 3. The feasible BGMM estimator ébgmm defined in (1.15) is asymptotically

equivalent to the corresponding infeasible BGMM estimator ébgmm-

Under Assumption 1.3, G = WS™! = W 4+ \)W? + A%W?’ + ---. Thus, G can be approxi-
mated by the leading order terms of the series expansion, i.e. W, W2, W3, ... Therefore, a conve-
nient alternative to the BGMM estimator under normality for empirical researchers would be the
GMM estimator with Q = [WX,--- , WX, X] and E1 = W, Ey = W2 —n "y (WL, --- | B, =

W™ — n~ltr(W™)I,, for some fixed m.
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1.5 Monte Carlo Experiments

We conduct a small Monte Carlo simulation experiment to study the finite sample perfor-
mance of the proposed GMM estimator. The DGP considered in the experiment follows equations
(1.1) and (1.2) with K1 = Ky = 1. In the DGP, we set Ao = 0.6 and v, = (0,1), and generate

X = [X1,Xs] and u = (u},u))" as X; ~ N(0,I,,), X2 ~ N(0,I,), and u ~ N(0,¥ ® I,,), where

We conduct 1000 replications in the simulation experiment for different specifications with n €
{245,490}, 012 € {0.1,0.5,0.9}, and (¢, 5o) € {(0.5,0.5),(0.2,0.2)}. From the reduce form equa-
tion (2.8), E(Wy,) = GX18; + ¢00GX~y,. Therefore, ¢pg = Sy = 0.5 corresponds to the case that
the IVs based on E(Wy,) are relatively informative and ¢9 = Sy = 0.2 corresponds to the case
that the IVs based on E(Wy;) are less informative. Let Wy denote the spatial weights matrix
for the study of crimes across 49 districts in Columbus, Ohio, in Anselin (1988). For n = 245, we
set W = Iy ® Wy, and for n = 490, we set W = I;y ® Wy. Let G = W({I, — XW)*l, where \
is the 2SLS estimator of \g using the IV matrix Q = [WX, W2X, X]. Let Q= [GX,X]. In the

experiment, we consider the following estimators.

(a) The 2SLS estimator of equation (1.1) with the linear moment function Q'u; (4).
(b) The 3SLS estimator of equations (1.1) and (1.2) with the linear moment function (I, ® Q)'u(8).

(c) The single-equation GMM (GMM-1) estimator of equation (1.1) with the linear moment func-

tion Q'u;(d) and the quadratic moment function u;(8)'[G — n='tr(G)I,]ui ().

(d) The system GMM (GMM-2) estimator of equations (1.1) and (1.2) with the linear moment
function (I ® Q)u() and the quadratic moment functions u;(8)'[G — n~'tr(G)I,]u;(4),

~ ~

u(0)[G — n~ (G ua (), us(7)'[G — n~tr(G)I,]u; (), and

uw(7)'[G — n” ' tr(G)IJua (7).
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Although the 2SLS estimator and the single-equation GMM estimator only use “limited
information” in equation (1.1) and thus may not be as efficient as their counterparts (i.e. the 3SLS
estimator and the system GMM estimator respectively) that use “full information” in the whole
system, these estimators require weaker assumptions on the reduced form equation (1.2) and thus
may be desirable under certain circumstances. The estimation results of equation (1.1) are reported
in Tables 1.1-1.4. We report the mean and standard deviation (SD) of the empirical distributions of
the estimates. To facilitate the comparison of different estimators, we also report their root mean

square errors (RMSE). The main observations from the experiment are summarized as follows.

(i) The 2SLS and 3SLS estimators of Ay are upwards biased with large SDs when the IVs for
Wy, are less informative. For example, when n = 245 and 012 = 0.1, the 2SLS and 3SLS
estimates of \g reported in Table 1.3 are upwards biased by about 10%. The biases and
SDs reduce as sample size increases. The 3SLS estimators of A\ and Sy perform better as

019 increases.

(ii) The single-equation GMM (GMM-1) estimator of A\g is upwards biased when the IVs for Wy,
are less informative. When n = 245 and 015 = 0.1, the GMM-1 estimates of \g reported in
Table 1.3 are upwards biased by about 6%. The bias reduces as sample size increases. The
GMM-1 estimator of Ay reduces the SD of the 2SLS estimator. The SD reduction is more
significant when the IVs for Wy, are less informative. In Table 1.1, when 013 = 0.1, the
GMM-1 estimator reduces the SD of the 2SLS estimator by about 60%. In Table 3, when

o12 = 0.1, the GMM-1 estimator reduces the SD of the 2SLS estimator by about 65%.

(iii) The system GMM (GMMS-2) estimator of ¢ is upwards biased when the sample size is moder-
ate (n = 245) and the IVs for Wy, are less informative. The bias reduces as o012 increases.
When n = 490, the GMM-2 estimator is essentially unbiased even if the IVs are weak.
The GMM-2 estimators of \g and Sy have smaller SDs than the corresponding GMM-1
estimators. The reduction in the SD is more significant when the endogeneity problem is

more severe (i.e. o2 is larger) and/or the IVs for Wy, are less informative. For example,
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in Table 1.2, when o12 = 0.9, the GMM-2 estimator of Ag reduces the SD of the GMM-1
estimator by about 42%. In Table 1.4, when o195 = 0.9, the GMM-2 estimator of \y reduces
the SD of the GMM-1 estimator by about 75%. In both cases, the GMM-2 estimator of 3y

reduces the SD of the corresponding GMM-1 estimator by about 56%.

1.6 Conclusion

In this paper, we propose a general GMM framework for the estimation of SAR models with
endogenous regressors. We introduce a new set of quadratic moment conditions to construct the
GMM estimator, based on the correlation structure of the spatially lagged dependent variable with
the model disturbance term and with the endogenous regressor. We establish the consistency and
asymptotic normality of the proposed GMM estimator and discuss the optimal choice of moment
conditions. We also conduct a Monte Carlo experiment to show the GMM estimator works well in
finite samples.

The proposed GMM estimator utilizes correlation across equations (1.1) and (1.2) to con-
struct moment equations and thus can be considered as a “full information” estimator. If we only
use the moment equations based on u;(4), i.e., the residual function of equation (1.1), the proposed
GMM estimator becomes a single-equation GMM estimator. Although the single-equation GMM
estimator may not be as efficient as the “full information” GMM estimator, the single-equation
GMM estimator requires weaker assumptions on the reduced form equation (1.2) and thus may
be desirable under certain circumstances. The Monte Carlo experiment shows that the “full infor-
mation” GMM estimator improves the efficiency of the single-equation GMM estimator when the

endogeneity problem is severe and/or the IVs for the spatially lagged dependent variable are weak.
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Appendix 1.1 Likelihood Function of the SAR Model with Endogenous
Regressors
Let
STHN) (6Xy + X18) S71(\) #S7L())
1y (0) = and R(¢,\) = ,
X~y 0 I,

where S(\) = I, — AW. From the reduced form equations (1.2) and (2.7), y = (y},y%) =
t,(00) + R(do, Ao)u where u = (uj,uy)’. Under normality, u ~ N(0,¥ ® I,,), and thus y ~
N(p,, R(Z®1,)R’), where pu, = p,(0g) and R = R(¢o, Ao). Hence, the log likelihood function of

(1.1) and (1.2) is given by

Lo,%) - —nln(27r)—%ln]R(¢, N(E © LR (6, \)]

1y~ 1, O [R(90, ) (2 & TR (90, 20) 1y — 11, (6)]

Asu(9) = R (¢, N[y — i, (0)] and |[R™(¢, )| = [S(N)|. Then, the log likelihood function can

be written as
1 1
L(6,X) = —nln(27) — 3 In|(X®I,)|+In|S(\)| - §u(0)’(2 R In)_lu(O).

The first order partial derivatives of the log likelihood function are

0

o L(0.%) = —(GO) + W, 0)(S @ L) u(6)
6{;];(9,2) = ¥ 0(E®L) o)
aaﬂL(e,z) = [X},0(S e L) u(®)
;/L(a,z) = [0, X]|(ZTeL,) 'u®)
and
8(2@5171)—1“9’ ¥ = %(z ®1I,) — %u(e)u(e)’, (1.16)

where G(\) = WS(A\)™L. Since Wy; = G(\)(u1(d) + dua(y)) + G(A\)(¢Xy + X108) and yo =



X~ + uz(7y), then

and

;AL(B, ) = —tr(G\) + [(6X~ + X18)G), 0] (S @ L,) ‘u(6)
+H[(wi(8) + pua(7))'G(A), 0 (T @ 1,) "' u(8)

0,%) =YX, 0(E®1,) " ud) + [uz(y),0/(=T®1,) 'u(8)

a‘lL
From (1.16), the ML estimator for ¥ is given by
o &% 12 o u1(0)u1(8) wui(d6)uz(vy)
G123 u(6) uz(y) ua(y) uz(v)
Substitution of 3 into (1.17) and (1.18) gives
TL0.3) = [(Xy+XB/GO. 0 (S5 1)  u(o)
+§“u1<5>’[@<x> (G L (6)
‘|’2|u (IG() — n~ (G L (9)
+¢f’§ul< YIGN) - n (G L, Jus(7)
—¢f;u2<v>'{c<x> 1 (GO LJua ()
and
SoL0.2) = X 0)(E o L) (o)

Appendix 1.2 Lemmas
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(1.17)

(1.18)

For ease of reference, we list some useful results without proofs. Lemmas 1.1-1.6 can be found

(or are straightforward extensions of the lemmas) in Lee (2007). Lemma 1.7 is a special case of

Lemma 3 in Yang and Lee (2014). Lemmas 1.8 and 1.9 are from Breusch et al. (1999).
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Lemma 1.1 Let A and B be n x n nonstochastic matrices such that tr(A) = tr(B) = 0. Then,

(i) BEjAwuBu;) = (uso— 30i)vecp(A)vecp(B) + oftr(AB®)

(i) B(ujAwu}Buy) = (us1 — 30°019)vecp(A)vecp(B) + ooiatr(AB®)

(iii) E(ujAujubBuy) = (pg9 — 0205 — 202, )vecp(A) vecp(B) 4 o2,tr(AB®)

(v) E(uAusuBus) = (u— 0208 — 20%)vec(A) veen(B) + o2odtr(AB') + o2,tr(AB)
(v) E(ujAuguyBuy) = (u13 — 301202)vecp(A) vecp(B) + a1903tr(AB®)

(vi) E(uhAugu)Buy) = (po4 — 305)vecp(A)'vecp(B) + oatr(AB®))

Lemma 1.2 Let A be an n X n nonstochastic matrix and ¢ be an n X 1 nonstochastic vector.

Then,
(i) E(ujAujuic) = pszovecp(A)c
(ii) E(ujAujujc) = E(ujAusuic) = uz1vecp(A)'c
(iii) E(ujAusujc) = E(ujAusuic) = pyavecp(A)c
(iv) E(ubAugube) = posvecp(A)'c.

Lemma 1.3 Let A be an n X n nonstochastic matrix with row and columns sums uniformly
bounded in absolute value. Then, (i) n~1ujAu; = O,(1), n"1uj Aus = O,(1); and (i) n ! {u) Au;—

E(WjAu)] = o0p(1), n7 1 [u]jAuz — E(u]Auy)] = o,(1).

Lemma 1.4 Let A be an n X n nonstochastic matrix with row and columns sums uniformly
bounded in absolute value. Let ¢ be an n x 1 nonstochastic vector with uniformly bounded elements.
Then, n='/2¢/Au, = O, (1) and n~'c/Au, = o,(1). Furthermore, if lim,, o, n~'c/AA’c exists and

is positive definite, then n=/2¢/Au, 4 N(0, 02 lim,, oo n " 'c’AA’c), for r = 1,2.

Lemma 1.5 Suppose n 1[['(8) — T'y(6)] = op(1) uniformly in 8 € ©, where I'g(0) is uniquely
identified at 6. Define § = argmingce I'(8) and 8 = arg mingee I'*(0). If n=1[I'(0) — I'*(8)] =

0p(1) uniformly in @ € © then both @ and 6" are consistent estimators of 8. Furthermore, assume
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that %ag—ge,r(e) converges uniformly to a matrix which is nonsingular at 6y and ﬁ%r(e) =

%[%I‘*(G) — % ()] = op(1) uniformly in ©,

Op(1). If L[-00T%(8) — 5255 T(6)] = 0p(1) and

then v/n(8 — 8p) — (6" — 0;) = o,(1).

Lemma 1.6 Let A and B be n x n nonstochastic matrices with row and columns sums uniformly
bounded in absolute value, c¢; and co be n x 1 nonstochastic vectors with uniformly bounded
elements. G* is either G, G—n"'tr(G)I, or G —diag(G), and G* is obtained by replacing Ao in G*

by its y/n-consistent estimator A. Suppose Assumption 1.3 holds. Then, n~'c}(G* — G)cy = op(1),

n~12c)(G* — G)Au, = oy(1), n'u.A/(G* — G)Bu, = o,(1), and n~/?ul(G* — G)u, = o,(1),

/
T

for r,s =1,2.

Lemma 1.7 Let A, be an n x n nonstochastic matrix with row and column sums uniformly
bounded in absolute value for r, s = 1,2. Let ¢ and co be n x 1 nonstochastic vectors with uniformly
bounded elements. Let 02 = Var(e), where € = >.2_, clu, + 32, 2 (W, A, qu, — E[u}A, cu,]).

r=1"r

Suppose 02 = O(n) and n~'o? is bounded away from zero. Then, o~ le 4 N(0,1).

Lemma 1.8 Consider the set of moment conditions E[g(0)] = 0 with g(0) = [g1(0),g2(0)"]".
Define D; = —E[%gi(e)] and Q;; = E[g;(0)g;(0)'] for i,j = 1,2. The following statements are
equivalent (i) go is redundant given gy; (ii) Dy = Q9,92;'D; and (iii) there exists a matrix A such

that D2 = QzlA and D1 = QHA.
Lemma 1.9 Consider the set of moment conditions E[g(68¢)] = 0 with

g8(0) = [g1(0)’,22(0)",83(0)"]".

/

Then (g5, g5)" is redundant given g if and only if gy is redundant given g; and g3 is redundant

given gj.
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Appendix 1.3 Proofs

Proof of Proposition 1.1: To prove consistency, first we need to show the uniform convergence

of n2g(68)'F'Fg(0) in probability. For some typical row F;. of F

Fzg(e) = fl,i~Q/u1( ) —|—leng +u1 (Z fl zy'—g) u1 —|—111 (Z f21]'-—-']) u2 )
+uz(y)’ (Z f3,ij5j) u;(6) +ua(y (Z fa ZJ'—']) u(y
j=1

where Fi- = (flﬂ‘., f27i., f17¢1, s 7f1,im7 ety f47z‘17 ety f47im) and fl,i~ and fQJ'. are row sub-vectors. As
u;(0) =d1(0) +ri1(d), where d1(8) = (Mg — A\)G (0o Xy + X180) + (0o — &)Xy + X1(8By — B) and
r| (5) =u; + ()\0 — )\)(Gul + ¢0GUQ) + (¢o - (Z5)112, we have
(Zflz]—']) ul (Zfl zj—'j) dl +ll(5)+(h(5)
7j=1
where 11(8) = d1 (8’ (z;”: . fl,ijsf)) r1(8) and q1(8) = r1(8) (z;; ) fl,ijaj) r1(8). It follows by
Lemmas 1.3 and 1.4 that n=11;(8) = o,(1) and n1q1(8) — n " 'E[q1(d)] = op(1) uniformly in O,

where
Elg1(6)] = (Ao — )\)[U% + 012(2¢0 — ¢) + 02¢0 Z fi Z]tr GE

+()\0 — ) (0-2¢0 + 20’12¢)0 + 0'1 Z fl Utr

Hence, n~'u;(8)’ (Z;n:1 fLZ-jEj) uy(8) — n 'E[u;(8) (Z;nzl fLZ-jEj) u;(d)] = op(1) uniformly in
O, where E[u;(d)’ (z;": . fl,ijaj) u;(6)] = di(d8) (Zg”zl fl,ijsj) di(8) + E[q1(8)]. As ua(y) =

da(7) + ug, where da(7y) = X(v¢ — ), we have

(Zf?zj—'j> u2 (Zsz]—l]) +l2(0)+q2(0)

where 15(8) = 11(8)' (XL £2.5%) ) da(v) + di(8) (S; fo.yE; ) uz and

¢2(0) =r1(d) (Z f2,ijEj) uy.
=1



It follows by Lemmas 1.3 and 1.4 that n=!l3(0) = o,(1) and n1ga(0) — n~'E[g2(0)] = op(1)
uniformly in O, where
E[g2(0)] = (Ao — A) (012 + O'%(Z)o) Z fgﬂ‘jtr(GEj).
j=1
Hence, n~tuy(v)’ (ZT:1 f27ijEj> uz(8) — n'E[uy () (ZT:1 fQME.j) u2(0)] = op(1) uniformly in

©, where E[u;(v)’ (27;1 f2,z’jEj) uy(0)] = di () (Zgnzl f2,ijEj) d2(6) + E[g2(0)]. Similarly,
n ay(y (Z f3 Z]'-—‘]) u;(6) — n~'Eluz(v)’ (Z fs,ijEj) uy ()] = op(1),
=1
n” Mg (y (Z fa zj'—‘J) uz(y) — " 'Efu(v)’ (Z f4,z'j5j) uy(y)] = op(1),
j j=1

n_lfu.Q uy(6) — n_lE[fM.Q ui(6)] =op(1), and

n” ;. Qua(y) — 7 Elf2. Qua(v)] = 0p(1)
uniformly in ©. Therefore, n"1Fg(0) — n~'FE[g(0)] = 0,(1) uniformly in ©, and hence,

—58(6)F'Fe(6)

converges in probability to a well defined limit uniformly in ©. As g(0) is a quadratic function of
0, n~'FE[g(0)] is uniformly equicontinuous on © by Assumption 1.4. The identification condition
and the uniform equicontinuity of n~!FE[g(0)] imply that the identification uniqueness condition
for n=?E[g(0)'|F'FE[g()] must be satisfied. The consistency of 8 follows by Theorem 15.1 of

Peracchi (2001).

For the asymptotic normality of égmm, by the mean value theorem,

- L0 = T R ~ ~
\/ﬁ(ggmm_OO) =—|n 17g(0gmm),F/ 1F60/g(0) g(agmm)/F,n 1/QFg(BO)

—1 Y
00 00
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where 8 = 10 + (1 — )8 for some ¢ € [0,1] and

Q'Wy1 Q'y QX 0

0 0 0 Q'X
ul(é)’Egs)Wyl u1(5)’E§S)y2 u; (5)/Egs)X1 0
ul(é)’ngL)Wyl u1(5)’E7(ﬁ)y2 u; (5)/5%))(1 0

Ir=/

w(y)EWyr  w(y)8ly: w()EX: uw(d)EX

——g(6
aalg( ) .

w(v)E, Wy w(y)E,y2 w()Z,Xi w(d)E,X

w(V)EiWy:  w(y)Eiy: w(y)EXi w(d)EX

w(Y)EnWyr w(y)Eny: w(y)ExX: u(d)E,X

0 0 0 w(y)EPX
0 0 0 s (v)EWX

Using Lemmas 1.3 and 1.4, it follows by a similar argument in the proof of Proposition 1 in Lee

(2007) that —n -2, g(8)—n~'D = 0,(1) and —n~';3,g(8) —n~'D = op(1) with D given by (1.10).

By Lemma 1.7 and the Cramer-Wald device, we have n~'/2Fg(60) LN N(0, limy,—y00 n'FQF’) with
Q given by (1.13). The desired result follows. m

Proof of Proposition 1.2: Note that
n"'g(0)Q'g(0) = n'g(6)Q 'g(0) + n'g(6) (27 - 27)g(6).

With F = (n~'Q)~/2, uniform convergence of n~'g(0)'Q~'g(8) in probability follows by a similar

argument in the proof of Proposition 1.1. On the other hand,
_ A _ _ 20|, —1AN— ey —
g0 (@ — 2 Hg()| < (v lgO)])* | ') - (')

where || - || is the Euclidean norm for vectors and matrices. By a similar argument in the proof of

Proposition 1.1, we have n~'g(0) — n 'E[g(0)] = op(1) and n~'E[g(8)] = O(1) uniformly in ©,



25

which in turn implies that n=1||g(8)|| = Op (1) uniformly in ©. Therefore, Hn_lg(H)’(Q_l - Q_l)g(O)H =
0p(1) uniformly in ©. The consistency of égmm follows.

For the asymptotic normality of \/ﬁ(égmm —0p), note that from the proof of Proposition 1.1
we have —n_l%g(égmm) —n 1D = op(1), since 9gmm is consistent. Let 6 = tégmm + (1 —1)0g

for some t € [0, 1], then by the mean value theorem,

40 et 1 @ 217 9 PN
= [ B ) @) B (07 ) (00

= {n_lD' (n_lﬂ)_l n_lD} o n~ D/ (n_lﬂ)_l n~Y2g(0y) + op(1)

which concludes the first part of the proof, since in the proof of Proposition 1.1 it is established
that n~1/2g(8,) converges in distribution.

For the overidentification test, by the mean value theorem, for some ¢t € [0,1] and 8 =

-~

t0gmm + (1 — )09

_ - _ _ 0 =
n 1/2g(egmm) = n 1/2g(90) +n Ung( )(ogmm —6o)
= ”_1/2g(00) - n_lD\/ﬁ(égmm —0g) + Op(l)

= An~"?g(60) + 0p(1)

-1
where A = Tgim(g) — n~'D [n_lD’ (n_lﬂ)_l n_lD} n~ 1D’ (n_lﬂ)_l. Therefore

~ -~

g(égmm)/ﬂilg(egmm) = nil/zg(égmm)/(nilQ)ilnil/zg(égmm)+0p(1)
= 1 2g(0o) A (n Q)" An"2g(00) + op(1)
= [(n7'2) 70 2g(00) B (n 1) 01 2g(80)] + 0p(1)

—-1/2

where B = Lgjng) — (n™1Q) n~'D [n’lD’ (n’lﬂ)71 n’lD} - n~'D’ (n’lﬂ)flﬂ. Therefore

A~ ~

A _ d
g(agmm),ﬂ lg(egmm) - Xfr(B)a

where tr(B) = dim(g) — dim(60). =
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Proof of Proposition 1.3: To establish the asymptotic efficiency, we use an argument by Breusch
et al. (1999) to show that any additional moment conditions g defined in (1.6) given g* defined in
(2.4) will be redundant. Following Breusch et al. (1999), g is redundant given g* if the asymptotic
variance of an estimator based on moment equations E[g(8)] = 0 and E[g*(0)] = 0 is the same as

an estimator based on E[g*(0)] = 0. In cases (i) and (ii),

(X2QQ") o
* /
Q7 = E[g(60)g*(60)'] =
0 Q3
where
4 2 2 2 - -
01 01012 01012 012 o
2 2 2 2 2 tr(:l‘: )
# 0-10-12 0-12 0-10-2 0-20-12
Qi = ®
2 2 2 2 2
01012 0102 012 0-20-12
) , , ) tr(E,,2%)
012 0-20-12 0-20-12 02 ] - -
4 2 2 2 - -
2 2 2 2 2 tr(al: )
+ ®
2 2 2 2 2
=/ =%
, , , ) tr(8],2%)
012 02012 0-20-12 02 ] - -
Let ) }
2
o3(CBy + dovo) 0 0 0
2 2
0 750 05C  —oplky
—012(CBy + 0v0) 0 0 0
2
1 0 —0o127g —012C  oilgky
f e , ’
lop) 0 0 0
o3 0 0 0
002
—012 0 0 0
—Po012 0 0 0

where C = [Ig,,0] and X; = XC. Then D = Q# A, where D is defined in (1.10). Based on

Lemma 1.8 g is redundant given g*. Furthermore, Lemma 1.9 tells us that any subset of g is
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redundant given g*. m
Proof of Proposition 1.4: To show the desired result, we only need to show I'() = §*(0)'2*~1*(9)
and T'(0) = g*(0)'Q2*1g*(0) satisfy the conditions of Lemma 1.5. First, n~![g%(0) — g}(0)] =

n ' ® (QF - Q)'u(8), n'[85,(0) — 85,,(0)] = n 'u () (B — E")uy(6),

Q*/WY1 Q*/y2 Q*lxl 0
0 0 0 Q*/X
9 u (0)E Wy, w(8)E @y, w(8)E X, 0

w(v)EYWy:  w(v)EYy:  w(y)EYX)  w(6)EX

W) EWy1  w(y)E'y: w@)EX  w(d)EYX

0 0 0 uy (y)' 24X
and _ )
0
, 8%u1(5)’5*%u1(6)
8580,5(0) = | Zw(d)E Zu(y) |
89u2(7)’3*%u1(6)
| g(7)E ggua(y) |

where Q* = [GX, X], E* is either G —n~'tr(G)I, or G — diag(G), %ul(é) = —[Wy1,y2, X1, 0],
and %UQ(’Y) = —[0,0,0,X]. By inspection of each term of the above matrices, we conclude
0 8°(0) — g(8)] = op(1), n 1 [5:87(8) — Zrg*(6)] = op(1) and 1 [5258%(0) — 2L (0)] =
0p(1) uniformly in © by Lemma 1.6. Second, as G — G = (A — A\g)G? + () — A0)2GG2, we have
n~Hr(E*E*) — n~tr(E*E*) = op(1) and n~'tr(EYE*) — n~tr(EYE*) = op(1). Therefore, as
3 is a consistent estimator of 3, we have n~'(Q — 2*) = o,(1). Hence, we can conclude that
n~UD(0) — T(8)] = o0p(1) and n~'[527T(8) — 50557 T(8)] = 0,(1) uniformly in ©. Finally, since

n~1/2g*(0y) = O,(1) by a similar argument in the proof of Proposition 1.1 and n~/2[g*(0y) —



g*(6p)] = op(1) by Lemma 1.6,

J - 0
-1/21 % _ 2
0 P ~y—1 _— A% * 0 A% A — 0 * — - *
= 2558°(00)'Q'n " 2[8"(80) — &7(00)] + 258" (00)' Q! — o g’ (80)'2 In g (60)
= op(1).

The desired result follows. m

Appendix 1.4 Tables

Table 1.1: 2SLS, 3SLS and GMM Estimation (n = 245)

A =0.3 ¢g=1.0 Bo = 0.5

o192 = 0.1

2SLS 0.601(0.128)[0.128]  0.497(0.068)[0.068] 0.496(0.066)[0.066]
3SLS 0.601(0.126)[0.126]  0.497(0.068)[0.068] 0.496(0.066)[0.066]
GMM-1 0.602(0.052)[0.052]  0.499(0.066)[0.066] 0.498(0.065)[0.065]
GMM-2 0.607(0.051)[0.051]  0.497(0.067)[0.068] 0.498(0.065)[0.065]
o192 = 0.5

2SLS 0.601(0.138)[0.138]  0.496(0.068)[0.068] 0.495(0.066)[0.066]
3SLS 0.602(0.111)[0.111]  0.496(0.068)[0.068] 0.498(0.057)[0.057]
GMM-1 0.602(0.046)[0.046]  0.501(0.066)[0.066] 0.498(0.065)[0.065]
GMM-2 0.604(0.045)[0.045]  0.495(0.068)[0.068]  0.499(0.057)[0.057]
o192 = 0.9

2SLS 0.601(0.170)[0.170]  0.495(0.070)[0.070]  0.494(0.067)[0.067]
3SLS 0.603(0.059)[0.059]  0.497(0.068)[0.068] 0.500(0.029)[0.029]
GMM-1 0.603(0.050)[0.050]  0.503(0.066)[0.066] 0.498(0.065)[0.065]
GMM-2 0.601(0.023)[0.023]  0.495(0.070)[0.070]  0.500(0.028)[0.028]

Mean(SD) RMSE]



Table 1.2: 2SLS, 3SLS and GMM Estimation (n = 490)

A =0.3 ¢o=1.0 Bo = 0.5

g1 = 0.1

2SLS 0.600(0.080)[0.080]  0.497(0.047)[0.047] 0.497(0.046)[0.046]
3SLS 0.599(0.079)[0.079]  0.497(0.047)[0.047] 0.497(0.046)[0.046]
GMM-1  0.600(0.035)[0.035] 0.498(0.047)[0.047] 0.498(0.046)[0.046]
GMM-2  0.602(0.034)[0.034] 0.497(0.047)[0.047] 0.498(0.045)[0.046]
o2 = 0.5

2SLS 0.600(0.081)[0.081]  0.496(0.048)[0.048] 0.497(0.046)[0.046]
3SLS 0.600(0.068)[0.068]  0.496(0.047)[0.047] 0.499(0.040)[0.040]
GMM-1  0.600(0.030)[0.030] 0.499(0.047)[0.047] 0.498(0.046)[0.046]
GMM-2  0.601(0.029)[0.029] 0.496(0.047)[0.048] 0.499(0.040)[0.040]
o2 =0.9

2SLS 0.601(0.082)[0.082]  0.496(0.048)[0.048]  0.496(0.046)[0.046]
3SLS 0.601(0.034)[0.034]  0.496(0.047)[0.048]  0.500(0.020)[0.020]
GMM-1  0.600(0.026)[0.026] 0.500(0.047)[0.047]  0.498(0.045)[0.045]
GMM-2  0.600(0.015)[0.015]  0.494(0.048)[0.049] 0.500(0.020)[0.020]

Mean(SD)[RMSE]

Table 1.3: 2SLS, 3SLS and GMM Estimation (n = 245)

A =0.3 ¢o=1.0 Bo = 0.2

o192 = 0.1

2SLS 0.667(0.464)[0.469] 0.196(0.075)[0.076] 0.194(0.070)[0.071]
3SLS 0.660(0.482)[0.486] 0.195(0.076)[0.076] 0.195(0.070)[0.070]
GMM-1 0.637(0.163)[0.167]  0.201(0.067)[0.067] 0.198(0.066)[0.066]
GMM-2 0.640(0.145)[0.150]  0.199(0.068)[0.068] 0.198(0.065)[0.065]
o192 = 0.5

2SLS 0.678(0.439)[0.446] 0.195(0.070)[0.070]  0.194(0.068)[0.068]
3SLS 0.653(0.357)[0.361]  0.195(0.069)[0.069] 0.197(0.058)[0.059]
GMM-1 0.648(0.189)[0.195]  0.202(0.067)[0.067] 0.198(0.066)[0.066]
GMM-2 0.624(0.109)[0.112]  0.196(0.068)[0.068] 0.199(0.057)[0.057]
o192 = 0.9

2SLS 0.688(0.389)[0.399]  0.194(0.070)[0.070]  0.194(0.068)[0.068]
3SLS 0.627(0.168)[0.170]  0.196(0.067)[0.068] 0.199(0.029)[0.029]
GMM-1 0.646(0.178)[0.184]  0.204(0.067)[0.067] 0.198(0.065)[0.065]
GMM-2 0.608(0.052)[0.053]  0.196(0.068)[0.069] 0.200(0.029)[0.029]

Mean(SD) RMSE]
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Table 1.4: 2SLS, 3SLS and GMM Estimation (n = 490)

A =0.3 oo =1.0 Bo = 0.2

o192 = 0.1

2SLS 0.625(0.251)[0.253]  0.195(0.047)[0.048]  0.195(0.046)[0.047]
3SLS 0.624(0.252)[0.253]  0.195(0.047)[0.048]  0.195(0.046)[0.046]
GMM-1 0.610(0.094)[0.094]  0.198(0.047)[0.047] 0.198(0.046)[0.046]
GMM-2  0.610(0.071)[0.072] 0.197(0.047)[0.047] 0.198(0.045)[0.045]
o192 = 0.5

2SLS 0.633(0.227)[0.230]  0.195(0.048)[0.048]  0.195(0.046)[0.047]
3SLS 0.620(0.195)[0.196]  0.195(0.047)[0.048]  0.197(0.040)[0.040]
GMM-1 0.611(0.092)[0.092] 0.199(0.047)[0.047] 0.198(0.046)[0.046]
GMM-2  0.604(0.043)[0.043] 0.196(0.047)[0.047] 0.199(0.040)[0.040]
o192 = 0.9

2SLS 0.628(0.280)[0.282]  0.195(0.048)[0.048] 0.194(0.047)[0.047]
3SLS 0.607(0.100)[0.100]  0.196(0.047)[0.048]  0.200(0.020)[0.020]
GMM-1 0.612(0.097)[0.098]  0.200(0.047)[0.047] 0.198(0.046)[0.046]
GMM-2  0.602(0.024)[0.024] 0.195(0.048)[0.048] 0.200(0.020)[0.020]

Mean(SD) RMSE]
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Chapter 2

GMM Estimation of SAR Simultaneous Equation Models with Unknown
Heteroskedasticity

2.1 Introduction

The spatial autoregressive (SAR) model introduced by Cliff and Ord (1973, 1981) has re-
cently received considerable attention in different fields of economics as it provides a convenient
framework to model the interaction between economic agents. However, with a few exceptions
(e.g., Kelejian and Prucha, 2004; Baltagi and Pirotte, 2011; Yang and Lee, 2014), most theoretical
works in the spatial econometrics literature focus on the single-equation SAR model, which assumes
that an economic agent’s choice (or outcome) in a certain activity is isolated from her and other
agents’ choices (or outcomes) in related activities. This restrictive assumption potentially limits
the usefulness of the SAR model in many contexts.

To incorporate the interdependence of economic agents’ choices and outcomes across different
activities, Kelejian and Prucha (2004) extends the single-equation SAR model to the simultaneous-
equation SAR model. They propose both limited information two stage least squares (2SLS) and
full information three stage least squares (3SLS) estimators for the estimation of model parame-
ters and establish the asymptotic properties of the estimators. In a recent paper, Yang and Lee
(2014) study the identification and estimation of the simultanenous-equation SAR model by the
full information quasi-maximum likelihood (QML) approach. They give identification conditions
for the simultanenous-equation SAR model that are analogous to the rank and order conditions for

the classical simultanenous-equation model and derive asymptotic properties of the QML estima-
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tor. The QML estimator is asymptotically more effecient than the 3SLS estimator as the former
implicitly uses additional information on the covariance sturcture of model disturbances.

In this paper, we propose a generalized method of moments (GMM) estimator for the iden-
tification and estimation of simultaneous-equation SAR models with heteroskedastic disturbances.
Similar to the GMM estimator proposed by Lee (2007) and Lin and Lee (2010) for single-equation
SAR models, the GMM estimator utilizes both linear moment conditions based on the orthog-
onality condition between the instrumental variable (IV) and model disturbances and quadratic
moment conditions based on the covariance structure of model disturbances. While the single-
equation GMM estimator can be considered as an equation-by-equation limited information estima-
tor for a system of simultaneous equations,! the simultaneous-equation GMM estimator proposed
in this paper exploits the correlation structure of disturbances within and across equations and thus
is a full information estimator. We study the identification of model parameters under the GMM
framework and derive asymptotic properties of the GMM estimator under heteroskedasticity of an
unknown form. Furthermore, we propose a heteroskedascity-robust estimator for the asymptotic
covariance of the GMM estimator in the spirit of White (1980). The GMM estimator is asymptot-
ically more efficient than the 3SLS estimator. Compared with the QML estimator considered in
Yang and Lee (2014), the GMM estimator is easier to implement and robust under heteroskedas-
ticity. Monte Carlo experiments show that the proposed GMM estimator performs well in finite
samples.

The remaining of this paper is organized as follows. In Section 2.2, we describe the model
and give the moment conditions used to construct the GMM estimator. In Section 2.3, we establish
the identification for the model under the GMM framework. We derive the asymptotic properties
of the GMM estimator in Section 2.4. Results of Monte Carlo simulation experiments are reported
in Section 2.5. Section 2.6 briefly concludes. Proofs are collected in the Appendix.

Throughout the paper, we adopt the following notation. For an nxn matrix A = [a;;]i j=1,... ns

! To apply the single-equation GMM approach in Lee (2007) and Lin and Lee (2010) to estimate an equation in the
simultaneous-equation SAR model, both the optimal GMM weighting matrix and the estimator for the asymptotic
covariance of the GMM estimator need to be adjusted for the additional endogenous regressors in the equation.
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let A®) = A 4+ A’ and diag(A) denote an n x n diagonal matrix with the i-th diagonal element
being a;;, i.e., diag(A) = diag(ai1,- - , @nn). For an n x m matrix B = [b;;], the vectorization of B
is denoted by vec(B) = (b1, -+ ,bn1,b12, -+ ,bum)’.2  Let I, denote the n x n identity matrix and

i 1 denote the k-th column of L,.

2.2 Model and Moment Conditions

The model considered in this paper is described by a system of m simultaneous equations for

n cross sectional units,

Y =YI'y+ WYA;+ XBg+ U, (2.1)
where Y = [y1, - ,ym] is an n x m matrix of endogenous variables, X is an n x Kx matrix of
exogenous variables, and U = [uy, -+ ,u,,] is an n X m matrix of disturbances.? W is ann xn

nonstochastic matrix of spatial weights, with its (7, j)-th element represents the proximity between
cross sectional units ¢ and j.* The diagonal elements of W are normalized to be zeros. In the
literature, WY is usually referred to as the spatial lag. T'g, Ag and Bg are, respectively, m x m,
mxm and K x Xm matrices of true parameters in the data generating process (DGP). The diagonal
elements of I'y are normalized to be zeros.

In general, the identification of simultaneous-equation models needs exclusion restrictions.
Let vy, Ako and By denote vectors of nonzero elements of the k-th columns of T'y, Ag and
By respectively under some exclusion restrictions. Let Y}, Y, and X, denote the corresponding
matrices containing columns of Y (except y;), Y = WY and X that appear in the k-th equation.

Then, the k-th equation of model (2.1) is
Y = Yiveo + Yerpo + XiBro + g

Throughout the paper, we maintain the following assumptions regarding the DGP.

2 If A, B, C are conformable matrices, then vec(ABC) = (C’ ® A)vec(B), where ® denotes the Kronecker
product.

3 In this paper, all variables are allowed to depend on the sample size, i.e., are allowed to formulate triangular
arrays as in Kelejian and Prucha (2010). Nevertheless, we suppress the subscript n to simplify the notation.

4 For SAR models, the notion of proximity is not limited to the geographical sense. It can be economic proximity,
technology proximity, or social proximity. Hence the SAR has a broad range of applications.
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Assumption 2.1 Let u;; denote the (i, k)-th element of U and u denote the vectorization of U,

ie., u=vec(U). (i) (w1, ,uim) are independently distributed across ¢ with zero mean. (ii)
i Sy o S ]
Y =E(ud) =
i S o S ]
is nonsingular, with Xy = 2y, = diag(o1 g1, -+ »On ). (i) E|uiruguisui/* 7 is bounded for any
i=1,---,nand k,l,s,t =1, --- ,m, for some positive constant 7.

Assumption 2.2 The elements of X are uniformly bounded constants. X has full column rank

Kx. lim,_ e n 1X'X exists and is nonsingular.

Assumption 2.3 T is nonsingular with a zero diagonal. p(Ag(L, —To)~!) < 1/p(W) where p(-)

denotes the spectral radius of a square matrix.

Assumption 2.4 W has a zero diagonal. The row and column sums of W and (I, —T{ ® 1, —

A} ® W)~ ! are uniformly bounded in absolute value.

Assumption 2.5 6,0 = (7}, %0,83%0) is in the interior of a compact and convex parameter

space for k=1,--- ,m.

The above assumptions are based on some standard assumptions in the literature of SAR
models (see, e.g., Kelejian and Prucha, 2004; Lee, 2007; Lin and Lee, 2010). In particular, As-
sumption 2.3 is from Yang and Lee (2014). Under this assumption, L, — (T{ ® I,,) — (A{ @ W)
is nonsingular, and hence the simultaneous-equation SAR model (2.1) has a well defined reduced

form

y = [Lmn — (TH@1,) — (Af @ W) [(By @ I,)x + u], (2.2)

where y = vec(Y) and x = vec(X). Note that, when m = 1, we have I'y = 0 and Ag = Aj10. Then,
p(Ao(Ly, — To)™1) < 1/p(W) becomes the familiar parameter space constraint |A110| < 1/p(W)

for the single-equation SAR model.
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Following Lee (2007) and Lin and Lee (2010), for the estimation of the simultaneous-equation

SAR model (2.1), we consider both linear moment conditions
E(Q'u;) =0, (2.3)
where Q is an n x Kg matrix of IVs, and quadratic moment conditions
E(u,Ew) = tr(E, X)), forr=1,---p,

where E,’s are n X n constant matrices. Note that, if the diagonal elements of E,’s are zero, then
the quadratic moment conditions become
E(u,Ew) =0, forr=1,---,p. (2.4)

As an example, we could use Q = [WX, -+, WPX] and By = W, Ey = W2 —diag(W?),--- | B, =
WP — diag(WP), where p is some predetermined positive integer, to construct the linear and
quadratic moment conditions. The quadratic moment condition (2.4) exploits the covariance struc-
ture of model disturbances both within and across equations, and hence is more general than the
quadratic moment condition used by the single-equation GMM estimator in Lee (2007) and Lin
and Lee (2010).

Let the residual function for the k-th equation be

W, (01) = yi — Yievro — YrAeo — XiBho-

Then, the empirical linear moment function based on (2.3) can be written as

g1k = 81.(0kr) = Qui(6y) (2.5)

and the empirical quadratic moment function based on (2.4) can be written as

g2kl = 82,410k, 01) = [E1ur(0r), - -+, Epur(6r)]) wy(0)) (2.6)
for k,l =1,--- ,m. Combining both linear and quadratic moment functions by defining
g1(0)
g(0) = ;

g2(0)
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where = (67, - -- 70;71)/, g1(0) = (g/l,l’ T ’gll,m)/v and g2(0) = (g/2,117 T vg/2,1m7 g,2,21’ T vgé,mm)/-
The identification and estimation of the simultaneous-equation SAR model (2.1) is based on the
moment conditions E[g(6y)] = 0. We maintain the following assumption regarding the moment

conditions.

Assumption 2.6 (i) The elements of Q are uniformly bounded. (ii) The diagonal elements of E,
are zeros, and the row and column sums of &, are uniformly bounded, for r = 1,--- ,p. (iii) Let

Q = Var[g(0p)]. lim,,_,o, n €2 exists and is nonsingular.

2.3 Identification

Following Yang and Lee (2014), we establish the identification of the simultaneous-equation
SAR model in two steps. In the first step, we consider the identification of the reduced form
parameters. In the second step, we recover the structural parameters from the reduced form

parameters.

2.3.1 Identification of the “pseudo” reduced form parameters

When T is nonsingular, the simultaneous-equation SAR model (2.1) has a “pseudo” reduced
form

Y = WYW, + X + V, (2.7)

where Wo = Ag(I,, — To)~ !, Ty = Bo(I, — To)~!, and V = U(I,, — Tp)~'. Model (2.7) has the
specification of a multivariate SAR model (see, Yang and Lee, 2014; Liu, 2015). First, we consider
the identification of the “pseudo” reduced form parameters W = [¢/y; 0] and Iy = [mw1 0, , T 0]
under the GMM framework.

The k-th equation in model (2.7) is given by

m
Vi = Z Vi, oWy + X o + Vi,
=1

where

Wy, =H;(B;,®1L,)x + H;v (2.8)
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with H; = (i),; ®@ W)L, — (¥4 ® W)= x = vec(X), and v = vec(V). Hence, the residual

function for the k-th equation can be written as

Vi(Bk) =yi — Y YWy, — Xmp = di(6x) + Vi + Y _ (ko — i) Hyv, (2.9)
=1 =1
where 8, = (Y1k, -+, Ymp, m)" and
di(6x) = > (Yiko — i) E(Wy)) + X(mrp0 — ).
=1

The “pseudo” reduced form parameters in model (2.7) can be identified by the moment
conditions described in the previous section. Similar to (2.5) and (2.6), the linear moment function

can be written as
£ = £1.1(8k) = Q'vi (k)

and the quadratic moment function can be written as
fo 10 = f2.11 (0%, 01) = [E1vi(Or), - -, B vi(9x)]'vi(d1)

for k,l = 1,--- ,m. Let £(8) = [£1(8)’,£2(8)")', where § = (&},---,4.,), f1(8) = (fl1 et
and f5(0) = (£311,  , £21m> 201, £5,m)"- For g to be identified by the moment conditions
E[f(do)] = 0, the moment equations lim,, ., n 'E[f(§)] = 0 need to have a unique solution at
0 = &p (Hansen, 1982).

It follows from (2.9) that

lim n~'E[f 1(6x)] = Jim ntQ'dy(dy) = Jim. n 'QEWy,), . E(Wy,,),X](dk0 — k)

n=soo
for Kk =1,---,m. The linear moment equation, lim, ., n_lE[ka(()"k)] = 0, has a unique solution
at 0 = 0o, if QE(Wy,),---,E(Wy,,),X] has full column rank for n sufficiently large. A
necessary condition for this rank condition is that [E(Wy,), -+ ,E(Wy,,), X] has full column rank
of m + Kx and rank(Q) > m + Kx for n sufficiently large.

If, however, [E(Wy,),--- ,E(WYy,,), X] does not have full column rank,® then the model may

still be identifiable via the quadratic moment condition. Suppose for some m € {0,1,--- ,m — 1},

® From (2.8), E(Wy,) = Hx (B} ® I,)x. For example, if Bg = 0, then E(Wy,) = 0 for k = 1,...,m, and thus
[E(Wy,),...,E(Wy,,),X] does not have full column rank.
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E(Wy,) and the columns of [E(Wy,), - ,E(Wy.,), X] are linearly dependent for some [ € {m +

1,---,m}5 ie., E(Wy,) = ZTZl c1 ;i E(Wy},) + Xcg, for some vector of constants

(cl,ll7 T Jcl,T_rLla CIQ,Z) € Rm+KX .
In this case,
m m m
de(0) = Y E(Wy)[tiko — e+ Y Wumo—vw)er) + Xmro — w6+ > (o — vu)eal,
j=1 l=m+1 l=m+1
and hence limy,, oo n 'E[f) 1 (d))] = 0 implies that
m
ik = Ciro+ >, (o — Yu)er (2.10)
I=m+1
m = o+ > (Yiko — Yu)ea,
I=m+1

for j =1,--- ,mand k = 1,--- ,;m, provided that Q'[E(Wy,),--- ,E(Wy,,),X] has full column

m/)

rank for n sufficiently large. Therefore, (¢14,0,- - - ,’lﬁmho,ﬂ'zp) can be identified if ¢y o (for I =

m+1,--- ,m) can be identified from the quadratic moment condition.

When 9y, is characterized by (2.10), we have

m

E[vi(61)Evi(6)] = D (Yo — Vi) r[HEE(VY)] + > (10 — vp) tr[EHE(vV]))]

i=1 j=1

+ Z Z Yiko — Yir) (Wji0 — ) tr [ H;E,H;E(vV')],

where E(vv') = [(I,, - T{) ' @ L,)2[(I;, — o) ' ®I,] and E(vpv') = E(vv}) = (i, . @ L,)E(vV/).
Therefore, the quadratic moment equations, lim, .. n_lE[kal(ék,él)] =0 for k,l =1, ---

have a unique solution at W, if the equations

Tim Y Wik — Ya) HIEE(viv)] + Y (g0 — ) [ E-HGE(vv))] (2.11)
i=1 j=1

+ZZ Yiro — Yir) (Yo — ) tr[HEH;E(vW)} = 0,

5 We adopt the convention that [E(Wy,),--- ,E(Wy, ), X] = X for m = 0.
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for r = 1,---,p and k,l = 1,---,m, have a unique solution at ¥,.” To wrap up, sufficient
conditions for the identification of the “pseudo” reduced form parameters are summarized in the

following assumption.

Assumption 2.7 At least one of the following conditions holds.
(i) limy, 0o n 'Q'[E(Wy,), - -+, E(Wy,,), X] exists and has full column rank.

(ii) limy, 0o n Q' [E(Wyy), -+, E(Wy,;,), X] exists and has full column rank for some 0 <

m < m — 1. The equations (2.11), for r =1,--- ,p and k,l = 1,--- ,m, have a unique solution at
.
2.3.2 Identification of the structural parameters

Provided that the “pseudo” reduced form parameters Wy and Il can be identified from the
linear and quadratic moment conditions as discussed above. Then, the identification problem of
the structural parameters in @y = [(I,,, — T'o)’, —A{, —B{]’ through the linear restrictions ¥ =
Ao(L,, — Ty)~! and Iy = Bo(L,, — Ty) ! is essentially the same one as in the classical linear
simultaneous equations model (see, e.g., Schmidt, 1970). Let ¥ denote the k-th column of @j.
Suppose there are Ry, restrictions on ¥ of the form R;9; 0 = 0 where Ry, is a R x (2m + Kx)
matrix of known constants. Following a similar argument in Yang and Lee (2014), the sufficient and
necessary rank condition for identification with the restrictions R0, ¢ = 0 is rank(R;®¢) = m—1,

and the necessary order condition is Ry > m — 1.

Assumption 2.8 For k = 1,--- ,m, Ry¥,0 = 0 for some Ry, x (2m + Kx) constant matrix Ry,
with

rank(Ryp©®¢) = m — 1.

" A weaker identification condition can be derived based on (2.10) and (2.11) if the constants c¢i 17, , C1,mi, C2,1
are known to the researcher.
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2.4 GMM Estimation

2.4.1 Consistency and asymptotic normality

Based on the moment conditions E[g(8)] = 0, the GMM estimator for the simultaneous-

equation SAR model (2.1) is given by

6 gmm = argmin g(6) F'Fg(0) (2.12)

where F is some conformable matrix such that lim,,_,. F exists with full row rank greater than or
equal to dim (0).

To characterize the asymptotic distribution of the GMM estimator, first we need to derive
Q = Var[g(0p)] and D = —E[%g(eo)]. As E,’s have zero diagonals for r =1,--- | p, it follows by

Lemmas 2.1 and 2.2 in the Appendix that

Q—varlgoo)= | " % | (2.13)

0 Qo
where
QXnQ - QZinQ
Q11 = Var[g1(6o)] = (In ® Q)E(I, ® Q) =
QT1nQ - QEnnQ

and Q9o = Var[ga(0y)] with a typical block matrix in Q99 given by

tr(EilElﬁjkEl) + tr(ElkElﬁle’l) tee tr(EilElﬁjkEl) + tI‘(EZkEpzle;)
E(82,1782,11)l0=0, =

tr(EilEPEjkEl) + tr(EikEpEﬂE’l) cee tr(EﬂEpEjkEp) + tr(EikEPEle]’p)

The explicit expression for D depends on the specific restrictions imposed on the model

parameters. Let Zp = [Y}, Y, Xi]. Then,

D = B[ &(60)] = [}, Dy’ (214)
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where _ -
Q'E(Zy)
0
D, = E[wgl(eo)] =
Q'E(Zn)
and ) ) ) )
Y11 Yo
Yi1m Yo 1m
D, = —E[-2g2 (60)] = ' . -
2 = 80’g2 0)] = . : )
Y11 Yo 1
Tl,mm T2,mm

with Tl,kl = [E(Z%Elul), s ,E(Z%Epul)]’ and T2,kl = [E(Z;E’luk), cee ,E(ZEE;uk)]’. In the fol-
lowing proposition we establish consistency and asymptotic normality of the GMM estimator égmm

defined in (2.12).
Proposition 2.1 Suppose Assumptions 2.1-2.8 hold, Then,

Vi (Bgrmm — 00) > N(0, AsyVar(B gmn))
where

AsyVar(gmm) = lim [(n"'D)F'F(n'D)] "' (n 'D)F'F(n 'Q)FF(n 'D)[(n 'D)FF(n D)}

n—oo

with € and D given in (2.13) and (2.14) respectively.

With F'F in (2.12) replaced by (n=1€)~1, AsyVar(0gmm) reduces to (lim,_,oo n ' D'Q271D) 1.
Therefore, by the generalized Schwarz inequality, (n~1Q)~! is the optimal GMM weighting marix.
However, since €2 depends on the unknown matrix 3, the GMM estimator with the optimal weight-
ing matrix (n~1Q)~! is infeasible. The following proposition extends the result in Lin and Lee

(2010) to the simultaneous-equation SAR model by suggesting consistent estimators for n~'€ and
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n~'D as inspired by White (1980). With consistently estimated n~'Q and n~'D, a feasible optimal

GMM estimator and a heteroskedasticity-robust estimator of its covariance can be obtained.

Proposition 2.2 Suppose Assumptions 2.1-2.8 hold. Let 0 be a consistent estimator of 60y and
f)kl = diag(u1xuyy, - -+ , UnkUp;) Where @ is the i-th element of ug = uk(ék) Let n~'D and n—'Q
be estimators of n 1 and n~'D, with 8y and Xj; in Q and D replaced by 0 and ikl respectively.

Then n™'D — n~'D = op(1) and n Q- nlQ = op(1).

Finally Proposition 2.3 establishes asymptotic normality of the feasible optimal GMM esti-

mator.
Proposition 2.3 Suppose Assumptions 2.1-2.8 hold. The optimal GMM estimator is given by
6 gmm = argmin g(0)'Qg(6), (2.15)

where n €2 is a consistent estimator of n~!€2 such that n=1Q —n=1Q = op(1). Then \/ﬁ(b\gmm —

80) -5 N(0, (lim,_00 n 1 D'QD) 1),

Note that, the 3SLS estimator can be treated as a special case of the optimal GMM estimator

using only linear moment conditions, i.e.,
535L5 = arg min g1(0)’§~21_11g1(0) = (Z’f’Z)*lzlf’y,
where

Z;

Zy,

and P = (I, ® Q)[(L, ® Q) X(I,, ® Q)] "' (I, ® Q'). Similar to Proposition 2.3, we can show that

V(@355 — 69) = N(0, (lim n~'D{Q'D ).

n—oo

Since D'Q~'D — D’IQilDl = Déﬂ;21D2, which is positive semi-definite, the proposed GMM

estimator is asymptotically more efficient than the 3SLS estimator.
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2.4.2 Best moment conditions under homoskedasticity

The above optimal GMM estimator is only “optimal” given the moment conditions. The
asymptotic efficiency of the optimal GMM estimator can be improved by using the “best” moment
conditions. As discussed in Lin and Lee (2010), under heteroskedasticity of an unknown form, the
best moment conditions may not be available. However, under homoskedasticity, it is possible to
find the best Q and E,’s that satisfy Assumption 2.6. In general, the best Q and E,’s depend
on the specification of the simultaneous-equation model. For expositional purpose, we consider a

two-equation SAR model given by

yi = 7210y2 + A11,0Wy; + A1 0Wys + X181 o + s (2.16)
y2 = m20Y1 T A12,0Wy; + A2 0Wyy + Xo85 ) + ug
where X7 and Xy are respectively n x K1 and n X Ky submatrices of X. Suppose u; and usy are
n x 1 vectors of i.i.d. random variable with zero mean and E(uju}) = o111, E(ugu}) = 0921, and

E(ulu’g) = O'121n.

With the residual functions

u(01) = y1—721y2 — AWy, — AWy, — X8

u(02) = y2—712y1 — A2Wy; — AaWy, — X0,,

the moment functions are given by g(6) = [g1(0)’,g2(0)], where

Q'uy(61)
Q'uy(67)

g1(0) =

and
g2.11(01,61)

g2,12(01, 0>
g2(0) =
g2,21(62, 01

)
)
)

g2,22(02, 0>
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with go 11(0k, 01) = [E1ur(0r), -+ , E,uk(0r)'w(0;). Then, the asymptotic covariance matrix for

the optimal GMM estimator defined in (2.15) is AsyVar(agmm) = (limy, 0o n ' D’QD) L. Under

homoskedasticity,
911 0
Q = Var[g(6y)] = ,
where
011Q,Q 012Q,Q
Q1 = Var[gi1(60y)] =
UIQQ,Q UZQQ,Q
and
Q93 = Var|ga(6))]
0%1 011012 011012 0%2 0%1 011012 011012 U%g
011012 U%g 011022 022012 011012 011022 0'%2 09220712
= ® Ay + ® A,
011012 011022 U%g 09220712 011012 0%2 011022 022012
2 2 2 2
0719 022012 022012 099 [ 022012 022012 099
with
tr(Elﬁl) tr(ElEp) tI‘(ElE/I) tI‘(ElE:/D)
A = and Ay =
tr(2,21) tr(E,2p) tr(E,2]) tr(E,E))
Furthermore,
0
D = —E[—g(0y)] = [D},D)],
[aolg( O)] [ 1 ]
where
) Q'E(Z,)
D, = —E[@gl(eo)} =
Q'E(Zn)
and ) )
Y111 Yo
0 AERD) Yo 12
D, = _E[ng (60)] = +
Y101 Y01
Y12 Y0




with Yy = [E(Z,E1w), -, B(Z,E,w)] and Yo = [B(Z;E wy), -, E(ZE,uy)]".

Let

g"(0) = [g1(0)", 85(0)")
and Q* = Var[g*(0y)], where g7(0) = (I ® Q*)'u(0) and
g5(0) = [g§,11(91, 91)/, g§,12<917 92)',g§721(02, 91)/,g§,22(92, 92)/]/
with
85.11(0k, 01) = [ur(0%) Ejwy(6)), . . ., ug(0r) =y (6,)]'.
The following equation gives the best GMM (BGMM) estimator
Obgmm = argming*(6)'Q*'g*(6)

with the optimal Q" and {& : j =1,...,p"}.
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(2.17)

Setting p* = 8, the equations bellow define the optimal choice of IV matrix and weights for

the quadratic moment functions,

Q" = [G11X1,G12Xa, G21Xy, G2aXo, S X1, 15 Xo, 815 X1, 855 X, X
Bl = (i1 ® W)S is1 @ I,) — diag[(i ; ® W)S™ (i) ®1,)]
5 = (ihy ® W)S H(iz2 ® I,) — diag[(ihp ® W)S ! (iz2 ® I,)]
g5 = (b ® W)S ! (iz2 ® I,) — diag[(ih; ® W)S ! (iz2 ® I,)]
i = (i, ®W)S (g1 ®1,) — diag[(iy, ® W)S™!(iz1 ® I,)]

By = (121®I)S Y1 ®1,) — d1ag[(121®I)S Y1 ®1,)]

B = (122®I 1S iz ® I,,) — d1ag[(122®1 )S™(ig2 @ 1,,)]
25 = (b, ®1,)8 (22 ® 1) — diag[(iy; ® I,)S ™ (iz2 ® I;)]
By = (122®I )S™ (121®I ) — d1ag[(122®1 )S™ (121®I )]

(2.18)
(2.19)
(2.20)
(2.21)
(2.22)
(2.23)
(2.24)
(2.25)

(2.26)

where 8 = [(T{®1,) — (Af@W); S.! = (i, @ 1,)S ™' (ig,s ® I,) and G,s = WS Lforr,s=1,2.

rs )

The following proposition establish efficiency of the BGMM estimator constructed with Q*

and {2} ?:1
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Proposition 2.4 Suppose Assumptions 2.2-2.7 hold. Suppose u has zero mean and variance X®1I,,
where X is a 2 X 2 symmetric positive definite matrix. The BGMM estimator in equation (2.17)
constructed with Q* and {E7 }?:1 defined in equations (2.18)-(2.26) is efficient in the class of GMM

estimators defined in equation (2.12).

2.5 Monte Carlo

In this section we perform a small Monte Carlo simulation study. We consider the following

model

yi = M,oWy; + A1 o0Wys +v210y2 +x1510 +up

Y2 = A20Wy; + A2 oWy +712,0y1 + X282 + u2

with x1,x2 ~ N(1,1); B0 = P20 = 0.6; AM1o = X2 = A2 = Ao = 0.1; and Y210 =
Y12,0 = 0.2. We consider both the conditional heteroskedastic case with Var|u |z ] = 0ssi = 22
and Cov{uy i, ug,il14, 2] = 012, = P\/011,i022,i; and the homoskedastic case with ogs; = 2 and
012,; = p, where p = 0.1, 0.5 and 0.9. In both heteroskedastic and homoskedastic cases, disturbances
are conditionally normally distributed centered at 0. Note that the parameter choices are such that
the homoskedastic and heteroskedastic cases are comparable. Let W denote the spatial weights
matrix for the study of crimes across 49 districts in Columbus, Ohio, in Anselin (1988). For n = 98,
we set W = Iy ® Wy, and for n = 490, we set W = L1 ® Wy. We conduct 1000 replications in

the simulation experiment for each of the different specifications. Eight estimators are considered
a) two stages least squares (2SLS) with linear moment condition Q'u;(61);

b) three stages least squares (3SLS-ht) taking into account the possibility of heteroskedasticity

in construction of € based on moment conditions (I ® Q")u(0);

c) three stages least squares (3SLS-hm) ignoring the possibility of heteroskedasticity in con-

struction of € based on moment conditions (I ® Q" )u(8);
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d) “single equation” generalized method of moments (GMM]1-ht) estimation taking into ac-
count the possibility of heteroskedasticity in construction of €2 based on linear moment

condition Q'u;(6;) and quadratic moment condition uy(61)'ZEu;(61);

e) “single equation” generalized method of moments (GMM1-hm) estimation ignoring the
possibility of heteroskedasticity in construction of € based on Q'u;(01) and u;(61)'Eu;(01)

moment conditions;

f) “simultaneous equation” generalized method of moments (GMM2-ht) estimation taking
into account the possibility of heteroskedasticity in construction of €2 based on the lin-
ear moment conditions (Iy ® Q')u(@) and quadratic moment conditions u;(01)'ZEu;(61),

111(91),5112(02), U_Q(ag),Eul (01) and UQ(OQ)/EU_Q(HQ);

g) “simultaneous equation” generalized method of moments (GMM2-hm) estimation ignoring
the possibility of heteroskedasticity in construction of €2 based on linear moment condi-
tions (Is ® Q')u(@), and quadratic moment conditions u;(01)'Eu;i(0;), uy(01)'Eus(6s),

112(92)/5111 (01) and 112(02),5112(92) and;
h) maximum likelihood estimator (MLE).

We use Q = [WX, W2X, X]|, where X = [x1,X2], and E = W — diag(W). The £ matrix was
constructed using 2SLS residuals. Results are reported in tables 2.1-2.4 in the appendix. We

summarize the main observations bellow.

(i) Construction of €2 using the sandwich method introduced in Proposition 2.2 does not signifi-
cantly reduce efficiency of estimators even under homoskedasticity. Under heteroskedastic-

ity, the results do not indicate efficiency gain in using the sandwich method.

(ii) Efficiency follows the following order, from most efficient to least efficient, MLE, GMM2,

GMM1, 3SLS and 2SLS.

(iii) For the sample size of n = 490 under heteroskedasticity reported in Table 2.2, mean of GMM2
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estimates are in general closer to true parameter values than MLE, especially in the esti-
mation of A\i2 0. In particular, the percentage bias® of the MLE of A12,0 is given by roughly
26%, 23% and 19% for p equal to 0.1, 0.5 and 0.9 respectively. Under homoskedasticity, we
observe from Table 2.4, those numbers drop to approximately 4%, 4% and 3%. The per-
centage bias of all GMM2-ht estimate for n = 490 fall below the 5%. These results suggests

that GMM2-ht is robust under heteroskedasticity, whereas MLE tend to be biased.

(iv) On an early 2011 13-inch display MacBook Pro with 2.3 Gz Intel Core i5 processor and 8GB

2.6

of memory, the simulation took 49 hours to run. The GMM estimators and MLE where
calculated in MATLAB using fminuc optimization procedure with user provided gradient.
Excluding MLE from the simulation, running time drops to about 12 hours. This implies
that about 75% of the time to run the simulation was dedicated to running MLE. Fur-
thermore, for n = 98, GMM2-ht averaged 0.248(0.171) seconds per estimation while MLE
averaged 1.311(0.372) seconds and for n = 490, GMM2-ht averaged 1.328(0.173) seconds
per estimation whereas MLE averaged 11.219(1.608) seconds, where the values in paren-
thesis correspond to the standard deviation in running time. This is mainly due to the fact
that the GMM estimators considered in this simulation have objective functions that are
polynomial, whereas the objective function of the MLE is considerably more cumbersome.
Due to the computational ease of optimizing polynomial functions, it takes considerably

less time to compute the GMM estimators considered in this paper.

Conclusion

In this paper, we propose a general GMM framework for the estimation of System of Si-

multaneous Equations SAR models with unknown heteroskedasticity. We introduce a new set of

quadratic moment conditions to construct the GMM estimator, based on the correlation struc-

ture of the spatially lagged dependent variable with the model disturbance term and with the

endogenous regressors. We establish the consistency and asymptotic normality of the proposed the

8 The percentage bias is given by bias divided by the true parameter value.
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GMM estimator and discuss the optimal choice of moment conditions. We also provide a method
for consistently estimate the variance covariance matrix of the GMM estimator under unknown
heteroskedasticity. The approach taken for variance covariance estimation follows closely White
(1980), which has been referred as the sandwich method by applied researchers.

Our Monte Carlo study show that the proposed estimator perform well in finite samples.
In particular, the estimator in Proposition 2.3 constructed with € in Proposition 2.2 is robust
under heteroskedasticity with no apparent loss in efficiency under homoskedasticity. The simulation
suggests that MLE is biased in the presence of heteroskedasticity, whereas our GMM estimator’s
unbiasedness is not affected by the presence of heteroskedasticity. Furthermore, the computational
cost imposed by the proposed estimator is drastically smaller than MLE’s. We believe that the gain
in precision in the case of unknown heteroskedastic error, the computational ease and consistency

of variance estimation of our estimator more than offsets the efficiency gains of MLE.

Appendix 2.1 Lemmas
In the following, we list some lemmas useful for proving the main results in this paper.

Lemma 2.1 Let A = [a;;] and B = [b;j] be n x n nonstochastic matrices with zero diagonals. Let
€1, €2, €3, €4 be n x 1 vectors of independent random variables with zero mean. Let Xy = E(ege))

for k,1 =1,2,3,4. Then,

E(€3A€263B64) = tr(213A224B') + tr(214A223B).
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Proof: As a;; = b; = 0 for all ¢,

E(€]Aese;Bey)

n n n n
= EQ_ D D) aibrcricajes ear)
=1 j=1 k=1 [=1
n n

n
= ) aubiB(eriez ez eni) + > Y aubjiEerieri)E(es jea))

i=1 i=1 j£i
n n n n
+> 0> aibiEleries)Eleajeas) + D aijbiiBleries)Eler jes ;)
i=1 j#i i=1 j#i

= tr(213A224B/) + tr(214A223B).

[
Lemma 2.2 Let A = [a;;] be an n X n nonstochastic matrix with a zero diagonal and ¢ =
(c1,-++ ,¢pn) be an n x 1 nonstochastic vector. Let €1, €2, €3 be n x 1 vectors of independent random

variables with zero mean. Then,

E(€]Aexese) = 0.

Proof: As a; = 0 for all 4,

n n n

n
E(E&Aﬁgegc) = E(Z Z Z aijck617i627j637k) = Z aiiCiE(617Z’627Z’6372’) =0.
=1

i=1 j=1 k=1

Lemma 2.3 Let A be an mn X mn nonstochastic matrix with row and column sums uniformly
bounded in absolute value. Suppose u satisfies Assumption 2.1. Then (i) n~'u’Au = O,(1) and

(i) n 7 [W'Au — E(WAu)] = o,(1).
Proof: A trivial extension of Lemma A.3 in Lin and Lee (2010). =

Lemma 2.4 Let A be an mn X mn nonstochastic matrix with row and column sums uniformly

bounded in absolute value. Let ¢ be an mn X 1 nonstochastic vector with uniformly bounded
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elements. Suppose u satisfies Assumption 2.1. Then n~"/2¢’Au = O, (1) and n~'c’Au = o,(1).
Furthermore, if lim,, oo 7 'c/AX A’c exists and is positive definite, then
n12¢/Au S N(0, lim n"'c’AXA’c).
n—o0
Proof: A trivial extension of Lemma A.4 in Lin and Lee (2010). =

Lemma 2.5 Let Ay be an n X n nonstochastic matrix with row and column sums uniformly
bounded in absolute value and c; an n x 1 nonstochastic vector with uniformly bounded elements
for k,1 =1,--- ,m. Suppose u satisfies Assumption 2.1. Let 02 = Var(e), where e = > ;- c,uy +

S S WAy — tr(Ag k)] If nmlo? is bounded away from zero, then o le LN N(0,1).
Proof: A trivial extension of Lemma 3 in Yang and Lee (2014). m

Lemma 2.6 Let c¢; and co be mn x 1 nonstochastic vectors with uniformly bounded elements. Let
S=L,,— (Ty®l,)—(A;®W) and S =T, — (I"®1,) — (A ®W), where T and A are consistent

estimators of I'y and Ag respectively. Then, n_lc’l(g_1 — S Heg = 0p(1).
Proof: A trivial extension of Lemma A.9 in Lee (2007). =

Lemma 2.7 Let £(0) = [g1(0)',£2(0)']" with E[f(6y)] = 0. Define D; = —E[%fi(e)] and Q;; =
E[f;(6)f;(0)'] for i,j = 1,2. The following statements are equivalent (i) f is redundant given fy;

(ii) Dy = leﬂfllDl and (iii) there exists a matrix A such that Dy = Q91 A and Dy = Q17 A.
Proof: See Breusch et al. (1999). m

Lemma 2.8 Consider the set of moment conditions £(0) = [f1(0)’, f2(8)’, £35(0)'] with E[f(0))] = 0.
Then (f5, £5)" is redundant given f; if and only if f; is redundant given f; and f3 is redundant given

fi.

Proof: See Breusch et al. (1999). m
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Appendix 2.2 Proofs

Proof of Proposition 2.1: For consistency, we first need to show that n~'Fg(8)—n"'E[Fg(0)] =

op(1) uniformly in 6. Suppose the i-th row of F can be written as

Fi=1fi1, fim, finngs finrp s fimmas s fimmp)

Then,

m m p
Zfszuk 06)+ D) fikirur(6r) Erwy(6)).

k=1 k=11=1 r=1

Let 40 = (Y100 » Vmko) and Ago = (AMko, -+ s Amk,o)’ denote, respectively, the k-th column

of T'y and Ay, including the restricted parameters. From the reduced form (2.2),

w,(0r) = yi— Yy, — Yl — Xi8;, (2.27)
= Yo — ) + Ye(Awo — k) + Xi(Bro — Br) + wi
= YFro— 1) + WY (Apo— M) + Xi(Bro — Br) +

= de(0k) +ur + D> _[(Tio = Vi) (g @ Tn) + ko — M) (i, @ WIS
=1

where

Z Yiko — Vie) (s @ In) + (Aiko — M) (i, © W)ISTHBG @ In)x + Xk (B — B
=1

and S = (I'y ® I,,) — (Aj ® W). This implies that

E[Q'u;(0r)] = Q'di(6x)
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and

Elu;(65)'E,uw(6;)] = di(01) E,di(6;)

m
+ Z(’_le,o —J)tr[E (i, ; © 1,)8 S™'E(uu},)] Z 10 — Nt [Er (i, ; ® W)S™'E(uuj,)]
j=1 j=1
m m
+ Z(’_Yik,o — Y tr[E (i, ; © 1,)S ™ E(uw)] Z k0 — Ain)tr[E, (1, , © W)ST E(uu)]
i=1 —
m m
Y Fiko — i) Tjro — V)8 (s @ Tn) B (i, © 1,)S 7' 3]
i=1 j—l
+ZZ ik,0 — ’7310 VJZ)tr[S/ 1( ®W) E (ifm,j ®In)s_12]
i= 1] 1
+ZZ Viko = Vi) Mjro = Apte[S" T (i, © 1) B (i, ; © W)S™' 5]
=1 j=1
+ZZ 0 — M) (Njro — A)te[S (i, @ W)'E, (i, ; ® W)STIX].
=1 j=1

As F,g(0) is a quadratic function of 8 and the parameter space of 6 is bounded, it follows by Lemmas
2.3 and 2.4 that n~'F;g(0) — n 'E[F;g(6)] = op(1) uniformly in 6. Furthermore, n~'E[Fg(6)]
is uniformly equicontinuous in 8. The identification condition and the uniform equicontinuity of
n~1E[Fg(0)] imply that the identification uniqueness condition for n=2E[g(6)'|]F'FE[g(0)] holds.
Therefore, égmm is a consistent estimator of 6y (White, 1994).

For the asymptotic normality, we use the mean value theorem to write

9 1o = ) 110
\/ﬁ(agmm —6o) = — E%g(egmm) F’ Fi (0) E%g

~ 1
39' (Ogmm)/FliFg(OO)

NLD

where 0 is as convex combination of 59mm and 6y. By Lemma 2.5 together with the Cramer Wald

device Fg(0y) converges in distribution to N(0, lim,, o, n~'FQF’). Furthermore, consistency

1
’ \/ﬁ

of ggmm implies that @ also converges in probability to 6y. Therefore it suffices to show that

n~t 8‘3,g(0) —limy, 00 nilE[a‘Z,g(e)] = 0p(1) uniformly in #. We divide the remainder of the proof

into two parts focusing respectively on the partial derivatives of g;(6) and g2(8).
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First, note that

Q'Z,
0
o980 =

Q'Zy,

From the reduced form (2.2), we have
v = (i, ©1n)S™H[(By @ L)x + u,

By Lemma 2.4, we have n'Q’y; — n71E(Q'y;) = 0p(1) and n 'Q'Wy, = n71E(Q'Wy;) + 0,(1),
which implies that that n_1%g1(0) - n‘lE[%gl(G)] = op(1).

Next, note that

Y111(61) Y211(61)
Y11m(0m) Yo1m(01)
29’ &2 (0) = — — : ;
Y1.m1(01) Y2m1(0m)

Tl,mm(em) T2,mm(0m)

where TLM(OZ) = [Z;Elul(el), s ,Z;Epul(el)}’ and sz(ek) = [ZEElluk(Ok), cee ,ZEE;uk(Gk)]’.
As uy(6y) can be expanded as (2.27), it follows by Lemmas 2.3 and 2.4 that n™'Z,E,u,(0;) —
n~E[Z, B, (0;)] = op(1) and n ' Z)E uy(0) —n'E[ZElui(0))] = op(1) uniformly in 6. There-

fore, n_l%ggw) - n_lE[%gg(B)] = 0p(1) and the desired result follows. m

Proof of Proposition 2.2: We divide the proof into two parts. First we prove the consistency
of n=1€. Then we prove the consistency of n1D.

(1) To show n~ ' —n™1Q = op(1), we need to show that (1a) nlQLQ - nlQELQ =
op(1) and (1b) nHr(EA IS4 Ag) —n (S AL S0 Ag) = op(1), for k,l,s,t =1,--- ,m, fornxn

zero-diagonal matrices A = [a1 ;] and Ay = [az,;] that are uniformly bounded in row and column
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sums. The consistency of n=1Q’ f)le in (1a) can be shown by a similar argument as in White
(1980). Thus, we focus on the consistency of n~1tr(Xy A1 X Ag) = n~! ZZ]':1 a1,5502, i Wik Uil Ujs Wit -
It follows by a similar argument as in Lin and Lee (2010) that n~! szzl 1,352 jiUik Wil UjsUjs —
n-1 szzl a1,ij02,i0; k1045t = Op(1). Therefore, to show (1b) holds, we only need to show that

1 ~ o~~~ -1\ _
n Zz‘,jzl A1,3502, 5i Wik Uil UjsUjt — TV Zi,jzl A1,i502,5i Uik U] UjsWUjt = Op(l)-

Note that
n n
-1 ~ o~ o~ o~ —1
n E Q1,3502, Uik Uil UjsUjt — T g Q1,352 55 Wik Ui UjsUsjt
i,j=1 4,j=1

n n
_ -1 e (77T ol o -1 e ar o (77 7Y o
= n al,uaZ,]z(uzkuzl - uzkuzl)u]sujt +n al,l]a2,]lu2kull(ujsu]t - ujsujt)

i,j=1 t,5=1
n
-1 N Gy L. .
+n al,zga2,jz(uikuil - uikuil)(ujsujt - u]sujt)-
i,j=1

From (2.27), we have

uy, = uk(ék) =vr— YiYr — Y — XkBk; = dk(ék) +uy + ek(ék)

where
di(6r) = Z[(%k,o = ) (i @ Tn) + Mo = M) (i © W)ISTH(BG @ L) x + Xy (B — By)
1=1
ex@r) = D [(Furo — i) Aoy ® In) + Niko — M) (i), @ W)JS ™'
1=1

and S =L, — (T ®1,) — (Aj ® W). Let d;, and e;, denote the i-th element of dk(gk) and ek(ék)

respectively. Then,
UikUip = Wipuy + digdy + eigeq + (windin + digwir) + (wigeq + eixwir) + (divei + eirdir).

To show n~! Z?jzl a1 ija ji(Wikiy — wipui)ujsuj; = op(1l), we focus on terms that are of higher

orders in u;. One of such terms is

n m n
—1 _ =~ -1 o/ o/ —1
n E Q1,502 i€k U UjsUjt = E (Yrk,0 — Vri)T0 E :alﬂj‘l?,jiuilujs“jt(lm,r®1n,i)s u
ij=1 r=1 bj=1
m - n
X 3 -1 s/ -1
+> e = Amdn ™' Y agjazjiuiugsuge(i, , © wi)S™
r=1 ij=1
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where w; denotes the i-th row of W. By Assumption 2.1, we can show E|upiuiu;jsuj| < c for some
constant ¢ using Cauchy’s inequality, which implies E[n~! szzl >y a1,ijaz, jivgtisuge (i, , ®
i;w-)S_lu| = O(1) and E|n~! szzl Dol @ ijag it st (i, . © w;)S7lu| = O(1) because Ay,

Ay, W and S7! are uniformly bounded in row and column sums. Hence,
n

“1
n g a1,ija2,ji€ikUiUjsUjs = op(1).
ij=1

. . 1 n ~ o~
Similarly, we can show other terms in n Zi,j:l a1,i502,5; (Wigli — Wikl )ujsuje are of order op(1).

With a similar argument as above or as in Lin and Lee (2010),

n
n~! Z a1,ija2 itk i (Ut — Ujstje) = op(1)
ij=1
and n~! szzl a1,3502,5; (Wipi — Uigti)(Ujstje — ujstje) = 0p(1). Therefore, the consistency of
n" (S A1 As) in (1b) follows.

(2) Some typical entries in D that involve unknown parameters are Q'E(yx) = Q'(i,, ; ®
1,)S™'(B) @ L)x, QE(Wy,) = Qi . © W,)S (B} & L)x, E(wAyy) = trl(in @ A)(i,,, @
I,)S7'%] and E(ujAWy,) = tr[(im; ® A)i, ;. ® W)S~1%], where A = [a;;] is an n x n zero-
diagonal matrix uniformly bounded in row and column sums. To show n~!D — n~!D = op(1),
we need to show that (2a) n™'Q'(il, , ® I,)S™ (B} @ L)x — n1Q'({,, , ® L,)S™! (B ® I,)x =
op(1) and n'Q(il, , ® W)S7H(B) ® L,)x — n~'Q(i,, ® W)S™1 (B} ® L,)x = op(1); (2b)

0t (g ® A) (i, @ L)STIE] — (i ® A)(i, , ® 1,)S71%] = op(1) and nr(im, ®

A) (i), @W)STIS]—n x| (i ®A) (i, ,©W)STI5] = 0, (1). where S = Ly —(I'®1,)—(A'@W)
and _ .
ZNJll to ilm
> =
fzml e flmm

As (2a) follows by Lemma 2.6 and (2b) follows by a similar argument as in Lin and Lee (2010), we

conclude n™'D — n~!'D = op(l). m

Proof of Proposition 2.3: For consistency, note that

g(0)'2 'g(0) = g(6)Q 'g(6) +g(0) (2" - 27 ")g(6).
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From the proof of Proposition 2.1, n~'g(0)'2 'g(8) — n~'E[g(8)'22'g(8)] = op(1) uniformly in

6. Hence, it suffices to show that n=1g(8) (21 —Q1)g(#) = op(1) uniformly in 8. Let |- || denote
the euclidian norm for vectors and matrices. Then,

< (Lison) | (Ja) - (be)

From the proof of Proposition 2.1, n~!g(8) — n~'E[g(0)] = o,(1) uniformly in 6. As

Le(0)(@ ! — 2 1)g(0)

n

"E[Q"uy(01)] = n'Q'd(8x) = O(1)
and
0 E[ug,(0)E,w(0))] = n di(0,)Erdi(0) + n L tr[Gr(0,) B, Gy (6))E] = O(1)
uniformly in 6, where

Z Yk — Tir) (g © In) + ko — Aiw) (i, ® W)IS™H(B) @ L)x + Xk (Bro — Br)
I=1
and G (0r) = 21" (Va0 = Vur) (1 @ Tn) + (Niie0 — Ak ) (i), , @ WS, it follows that n™!||g(8) | =
Op(1) uniformly in 6. Therefore, n~lg(0) (2! - Q1)g(h) = op(1) uniformly in 6.
For the asymptotic distribution, by the mean value theorem, for some convex combination

of Bgmm and 0 denoted by 8,

-1
- 3 19 ~ ,(l=\"19 | 19 - [(1=\"1
Vn(Ogmm — 09) = _!naag(ogmm) (nﬂ> naalg(g)] ﬁ%g(ggmm) <nﬂ> %g(eo)
= (%) o] p(ta) " e o)
In n n n n \/ﬁg 0/ Oop

n—00

d . —11y/ -1
4N 0,[hm n DQD}
where the asymptotic distribution statement is implied by Lemma 2.5. m

Proof of Proposition 2.4: Similar to Liu et al. (2010) and Liu and Saraiva (2015), we use
Breusch et al. (1999), to show that any additional linear and/or quadratic moments are redundant.

In order to obtain the desired result, we need to closer inspect the matrix D, for Lemma 2.6
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establishes that if D = E[g(00)g*(0p)']A, any moment condition of the form in g will be redundant
given g*. Furthermore, if g will be redundant given g*, then by Lemma 2.8 any sub-set of moment
conditions of g will also be redundant given g*.

Defining 0y = (A1x, A2k, Qbkv/B;@)/ and

0
Wuk(ek) = Zk = [Wylﬂwy27y87Xk]
k

leads to the following sub-matrix associated with the linear moment conditions,

D, = -E [;o,gl(eo)]
| QE@) o
0 Q'E(Z2)

Combining y = (i, ® L,)S™![vec(XBy) + u] and the definition of Zj, we obtain
E(Zi) = [G11X1810 + G12X2By0, Ga1X181 0+ G22XaByg, Sy X181+ S5 XoBsg, X

for k=1,2 and s # k.
For the quadratic moment conditions, note that Y1 = [E(Z}E1w), - ,E(Z}Epu;)) and
Yo u = [E(ZEwg), - - ,E(Z]E)u;)]'. Using the definition of Zj, we have that

/

E([(iy; @ W)S™u)'E;(iy, ® I,)u)
L E([(iy, ® W)S™u)'E;(iy, ® I,)u)
E(Z,Eju) =
E([(i5, ® I,)S™'u)'E;(iy; ® I,)u)

Ok, x1




Similarly

E(Z),

E-ul) =

oL~

tr(E;(ih, ® W)S™H(Big; @ I,))
tr(E;(iy o © W)S™(Zip; © 1,))

(85 (i, ©1,)S ™ (Sizy ® L))

-/

Ok, x1

for k,1 =1,2 and s # k. To ease visualization we look at each sub-matrix of

o / / / / !
Dy = | 2,11> Y212, Y221, 2,22]

separately. Substituting TLM and Tg’kl into Do, we have

D11 = —E[

tr|

tr|

0
0

= WH, (Siz; ® 1,)]

=2 WH,(Sig; ® 1,)]

BV H,(Bip © 1))

0k, + Ky +3)x1
1 (onEY + 01085)]
=P (01 Ef + 01253)]
) (01185 + 0128)]

0(K1+Kz+3)x1

0,%2,11(90)} = Y111+ Y211, Opxryys)

tr[E;S,S)WHl(EiZ,l ® I,)]

tr[E;S,S)WHQ(EiZ,l ® I,)]

tr[EHy(Big © 1))
O(K1+K2+3)><1
tr[ES) (01185 + 01255)]
( )(0'1152 + 0'1253)]
tr[ES) (01185 + 0125E)]

0(K1+K2+3)><1

99



Dy o1

8 _
D [a,gz,lz(eo)] = [TLl?’

0

tr[E) (0128} + 022E%)]

tr[E] (0128} + 02255)]

tr[E) (01285 + 022E¢)]
Ox,x1

tr[E1 (011 8] + 012E3)]

tr[E1 (011 8] + 012E3)]

tr[E1 (01125 + 0128%)]

0K2><1

a _
—E |:601g2721(90>:| = [T2,217

tr[E1(0128] + 022E3)]

tr[Z1 (0128 + 022E3)]

tr[E1 (01258 + 02255
Ok, x1

tr[Z (o1 B + 01253)]

tr[E] (0118} + 012E3)]

tr[E] (0118E + 012E%)]

OKQX].

T2,12]

[I]

tr[E,(0125] + 022E3)]

tr[2),(0128] + 02253)]

tr[E, (01258 + 0225f)]
Ok, x1

tr[Ep (011 8] + 01283)]

tr[2, (01285 4 02283)]

tr[Ep (01285 + 02257)]
Or,x1

Y1 21]

tr[E, (0125} + 092E5)]

tr[=,(0128] + 09255)]

tr[=, (01285 + 09255)]
Ok, x1

tr[Z, (0118} + 01283)]

tr[2), (0122} + 02255)]

tr[2), (01285 + 02257)]

0K2><1

60



and

0 _ _
' = B [89’&’22(00)} = [OprIH, Y122 +T2,22]

with Hy, = (i, ® L,)S™".

0(K1+3)><1

0K2><1

0(K1+3)><1
tr[Eés)(O'mET + 02223)]
(27 (0125 + 022F3)]
t1[E) (01282 + 02255)]

0K2><1
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Let
02281 0 0 0  —opBy O 0 0
02282, 0 0 0 —oibhay 0 0 0
0 02810 0 0 0  —owBy,y O 0
0 02282 0 0 0  —0whyy O 0
0 0 UQQﬁl,U 0 0 0 0 0
0 0 02284,0 0 0 0 0 0
0 0 0 0 0 0 —012B1 0 0
0 0 0 0 0 0 —01282 0
A, ‘; 0 0 0 092C1 0 0 0 —012C2
—o1By O 0 0 o1Bro 0 0 0
—012844 0 0 0 o182, 0 0 0
0  —owBy,y O 0 0 o118, 0 0
0  —01Byy O 0 0 o182, 0 0
0 0  —owBy,y O 0 0 0 0
0 0  —o1Byy O 0 0 0 0
0 0 0 0 0 0 011810 0
0 0 0 0 0 0 01182, 0
0 0 0 —012C4 0 0 0 011Co
and
Ay = [ (m11 ®@ig1) (T2 ®iga) (M2 ®ige) 0 (w1 ®ig1) (M ®iga) (w21 ®igs) O ]

+ [(71'12®i8,3) (11 ®ig4) (w11 ®igg) 0 (war®igy) (w2 ®iga) (a2 ®igy) 0]




where

T =

T2 =

™21 =

and

T2 =

2
11
011012
011012

2
012

011
011012
011012

012

011
011012
011012

012

2
011
011012

011012

011012
011022
012

022012

011012
011022
2
012

022012

011012

011022

022012

011012
011022
2
012

022012

011012
2
012
011022

022012

011012
2
012
011022

022012

011012

011022

022012

011012
012
011022

022012

022012

022012

022012

022012

022012

022012

022

022012

022012

o11

012

011

g12

012

022

1

2
011022 — 0711

1

2
011022 — 071

1

2
011022 — 071

1

2
011022 — 071

022

—012

022

011

—012

011
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The following inverse is essential to verifying the definitions of 7r11, 712, 721 and moo.

- —1

2 2
011 011012 011012 019
2
011012 011022  Oig 022012
2
011012  Oig 011022 022012
2 2
019 022012 022012 039
2 2
039 —092012 —022012 019
2
1 —092012 011022 019 —011012
2
0110992 — O
(711022 = 1) —022012 0% 011022  —011012
2 2
019 —011012 —011012 o011
Defining A = [A], A}, note that since D = E[g(60)g*(0o)'] A, by Lemma 2.6 g is redundant

given g*. m
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Tables
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Table 2.1: 2SLS, 3SLS, GMM and MLE Estimation (n = 98, under Heteroskedasticity)

¢21,0 =0.2 )\1170 =0.1 )\2170 =0.1 Bl,O =0.6

p=20.1

2SLS 228(.293)[.294]  .114(.523)[.523] .082(.538)[.538] .580(.211)[.212]
3SLS-ht 237(.356)[.358]  .121(.569)[.569] .080(.587)[.587] .560(.227)[.230]
3SLS-hm  .234(.356)[.358] .119(.564)[.564] .090(.575)[.575] .563(.222)[.225]
GMMI-ht  .232(.234)[.236] .052(.194)[.200] .125(.312)[.313] .580(.197)[.198]
GMMI1-hm .229(.238)[.240] .045(.199)[.207] .134(.330)[.332] .584(.196)[.196]
GMM2-ht  .274(.322)[.331] .081(.232)[.233] .089(.236)[.236] .548(.216)[.222]
GMM2-hm  .268(.310)[.318] .075(.209)[.210] .093(.257)[.257] .561(.210)[.213]
MLE 174(.233)[.234]  .086(.079)[.080] .145(.105)[.114] .596(.189)[.189]
p=0.5

2SLS 242(.322)[.325] .097(.535)[.535] .088(.607)[.608] .572(.206)[.208]
3SLS-ht 237(.435)[.436]  .109(.590)[.590] .093(.704)[.705] .558(.219)[.223]
3SLS-hm  .226(.409)[.410] .108(.586)[.586] .104(.683)[.683] .561(.216)[.219]
GMMI1-ht  .258(.227)[.234] .051(.211)[.216] .115(.325)[.325] .571(.193)[.196]
GMMI1-hm .255(.227)[.233] .045(.220)[.226] .125(.336)[.337] .575(.191)[.193]
GMM2-ht  .277(.327)[.336] .080(.259)[.260] .088(.278)[.278] .546(.210)[.217]
GMM2-hm  .262(.333)[.339] .079(.268)[.269] .090(.295)[.295] .562(.205)[.208]
MLE 168(.242)[.244] .087(.079)[.080] .138(.101)[.108] .597(.190)[.190]
p=0.9

2SLS 251(.293)[.298]  .106(.528)[.528] .080(.533)[.533] .564(.210)[.213]
3SLS-ht 232(.352)[.353] .126(.544)[.545] .085(.564)[.564] .556(.219)[.224]
3SLS-hm  .215(.357)[.357] .123(.559)[.559] .103(.578)[.578] .562(.216)[.219]
GMMI-ht  .278(.206)[.221] .057(.223)[.227] .100(.305)[.305] .561(.192)[.196]
GMMI1-hm .282(.217)[.231] .050(.232)[.238] .109(.318)[.318] .563(.190)[.194]
GMM2-ht  .272(.303)[.312] .090(.270)[.270] .087(.307)[.308] .543(.212)[.219]
GMM2-hm  .249(.300)[.304] .085(.254)[.255] .092(.309)[.309] .564(.205)[.208]
MLE 139(.671)[.673] .098(.177)[.177] .133(.125)[.129] .601(.254)[.254]

Mean(SD)[RMSE]
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Table 2.2: 2SLS, 3SLS, GMM and MLE Estimation (n = 490, under Heteroskedasticity)

¢21,0 =0.2 )\1170 =0.1 )\2170 =0.1 Bl,O =0.6

p=20.1

2SLS 203(.103)[.103] .105(.187)[.187] .099(.195)[.195] .599(.092)[.092]
3SLS-ht :203(.106)[.106] .102(.189)[.189] .100(.195)[.195] .599(.092)[.092]
3SLS-hm  .202(.106)[.106] .105(.188)[.188] .099(.196)[.196] .598(.092)[.092]
GMMI-ht  .202(.098)[.098] .085(.085)[.086] .120(.135)[.137] .599(.091)[.091]
GMMI1-hm .206(.104)[.104] .072(.098)[.102] .139(.152)[.157] .593(.091)[.091]
GMM2-ht  .209(.093)[.093] .098(.072)[.072] .099(.097)[.097] .597(.090)[.090]
GMM2-hm  .207(.093)[.094] .098(.072)[.072] .100(.097)[.097] .599(.089)[.089]
MLE .188(.082)[.083] .095(.022)[.022] .126(.033)[.042] .600(.086)[.086]
p=0.5

2SLS 204(.102)[.102] .105(.188)[.188] .097(.195)[.195] .598(.092)[.092]
3SLS-ht .200(.108)[.108]  .105(.189)[.189] .100(.196)[.196] .599(.092)[.092]
3SLS-hm  .198(.107)[.107] .107(.188)[.188] .099(.196)[.196] .599(.092)[.092]
GMMI1-ht  .208(.093)[.093] .086(.096)[.097] .115(.140)[.141] .598(.089)[.089]
GMM1-hm .209(.097)[.098] .076(.104)[.107] .132(.153)[.157] .593(.088)[.088]
GMM2-ht  .208(.091)[.092] .098(.083)[.083] .100(.108)[.108] .596(.089)[.089]
GMM2-hm  .204(.091)[.091] .099(.083)[.083] .101(.108)[.108] .600(.088)[.088]
MLE .187(.081)[.082] .097(.020)[.021] .123(.033)[.040] .600(.086)[.086]
p=0.9

2SLS 204(.102)[.103] .107(.189)[.190] .095(.196)[.196] .597(.092)[.092]
3SLS-ht 198(.110)[.110]  .107(.191)[.191] .099(.197)[.197] .599(.092)[.092]
3SLS-hm  .194(.109)[.109] .110(.190)[.191] .100(.198)[.198] .599(.092)[.092]
GMMI-ht  .213(.091)[.092] .088(.113)[.113] .109(.150)[.151] .596(.088)[.088]
GMMI1-hm .213(.092)[.093] .088(.118)[.118] .110(.158)[.159] .595(.086).086]
GMM2-ht  .207(.091)[.091] .099(.099)[.099] .101(.122)[.122] .596(.088)[.088]
GMM2-hm .200(.090)[.090] .100(.100)[.100] .101(.122)[.122] .601(.087)[.087]
MLE .187(.080)[.081] .098(.018)[.018] .119(.029)[.035] .601(.086)[.086]

Mean(SD)[RMSE]
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Table 2.3: 2SLS, 3SLS, GMM and MLE Estimation (n = 98, under Homoskedasticity)

¢21,0 =0.2 )\1170 =0.1 )\2170 =0.1 Bl,O =0.6

p=20.1

2SLS 215(.264)[.264] .137(.495)[.496] .064(.516)[.518] .575(.158)[.161]
3SLS-ht 216(.308)[.308] .137(.548)[.549] .075(.571)[.571] .560(.175)[.179]
3SLS-hm  .216(.315)[.315] .138(.539)[.541] .077(.565)[.565] .558(.172)[.177]
GMMI-ht  .226(.225)[.226] .059(.200)[.204] .125(.320)[.321] .575(.149)[.151]
GMMI1-hm .222(.214)[.215] .055(.199)[.204] .133(.319)[.321] .577(.146)[.148]
GMM2-ht  .253(.274)[.279] .087(.218)[.218] .094(.255)[.255] .558(.163)[.169]
GMM2-hm  .254(.273)[.278] .082(.193)[.193] .100(.250)[.250] .556(.159)[.165]
MLE 174(.221)[.222] .084(.073)[.075] .146(.108)[.118] .593(.140)[.140]
p=0.5

2SLS 221(.267)[.267] .122(.482)[.482] .073(.498)[.498] .573(.157)[.159]
3SLS-ht 203(.315)[.315]  .133(.533)[.534] .086(.555)[.555] .564(.171)[.175]
3SLS-hm  .201(.323)[.323] .131(.521)[.522] .093(.547)[.547] .563(.169)[.173]
GMMI1-ht  .247(.217)[.222] .059(.226)[.230] .114(.337)[.338] .570(.145)[.148]
GMMI1-hm .244(.212)[.217] .058(.219)[.223] .120(.333)[.334] .572(.143)[.146]
GMM2-ht  .244(.268)[.272] .090(.248)[.248] .094(.286)[.286] .564(.156)[.161]
GMM2-hm  .244(.266)[.269] .088(.243)[.243] .098(.277)[.277] .563(.152)[.156]
MLE 165(.222)[.225] .088(.074)[.075] .142(.101)[.110] .599(.143)[.143]
p=0.9

2SLS 227(.275)[.276] .105(.470)[.470] .084(.494)[.494] .572(.152)[.155]
3SLS-ht 1191(.330)[.330]  .122(.509)[.509] .100(.546)[.546] .572(.165)[.168]
3SLS-hm  .187(.331)[.331] .121(.491)[.491] .107(.528)[.528] .572(.161)[.164]
GMM1-ht  .269(.210)[.221] .060(.249)[.253] .101(.339)[.339] .567(.138)[.142]
GMMI1-hm .265(.205)[.215] .059(.246)[.249] .107(.338)[.338] .569(.135)[.139]
GMM2-ht  .235(.267)[.269] .089(.250)[.250] .095(.311)[.312] .573(.148)[.151]
GMM2-hm .232(.257)[.259] .089(.242)[.243] .100(.301)[.301] .573(.143)[.145]
MLE 157(.229)[.233] .089(.078)[.079] .140(.100)[.108] .604(.145)[.145]

Mean(SD)[RMSE]
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Table 2.4: 2SLS, 3SLS, GMM and MLE Estimation (n = 490, under Homoskedasticity)

¢21,0 =0.2 )\1170 =0.1 )\2170 =0.1 Bl,O =0.6

p=20.1

2SLS 202(.103)[.103] .104(.186)[.186] .097(.190)[.190] .598(.067)[.067]
3SLS-ht 202(.107)[.107]  .104(.188)[.188] .098(.193)[.193] .598(.068)[.068]
3SLS-hm  .202(.106)[.106] .104(.187)[.187] .098(.191)[.191] .597(.067)[.067]
GMMI1-ht  .206(.103)[.104] .072(.101)[.105] .138(.155)[.159] .592(.071)[.071]
GMM1-hm .204(.103)[.103] .075(.098)[.101] .136(.152)[.156] .592(.070)[.071]
GMM2-ht  .208(.096)[.096] .098(.074)[.074] .100(.101)[.101] .598(.065)[.065]
GMM2-hm  .207(.095)[.095] .098(.074)[.074] .101(.101)[.101] .597(.064)[.064]
MLE 187(.090)[.091]  .096(.023)[.023] .125(.036)[.044] .599(.060)[.060]
p=0.5

2SLS .203(.102)[.103] .103(.186)[.186] .097(.190)[.190] .598(.067)[.067]
3SLS-ht .199(.107)[.107]  .104(.188)[.188] .099(.193)[.193] .599(.068)[.068]
3SLS-hm  .198(.106)[.106] .105(.187)[.187] .098(.191)[.191] .598(.067)[.067]
GMM1-ht  .209(.098)[.099] .081(.105)[.107] .124(.156)[.158] .595(.066)[.067]
GMM1-hm .209(.098)[.098] .077(.105)[.107] .130(.155)[.158] .592(.066)[.066]
GMM2-ht  .204(.094)[.094] .099(.085)[.085] .101(.110)[.110] .600(.063)[.063]
GMM2-hm  .204(.093)[.093] .099(.084)[.084] .101(.109)[.109] .599(.063)[.063]
MLE 187(.089)[.090] .097(.020)[.021] .123(.032)[.039] .600(.060)[.060]
p=0.9

2SLS .204(.102)[.102] .103(.186)[.186] .096(.190)[.190] .598(.067)[.067]
3SLS-ht 195(.107)[.107]  .105(.189)[.189] .099(.193)[.193] .600(.068)[.068]
3SLS-hm  .195(.107)[.107] .106(.187)[.187] .099(.191)[.191] .600(.067)[.067]
GMMI1-ht  .212(.094)[.095] .090(.119)[.119] .109(.158)[.159] .596(.064)[.064]
GMMI1-hm .212(.094)[.094] .090(.119)[.119] .109(.159)[.159] .596(.063)[.063]
GMM2-ht  .201(.092)[.092] .099(.099)[.099] .102(.120)[.120] .601(.062)[.062]
GMM2-hm .201(.091)[.091] .099(.098)[.098] .102(.119)[.119] .601(.062)[.062]
MLE .187(.089)[.090] .098(.019)[.019] .119(.030)[.036] .602(.061)[.061]

Mean(SD)[RMSE]
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