Spring 1-1-2015

A Sectional Aerosol Model: with Applications from the Ground to the Lower Stratosphere

Pengfei Yu
University of Colorado Boulder, pengfei.yu@colorado.edu

Follow this and additional works at: https://scholar.colorado.edu/atoc_gradetds

Part of the Atmospheric Sciences Commons, Environmental Chemistry Commons, and the Environmental Monitoring Commons

Recommended Citation
Yu, Pengfei, "A Sectional Aerosol Model: with Applications from the Ground to the Lower Stratosphere" (2015). Atmospheric & Oceanic Sciences Graduate Theses & Dissertations. 56.
https://scholar.colorado.edu/atoc_gradetds/56

This Dissertation is brought to you for free and open access by Atmospheric & Oceanic Sciences at CU Scholar. It has been accepted for inclusion in Atmospheric & Oceanic Sciences Graduate Theses & Dissertations by an authorized administrator of CU Scholar. For more information, please contact cuscholaradmin@colorado.edu.
A Sectional Aerosol Model:
with Applications from the Ground to the Lower Stratosphere

by

Pengfei Yu

B.S., Jinan University, 2010
M.S., University of Colorado, 2014

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirement for the degree of
Doctor of Philosophy
Department of Atmospheric and Oceanic Sciences
2015
This thesis entitled:

A Sectional Aerosol Model: with Applications from the Ground to the Lower Stratosphere

has been approved for the Department of Atmospheric and Oceanic Sciences

__

Prof. Owen B. Toon (Chair)

__

Dr. Karen H. Rosenlof

Date________________

The final copy of this thesis has been examined by the signatories, and we Find that both the content and the form meet acceptable presentation standards Of scholarly work in the above mentioned discipline.

IRB protocol # __________________________
A sectional aerosol model (CARMA) has been developed and coupled with the Community Earth System Model (CESM1). Aerosol microphysics, radiative properties and interactions with clouds are simulated. The model described here uses 20 particle size bins for each aerosol component including freshly nucleated sulfate particles, as well as mixed particles containing sulfate, primary organics, black carbon, dust and sea salt. In this thesis, CESM1/CARMA is firstly constrained by a variety of observations, and then utilized to investigate several scientific topics including aerosol layers in the upper troposphere and lower stratosphere as well as forest fire smoke in the lower troposphere.

Recent studies reveal layers of enhanced aerosol scattering in the upper troposphere and lower stratosphere over Asia (ATAL) and North America (NATAL). The observed aerosol extinction enhancement is reproduced by CESM1/CARMA. Both model and observations indicate a strong gradient of the sulfur-to-carbon ratio from Europe to the Asia on constant pressure surfaces. We found that the ATAL is mostly composed of sulfates, surface-emitted organics and secondary organics; the NATAL is mostly composed of sulfates and secondary organics. The model also suggests emission increases in Asia between 2000 and 2010 led to an increase of aerosol optical depth of the ATAL by 0.002 on average, which is consistent with observations.

The Rim Fire of 2013, the third largest area burned by fire recorded in California history, is simulated by CESM1/CARMA. Modeled aerosol mass, number, effective
radius, and extinction coefficient are within variability of data obtained from multiple airborne measurements. Simulations suggest Rim Fire smoke may block 4-6% of sunlight reaching the surface, with a cooling efficiency around 120-150 W m$^{-2}$ per unit aerosol optical depth. This study shows that exceptional events like the 2013 Rim Fire can be simulated by a climate model with one-degree resolution, though that resolution is still not sufficient to resolve the smoke peak near the source region.
Acknowledgements

The first time I met Dr. Toon was during the ATOC get-together in 2010 at his house. Besides a BBQ grill, we briefly talked about the causes of different colors in the sky on each side of the mountains during sunset. By either his excellent explanation of the natural phenomenon or the great steak he cooked, the next day I officially joined Dr. Toon’s group. My undergraduate major was Environmental Science, without any background in atmospheric study. Dr. Toon is always patient and willing to help me. The first thing I learned from Dr. Toon is being humble while being confident. The second thing is the way to solve a scientific or practical problem. I would like to compare my ideas with his; in this way, I know where I can improve to become as successful of a scientist as him. The third thing I learned from Dr. Toon is that he is always willing to listen to others. Many thanks to Dr. Toon for granting me a great opportunity to participate in a scientific field campaign, where I met hundreds of top scientists in the field. I could not have asked for a better advisor!

I would also like to thank my committee members for my COMPS exams and defense. I have been very lucky to study Atmospheric Science in Boulder, not only because the beautiful Flatirons outside my bedroom window, but also a large amount of local scientists at NCAR and NOAA. Thanks to Dr. Alma Hodzic and Dr. Sasha Madronich for discussions on SOA modeling; Thanks to Dr. Charles Bardeen and Dr. Michael Mills for discussions on CARMA development; Thanks to Dr. Christine Wiedinmyer for providing latest FINN emission datasets; Thanks to Prof. Margaret Tolbert for discussions on the modeling aspects. I very much enjoyed her Atmospheric Chemistry class too; Thanks also to Dr. Karen Rosenlof, Dr. Andrew Gettelman, and Dr.
Peter Colarco for strong help on my Postdoc applications. Thanks Dr. Ryan Neely, Dr. Jason English and Yunqian Zhu for discussions on CARMA development.

I have special thanks to Dr. Tianyi Fan, a former graduate student in Dr. Toon’s group. Dr. Fan is the one that actually taught me how to execute and run the modeling code at the beginning of my PhD career. She often sat beside me and taught me line by line the code in front of a computer screen. Dr. Fan is probably the most easy-going scientist that I have ever met in my life.

Chuck Bardeen is one of the biggest contributors to our model. Dr. Bardeen is always capable and willing to help me in solving scientific and technical problems. Countless emails starting with “Hi Chuck” saved me tons of time and energy for fixing model problems.

Thanks also to my friends, whom I will discuss here. I took vacations with Andy Kren and Ben Castellani, traveling to many places in the U.S. I will not forget the many moments of laughter either on the top floor of the Stratosphere Hotel in Las Vegas, or on the beach in California for a very expensive dinner with only a tiny slice of Salmon and rice. Thanks many other friends in Boulder.

I would also like to thank Mrs. Donglan Wang and Mrs. Baozu Chi. For the past four years, I regularly attended a Buddha class with them once a week. They are extremely warm-hearted and have taken care of me as if I was their child. Feeling loved is always the best gift one can ever ask for. I would also like to thank my Mom, my Dad, and many others. They are always the strongest resource for me and I know they are always there and ready to help. Thanks finally to my girlfriend Luxi for the great times traveling around the world.
Table of Contents

CHAPTER I: INTRODUCTION.. 1
 1.1 Motivations and Scientific Questions ... 1
 1.2 Thesis Organization .. 3

CHAPTER II: MODELING TROPOSPHERIC AEROSOLS .. 5
 2.1 Introduction of Tropospheric Aerosol Modeling ... 5
 2.2 Model Description: CESM/CARMA .. 8
 2.3 Model Evaluations ... 12
 2.3.1 Simulated Aerosol Optical Depth (AOD) compared with satellite observations 12
 2.3.2 Simulated AOD compared with AERONET observations .. 17
 2.3.3 Evaluation of surface mass concentrations of different aerosol components 22
 2.3.4 Simulated near surface mass concentration and composition compared with data from aerosol mass spectrometers ... 24
 2.3.5 Simulated black carbon mass concentration compared with multiple datasets 27
 2.3.6 Simulated sulfate and sea salt mass concentration compared with University of Miami network observations ... 29
 2.3.7 Simulated mass concentration and composition in the UTLS compared with data from airborne observation ... 32
 2.3.8 Simulated optical extinction compared with SAGEII observations in the tropics 39
 2.4 Aerosol Properties in Different Parts of the Atmosphere ... 41
 2.4.1 Organic aerosol concentration near the surface and its composition .. 41
 2.4.2 Aerosol concentration in the UTLS and its composition ... 42
 2.4.3 Simulated tropospheric aerosol spatial distribution ... 45
 2.4.4 Compositions of aerosols and optical contributions from various aerosol types 46
 2.5 Discussion and Conclusions .. 48

CHAPTER III: ANALYSIS OF ASIAN TROPOPAUSE AEROSOL LAYER AND
NORTH AMERICAN TROPOSPHERIC AEROSOL LAYEY ... 56
 3.1 Overview of ATAL and NATAL ... 56
 3.2 Methods: Model, Emission and CARIBIC ... 57
 3.3 Modeling of ATAL and NATAL ... 59
 3.4 Composition and Physical Properties of ATAL and NATAL .. 62
 3.5 Analysis of Trends of Aerosol at Upper Troposphere and Lower Stratosphere 66
 3.6 Conclusion ... 68

CHAPTER IV: ANALYSIS OF AEROSOLS FROM THE RIM FIRE OF 2013 70
 4.1 Overview of Rim Fire of 2013 ... 70
 4.2 Methods and Study Region ... 70
 4.3 Comparing Model with observations of Aerosols in Rim Fire ... 73
 4.4 Climate Effect of Rim Fire Smoke ... 79
 4.5 Conclusions ... 81

CHAPTER V: SUMMARY AND FUTURE WORK ... 84
 5.1 Main Finding .. 84
 5.2 Future work ... 86

BIBLIOGRAPHY ... 88

APPENDIX A: MODEL DESCRIPTION ... 98
 A1 General structure of the model ... 98
A2 Emission database and source functions ... 103
A3 Chemistry (SOA and Sulfur) .. 113
A4 Radiative Properties ... 118
A5 Aerosol-cloud Interactions ... 120
A6 Hygroscopic growth and sulfuric acid physical properties in CARMA 123
A7 Sedimentation in CARMA ... 126
A8 Dry deposition in CARMA ... 128
A9 Wet deposition in CESM .. 131
A10 Nucleation in CARMA ... 132
A11 Growth and Evaporation in CARMA ... 133
A12 Coagulation in CARMA ... 135
A13 Comparison of aerosol burden with different meteorology and emissions 137

APPENDIX B: BELOW CLOUD SCAVENGING PARAMETERIZATION 138
BIBLIOGRAPHY FOR APPENDIX ... 144
LIST OF TABLES

Table 2.1 Species budgets simulated by CESM1/CARMA compared with MAM7 [Liu et al., 2012].. 9
Table 2.2 Locations with large differences between AERONET observations and model simulations and corresponding information about each site......................... 21
Table 2.3 Weaknesses of observational comparison and CESM1/CARMA.......................... 48
Table 4.1 Adjusted Emission Rate (kg s\(^{-1}\) m\(^{-2}\)) between 37.75 to 38.15°N and 120.3 to 119.05°W .. 72
Table A1 Comparison among different models on computer costs.................................. 102
Table A2 Sulfur emissions.. 103
Table A3 VOCs emissions.. 104
Table A4 Emission of POA and BC.. 105
Table A5 Biological particle emission parameters.. 107
Table A6 Dust emission parameters.. 109
Table A7 Sea spray particle emission parameters... 111
Table A8 Sea spray sulfate and organics parameters.. 113
Table A9 Partitioning constants (∂_{i}) used in 4-bin SOA module for different VOCs or SOA precursors.. 114
Table A10 Sulfur chemistry (gas and aqueous phase) used in different modules.......... 117
Table A11 Aerosol refractive indices versus wavelength.. 119
Table A12 Summary of dry deposition parameterization... 129
Table A13 Species budgets simulated by CESM1/CARMA compared with Liu et al. [2012] and MAM7*... 137
LIST OF FIGURES

Figure 2.1 AOD global maps for January (top row), July (middle row) and annual average (bottom row); MISR observations (550 nm) are shown in left column; MODIS observations (550 nm) are shown in middle column; CARMA simulations (532 nm) are shown in right column. Both observations, and the model are averaged from 2009 to 2011 with calculated global mean AOD shown on the right top of each panel. Missing values are denoted by black shading. For the global mean AOD from CARMA we have only averaged over the same area of the planet that is observed by the MISR.

Figure 2.2 (Left) calculated AOD differences between CARMA (532 nm) and MISR (550 nm); (Right) calculated AOD difference between MODIS (550 nm) and MISR. Top panels are January averaged from 2009 to 2011; the middle panels are July; the bottom panels are annual averaged. Missing values are denoted by black shading. Stippling in each panel denotes where differences are greater than reported MISR detection limit.

Figure 2.3 Annual Column AOD at mid-visible wavelength over 75 AERONET sites averaged from 2009 to 2011. Colors of cycles correspond to AOD values as shown in the legends. Sites marked are further discussions in Table 2.

Figure 2.4 AOD (mid-visible wavelength) simulations compared with data from 72 AERONET sites from 2009 to 2011. Blue (red) line is fitted line forced thru the origin for rural (urban) sites, 1:1 line is shown in solid black, 1:2 and 2:1 lines are shown in dashed black. Urban sites are denoted by red circles, while rural or remote sites are denoted by blue circles. Error bars denote year-to-year variability of observations.

Figure 2.5 AERONET monthly AOD at mid-visible wavelengths at selected urban/suburban sites averaged from 2009 to 2011 (solid lines); model simulations (solid dots). Error bars indicate standard deviation of 3 years of data for each month. Each panel contains monthly AOD data at two sites marked by red and blue colors respectively with the site names listed in each panel.

Figure 2.6 Same as Figure 5 but for rural and remote sites.

Figure 2.7 (Top) Annual averaged total organic aerosol concentration (in $\mu g OM/m^3$) with particle size less than 2.5 μm in U.S. simulated by CARMA; (Middle) same as (Top) but for black carbon ($\mu g C/m^3$); (Bottom) same as (Top) but for sulfate ($\mu g SO_4/m^3$).

Figure 2.8 The top left panel compares BC between CARMA simulations and IMPROVE/EPA data. A fitted line forced to zero is shown in green, 1:1 line is shown in solid black, 1:2 and 2:1 lines are shown in dashed black. Blue points represent IMPROVE data and red points stand for EPA data. Model is run for three years from 2009 to 2011 and observations are averaged over 5 years from 2006 to 2010. The top right panel is the same as the top left panel but for OC ($\mu g OM/m3$); the bottom panel is for sulfate aerosol ($\mu g SO4/m3$).
Figure 2.9 (top) AMS measured sulfate aerosol surface concentration (µg SO₄/m³) summarized in Zhang et al. [2007]; (bottom) AMS measured total organic aerosol (TOA) concentration (HOA+OOA) (µg OM/m³).

Figure 2.10 The left Panel compares TOA (blue, µg OM/m³) and sulfate (red, µg SO₄/m³) concentrations observed in AMS campaigns and CARMA simulations. The thick black line shows 1:1 between simulations and observations; dashed black lines show 1:2 and 2:1 respectively; The right panel is the same as the left panel but for HOA (blue, µg OM/m³) and OOA (green, µg OM/m³), dashed lines denotes 1:10 and 10:1 respectively.

Figure 2.11 Observed BC surface concentrations (µg C/m³) summarized by Koch et al. [2009].

Figure 2.12 Scatter plots of CARMA simulations of black carbon versus observations summarized by Koch et al. [2009]. Black lines in each panel represent 2:1, 1:1 and 1:2 values. Simulations are annual averaged from 2009 to 2011. Urban sites in Asia listed in Zhang et al. [2009] are shown in red cycles in the top-left plot.

Figure 2.13 (top) observed non-sea salt sulfate annual averaged surface concentrations (unit: µg SO₄/m³) according to Univ. of Miami network (Prospero et al., 1989; Arimoto et al., 1996); (bottom) same as (top) but for sea salt surface concentration (unit: 10 µg/m³). Data are summarized in Appendix A of Stier et al. [2005].

Figure 2.14 scatter plot of CARMA simulation compared with Univ. of Miami data for both sea salt and non-sea salt sulfate concentrations. Red circles stand for non-sea salt sulfate, blue circles stand for sea salt concentrations (multiplied by 0.1). Black lines represent 2:1, 1:1 and 1:2. To avoid extreme data, sulfate data are removed if concentration is over 3 µg/m³ and sea salt data are removed if concentration is over 30 µg/m³.

Figure 2.15 Sulfate mass fraction of sulfate-organic particles observed by PALMS during Pre-AVE (red) and CR-AVE (blue); CARMA simulation for month of January and February averaged from 2009-2011 over studied area (Costa Rica and surrounding oceans) is shown in black dotted lines; dashed green line indicates equal mass of sulfate and organics. The error bars on the black line denote standard deviation of among yearly simulations. Particles with diameter greater than 0.2 µm are included corresponding to the detection efficiency of PALMS [Froyd et al., 2009].

Figure 2.16 Average vertical profile for rBC MMR following HIPPO1 flight track for different latitude ranges: HIPPO 1 (January, 2009) observational mean is shown with red lines; observational mean plus one standard deviation is shown in red stars; observational median is shown in black solid lines; CESM1/CARMA simulation (January of three years from 2009 to 2011) results are shown using blue lines with variability (yearly standard deviation from 2009 to 2011) shown in green lines.

Figure 2.17 Vertical profiles of organic aerosol (measured by AMS between year 2001 and 2009) for different field campaigns summarized by Heald et al. [2011] in red lines; error bars denote standard deviation of data. CESM1/CARMA simulated aerosol concentrations in 3 years from 2009 to 2011 are shown in
blue lines. Simulation data are averages for the month, but not the year, of the observations. The 4 panels inside the green box denote field measurements in remote regions. Black lines are error bars of observations.............................. 38

Figure 2.18 Same as Figure 16 but for sub-micron sulfate aerosol mass concentration. 39

Figure 2.19 SAGEII extinction [Chu et al., 1989] at 525 nm in the tropics (15 S to 15N) from 17 to 40 km in altitude is shown by the green line, pure sulfate extinction simulated by WACAM/CARMA is shown in dashed black line [English et al., 2011], CESM1/CARMA simulated aerosol extinction at 533 nm is shown in solid blue line including mixed particles, and pure sulfates. The mixed particles contain significant organics below 20 km, as shown in Figure 15.. 40

Figure 2.20 (Top) simulated ratio of OOA surface concentration to total sub-micron organics in DJF season; (bottom) same as top, but for JJA season.......... 42

Figure 2.21 Simulated ratio of organic aerosol mass to organics+sulfate aerosol mass concentration at 72/100/260 hPa levels. Simulations are averaged from 2009 to 2011. Left panels indicate aerosol with diameters ranging from 0.2 to 2 µm, the detection limit of PALMS [Murphy et al., 2006]; right panels indicate sub-micron particles corresponding to AMS detection limit which is smaller than 1µm [Jimenez et al., 2003]. ... 44

Figure 2.22 Zonal and 3 year averaged mass distribution simulated by CESM1/CARMA for major aerosol compositions (i.e. POA, SOA, BC, salt, non-sea-salt sulfate and dust). Black line in each panel denotes annually averaged simulated tropopause height... 46

Figure 2.23 The mass mixing ratios of organics, sulfate, sea salt, dust and condensed water in aerosol particles are shown in stacked bar charts. Four different altitudes are shown: 1-2 km, 2-5 km, 5-10 km and 10-18 km. Each bar represents one particle size bin. The black line denotes aerosol extinction (1/km, 532 nm) for each bin. Simulations are annual averaged over United States... 47

Figure 3.1 Aerosol extinction ratio at 1000 nm averaged between 15°-45°N during JJA seasons using emissions from 2000. Contour interval is 0.5....................... 62

Figure 3.2 Sulfur-to-carbon (S/C) mass ratio of JJA shown in the panel averaged from 200 to 300 mb using 2010 emissions. Model simulations are shown in contour background. CARIBIC observations are shown as circles........... 64

Figure 3.3 (a) Simulated organic mass (µg/m²) between 100 mb to 230 mb; (b) simulated sulfate... 65

Figure 3.4 POA (top panel) and SOA (bottom panel) mass mixing ratios (ppb) simulated by CESM1/CARMA in the ATAL during the JJA season. Contour interval is 0.1 ppb. ... 66

Figure 3.5 Column AOD (from 13 to 18 km, at 532 nm) averaged from 15° to 45° N in JJA. Red line denotes AOD of 2010, blue line denotes AOD of 2000. Error bars represent variability (standard deviation) inside ensemble runs........... 68

Figure 4.1 Concentration of organic aerosol mass [OM] of standard air (unit: ng/std m³) along the flight tracks of the DC-8 from 8/26 to 8/27. Study region is marked by red dashed cycle. Starting point of flight of 8/27 is denoted by the black text arrow... 74
Figure 4.2 Organic aerosol mass concentration (a), particle number density (b), aerosol surface area density (c) and aerosol volume density (d) of standard air simulated by CARMA (shown in solid red lines) and observed in SEAC4RS (show in dashed blue lines). Error bars denote variability (one standard deviation). Data are averaged over the domain inside the dashed circle in Figure 4.1.

Figure 4.3 Extinction coefficients at mid-visible wavelength simulated by CARMA (red) and observed by LARGE (blue), CRDS (green). Error bars denote data variability (one standard deviation).

Figure 4.4 (left) OM to BC mass ratio. CARMA simulations are shown in red, while observations are shown in blue dashed lines. Error bars denote data variability (standard deviation); (right) single scattering albedo (SSA) at mid-visible wavelength simulated by CARMA (red) and observed by LARGE (blue). Green lines denote calculated SSA using CRDS for dry extinction coefficient and PAS for dry absorption coefficient. Black dashed lines denote modeled SSA in CARMA without dust aerosols.

Figure 4.5 OM to BC mass ratio along the flight track. CARMA simulations (every model time step: 30 minutes) are shown in red dotted lines, observations (every minute) are shown in blue dotted lines. Black lines denote flight altitudes. Green lines denote two time periods where measurements are taken in the smoke around 600 hPa. Flight of August 27 starting point is denoted by dashed black line.

Figure 4.6 (a) CARMA simulated clear sky net solar radiative forcing at surface (FSNS, W/m²) with Rim Fire smoke for 20Z-22Z of August 27; (b) FSNS difference between runs with and without Rim Fire smoke in CARMA for 20Z-22Z of August 27; (c) AOD simulated in CARMA with Rim Fire smoke for 20Z-22Z of August 27; (d) cooling efficiency for rim fire smoke for 20Z-22Z of August 27: surface cooling per AOD of smoke (W/m²/AOD). Observation of AOD by AeroNet Sites (University of Nevada-Reno: 39N, 119W; Rimrock: 46N, 116W; Missoula: 46N, 114W; University of Lethbridge: 49N, 112W) close to the smoke, are shown in filled cycles. AeroNet observations are mostly taken between 20-22Z of August 27. Due to limited observation on August 27, the AOD data of University of Nevada-Reno is taken at 23 Z of August 27.

Figure 4.7 OM to BC mass ratio along the flight track. CARMA simulations (every model time step: 30 minutes) are shown in red dotted lines, observations (every minute) are shown in blue dotted lines. Black lines denote flight altitudes. Green lines denote two time periods where measurements are taken in the smoke around 600 hPa. Flight of August 27 starting point is denoted by dashed black line.

Figure A1 Diagram of the CESM1/CARMA Model. In addition to sulfate, the model includes organics, dust, sea salt, black carbon, aqueous chemistry and aerosol-cloud interactions (activation and evaporation).

Figure A2 Diagram shows aerosol size bins and multiple aerosol modes: CARMA (red), MAM3 (green) and MAM7 (blue). CARMA sulfate bins are shown in circles, and mixed particle bins are shown in diamonds; Modes from MAM3/MAM7.
have line edges at the 10th and 90th percent of the number of particles in each mode described by Liu et al. [2012]. (SS denotes sea salt. Bulk SOA in CESM1/CARMA is not shown on figure.)

Figure A3 (left) CESM1/CARMA predicted dry deposition velocity (cm s\(^{-1}\)) at model surface as a function of wet radius with different wind speed; (right) Modeled sedimentation velocity (cm s\(^{-1}\)) as a function of altitude, each line represents a size bin. The leftmost line denotes the smallest bin.

Figure A4 Calculated Brownian coagulation kernel (cm\(^3\) s\(^{-1}\)) at surface (left) and 20 km (right) as a function of particle radius. Colors are used to make the graph easier to read.

Figure B1 Scavenging coefficient (1/cm) using Marshall-Palmer raindrop distribution as a function of the wet aerosol radius and precipitation rate.
CHAPTER I
INTRODUCTION

1.1 Motivations and Scientific Questions

Aerosols, collections of tiny particles suspended in the air, affect climate directly through aerosol-radiation interaction and indirectly through aerosol-cloud interactions. Both of these interactions have large uncertainties [IPCC V, Stocker et al., 2013]. Various types of aerosols exist in the atmosphere including: sulfates which largely result from sulfur dioxide produced partly by anthropogenic energy production, as well as dimethyl sulfide (DMS) produced biologically in the oceans [Chin et al., 2000]; black carbon particles, which largely originate from incomplete combustion of fossil fuels and biofuels [Koch et al., 2009]; primary organic particles which originate from biomass burning and anthropogenic activities; secondary organic particles which originate from vapors produced by the living and dead biomass and anthropogenic activities; as well as dust and sea salt particles, which largely originate from wind blowing over the arid lands or oceans.

Aerosols generally cool the Earth by scattering solar radiation, however some aerosols, such as black carbon (BC), can both scatter and absorb radiation and thus have the potential to warm the atmosphere and cool the surface [Koch, 2001; Bond et al., 2013]. Besides direct effects on the radiation budget, aerosols in the troposphere can be cloud condensation nuclei (CCN). Changes in CCN, which can be induced by both natural [Rap et al., 2013] and anthropogenic influences [Ghan et al., 2013], can affect
climate indirectly by changing the properties of clouds. Changing CCN properties (e.g. number and size) affects cloud albedo and precipitation. Absorbing aerosols heat the atmosphere and potentially increase cloud evaporation. Large uncertainties still exist in both aerosol direct and indirect effects [Stocker et al., 2013; Lohmann et al., 2010]. Because of the complexity of the aerosol impacts on climate, global climate models with sophisticated aerosol schemes are needed to gain a better understanding of the radiative forcing via aerosol-radiation-cloud interactions.

The radiative forcing due to background stratosphere aerosols increased from 2000 to 2010 [Solomon et al., 2011]. Aerosol in the stratosphere has a long lifetime. Therefore, even small injections may affect climate significantly by scattering sunlight back to space and absorbing radiation locally [Stocker et al., 2013]. Aerosol layers in upper troposphere and lower stratosphere (UTLS) may be important if they persist or their particles are transported into the stratosphere. Using satellites, Randel et al. [2010] show air pollution can be transported from surface to the UTLS through the Asian Summer Monsoon. Recently, two aerosol layers associated with the Asian Summer Monsoon (ATAL) and North American Summer Monsoon (NATAL) were observed by SAGEII [Thomason and Vernier, 2013] and CALIPSO [Vernier et al., 2011a]. To better quantify the global aerosol radiative budget, climate models with sophisticated aerosol schemes are needed to study the source, amount, size, composition and other physical properties of the two aerosol layers in the UTLS.

Other types of aerosols are also varying in time and important to the climate. Forest fire smoke cools the planet in the daytime by scattering sunlight [Robock, 1988; Robock, 1991; Westphal and Toon, 1991]. Robock [1991] used the differences between
forecast temperatures and observed temperatures to suggest that forest fires in Canada
during 1981 and 1982, Siberia in 1987, as well as in Yellowstone National Park in 1988,
cooled the surface under the smoke by 1.5 to 7 °C in the daytime, but did not have an
observable impact on nighttime temperatures. Using a numerical model, Westphal and
Toon [1988] found a daytime cooling of 5 °C beneath a smoke plume over the
Northeastern U.S., which originated from a fire in Western Canada in 1982. The Rim Fire
of 2013 burned the third largest area recorded in California history. The fire, located near
Yosemite National Park, lasted from August to October [Peterson et al., 2015]. This
exceptional event provides a good opportunity to further quantify radiative forcing by
forest fires using modern global climate modeling approaches constrained by both remote
and in-situ data.

In this thesis I mainly address three scientific questions:

1) Can we model observed aerosol spatial distributions, physical and optical
 properties?

2) What are the composition, source and physical properties of the ATAL and
 NATAL? Do Asian anthropogenic emissions contribute to the positive trend of
 background stratosphere aerosol loading?

3) What are the aerosol composition, as well as the physical and optical properties
 of Rim Fire smoke? What is the radiative impact of the forest fire smoke on our
 planet?

1.2 Thesis Organization

For this thesis I developed a sectional aerosol model (CARMA) coupled with the
Community Earth System Model (CESM). Specifically I developed a sectional model for
black carbon and organics and coupled them with existing sectional sulfate model [English et al., 2011], sectional sea salt model [Fan and Toon, 2011] and sectional dust model [Su and Toon, 2009] into CESM; I applied a volatility basis set scheme for SOA formation, and I also coupled CARMA aerosols to water cloud, radiation and chemistry modules in CESM. After a thorough evaluation of CARMA against large amount of observational datasets, I apply the model to simulate aerosol transported to the upper troposphere and lower stratosphere (UTLS) as well as smoke from forest fires. Chapter II describes the model configuration and model evaluations against a large dataset of observations. Chapter III describes the use of CESM/CARMA for simulating the Asian Tropopause Aerosol Layer (ATAL) and North American Tropospheric Aerosol Layer (NATAL). Chapter IV describes the use of CESM/CARMA in simulating the aerosols in smoke from the Rim Fire of 2013, the third largest area burned in California history. Chapter V provides a summary and outlines future work. Appendix A describes detailed model parameterizations including emission, chemistry, aerosol-cloud interaction and aerosol microphysics. Appendix B describes parameterization of below cloud scavenging used in CESM1/CARMA. Chapter II was published as Yu et al. [2015a]; Chapter III was published as Yu et al. [2015b]; Chapter IV is a manuscript in preparation.
CHAPTER II

MODELING TROPOSPHERIC AEROSOLS

2.1 Introduction of Tropospheric Aerosols Modeling

An accurate representation of global variations in the aerosol particle size distribution in climate models is important since particle size determines the wavelength dependence of the aerosol optical properties, and is also an important factor, in addition to composition, in determining which aerosols can act as CCN. Some climate models use bulk schemes (fixed size and externally mixed aerosols). However, such schemes cannot capture the spatial or temporal variations in the aerosol particle size distribution [Liu et al., 2012]. A considerable improvement is to use a modal aerosol microphysics scheme (modal model hereafter), which assumes aerosols are found in several size modes assuming a size distribution (usually lognormal) in each mode. The goal of the modal aerosol model (MAM) in CESM1 [Liu et al., 2012] is to create a “minimal representation of aerosols in climate models”. Liu and Penner [2002] applied a modal scheme for sulfate aerosol in the LLNL/IMPACT model, which was further developed by Liu et al. [2005]; Stier et al. [2005] applied a 7-mode aerosol module into the ECHAM5-HAM global model; Wang et al. [2009] implemented a modal model into CAM3 [Collins et al., 2006]; while Liu et al. [2012] compared two modal schemes in CAM5, a 7-mode (MAM7 hereafter) and a 3-mode (MAM3 hereafter) model. Liu et al. [2012] show that because of different size ranges and standard deviations assumed for the lognormal distribution, the MAM3 and MAM7 have dust burdens that differ by 10% and sea salt burdens that differ by 30-40%.
Modal models generally are computationally more efficient than sectional models. However, to accurately represent aerosols and their perturbations, some modal models can require many modes and can reach computational expenses similar to sectional models [Weisenstein et al., 2007; Kokkola et al., 2009]. For example using a 2-D chemical-transport model, Weisenstein et al. [2007] evaluated 3 and 4 mode modal models of sulfate aerosols in comparison with a 40 bin sectional model. They found that the 3 mode model required 70% of the computer time as the 40 bin model, while the 4 mode model was actually slower, requiring 110% as much time as the sectional representation. Mann et al. [2012] compared modal and sectional parameterizations for tropospheric aerosols within the same global chemistry transport model. They adjusted the modal model widths and inter-modal separations to give improved agreement with the sectional model finding that differences between the modal and sectional scheme were much less than model-observation differences. They also concluded that “The findings here underline the need for a spectrum of complexity in global models, with size-resolved aerosol properties predicted by modal schemes needing to be continually benchmarked and improved against freely evolving sectional schemes and observations”. Various studies have incorporated sectional models into global climate models [Spracklen et al., 2005; Yu and Luo, 2009; Jacobson, 2001; Bardeen et al., 2008; Adams and Seinfeld, 2002].

Besides a choice of aerosol size-resolving scheme (e.g. bulk, modal or sectional schemes), it is also important to accurately represent the aerosol mixing state. Both optical and chemical properties may depend on whether they are internally or externally mixed. Jacobson [2001] showed that direct forcing by externally-mixed black carbon
aerosols in climate model is less than from internally mixed aerosols with a core-shell configuration as originally suggested by Ackerman and Toon [1981]. Our sectional model can be organized into many different choices of mixing states. Here we consider two classes of particles, one comprising newly nucleated sulfuric acid particles and the other representing mixtures of primary particles including primary organics, dust, sea salt, and black carbon with sulfate condensed on them. We do not include nitrogen compounds (e.g. nitrate and ammonia) in this version of the model to reduce computing load. Nitrogen compounds are also neglected by many aerosols modules [Shindell et al., 2013; Mann et al., 2014].

Organic compounds contribute 20-90% of submicron aerosol mass globally [Zhang et al., 2007; Kanakidou et al., 2005]. Jimenez et al. [2009] show that organic aerosol (OA) can be further oxidized/aged to oxygenated organic aerosol (OOA). The oxygen to carbon atomic ratio (O:C) is relevant to aerosol hygroscopicity and volatility, which affect aerosol lifetime and budget. Zhang et al. [2007] conclude that lack of explicit representation of oxygenated organics (OOA) leads to bias of the organic budget in global models. The complexity of organic aerosols is very great, and our knowledge of them is poor [Kanakidou et al., 2005]. Due to the equilibrium partitioning assumptions made in most organic aerosol schemes, we carry the organic aerosol as several classes of bulk aerosol using a volatility basis set approach derived from Pye et al. [2010].

In section 2.2 we first introduce the sectional model CESM1/CARMA and the assumptions used in our modelling approach. In section 2.3 we critically evaluate simulated aerosol properties against a wide range of observational datasets. In section 2.4 we examine simulated aerosol properties in several key regions of the atmosphere. In
section 2.5 we conclude by identifying some deficiencies in our present model, focusing on those that we believe to be common across models, and are therefore deserving of further attention by the community.

2.2 Model Description: CESM/CARMA

We use the Community Earth System Model (CESM1) coupled with the Community Aerosol and Radiation Model for Atmospheres (CARMA) [Toon et al., 1988]. The Chemistry package used is MOZART-4 [Emmons et al., 2010] with additional sulfur chemistry [Mills, 1996; English et al., 2011], and secondary organic aerosol (SOA) chemistry following Pye et al. [2010]. We use 1.9°x2.5° horizontal resolution, the standard CESM1 resolution, and 56 hybrid levels from the surface to 1.86 hPa. For this study, we run the model for 3-years from 2009 to 2011 following an additional half-year to allow the model to reach a steady state. The meteorology fields are nudged to MERRA reanalysis data [Rienecker et al., 2011]. Appendix A, provides a detailed model description including aerosol source functions, sulfur chemistry, SOA chemistry and aerosol microphysical parameterization schemes.

Both CARMA and MOZART-4 consider the emission of aerosols and gases. CARMA controls the wind-driven emission of sea salt and dust aerosols with source functions provided by Fan and Toon [2011] and Su and Toon [2009] respectively. The anthropogenic emission of primary organic aerosol (POA) and black carbon (BC) including gas-flaring data follow Amann et al. [2011]. The biomass combustion emission of POA and BC use the Global Fire Emission Database [GFED, version 3, van der Werf et al., 2006, 2010]. The details of the MOZART-4 treatment of the emissions of SO$_2$ and VOCs are described in Appendix A and Emmons et al. [2010].
Table 2.1 Species budgets simulated by CESM1/CARMA compared with MAM7 [Liu et al., 2012]

<table>
<thead>
<tr>
<th>Species/SOA</th>
<th>Source Tg/y</th>
<th>Burden Tg</th>
<th>Lifetime days</th>
<th>DD, Tg/y</th>
<th>WD, Tg/y</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARMA</td>
<td>159.3/122.8</td>
<td>1.63/1.27</td>
<td>3.73/3.77</td>
<td>65.1/8.35</td>
<td>95.37/115.88</td>
</tr>
<tr>
<td>MAM7</td>
<td>50.2/103.3</td>
<td>0.68/1.15</td>
<td>4.9/4.08</td>
<td>8.4/11.2</td>
<td>41.7/92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source Tg/y</th>
<th>Burden Tg</th>
<th>Lifetime days</th>
<th>DD, Tg/y</th>
<th>WD, Tg/y</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARMA</td>
<td>11.74</td>
<td>0.14</td>
<td>4.35</td>
<td>8.90</td>
</tr>
<tr>
<td>MAM7</td>
<td>7.76</td>
<td>0.093</td>
<td>4.37</td>
<td>6.48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source Tg/y</th>
<th>Burden Tg</th>
<th>Lifetime days</th>
<th>DD, Tg/y</th>
<th>WD, Tg/y</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARMA</td>
<td>5004.1</td>
<td>7.58</td>
<td>3073.8</td>
<td>1927.4</td>
</tr>
<tr>
<td>MAM7</td>
<td>5004.1</td>
<td>0.34</td>
<td>1927.4</td>
<td>1927.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source Tg/y</th>
<th>Burden Tg S</th>
<th>Lifetime days</th>
<th>DD, Tg S/y</th>
<th>WD, Tg S/y</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARMA</td>
<td>0.25</td>
<td>8.02</td>
<td>18.6</td>
<td>40.2</td>
</tr>
<tr>
<td>MAM7</td>
<td>0.34</td>
<td>3.72</td>
<td>5.51</td>
<td>40.20</td>
</tr>
</tbody>
</table>

Note: Nss-sulfate stands for sulfate not emitted with sea salt particles; DD denotes dry deposition flux; WD denotes wet deposition flux.

Table 2.1 summarizes the aerosol emission rates and burden of primary/secondary aerosols averaged over the three-year run and compares them with values reported by Liu et al. [2012] for the MAM7 model. Note that both models can vary these values depending on the assumptions made, such as number of modes used, and the emission databases used. Therefore, this comparison is primarily of use in understanding the general behavior of the models, and is not meant to be a quantitative comparison suggesting a deficiency of either code. We find most differences are due to CAM/CARMA including sources not included in Liu et al. [2012]. However, some
differences in the removal rate of sea salt and dust may be due to the modal model as used by Liu et al [2012] not including particles that are as large as those in CAM/CARMA (refer to Figure A2 in Appendix A). Appendix A also present results from the MAM7 model run with the reanalysis winds, and anthropogenic emission data bases used by CARMA. These results differ from those presented in Liu et al. by less than 20%.

As summarized in section 1 of Table 2.1, CAM/CARMA has a much larger source of POA than does Liu et al. [2012]. CAM/CARMA includes primary biological particles and primary marine organics, which are not simulated in Liu et al. [2012]. The primary biological and marine organics account for 60% of the total source of organic aerosols. However these particles are relatively large so they are removed quickly by dry deposition including sedimentation. Biological particles are emitted mostly in super-micron bins, with mean radius of 1.5 µm (see details in Appendix 2.4). Marine organics are emitted internally mixed with both sub- and super-micron sea salt particles, which are more hydrophilic than organics. Thus marine organics are removed more efficiently through wet deposition than terrestrial organics, which are not co-emitted with salt. Therefore CAM/CARMA has a larger source of POA, and a shorter lifetime for POA than Liu et al. [2012].

The SOA source, burden and lifetime in Table 2.1 are within about 10% in CAM/CARMA and Liu et al. [2012]. However, as described in Appendix A, CAM/CARMA subdivides the SOA into four volatility classes so that the properties of the SOA are better resolved in CAM/CARMA than in Liu et al. [2012].
The BC source in CAM/CARMA is 54% larger than in Liu et al. [2012] because CARMA uses different anthropogenic emission databases developed by Amann et al. [2011] and a biomass-burning database from the third version of Global Fire Emission Database [van der Werf et al., 2010]. The burden of BC in CARMA is 50% higher than in Liu et al. [2012] consistent with the emission difference.

As summarized in section 2 of Table 2.1, CAM/CARMA and Liu et al. [2012] have similar aerosol burdens for sea salt. However, CARMA predicts 60% more sea salt dry deposition flux compared with Liu et al. [2012]. The larger flux, and the corresponding shorter lifetime, are due to larger sized sea salt particles included in CAM/CARMA, which have high fall speeds.

CESM1/CARMA predicts only 50% of the dust burden from Liu et al. [2012], while the emission fluxes are within about 3%. However, the similar emission fluxes are somewhat misleading. CARMA’s dust lifting scheme emits larger sized particles than does the flux scheme used by Liu et al. [2012]. Consequently the dry deposition flux predicted by CARMA is 45% higher than in Liu et al. [2012]. Likewise, the wet deposition flux predicted by CARMA is only 43% of Liu et al. [2012]. Another reason, besides having larger particles, for the lower wet deposition in CARMA is that CARMA calculates a mass weighted hygroscopicity and assumes dust is more hydrophobic than other aerosol species such as organics, sulfate and salt. The calculated wet deposition flux in CARMA is only 21% of the dry deposition flux, which indicates dry deposition is the dominating sink of dust. A similar result is reported by Su and Toon [2011].

As summarized in section 3 of Table 2.1 CESM1/CARMA predicts 4.2 times the burden of sulfuric acid in the gas phase as Liu et al. [2012], while SO₂ and DMS burdens
simulated in MOZART are consistent between both models. Sulfuric acid above 100 mb in CESM1/CARMA accounts for 75% of total sulfuric acid mass, while most sulfuric acid burden in Liu et al. [2012] is in the troposphere. CARMA includes carbonyl sulfide (OCS), which contributes to the disagreement on sulfuric acid burden in the stratosphere between the two models.

CESM1/CARMA has about 2.8 times the burden for non-sea-salt sulfate aerosol as Liu et al. [2012], while the source in CARMA is 30% higher than Liu et al. [2012]. CARMA predicts 3.4 times the dry deposition flux as Liu et al. [2012], while the wet deposition fluxes are similar. One of reason for the difference in burden is that CESM1/CARMA includes additional processes and sulphur chemistry for simulating aerosol in the stratosphere as well as the troposphere.

As mentioned previously, while we have identified some differences between the Liu et al. [2012] model and the CESM1/CARMA model, these are not inherent errors in Liu et al. [2012] or CESM1/CARMA. The differences could be narrowed by changes in source functions, size ranges covered, or rainout rates.

2.3 Model Evaluations

2.3.1 Simulated Aerosol Optical Depth (AOD) compared with satellite observations

Aerosol optical properties are calculated using a core-shell Mie Code assuming CARMA’s mixed particles are internally mixed. Black carbon and dust are cores while water forms a shell along with water-soluble compounds such as organics, sea salt and sulfate. Details of the optical assumptions are presented in Appendix A.

Figure 2.1 compares annual column integrated AOD at a wavelength of 533 nm from a CAM/CARMA simulation nudged to offline meteorology by MERRA [Rienecker et al.,
2011] for the years 2009-2011 with satellite observations of Terra MODIS collection 5 Level 3 monthly data [http://ladsweb.nascom.nasa.gov/] and MISR version 4 Level 3 monthly data [https://eosweb.larc.nasa.gov/] averaged over the same period. The wavelength of the MODIS and MISR data is 550 nm. It should be noted that satellites often do not retrieve aerosol optical depths either because of orbital sampling bias, or because of cloud screening. This data loss can lead to bias in the global average data sets. In the comparison, we did not mask out data when and where satellites actually did not measure. In addition, retrieval uncertainties of satellites also limit the ability to constrain climate models. The optical depth detection limit for MISR is 0.05 according to Kahn et al. [1998], while the expected uncertainties for MODIS are reported as ±(0.05 +15%*AOD) over land and ±(0.03+5%*AOD) over ocean [Remer et al., 2008].

As shown in Figure 2.1 and 2.2, the model underestimates global annual average AOD observed by MISR by 32% (normalized mean bias), while MODIS shows a 9% difference with MISR. Our simulated global-averaged optical depth is within the uncertainty of the MISR and MODIS data noted above. Generally the model captures temporal and spatial distributions of AOD over land annually. Both model and satellites show peaks at Northern Africa, equatorial Africa, South Asia and East Asia. The model underestimates AOD in mid-high latitudes of the Northern Hemisphere both over land and ocean. Compared with MISR and MODIS, the model overestimates AOD in the central Pacific Ocean and Indian Ocean between the equator and 30S by up to 60%. The model strongly underestimates AOD in the South China Sea and Southeast Asia. The model also shows up to 80% underestimation of AOD, likely due to sea salt, in the southern ocean between 60S to 75S. In addition to a possible missing source of sea salt
particles, the model may generate too much convection and wash particles out too aggressively. However, the Maritime Aerosol Network (MAN) shows that the measured AOD from cruises in the southern ocean is less than 0.1 [Smirnov et al., 2011], as simulated by CARMA. The disagreement between measured AOD from MAN and satellite retrieval may suggest large observational uncertainties.

In January both model and satellites shows high AOD over equatorial Africa associated with strong biomass burning and over East Asia associated with strong anthropogenic pollution. CAM/CARMA shows the peak opacity over central Africa, while the satellites show it over Western Africa and the Gulf of Guinea. Possibly this difference indicates that the model underestimates the emissions in Western Africa in January or that the model does not capture some gas to particle conversion occurring as the smoke moves downwind.

In July both model and satellites show a strong peak of AOD in the Sahara, central Africa, western Asia and eastern China. The modeled peak over the Sahara is mostly contributed by dust particles and deviates from satellite observations spatially by being slightly to the North. The modeled AOD in the Amazon in July ranges from 0.1 to 0.15, while MISR shows values of 0.07-0.09. Thus the simulation overestimates the observations by a factor of 1 to 2. The strong deviation may indicate the model produces too many secondary organics in the Amazon. However, the AOD retrieved by satellites in South America is similar to their detection limits, which indicates high uncertainties exist in this region. The simulated AOD is within a factor of 2 of both MODIS and MISR in North America. Over the Pacific Ocean along the west coast of North America, the model underestimates MISR AOD by 80%, however MODIS also has lower AOD compared
with MISR. Kinne et al. [2006] show MISR AOD products have a high bias over the Pacific Ocean along the west coast of North America compared with retrievals by other satellites including MODIS. Further Pappas et al. [2013] show that the MODIS AOD is within 20% of recent aerosol climatology data in the same region, which indicates observational uncertainties exist in these areas. The model shows an AOD peak in the central tropical Pacific (0-20S), which is not shown either by MISR or MODIS. This disagreement may indicate the model overestimates aerosol (mostly sea salt) production in that region. Alternately Kipling et al. [2013] shows that the vertical distribution of aerosol (e.g. BC) is sensitive to convective scavenging, thus not enough wet deposition in tropics may contribute to the disagreement. Also, high cloud cover in the tropics may increase the observational uncertainties for AOD retrieved from satellites.

![AOD global maps](image)

Figure 2.1 AOD global maps for January (top row), July (middle row) and annual average (bottom row); MISR observations (550 nm) are shown in left column; MODIS
observations (550 nm) are shown in middle column; CARMA simulations (532 nm) are shown in right column. Both observations, and the model are averaged from 2009 to 2011 with calculated global mean AOD shown on the right top of each panel. Missing values are denoted by black shading. For the global mean AOD from CARMA we have only averaged over the same area of the planet that is observed by the MISR.

Figure 2.2 (Left) calculated AOD differences between CARMA (532 nm) and MISR (550 nm); (Right) calculated AOD difference between MODIS (550 nm) and MISR. Top panels are January averaged from 2009 to 2011; the middle panels are July; the bottom panels are annual averaged. Missing values are denoted by black shading. Stippling in each panel denotes where differences are greater than reported MISR detection limit.
2.3.2 Simulated AOD compared with AERONET observations

Aerosol Robotic Network (AERONET) sites around the globe and their optical depths are shown in Figure 2.3. An AERONET site is picked for comparison with the model if the site has more than 32 months of AOD measurements at mid-visible wavelength out of the 36 months from January of 2009 to December of 2011. It should be noted that AERONET may be missing data on a daily or hourly basis, and we did not attempt to exclude times from the simulations when a particular site did not report data. As shown in Figure 2.3, lower AOD is found in the western U.S., the Southern Hemisphere, and Europe, while higher AOD is found in eastern U.S., as well as parts of Africa, the Middle East and Asia.

A comparison between simulations and annual averaged AERONET data from the period between 2009 and 2011 is shown in Figure 2.4. Simulations are also for the period from 2009 to 2011. The simulated AOD around the globe on average captures 65% of AERONET AOD with a correlation coefficient of 0.80. Modeled AOD is generally within a factor of 2 of observations at rural sites. The model underestimates AOD by more than a factor of 2 at some urban sites with large AOD. This underestimation may be due to urban anthropogenic emissions being averaged over a coarse model grid cell in the simulations, while the simulation results are compared with point measurements made at AERONET sites. Error bars in each point of Figure 2.4 denote yearly variations of observations.
Figure 2.3 Annual Column AOD at mid-visible wavelength over 75 AERONET sites averaged from 2009 to 2011. Colors of cycles correspond to AOD values as shown in the legends. Sites marked are further discussions in Table 2.2.
Figure 2.4 AOD (mid-visible wavelength) simulations compared with data from 72 AERONET sites from 2009 to 2011. Blue (red) line is fitted line forced thru the origin for rural (urban) sites, 1:1 line is shown in solid black, 1:2 and 2:1 lines are shown in dashed black. Urban sites are denoted by red circles, while rural or remote sites are denoted by blue circles. Error bars denote year-to-year variability of observations.

Monthly variations of AOD at selected AERONET sites and from simulations are shown in Figure 2.5 (urban and suburban sites) and Figure 2.6 (rural and remote sites). In each panel of Figure 2.5 and Figure 2.6, observational data from two sites are shown using red and blue colored solid lines, while simulations are shown in solid circles. In general the simulations are within the error bars of the observations. However, for some sites summarized in Table 2.2 the simulations underestimate AOD. These are usually urban and suburban locations (e.g. Beijing, Chen-Kung University, Silpakorn University, Singapore). Our model resolution (2 degrees) is not capable of resolving the high local AOD in urban sites with high pollution since emissions are averaged over each 2-degree
model grid. The simulations overestimate the AOD at some locations where the site is located at high elevation, since we cannot resolve small-scale topography.

Figure 2.5 AERONET monthly AOD at mid-visible wavelengths at selected urban/suburban sites averaged from 2009 to 2011 (solid lines); model simulations (solid dots). Error bars indicate standard deviation of 3 years of data for each month. Each panel contains monthly AOD data at two sites marked by red and blue colors respectively with the site names listed in each panel.
Figure 2.6 Same as Figure 2.5 but for rural and remote sites.

Table 2.2 Locations with large differences between AERONET observations and model simulations and corresponding information about each site.

<table>
<thead>
<tr>
<th>Sites</th>
<th>Model</th>
<th>Months</th>
<th>Site information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banizoumbou</td>
<td>under</td>
<td>1–10</td>
<td>sandy, near village</td>
</tr>
<tr>
<td>Beijing</td>
<td>under</td>
<td>all</td>
<td>urban</td>
</tr>
<tr>
<td>Chen-Kung Univ</td>
<td>under</td>
<td>8–12</td>
<td>urban, near train station</td>
</tr>
<tr>
<td>Dakar</td>
<td>under</td>
<td>1–8</td>
<td>coastal, 90 km from Dakar</td>
</tr>
<tr>
<td>IER Cinzana</td>
<td>under</td>
<td>1–7</td>
<td>cultivated, 35 km from Sigou city</td>
</tr>
<tr>
<td>SACOL</td>
<td>over</td>
<td>1–4</td>
<td>top of mountain, bush</td>
</tr>
<tr>
<td>Silpakorn Univ</td>
<td>under</td>
<td>11–4</td>
<td>Urban Nakhon Pathom, Thailand</td>
</tr>
<tr>
<td>Singapore</td>
<td>under</td>
<td>all</td>
<td>urban, Univ. of Singapore</td>
</tr>
</tbody>
</table>

Note: Sites are marked in Figure 2.3; “under” (“over”) means model underestimates (overestimates) observation; Months indicates when the disagreements between model and observations occur.
2.3.3 Evaluation of surface mass concentrations of different aerosol components

Filter measurements from the Interagency Monitoring of Protected Visual Environment (IMPROVE) U.S. network data (mostly rural sites, http://vista.cira.colostate.edu/improve/) as well as EPA Chemical Speciation Network data (urban sites) shows that the surface concentration of black carbon, organic carbon, and sulfate is higher in the eastern U.S. and lower in the mid-west. Simulated surface concentrations of organics, black carbon and sulfate aerosol over U.S. are illustrated in Figure 2.7. Simulated organics, black carbon and sulfate have a large gradient from the eastern U.S. to the west. This spatial distribution is consistent with higher anthropogenic emission in the east than the west. Black carbon mass is an order of magnitude smaller than the mass of organics. Sulfate dominates the mass in the western U.S., and is comparable to organic mass in eastern U.S. Comparisons between simulations and IMPROVE and EPA data for BC, organics and sulfate are shown in Figure 2.8.
Figure 2.7 (Top) Annual averaged total organic aerosol concentration (in µg OM/m³) with particle size less than 2.5 µm in U.S. simulated by CARMA; (Middle) same as (Top) but for black carbon (µg C/m³); (Bottom) same as (Top) but for sulfate (µg SO₄/m³).

IMPROVE and EPA data are averages of 5 years from 2006 to 2010, while the model simulation is for three years from 2009 to 2011. Observations are averaged in each model grid-cell (2 degree) and compared to corresponding model data. Simulated organic mass (OM), and sulfate over the United States are mostly within a factor of 2 of
observations (Figure 2.8). On the annual mean, the model underestimates observed OM concentration by 20% with a fairly weak correlation coefficient of 0.39, while the model overestimates observed sulfate by 9% with a correlation coefficient of 0.72. By contrast, the model generally underestimates BC in U.S. by 50% with a correlation coefficient of 0.45.

![Figure 2.8](image1)

Figure 2.8 The top left panel compares BC between CARMA simulations and IMPROVE/EPA data. A fitted line forced to zero is shown in green, 1:1 line is shown in solid black, 1:2 and 2:1 lines are shown in dashed black. Blue points represent IMPROVE data and red points stand for EPA data. Model is run for three years from 2009 to 2011 and observations are averaged over 5 years from 2006 to 2010. The top right panel is the same as the top left panel but for OC (µg OM/m³); the bottom panel is for sulfate aerosol (µg SO₄/m³).

2.3.4 Simulated near surface mass concentration and composition compared with data from aerosol mass spectrometers

Aerosol concentrations have been measured by aerosol mass spectrometers (AMS) at many locations. Zhang et al. [2007] summarized the organic and sulfate concentrations
measured during a variety of field campaigns from 2000 to 2006. Most data are collected in Northern America, Europe and Eastern Asia as shown in Figure 2.9. Higher concentrations of sulfate and total organics are found in Asia than in Europe and North America. The principal component analysis of the data [Zhang et al., 2006] provides quantification of organics into several types including hydrocarbon-like organics aerosol (HOA) and oxygenated organic aerosol (OOA). In CAM/CARMA we assume directly emitted organics are categorized as HOA, including organics from biomass burning, forest fires and anthropogenic sources. We also assume SOA from both anthropogenic and biogenic sources are categorized as OOA. No further oxidation of HOA to OOA is considered in CARMA. Each simulation in Figure 2.10 is for the same month(s) when the measurements were taken but averaged from 2009 to 2011. Comparison between simulated and observed total organics and sulfate is shown in the left panel of Figure 2.10, while comparison of HOA and OOA between model and observation is shown in right panel of Figure 2.10. CARMA on average is within 71% the total organic (TOA) and 75% of the sulfate (SULF) observations. Many of these measurements are from urban sites, which may not be well resolved by our model.
Figure 2.9 (top) AMS measured sulfate aerosol surface concentration (µg SO4/m³) summarized in Zhang et al. [2007]; (bottom) AMS measured total organic aerosol (TOA) concentration (HOA+OOA) (µg OM/m³).

Jimenez et al. [2009] shows organic aerosols evolve by becoming increasingly oxidized and the aging processes are observed both in the atmosphere and laboratory. One advantage of the AMS data is that it differentiates the organics by degree of oxidation. As shown in Figure 2.10, on average the model overestimates HOA concentrations by 44% with a correlation of 0.6 while it underestimates OOA concentrations by 70% with a lower correlation of 0.24. In Eastern Asia, the simulated HOA fraction is much higher than observed, thus directly emitted organics are likely being aged in highly urbanized places. The model performance possibly suggests that the aging process from HOA to OOA and among different organic volatility-bins needs to be further parameterized and studied by introducing the oxidation state variable and carbon number used in Kroll et al. [2011].
27

Figure 2.10 The left Panel compares TOA (blue, μg OM/m³) and sulfate (red, μg SO4/m³) concentrations observed in AMS campaigns and CARMA simulations. The thick black line shows 1:1 between simulations and observations; dashed black lines show 1:2 and 2:1 respectively; The right panel is the same as the left panel but for HOA (blue, μg OM/m³) and OOA (green, μg OM/m³), dashed lines denotes 1:10 and 10:1 respectively.

2.3.5 Simulated black carbon mass concentration compared with multiple datasets

Koch et al. [2009] summarized black carbon surface measurements from multiple datasets around the globe. As described in Koch et al. [2009], data for the U.S. came from the IMPROVE network (year 1995-2001), those for Europe (year 2002-2003) were from the European Monitoring and Evaluation Program (EMEP) network (http://www.emep.int) and some Asian data (year 2006) are from Zhang et al. [2009]. As shown in Figure 2.11, relatively small concentrations (100-500 ng/m³) of black carbon are found in the U.S., while large concentrations (>1000 ng/m³) are found in Asia and parts of Europe. The largest concentrations (>10000 ng/m³) are found in Asian urban sites listed in Zhang et al. [2009]. The pattern corresponds to emission reduction policies.
implemented in the U.S. and fast economic development in Asia with few restrictions on emissions.

Figure 2.11 Observed BC surface concentrations (μg C/m³) summarized by Koch et al. [2009].

Comparisons between CARMA simulations and the data from Koch et al. [2009] are shown in Figure 2.12. Simulations are annual averaged data from 2009 to 2011. The averaged values from CARMA simulations are similar to observations in the U.S. and Asia, but lower than in Europe. However, the simulations differ greatly from observations at many individual rural locations, especially in Asia. Our model resolution may not be able to resolve urban sites with high pollution. However, it is also worth noting that the BC emission databases during 2009 to 2011 may differ from emissions from 1995 to 2006, when the data were collected.
Figure 2.12 Scatter plots of CARMA simulations of black carbon versus observations summarized by Koch et al. [2009]. Black lines in each panel represent 2:1, 1:1 and 1:2 values. Simulations are annual averaged from 2009 to 2011. Urban sites in Asia listed in Zhang et al. [2009] are shown in red cycles in the top-left plot.

2.3.6 Simulated sulfate and sea salt mass concentration compared with University of Miami network observations

Long-term observations of nss-sulfate and sea salt aerosol were conducted by the University of Miami network [Prospero et al., 1989; Arimoto et al., 1996] at numerous marine sites around the globe. Nss-sulfate and sea salt annual averaged concentrations are shown in Figure 2.13. Data were mostly collected from 1983 to 1997. The observed nss-sulfate concentration is higher in the Northern Hemisphere near the U.S and East Asia. Correlations between model simulations and University of Miami network data for nss-sulfate and sea salt aerosol are shown in Figure 2.14. Simulations are annual averages from 2009 to 2011. Simulated sea salt concentrations do not have a large bias (17% underestimation), but the spread is large and the correlation coefficient is 0.15. The
simulated sulfate concentration overestimates observations on average by 63%. The overestimation of sulfate could be partly due to significant emission shifts in China-India [Chin et al., 2014] from the time data were measured (1983-1997) and the simulation period (2009-2011). In addition to emission, the model may not have enough removal of sulfate over the ocean, may have too much production of sulfate over the ocean, or may have too much transport from land sources. Fan and Toon [2011] showed that because this database is sparse and highly sensitive to wind speed, better agreement can be obtained by using model simulations only for time periods when data were actually collected. We have not sampled our simulations to correspond with the data collection periods in Figure 2.14.
Figure 2.13 (top) observed non-sea salt sulfate annual averaged surface concentrations (unit: $\mu g \, SO_4^2-/m^3$) according to Univ. of Miami network (Prospero et al., 1989; Arimoto et al., 1996); (bottom) same as (top) but for sea salt surface concentration (unit: $10 \mu g/m^3$). Data are summarized in Appendix A of Stier et al. [2005].
2.3.7 Simulated mass concentration and composition in the UTLS compared with data from airborne observations

2.3.7.1 UTLS Aerosol Composition

Murphy et al. [2006, 2007] and Froyd et al. [2009, 2010] measured the aerosol composition from the upper troposphere to the lower stratosphere during Pre-AVE in January 2004, and CR-AVE in January and February 2006 as shown in Figure 2.15. During the Pre-AVE and CR-AVE campaigns, both of which occurred in a similar region near Costa Rica, aerosol in upper troposphere or lower stratosphere was largely composed of sulfate-organic particles. In Pre-Ave organics were the dominant aerosol in troposphere, while in CR-AVE sulfates dominated. The different composition was likely
due to a difference in the prevailing wind, which was from South America where SOA dominates in Pre-Ave, and from the Pacific Ocean where sulfate dominates in CR-AVE. In both missions sulfate and organics were about equal in mass near 14-15 km, while sulfate dominated in the stratosphere. Observations and CARMA simulations are shown in Figure 2.15. Simulation data are averaged over January and February from 2009 to 2011 in black dotted line, with error bars denoting standard deviation among years between 2009 and 2011 at each altitude. Simulations are averaged over grids bounded by 5S to 20N and 95 W to 75 W as reported by Froyd et al. [2009]. CARMA predicts sulfate and organics are equal in mass around 16km. The high gradient of sulfate mass fraction near and above the tropopause suggests limited vertical transport of organics from the troposphere to the stratosphere, as well as the presence of sulfate sources from OCS in the lower stratosphere.
Figure 2.15 Sulfate mass fraction of sulfate-organic particles observed by PALMS during Pre-AVE (red) and CR-AVE (blue); CARMA simulation for month of January and February averaged from 2009-2011 over studied area (Costa Rica and surrounding oceans) is shown in black dotted lines; dashed green line indicates equal mass of sulfate and organics. The error bars on the black line denote standard deviation of among yearly simulations. Particles with diameter greater than 0.2 μm are included corresponding to the detection efficiency of PALMS [Froyd et al., 2009].

2.3.7.2 Simulations compared with observations of the vertical distribution of Black Carbon mass

During the HIAPER Pole-to-Pole Observations campaign (HIPPO1, January of 2009), the refractory Black Carbon (rBC) mass mixing ratio (MMR) was measured by SP2 instruments in January of 2009 [Schwarz et al., 2008] operated on board the NSF/NCAR GV aircraft as shown in Figure 2.16. Schwarz et al. [2010] showed that the rBC mixing ratio in the UTLS around the globe ranges from 0.1 to 3 ng/kg, with higher
concentration found in high latitudes and lower concentration in tropics; while the rBC mixing ratio in the near-surface region ranges from 0.05 to 50 ng/kg. They also showed that rBC decreased from the near-surface to the UTLS in the tropics.

Figure 2.16 compares simulated and HIPPO1 observed BC. The simulated data are averaged over January of 2009 to 2011, interpolated to the flight track of the HIPPO1 flights in Pacific, Arctic and near-Antarctic regions. Generally the observed median BC is very different from the mean, indicating high variability in the BC concentrations, as might be expected since the BC sources from combustion are highly variable. The model also shows strong year-to-year variation of BC in the troposphere from 2009 to 2011, which indicates that in addition to emission variations, the meteorology also strongly contributes to BC temporal-spatial distribution. Generally both the model and the data suggest that the mixing ratio declines by less than an order of magnitude from 1000 to 200 hPa. In our simulations, we do not consider a hydrophobic period for the BC, unlike many other models, which assume that BC is hydrophobic for times on the order of days after emission [Koch et al., 2009]. We do not see evidence in field measurements for such a period of hydrophobic behavior. Carrico et al. [2004] shows biomass burning particles take up water with relative humidity higher than 40%. The model is often within the error bars of the HIPPO1 data, and it is difficult to draw conclusions about deviations due to the high variability. We have added recent source data from Amann et al. [2011] for the Arctic, which represents gas-flaring BC from the oil industry, and which increased simulated BC Arctic surface concentrations by a factor 3. However, it is likely that either additional sources are present at high Northern latitudes, rainout is too aggressive at high latitudes, or transport from lower latitudes is not well represented. Wang et al. [2013]
conducted several numerical experiments on the convective scheme, wet removal rate and aging rate. In one experiment with slower BC aging rate the BC Arctic surface concentration increased by a factor of 10 in winter. However this experiment also makes BC surface concentrations in mid-latitudes and tropics deviate more from control runs than with the normal assumed aging rate. The model overestimates BC in the tropical upper troposphere by up to two orders of magnitude. Schwarz et al. [2013] shows a similar overestimate by AeroCom models, and suggests that climate models overestimate the lifetime of BC.

Figure 2.16 Average vertical profile for rBC MMR following HIPPO1 flight track for different latitude ranges: HIPPO 1 (January, 2009) observational mean is shown with red lines; observational mean plus one standard deviation is shown in red stars; observational median is shown in black solid lines; CESM1/CARMA simulation (January of three
years from 2009 to 2011) results are shown using blue lines with variability (yearly standard deviation from 2009 to 2011) shown in green lines.

2.3.7.3 Vertical distribution of organics and sulfate compared with aircraft observations

Heald et al. [2011] summarized the organic and sulfate aerosol vertical profiles from multiple aircraft field campaigns between 2001 and 2009 (See Figure 2.17, 2.18). Campaigns mostly took place in the Northern Hemisphere and most of the campaigns used an Aerodyne Aerosol Mass Spectrometer (AMS) [*Jayne et al.*, 2000; *Canagaratna et al.*, 2007] to measure aerosol concentrations. AMS data are available at https://sites.google.com/site/amsglobaldatabase. Organic aerosol concentrations near the surface are generally low (less than 2 μg/m³) in remote sites (e.g. Pacific ocean and Atlantic ocean), and high (6-10 μg/m³) if the sites that are influenced by local or transported biomass burning plumes (e.g. North America, western Africa and Arctic). Organic concentrations in polluted areas (e.g. cities in Japan, Texas and Europe) generally range from 2 to 6 μg/m³ at the surface while decreasing to background values (less than 1 ug/m3) above 4 km in altitude. Similar vertical distribution patterns are also found for sulfate aerosol.

Time (month of year) and locations are consistent between simulations for each campaign with observations in Figure 2.17 and 2.18. However, we didn’t simulate the specific year and days for each campaign, instead we use monthly mean output for the years from 2009 to 2011. Modeled organics have low variability from year to year, while modeled sulfate differs more in remotes regions. Simulations are generally within the error bars of the observations. However, the data variability is large, reflecting considerable natural variability. The model is close to the mean values of the organic and sulfate distributions in some remote areas and some highly polluted areas, but is far from
the mean values in others. Some campaigns (e.g. ADRIEX and MILAGRO) show an elevated plume of organics, while simulation shows steady decline with altitude. Generally, the model fails for urban areas such as Mexico City (MILAGRO), Houston (Texas AQ), and Miami (CRYSTAL-FACE), probably because the emission sources are sub-grid scale.

Figure 2.17 Vertical profiles of organic aerosol (measured by AMS between year 2001 and 2009) for different field campaigns summarized by Heald et al. [2011] in red lines; error bars denote standard deviation of data. CESM1/CARMA simulated aerosol concentrations in 3 years from 2009 to 2011 are shown in blue lines. Simulation data are averages for the month, but not the year, of the observations. The 4 panels inside the green box denote field measurements in remote regions. Black lines are error bars of observations.
2.3.8 Simulated optical extinction compared with SAGEII observations in the tropics

English et al. [2011] used a sulfate aerosol sectional model (WACCM3/CARMA) similar to the one used here to show that in the UTLS sulfate aerosols alone fail to explain the extinction observed by the Stratospheric Aerosol and Gas Experiment (SAGE) II satellite retrievals [Chu et al., 1989]. As shown in Figure 2.19 the English et al. [2011] simulated extinction due to sulfate aerosol is about a factor of 5 lower than SAGE II observed extinction in the tropical lower stratosphere near 18 km. Murphy et al. [2007] and Froyd et al. [2009] observed that organic aerosols can contribute a significant amount of the aerosol mass in the lower stratosphere and upper troposphere. Neely et al. [2011] suggested from these data that organics likely contributed the missing SAGE II extinction. Bruhl and Crutzen [2012] using a stratospheric aerosol model also suggested that organic particles could explain the missing SAGE II extinction.
In section 3.7.1 and Figure 2.15 we show that organic aerosols contribute to the aerosol mass in the UTLS [Froyd et al., 2009]. Figure 2.19 shows that organics may contribute to the extinction observed by SAGE II bringing the model and observations within data variability in the lower stratosphere. The difference in extinction between the English et al. [2011] simulations and SAGE II data above 35 km, was shown to be due to meteoritic smoke by Neely et al. [2011].

Figure 2.19 SAGEII extinction [Chu et al., 1989] at 525 nm in the tropics (15 S to 15N) from 17 to 40 km in altitude is shown by the green line, pure sulfate extinction simulated by WACAM/CARMA is shown in dashed black line [English et al., 2011], CESM1/CARMA simulated aerosol extinction at 533 nm is shown in solid blue line including mixed particles, and pure sulfates. The mixed particles contain significant organics below 20 km, as shown in Figure 2.15.
2.4 Aerosol properties in different parts of the atmosphere

In this section we present an analysis of a range of aerosol properties simulated by the model. Here measurements are limited so we present model results for several aerosol properties that we find interesting.

2.4.1 Organic aerosol concentration near the surface and its composition

The ratio of OOA to total organics may serve as an indicator of SOA formation. Some relevant data were collected by multiple campaigns using AMS listed in Zhang et al. [2007], which are shown in the Figure 2.10, but generally the data are sparse. The simulated surface concentration ratio of OOA to total organics is shown in Figure 2.20 for two seasons. In our simulations OOA, which is the same as SOA in our model, is more than half the organics in most continental areas. OOA is more than 70% of the organics in equatorial South America, the Arctic and Australia during DJF. The ratio peaks in the Eastern U.S. and Russia in JJA. The fraction usually peaks in forests or highly vegetated areas due to strong emissions, which are the precursors of SOA formation. However, the organic aging process, which tends to oxidize HOA and create OOA and is not included in the model and may alter the OOA distribution relative to our simulations in locations where OOA is a small fraction of the total organics. Further observations and numerical studies would be valuable to determine better the global organic aerosol budget.
Figure 2.20 (Top) simulated ratio of OOA surface concentration to total sub-micron organics in DJF season; (bottom) same as top, but for JJA season.

2.4.2 Aerosol concentration in the UTLS and its composition

Froyd et al. [2009] found from the PALMS single particle data, that aerosol during Pre-AVE (winter, 2004) and CR-AVE (winter, 2006) in the tropical tropopause transition layer were mostly mixtures of sulfate and organics. However, in our simulations the ratio of organic mass to sulfate is variable in latitude. Figure 2.21 illustrates the mass fraction of organics to sulfate+organics at three pressure levels that represent the global UTLS: 72 hPa which is likely in the stratosphere at all latitudes; 100 hPa, which is in the stratosphere outside the tropics; and, 260 hPa which is in the model troposphere in tropics and mid-latitudes as shown in Figure 2.21. Simulations are three-year averages from
2009 to 2011. The left panels represent particle sizes ranging from 0.2 to 2 µm in diameter, a size range that is similar to the reported detection limit of PALMS [Murphy et al., 2006]; while the right panels denote particles with diameters less than 1 µm, a detection upper-limit of AMS [Jimenez et al., 2003]. As expected and also observed by Froyd et al. [2009], the organic fraction in the size range from 0.2 to 2 µm ranges from 30 to 60% in the tropical UTLS and increases with increasing pressure. The organic fraction of the aerosols is lower in high altitudes because these pressures are often in the stratosphere where there are in situ sulfate sources (e.g. OCS). At 260 mb, organics dominates above source regions in the tropics like South America and central Africa. Similar patterns are found for sub-micron particles as well, however organic fractions are generally higher, ranging from 40-80% in tropical UTLS. At these altitudes mass is concentrated at and below 0.2µm. The secondary organics in the model are enriched in these smaller particles as discussed in Appendix 3.2.
Figure 2.21 Simulated ratio of organic aerosol mass to organics+sulfate aerosol mass concentration at 72/100/260 hPa levels. Simulations are averaged from 2009 to 2011. Left panels indicate aerosol with diameters ranging from 0.2 to 2 um, the detection limit of PALMS [Murphy et al., 2006]; right panels indicate sub-micron particles corresponding to AMS detection limit which is smaller than 1µm [Jimenez et al., 2003].
2.4.3 Simulated tropospheric aerosol spatial distribution

Figure 2.22 shows the simulated zonal and annually averaged aerosol vertical profiles at all latitudes for each of the aerosol constituents. Near the surface, dust and sea salt have the largest mass concentrations by about an order of magnitude, except near the poles where non-sea salt sulfate and organics become important. Organic aerosols dominate in the tropical and mid-latitude upper troposphere, while sulfate dominates in stratosphere, though organics are still important in the tropical lower stratosphere. In the tropical upper troposphere region the SOA concentration is higher than POA, because SOA is formed by gas-particle partitioning and the gases are transported further in the atmosphere than is the POA. The mass of primary particles emitted from the surface (e.g. POA, BC, dust, sea salt) generally peaks in the lower troposphere near the source region. However, POA and BC reach higher altitudes than dust and sea salt because they are found in smaller sized particles. Dry deposition is important in removing dust and sea salt aerosols since they are large. Near the surface, nss sulfate peaks in the latitude belts between 0-60S and 20-40N. The broad peak in the Southern Hemisphere (0-60S) is due to DMS emission in addition to anthropogenic sources, while the peak in mid-latitudes of the Northern Hemisphere (20-40N) is due to anthropogenic SO2 emission. The model does show a contribution of anthropogenic and natural SO2 emissions in the troposphere to aerosols in the lower stratosphere. This point is discussed further in Chapter III.
Figure 2.22 Zonal and 3 year averaged mass distribution simulated by CESM1/CARMA for major aerosol compositions (i.e. POA, SOA, BC, salt, non-sea-salt sulfate and dust). Black line in each panel denotes annually averaged simulated tropopause height.

2.4.4 Compositions of aerosols and optical contributions from various aerosol types

Figure 2.23 shows the composition of the 20 aerosol bins, ranging from 0.05 to 8.7 µm in dry radius, used in the CESM1/CARMA simulations of this study and their contribution to the total aerosol extinction. Simulations are annual averages over the
United States. Four different altitudes are shown: 1-2 km, 2-5 km, 5-10 km and 10-18 km. As expected sea salt and dust dominate the mass of super-micron particles, while sulfate and organics dominates sub-micron particles. In the lower troposphere (up to 5 km), super-micron particles dominate the mass of total particles. Sub-micron particles become more and more dominant with altitude since larger particles are removed quickly. Different from the mass distribution, sub-micron particles always dominate the aerosol mid-visible extinction due to their greater surface area than super-micron particles.

In the boundary layer, condensed water contributes the most mass in each bin. The water contribution decreases with altitude corresponding to relative humidity changes. Figure 2.23 shows that water is the leading contributor to aerosol extinction, compared to the sum of the dry materials in the lower troposphere.

![Figure 2.23](image)

Figure 2.23 The mass mixing ratios of organics, sulfate, sea salt, dust and condensed water in aerosol particles are shown in stacked bar charts. Four different altitudes are
shown: 1-2 km, 2-5 km, 5-10 km and 10-18 km. Each bar represents one particle size bin. The black line denotes aerosol extinction (1/km, 532 nm) for each bin. Simulations are annual averaged over United States.

2.5 Discussion and Conclusions

This study uses a state of the art chemistry/climate model coupled with a sectional aerosol model, CESM1/CARMA, to simulate tropospheric aerosols. Our goals in this paper, and its appendices, are to describe the new sectional aerosol model in the NCAR/DOE CESM1 framework, and to document its current performance. In the previous sections, we have shown that the model is able to reproduce the general characteristics of a large number of diverse observational data sets including optical depth data from satellites and AERONET, as well as observations of composition from ground based and aircraft based instruments. While most of the aerosol data originate from the lower atmosphere, we also show our model has skill in predicting aerosol optical and chemical properties into the lower stratosphere. We conduct 3-year run from 2009 to 2011 with a half-year spin-up and use them for all the model-data comparisons in this study, Similar approaches can be found in other aerosol model descriptions [Liu et al., 2012; Wang et al., 2011; Wang et al., 2009; Mann et al., 2012]. In this section of the paper we focus on identifying and discussing the weaknesses of the observational comparison and the model. The weaknesses are summarized in Table 2.3 (a-e) and discussed respectively.

Table 2.3 Weaknesses of observational comparison and CESM1/CARMA

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Models cannot easily simulate data retrievals, data error sources, or spatial and temporal sampling biases in data sets</td>
</tr>
<tr>
<td>b.</td>
<td>Model intercomparisons are hampered by varying choices of emission data sets,</td>
</tr>
</tbody>
</table>
For Table 2.3 (a), in this study we use a version of the model driven by observed winds, and appropriate emissions data sets for the years from 2009 to 2011. While we are attempting to simulate the particular time and locations of a large variety of observations, there are a number of weaknesses in making comparisons with data. These weaknesses occur because observations often depend on assumptions to retrieve data, observations have errors of their own, and observations have sampling biases and models may not be sampled with the same biases.

The only near-global data sets on aerosol properties originate from satellite observations. Satellites, with a few exceptions, do not measure optical depth directly but make assumptions about particle optical and physical properties to obtain the optical depths they report. There are significant issues that limit retrievals, particularly the presence of clouds, bright ground surfaces, and inaccurate knowledge of particle optical properties. The optical depth detection limit for MISR is 0.05 according to Khan et al. [1998], while the expected uncertainties for MODIS are reported as the larger of $\pm(0.05+15\%\cdot\text{AOD})$ over land and $\pm(0.03+5\%\cdot\text{AOD})$ over ocean [Remer et al., 2008]. As shown in Figure 2.2 MISR and MODIS retrievals (annual mean) differ by 9% on average, which is smaller than the stated uncertainty of the measurement. MISR and MODIS
differ by up to 100% in some places (western U.S. in January, southern South America and Asia) limiting the ability to constrain models with these data sets in those places.

It is most accurate to make comparisons between simulations and observations by omitting simulated data at times and locations where the satellites did not make observations so that data and simulation averages over time and space are identical [Fan and Toon, 2011]. However, this sort of one-to-one comparison is rarely made, and we did not make it here, because of the difficulty in knowing enough about the observations to properly filter the simulations.

Other types of data, for example AERONET retrievals of optical depth, are direct measurements of the quantity of interest. However, the AERONET instruments are located at geographic points, and they also have sampling biases, such as not making measurements if there are too many clouds present. It is always suspect to compare simulations with a model having a grid that is 2 degrees wide with point data, because there may be localized strong sources that can bias the data at the measurement location relative to the rest of the grid cell. This is a particular problem near urban areas, and we identified a number of data sets in which we assume the differences between the model and the data are due to localized emission sources.

Data from aircraft field missions have similar problems. They are localized in time and space, so models should simulate times and specific locations of the flights. Such simulations become prohibitive when comparisons are made with the results of multiple complex field programs, and we have not attempted such comparisons. The CESM1 modeling framework makes it possible to perform such comparisons more precisely than done here. For instance, we are currently working on a model comparison with data from
a multi-aircraft, multi-ground station field campaign in which we sample the model at the times and evolving locations of the aircraft sampling.

For Table 2.3 (b), as shown in Table 2.1, it is also not easy to compare aerosol models. While generally our sectional model compares well with the MAM7 model [Liu et al., 2012] for the source strengths, burdens and lifetimes of aerosols there are notable differences despite the fact that these two models share many features since they both use the CESM1 model. We trace some of the differences to the inclusion of sources in one model and not the other, or the use of emission data for different time periods. However, we find that there are large differences between the models for sea salt and dust, whose sources are independent of anthropogenic emission data. While the use of different lifting formula, or different computed wind speeds could account for these variations, we think it is most likely that modal models have problems simulating sea salt and dust because sea salt and dust are subject to significant dry deposition which varies as the square of the particle radius. This strong dependence on particle size makes it essential that the modal sizes are selected properly and allowed to evolve as particles on the large particle tail of the size distribution fall out. The differences between the sectional model and the modal model likely could be resolved by careful comparisons of the codes and adjustments of the widths, mode radius, or intersection of modes in the modal model. We did not attempt such comparisons here. However, modal models are widely used for climate simulations. One potential future application of our sectional model is to test the performance of modal models and suggest improvements.

For Table 2.3 (c), modal models are used in climate simulations because of their speed. Table A1, shows that the MAM 3 model with the full version of MOZART
chemistry code is about 2.6 times faster than the sectional model in which the coagulation and fall velocity are not recomputed every time step. Re-computing the coagulation kernels every time step takes a significant amount of the computer time. However, we did not compare MAM3 simulations to simulations using CESM1/CARMA since MAM3 does not represent the aerosol particle composition and sizes as accurately as MAM7. MAM7 with the full version of MOZART chemistry is about 2.0 times faster than CAM/CARMA. The sectional model includes some extra sulfur chemistry so that stratospheric aerosols can be treated. Despite being slower than MAM3, the sectional model is fast enough to perform decade length calculations with modest computer costs.

For Table 2.3 (d), as discussed in section 3.2 our simulations underestimate annual AOD on average by 34% compared to AERONET data with a correlation coefficient of 0.80. Part of this underestimate may be because the model does not include ammonia nor nitrates. Shindell et al. [2013] evaluate 10 ACCMIP aerosol models and find that most of them do not include nitrates. This omission may become more important in the future as sulfate emissions decline and nitrates become relatively more important.

For Table 2.3 (e), one of the major current challenges of aerosol science is to simulate organic aerosols. Organic aerosols have a wide range of compositions and properties, so it is impractical to simulate them in detail. Their concentrations are observed to vary by at least two orders of magnitude, and some sources such as cities are relatively small scale compared with typical global model grids. As suggested by Zhang et al., [2007], organic aerosols can be divided into hydrocarbon-like organic aerosol (HOA) and oxidized organic aerosol (OOA). Fig 8 shows a factor of 10 variability in HOA and OOA. Generally the model overestimates the HOA fraction and underestimates
the OOA in comparison to AMS data from around the world. In the future, more careful parameterization of the organic aerosol aging process and secondary organic aerosols is required to better simulate the global organic aerosol budget.

MODIS satellite AOD data differ from MISR AOD data by less than 10% on average, while the model differs from MISR data by about 32% on a global and annual average. There are several locations in Figure 2.1 and 2.2, with larger differences between the model simulations and the satellite data. One large difference is that the model underestimates AOD in Southeast Asia by over 80% in Jan and over 60% in July. A similar underestimation is found in the same region by MAM3 and MAM7 coupled with CESM1 [Liu et al., 2012]. One likely reason for these differences is that the model generates too much convection and washes particles out too aggressively. Another possible reason for underestimation of AOD is due to omission of nitrate.

Relative to satellite data, the model overestimates AOD in central tropical Pacific Ocean and Indian Ocean, where sea salt particles dominate. Since the model is nudged to MERRA winds, not enough wash-out is a more likely reason for the difference than wind-dependent emission from the tropical ocean. In addition, the model underestimates AOD in Northern Pacific Ocean and Northern Atlantic Ocean relative to satellite data.

Black carbon is an important aerosol despite contributing only a few percent of global aerosol optical depth, because it is a major source of solar energy absorption in the atmosphere. Both observations [Koch et al., 2009] and simulations show BC concentrations, and emissions, are highest in Asia and Europe and relatively lower in the U.S, with concentrations varying by three orders of magnitude across these regions (Figure 2.11). Compared with HIPPO1 data over the Pacific Ocean, the model simulation
is generally within the data variability (Figure 2.16). However, CESM1/CARMA overestimates BC in the tropical upper troposphere, and underestimates BC concentrations in the high latitude lower troposphere. AeroCom models also find similar overestimation in upper troposphere according to Schwarz et al. [2013]. The emission database used in our model might miss BC surface sources at high latitudes. We have added recent source data from Amann et al. [2011], which represents BC from gas flaring by the oil industry. Although this improved our model skill against the observations, it is nevertheless likely that either additional sources are present, or rainout is too aggressive at high latitudes, or transport from lower latitudes is not well represented in the model.

The in situ measurements of black carbon are limited in number and satellite observations of fires have considerable limitations. Emissions vary strongly across the globe, and sources are often short-lived, as well as small-scale. For these reasons, modeling black carbon is challenging, and we cannot have much confidence in the ability of global models to perform accurate simulations of individual fires.

According to our simulations, organic particles contribute half of the aerosol mass in the tropical TTL region, which is consistent with observations reported by Froyd et al. [2009] in Costa Rica. The disagreement of aerosol extinction between WACCM/CARMA sulfate simulations and SAGE II observations in the tropical UTLS by English et al. [2011] could be explained by adding the extinction due to organics to that due to sulfate. Our simulations also suggest that organics in the TTL and the lower stratosphere are mostly secondary organic aerosol formed by gas/particle partitioning.

The sectional aerosol model we have discussed here has many successes in treating aerosols from the surface to the lower stratosphere, and generally reproduces important
climate related parameters, such as the aerosol optical depths, within observational constraints. However, there are many shortcomings in our model. It is difficult to confidently constrain models because there is a general paucity of data over the globe for many types of aerosols, such as black carbon and organics, whose concentrations vary by several orders of magnitude. A significant amount of emissions also come from small-scale sources, including cities and fires, which are difficult to resolve on current spatial grids in global climate models. Our model and others have difficulty constraining the organic aerosol composition and secondary aerosol chemistry and formation processes, since these are poorly understood at present. Also, some types of aerosols are not included in our model, or most others, including ammonia and nitrates.

In order to limit the scope of this paper we have not discussed the interactions of our sectional aerosol model with the two-moment cloud physics in the CESM1 model, nor the predicted abundances of cloud condensation nuclei. These are important, but complex topics, and will be described at length in future work.
CHAPTER III

ANALYSIS OF ASIAN TROPOPAUSE AEROSOL LAYER AND NORTH AMERICAN TROPOSPHERIC AEROSOL LAYER

3.1 Overview of ATAL and NATAL

Recently a layer of enhanced aerosol scattering associated with the Asian Summer Monsoon was observed by SAGE II [Thomason and Vernier, 2013] and CALIPSO [Vernier et al., 2011a]. The observed enhancement, referred to as the Asian Tropopause Aerosol Layer (ATAL), occurs during June-July-August in the broad region bounded by 0°-160°E, 15°-45°N. The layer extends vertically from about 13 to 18 km. CALIPSO backscatter observations show the ATAL has been present since CALIPSO observations began in 2006. Thomason and Vernier [2013] and Vernier et al. [2015] show that the ATAL existed since 1999 in SAGEII data, but was not detected prior to 1998. The source of the ATAL remains unclear. The Asian monsoon circulation transports Asian pollution from the boundary layer to the stratosphere, where satellites observe strong enhancements of carbon monoxide, HCN and H₂O [Park et al., 2009; Randel et al., 2010]. The Asian summer monsoon will also transport aerosol and precursor gases. However, in the first modeling study of the ATAL, Neely et al. [2014] show the ATAL may originate from emissions over a wide region, including both Europe and Asia. The results of Neely et al. [2014] also suggest that the ATAL was likely present before 1998, but observations were most likely obscured by volcanic aerosol (i.e. from the Pinatubo eruption in 1991). One
caveat of the Neely et al. [2014] study is that it utilized a sulfate-only model without aqueous chemistry.

Both SAGE II [Thomason and Vernier, 2013] and CALIPSO [Vernier et al., 2011a] observe a similar aerosol layer over North America, the North American Tropospheric Aerosol Layer (NATAL), which is weaker than the ATAL. Neely et al. [2014] also simulated this layer in conjunction with the ATAL. The NATAL is associated with the North American monsoon located in the Southwestern United States and Mexico [Adams and Comrie, 1997]. The sources, composition and physical properties of the NATAL are likely to differ from the ATAL since the underlying lower tropospheric chemistry is greatly different. For example, the NATAL does not exhibit enhanced stratospheric CO [Park et al., 2009]. The transport mechanisms in the NATAL also are likely somewhat different than in the ATAL. Randel et al. [2012] show that both the ATAL and NATAL are regions in which water vapor enters the stratosphere in JJA, however, the isotopic composition of the water differs.

3.2 Methods: Model, Emission and CARIBIC

We analyze the properties of the ATAL and NATAL using a general circulation model (Community Earth System Model, version 1; CESM1) coupled with a sectional aerosol microphysics model (Community Aerosol and Radiation Model for Atmospheres; CARMA) [Toon et al., 1988; Yu et al., 2015a]. CESM1/CARMA includes primary emitted organics, secondary organics, dust, sea salt, black carbon and. In CARMA, we track two types of aerosol in two sets of radius bins. One type consists of sulfuric acid particles formed through nucleation and condensation of water and sulfur acid vapor, which primarily occurs locally. The other set of bins includes particles containing
mixtures of organics, black carbon, sea salt, dust and condensed sulfate. Gas phase sulfur chemistry is modeled using the algorithms described in English et al. [2011]. CARMA includes formation of cloud-borne sulfate through aqueous chemistry as well as SO\textsubscript{2} formation from DMS as simulated by MOZART [Emmons et al., 2010]. MOZART [Emmons et al., 2010] tracks five species of volatile organic compounds as precursors of secondary organic aerosol (SOA). To better quantify the formation of SOA, CARMA applies a volatility-basis-set approach that was introduced in Pye et al. [2010]. The aerosol scavenging schemes are from Rasch et al. [2000] and Barth et al. [2000]. The model considers both in-cloud and below-cloud scavenging. The scavenging coefficient below cloud is dependent on aerosol size and precipitation rate, similar to Henzing et al. [2006]. Aerosol extinction coefficients are calculated using Mie scattering theory. For the mixed particles a core shell structure is assumed. The core is composed of black carbon and dust, while the shell is composed of a combination of all other materials that are possibly in a liquid state including sulfate, organics, salt and condensed water. The relative contribution of different materials can vary with time and space. This radiative information is then coupled to the dynamics of CESM1 through its radiation code. The simulations are carried out with 2-degree horizontal resolution and 56 vertical levels. In the region from 13-18 km altitude the simulations use about 7 vertical levels. A 5-year spin-up run was first carried out so that the lower stratospheric aerosol layer reached a quasi-equilibrium state. Then two sets of ensembles are carried out for the years 2000 and 2010 with prescribed sea surface temperature respectively. Each set of ensemble consists of 3 members with different initial conditions.
Organic emission rates, including primary particles and gases that form secondary particles, are taken from Amann et al. [2011] and the Global Fire Emission Database [GFED, version 3, van der Werf et al., 2006, 2010]. SO$_2$ emission inventories are introduced in Emmons et al. [2010]: anthropogenic SO$_2$ emission rates come from EDGAR-FT2000 (http://www.mnp.nl/edgar/), with the exception that Asian emission inventories are taken from the Regional Emission inventory for Asia (REAS, Ohara et al., 2007). SO$_2$ emissions from biomass burning are estimated by GFED [version 2, van der Werf et al., 2006] and Fire INventory from NCAR (FINN, Wiedinmyer et al., 2011). Biogenic emissions of volatile organic compounds (VOCs, including isoprene and monoterpenes) are estimated by Guenther et al. [2006]. Stratospheric volcanic emissions are excluded in this study.

Model results are compared to the limited in situ aerosol measurements in the Asian UTLS. CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on a Instrument Container) provides observations of trace gases and aerosols since 1997 through intercontinental flights at 9-12 km altitude, which is at the lower edge of the ATAL [Brenninkmeijer et al., 2007]. We use CARIBIC aerosol elemental analysis data [Martinsson et al., 2014] from 2005 to 2014 collected during 330 flights from Frankfurt in Germany to East Asia (Guangzhou, China), Southeast Asia (Bangkok, Thailand) and the Indian subcontinent (Chennai, India). Detailed sampling and elemental analysis methods are described in Nguyen et al. [2006] and Martinsson et al. [2014].

3.3 Modeling of ATAL and NATAL

Figure 3.1 shows the simulated aerosol extinction ratio, defined as the total extinction (i.e. aerosol extinction plus molecular extinction) divided by the molecular
extinction, at a wavelength of 1000 nm averaged from 15° to 45° N, over the period June, July and August 2000. A layer of enhanced aerosol scattering, Box 1, extends from ~14 km to 18 km vertically, and from ~0° to 120° E. The location and shape of the simulated layer of enhanced scattering is consistent with SAGE II observations from Thomason and Vernier [2013]. However, our model simulation also predicts an aerosol enhancement mainly composed of mineral dust extending from the surface up to 13 km above Africa, Box 2, which is not seen in the CALIPSO [Vernier et al., 2011a] or SAGE II [Thomason and Vernier, 2013] observations. Thomason and Vernier [2013] used a filter for eliminating the effects of clouds on their observations, which depends on the aerosol absolute extinction and the extinction ratio at two wavelengths (1000 nm and 525 nm). When we apply the same filter, the layer over Africa disappears, which suggests that the cloud filter used in Thomason and Vernier [2013] may mask a fraction of aerosol that has relatively big particles with high extinction coefficients.

In addition to simulating the ATAL, our model also predicts a weaker, less extended aerosol layer near ~15 km over North America centered at 100°W longitude, Box 3, consistent with the location of the North American Monsoon [Adams and Comrie, 1997]. This simulated structure is consistent with the observations of CALIPSO and SAGE II [Vernier et al., 2011a; Thomason and Vernier, 2013] and modeled by Neely et al. [2014]. The simulated NATAL peak extinction ratio is only 48% of that of the simulated ATAL. Below the NATAL, another aerosol enhancement region extending up to 13 km is also predicted by the model, Box 4. This lower layer is mainly composed of SOA over North America where copious biogenic VOCs are known to be emitted. Similarly the ATAL is adjacent to a lower layer extending downward and eastward
centered around 120° E, Box 5. Both layers associated with Asia are composed of materials transported from the surface. However those in the ATAL are pumped up by the Asian summer monsoon and confined into the anticyclone. These lower layers have not been reported from satellite data.

The simulated peak value of the ATAL extinction ratio is about 3 times that observed by SAGE II [Thomason and Vernier, 2013]. Simulated hygroscopic growth on aerosols may contribute to the disagreement. CARMA parameterizes hygroscopic growth with relative humidity as described in Chapter II. In the UTLS, relative humidity is high and extinction increases strongly with high humidity. In reality, however, particles may not grow due to the low temperatures in the UTLS. Sensitivity tests with no hygroscopic growth in the upper troposphere and above shows up to 30% decrease in the extinction of the ATAL, which still leaves the model a factor of 2 higher than observations. It is also conceivable that SAGE II derived products preferentially exclude aerosol with high extinctions that are co-located with cloud due to filtering that attempts to remove cirrus cloud [Thomason and Vernier, 2013]. In situ data may be needed to constrain both model humidity parameterization and satellite retrievals. If, in fact, particles do not grow when relative humidity increases at low temperatures, it would be important for theories of cirrus cloud formation [Koop et al., 2000]. In addition, the model may overestimate the aerosol loading in the ATAL region possibly due to an underestimation of wet scavenging. It is also possible the model overestimates particle size. The ratio of the extinction at 525nm to 1020 nm in the model is centered at 3-3.5, while from SAGE II it is 4-4.5 [Thomson et al., 2013], which is consistent with the model overestimating size, or the SAGE II retrieval algorithm rejecting larger aerosols. The modeled particle
effective radius is between 0.1 and 0.2 µm in the ATAL region. Unfortunately there are no in situ data to compare the model results to in this region.

Figure 3.1 Aerosol extinction ratio at 1000 nm averaged between 15°-45°N during JJA seasons using emissions from 2000. Contour interval is 0.5.

3.4 Composition and Physical Properties of ATAL and NATAL

Several groups have investigated the aerosol composition of the tropical UTLS. Froyd et al. [2009], for instance, show the tropical tropopause layer (TTL) contains sulfate and organic particles in roughly equal proportions based on two campaigns over tropical Central America. As described in Chapter II, CESM1/CARMA is able to reproduce the observed sulfate/organic mass fraction in the TTL discussed by Froyd et al. [2009]. In addition, while English et al. [2011], and Neely et al. [2013] show that sulfates alone cannot explain the extinction in the TTL observed by SAGE II below about 20 km, Chapter II show that in addition to sulfates, organics contribute to the aerosol extinction in the TTL observed by SAGE II.
CARIBIC provides data on the sulfur-to-carbon mass ratio in the upper troposphere over Europe and Asia, as shown in Figure 3.2. Simulated values are averaged from 200 to 300 mb, pressures which are below the ATAL. Because the CARIBIC data (circles), are from samples taken during individual flights over a period of time, actual meteorological conditions produce some variability. Both simulations and observations show a strong decline of the sulfur-carbon ratio from higher latitudes (e.g. Europe, 50-70% S/C) to lower latitudes (e.g. Chennai, Bangkok, Guangzhou, 10-20% S/C). Part of the reason for the decline in the S/C ratio as latitude decreases is that the tropopause is lower at higher latitudes so that more stratospheric sulfate is present along planes of constant pressure as shown in Figure 3.2. In addition, more organics are emitted over India and China than over Europe, which are transported upward in the Asian summer monsoon. CARIBIC data were taken at the base of the ATAL. CESM1/CARMA simulations (not shown in this paper) suggest that the S/C ratio does not vary by more than 10% from 14-16 km in the mid- to upper troposphere, but increases rapidly in the lower stratosphere.
Figure 3. Sulfur-to-carbon (S/C) mass ratio of JJA shown in the panel averaged from 200 to 300 mb using 2010 emissions. Model simulations are shown in contour background. CARIBIC observations are shown as circles.

The simulation results shown in Figure 3.3 suggest the ATAL to be mostly composed of organics (roughly 60% by mass) and sulfate (roughly 40%) given 2010 emissions. The simulated NATAL composition is 80% organics with 20% sulfate (Figure 3.3). The simulated ATAL and NATAL is mostly composed of sulfate and organics, which is consistent with Froyd et al. [2009] who showed the aerosol composition over Central America is also a mixture of organics and sulfate. Simulations also suggest the effective radius of mixed particles (mostly composed of organics at 100 mb) is between 0.2 and 0.3 μm in both ATAL and NATAL, while the effective radius of pure sulfate particles (33% of total sulfate mass is in pure sulfates, leaving 67% of sulfate in the mixed particles) is below 0.1 μm, indicating pure sulfates were been formed locally to the layers.
According to the CESM1/CARMA results shown here, primary organic aerosol (POA) and secondary organic aerosol (SOA) make comparable contributions to the ATAL (Figure 3.4). However, the aerosol enhancement over North America is mostly due to SOA.
3.5 Analysis of Trends of Aerosol at Upper Troposphere and Lower Stratosphere

In addition to the ATAL and NATAL (see Figure 3.1), this study finds other aerosol enhancement features in the upper troposphere that are not currently recognized in observations. These aerosol features extend downward and eastward from both the ATAL and the NATAL (an additional enhancement due to dust is found over Africa). The layer downward and eastward of the NATAL is also composed of SOA associated with strong biogenic emission from the surface. The layer eastward and downward of the ATAL is dominated by POA.

Background stratospheric aerosols increased from 2000-2010 [Solomon et al., 2011; Vernier et al., 2011b]. Using a conservative method to remove ice clouds in SAGEII and CALIPSO data, Vernier et al. [2015] shows the aerosol optical depth (AOD) at 525 nm of the ATAL has increased from 0.003 in year 2000 to roughly 0.005 in year 2010. Vernier et al. [2011b] and Neely et al. [2013] suggest recent anthropogenic
increases in SO$_2$ from Asia cannot explain a global stratospheric aerosol increase since 2000, which is largely due to small volcanic eruptions. Here we explore the contribution of Asian emissions to the aerosol in the UTLS by completing two sets of simulations with ensembles of 3 members each. One set of ensembles uses emissions for the year 2000 and the other emissions for the year 2010. Emission databases are introduced in the Methods Section. The emissions in mid-latitudes, especially anthropogenic SO$_2$ and VOCs vary between 2000 and 2010 over Asia, Europe and North America. Volcanic emissions are excluded in both years. Figure 3.5 shows column AOD (from 13 to 18 km) at 532 nm averaged from 15°N to 45°N in JJA of 2010 (red curve) and 2000 (blue curve) respectively. Error bars denote data variability (standard deviation) inside ensemble runs (3 members with slightly different initial conditions). The modeled AOD of the ATAL is up to a factor of 2 higher than reported in Vernier et al. [2015] as discussed in the context of Figure 3.1. This test suggests that the AOD was generally higher in 2010 for latitudes from 15°-45°N at all longitudes. A statistically significant AOD increase is found in the ATAL region (0°-120°E). AOD changes at other longitudes including the NATAL (70°W-120°W) are within data variability inside ensembles. This study suggests the emission increase in Asia between 2000 and 2010 has lead to an increase in the optical depth of the ATAL region by about 0.002 on average, which is similar to the estimate by Vernier et al. [2015]. The sulfate mass fraction in the ATAL is similar between 2000 and 2010 (roughly 40%), the growth in optical depth comes from increased emissions of SO$_2$ (increasing by 13%), primary organics (7.3%) and anthropogenic SOA (30%) in the region of ATAL (15°-45°N, 0°-120°E).
Figure 3.5 Column AOD (from 13 to 18 km, at 532 nm) averaged from 15° to 45° N in JJA. Red line denotes AOD of 2010, blue line denotes AOD of 2000. Error bars represent variability (standard deviation) inside ensemble runs.

3.6 Conclusions

A three-dimensional climate model coupled with a sectional aerosol model (CESM1/CARMA) is used to analyze the composition and optical properties of the ATAL and the NATAL. The modeled aerosol extinction ratio peaks in the UTLS over Asia in a layer extending from 14 to 18 km, which is consistent with SAGE II observations [Thomason and Vernier, 2013] and CALIPSO observations [Vernier et al., 2011a]. The simulations reproduce the S/C ratio established by in situ measurements of the CARIBIC observatory [Martinsson et al., 2014] from 200 mb to 300 mb over Europe and Asia. The S/C ratio decreases from higher latitudes to lower latitudes, which possibly results in part from more organics emitted over India and China than over Europe. According to the simulations, the ATAL is mostly composed of mixed organics and
sulfates with an effective radius of 0.2-0.3 µm, and in situ generated sulfate particles with an effective radius below 0.1 µm. Due to the high occurrence of cirrus clouds over India and China, aerosol measurements from satellite-based remote sensing instruments are difficult. We predict larger extinctions in the ATAL than observed, which could be due to satellites failing to detect the aerosol in high humidity, cloudy regions. Alternatively, the hygroscopic growth of the aerosols in our model may be too great, which may be of importance to theories of cirrus cloud nucleation. Or, our model may over-predict aerosol mass or size in the ATAL. Our simulations reproduce the NATAL with weaker intensity compared with the ATAL during the JJA season as observed. While the ATAL has a strong POA contribution, the simulated NATAL is mostly composed of biogenic SOA. Simulations also suggest recent increased anthropogenic emission of SO₂ as well as organic aerosols and gases in Asia lead to an increase in optical depth of the ATAL region by 0.002 on average between 2000 and 2010.
CHAPTER IV

ANALYSIS OF AEROSOLS FROM THE RIM FIRE OF 2013

4.1 Overview of Rim Fire of 2013

The Rim Fire started on August 17 and spread rapidly until August 31, 2013 due to warm ambient temperatures, high near-surface wind speeds and low relative humidity [Peterson et al., 2015]. NASA’s Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys field program (SEAC4RS) sampled the Rim Fire smoke on August 26 and August 27. Multiple instruments on board the NASA DC-8 aircraft provide a unique and rich dataset on aerosol properties and chemical tracers in Rim Fire smoke. We use a climate model coupled with a sectional aerosol model to simulate the smoke properties and quantify the cooling effects of the Rim Fire smoke.

4.2 Methods and Study Region

We study the climate effect of Rim Fire smoke using the Community Earth System Model, version 1, CESM1, coupled with a sectional aerosol microphysics model, the Community Aerosol and Radiation Model for Atmospheres (CARMA) [Toon et al., 1988; Yu et al., 2015a]. CESM1/CARMA includes two groups of particles. The first group is composed of liquid droplets of sulfuric acid that have nucleated from the gas phase. The second group is an internal mixture of primary emitted organics, secondary organics, dust, sea salt, black carbon and condensed sulfate.
Aerosol optical properties are calculated using Mie scattering theory. For the internally mixed particles a core shell structure is assumed. The core is composed of black carbon and dust, while the shell is composed of materials that are possibly in a liquid state including sulfate, organics, salt and condensed water. At mid-visible wavelengths, the refractive index of black carbon is assumed to be 1.53-0.443i in order to be consistent with the CESM model [Hess et al., 1998]. However, Bond and Bergstrom [2006] indicate that a better choice for the refractive index of void-free black carbon would be 1.95-0.79i at 550nm. The index of the shell is assumed to be 1.75+0i according to Hess et al. [1998]. Aerosol optical properties (scattering coefficient, absorption coefficient, single scattering albedo, asymmetry parameter) are passed to CESM1’s RRTMG radiation model [Iacono et al., 2008] for online radiative calculation of forcing and heating rates.

Details of CESM/CARMA are described in Chapter II. To better resolve Rim Fire smoke, we conducted runs with one-degree horizontal resolution instead of 2-degree resolution as used in Chapter II and Chapter III. Simulations were run for five years so that the aerosol and chemical tracers reached a quasi-equilibrium state. The Rim Fire smoke was introduced in the 6th year.

Runs are nudged to offline meteorology using data from the Modern Era Retrospective-Analysis for Research, MERRA, [Rienecker et al., 2011] for the SEAC4RS period. The biomass burning emissions are determined using the daily Quick Fire Emission Dataset (QFED, Darmenov and da Silva, [2014]). Emissions are tabulated by QFED at 0.1-degree resolution, which we re-grid to the model resolution of 1 degree. Correction factors for Rim Fire Emissions (37.75 to 38.15°N and 120.3 to 119.05°W)
from Aug.21 to Aug.27 are applied in CARMA according to *Saide et al.* [2015]. Anthropogenic emissions of organics and black carbon come from *Amann et al.* [2011]. Table 4.1 lists the adjusted biomass burning emission rate (g/m2/day) for organics mass [OM] and black carbon for the Rim Fire. The ratio of [OM] to [BC] emission ranges from about 26 to 36.

<table>
<thead>
<tr>
<th>Emission</th>
<th>BC</th>
<th>OM</th>
<th>OM/BC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug.21</td>
<td>2.01E-09</td>
<td>6.68E-08</td>
<td>33.2</td>
</tr>
<tr>
<td>Aug.22</td>
<td>3.60E-09</td>
<td>9.45E-08</td>
<td>26.3</td>
</tr>
<tr>
<td>Aug.23</td>
<td>4.89E-10</td>
<td>1.46E-08</td>
<td>29.8</td>
</tr>
<tr>
<td>Aug.24</td>
<td>3.58E-10</td>
<td>1.23E-08</td>
<td>34.5</td>
</tr>
<tr>
<td>Aug.25</td>
<td>1.42E-10</td>
<td>4.83E-09</td>
<td>34.1</td>
</tr>
<tr>
<td>Aug.26</td>
<td>2.83E-10</td>
<td>9.81E-09</td>
<td>34.6</td>
</tr>
<tr>
<td>Aug.27</td>
<td>2.12E-10</td>
<td>7.00E-09</td>
<td>33.0</td>
</tr>
<tr>
<td>Aug.28</td>
<td>9.67E-11</td>
<td>3.34E-09</td>
<td>34.6</td>
</tr>
<tr>
<td>Aug.29</td>
<td>1.01E-10</td>
<td>3.37E-09</td>
<td>33.3</td>
</tr>
<tr>
<td>Aug.30</td>
<td>3.13E-11</td>
<td>1.12E-09</td>
<td>35.7</td>
</tr>
<tr>
<td>Aug.31</td>
<td>1.20E-11</td>
<td>4.29E-10</td>
<td>35.8</td>
</tr>
</tbody>
</table>

The injection height of Rim Fire smoke measured by DIAL/HSRL is 3-5 km above the ground, which is roughly between 700 to 500 hPa [Peterson et al., 2015]. Consistent with observations, we put Rim Fire emissions into five pressure levels of CESM between 712 and 581 hPa, with a peak at 618 hPa. The emissions are vertically distributed following a Gaussian shape with 50% of the emissions at 618 hPa and width of 25. The peak location (around 618 hPa) is consistent with the location of the largest measured organic concentration [Jimenez et al., 2003] as discussed later in this chapter.

The particle size distribution is determined by the initial size distribution, particle microphysical process (e.g. coagulation, growth, evaporation and deposition), and
condensation of water. The initial particle size distribution for smoke is based on a daily mean size distribution retrieved by AERONET at Jaru Reserve, Brazil on 20 September 2002 (mean radius is 0.15 µm, width is 0.4). In the mass size distribution, a submicron mode is centered at 0.1 µm, which is typically found in biomass aerosols in Southern Africa, and South America [Matichuk et al., 2007, 2008]. Westphal and Toon [1991] found similar distributions in boreal forest fires. Water condenses on smoke aerosols in CESM1/CARMA as a function of relative humidity and composition-dependent hygroscopicity.

4.3 Comparing Simulations with Observations of Rim Fire Smoke

Figure 4.1 shows the measured concentration of sub-micron organic aerosol mass [OM] along the flight tracks of the DC-8 on 8/26 and on 8/27 as measured by the Aerosol Mass Spectrometer (AMS) [Jimenez et al., 2003]. In this thesis I consider the smoke from California to Montana with the highest concentrations of carbon in organic aerosols, which is marked by a red dashed circle in Figure 4.1. I chose to study this region of the smoke cloud, because it is most likely to have observable radiative effects due to its large aerosol concentrations.
Figure 4.1 Concentration of organic aerosol mass [OM] in standard air (unit: ng/std m3) along the flight tracks of the DC-8 from 8/26 to 8/27. Study region is marked by red dashed cycle. Starting point of flight of 8/27 is denoted by the black text arrow.

Figure 4.2 shows various aerosol properties in Rim Fire smoke observed by the AMS [Jimenez et al., 2003], and the Langley Aerosol Research Group Experiment (LARGE), and as simulated by CESM/CARMA. The simulated organic aerosol mass concentration, particle number concentration, surface area concentration and volume concentration in standard air averaged along the flight track within the dashed circle in Figure 4.1, are within data variability (one standard deviation). Generally organic carbon mass concentration peaks at around 600 hPa and decrease sharply by 2-3 orders of magnitude up to 400 hPa. The organic carbon mass concentrations also decrease by 1 order of magnitude between 600 and 800 hPa. The mean of the simulated organic carbon mass concentration, and the other particle concentrations, are lower than the mean observed between 550 to 600 hPa, though they are still within the error bars. It is possible that the concentrations are low because the 1-degree model is not able to resolve sub-grid
smoke plumes near the source region. It is also possible that the initial injection profile assumed from 700 to 500 hPa with a peak at 600 hPa, is not correct.

![Graph showing aerosol properties](image)

Figure 4.2 Organic aerosol mass concentration (a), particle number density (b), aerosol surface area density (c) and aerosol volume density (d) of standard air simulated by CARMA (shown in solid red lines) and observed in SEAC³RS (shown in dashed blue lines). Error bars denote variability (one standard deviation). Data are averaged over the domain inside the dashed circle in Figure 4.1.

As shown in Figure 4.3 the model underestimates the aerosol extinction coefficient in the smoke region between 550 and 650 hPa. The extinction coefficient is measured with dual integrating nephelometers operating at a range of humidities so that the extinctions can be adjusted to the ambient humidity [Ziemba et al. 2013]. For the region below 650 hPa, the simulations are within the error bars of the observations.

The comparisons in Figure 4.2 and 4.3 suggest CESM/CARMA generally resolves the physical properties of Rim Fire smoke, although the simulations may
underestimate concentrations. Possibly the underestimations are due to 1-degree resolution being inadequate to fully capture the denser parts of the smoke plume. Alternatively, the emissions may be underestimated. As discussed below secondary organics may have also formed in the smoke in greater amounts than simulated.

Figure 4.3 Extinction coefficients at mid-visible wavelength simulated by CARMA (red) and observed by LARGE (blue), CRDS (green). Error bars denote data variability (one standard deviation).

As shown in the left panel of Figure 4.4, both model and observation suggest the ratio of organic mass [OM] to black carbon is quite large in the Rim Fire smoke. The data suggests the ratio is about 40-60, and the model about 30-40 for pressures higher than 550 hPa. Table 4.1 shows that the emission of primary organics [OM] from the fire is taken to be 26-36 times higher than black carbon. The data may suggest the model has not formed enough secondary organics, or that the initial injected ratio may be too low.

To further explore the formation of secondary organics, Figure 4.5 shows modeled and observed OM to BC mass ratios along the flight track. The simulated OM to
BC ratio is about 30-40 in the smoke plumes around 600 hPa, and remains relatively constant throughout the flight. The simulations agree with observations in the first half of the flight (i.e. 30-40), suggesting the emitted ratio is reasonable. Simulations are lower (30-40) than observations in the second half of the flight (i.e. 50-70). The difference may suggest that in the second half of the flight smoke was present from another fire, which had a different emission ratio. Or the secondary organic aerosols had formed during the night between the measurement periods.

Figure 4.4 right compares the simulated SSA in the Rim Fire smoke (0.91) with two sets of observations: one is wet particle SSA measured by LARGE [Ziemba et al., 2013], the other one is dry particle SSA measured by a combination of NOAA Aerosol cavity ringdown extinction spectrometer (CRDS, measure dry extinction coefficient) and NOAA Aerosol photo-acoustic absorption spectrometer (PAS, measure dry absorption coefficient). Both measured SSA values are about 0.95 in the smoke region between 550 hPa and 700 hPa, which is larger than the modeled value (0.91). As discussed previously, we chose a relatively low value of the imaginary refractive index for BC, and we did not consider any absorption by Brown Carbon. Both of these assumptions could bias the single scattering albedo high, rather than low as indicated by the observations. The single scattering albedo is likely too low in our simulations because the ratio of organic carbon to black carbon is about 25% too low.

The observed organic carbon to black carbon ratio declines for pressures less than 550 hPa. The simulated ratio also declines to about 10, and as a consequence the simulated single scattering albedo (SSA) declines for pressures less than 550 hPa. Using combined measurements of CRDS and PAS, the observed SSA declines as low as 0.5 at
430 hPa (not shown in Figure 4.4). However measured absorption coefficients above 500 hPa are close to the detection limit of PAS (2.e-3 km$^{-1}$). The lower SSA values at pressures below 550 hPa are partly due to the lowered organic carbon to black carbon ratio as shown in the left panel of Figure 4.4. Another reason behind the lower SSA between 300 and 500 hPa is the presence of dust. Back trajectory analysis from NASA Goddard space flight center (available at: http://croc.gsfc.nasa.gov/aeronet/) suggests dust aerosol in the regions (300-500 hPa) mainly comes from long-distance transport from the upper troposphere (200-300 hPa) of Asia/Africa. A simulation omitting dust emissions globally suggest absence of dust (dashed black lines in the right panel of Figure 4.4) leads to a SSA increase by up to 0.1 from 300 hPa to 500 hPa.

Figure 4.4 (left) OM to BC mass ratio. CARMA simulations are shown in red, while observations are shown in blue dashed lines. Error bars denote data variability (standard deviation); (right) single scattering albedo (SSA) at mid-visible wavelength simulated by CARMA (red) and observed by LARGE (blue). Green lines denote calculated SSA using CRDS for dry extinction coefficient and PAS for dry absorption coefficient. Black dashed lines denote modeled SSA in CARMA without dust aerosols.
Figure 4.5 OM to BC mass ratio along the flight track. CARMA simulations (every model time step: 30 minutes) are shown in red dotted lines, observations (every minute) are shown in blue dotted lines. Black lines denote flight altitudes. Green lines denote two time periods where measurements are taken in the smoke around 600 hPa. Flight of August 27 starting point is denoted by dashed black line.

4.4 Radiative Effects of Rim Fire Smoke

In order to quantify the radiative impacts of Rim Fire smoke we conducted a control run with the same settings (meteorology and initial conditions) as in the base run but without Rim Fire emissions. Figure 4.6a shows simulated clear sky net radiative flux at the surface (FSNS, W/m2) averaged from 20Z-22Z of August 27 (i.e. 1 pm-3 pm local time of California) from the run with Rim Fire smoke. Figure 4.6b shows the difference between the net flux below the Rim Fire smoke and the control run for 20Z-22Z of August 27, 2013. The simulation suggests that Rim Fire smoke may prevent 4-6% of sunlight from reaching the surface.

Figure 4.6c shows the simulated AOD (panel c) from the Rim Fire. The simulated AOD is about 0.4-0.5 under the smoke. AOD observations (20-23Z, August 27) from four AeroNet sites located under parts of the smoke plume are shown in Figure 4.6c. The
simulated AODs are of the same magnitude as the AeroNet AOD in Rimrock (46N, 116W), Missoula (46N, 114W) and University of Lethbridge (49N, 112W).

Unfortunately, no AeroNet observations were made under the denser parts of the smoke remote from the source region. However, the simulations underestimate the AOD by a factor of 2-3 at the University of Nevada-Reno site (39N, 119W), which is close to the Rim Fire source region. The underestimation may suggest that the 1-degree climate cannot resolve smoke near the fire. Or the initial smoke emissions, or the formation of secondary aerosols maybe incorrect.

Figure 4.6d illustrates the cooling efficiency (defined as FSNS difference per unit AOD, W/m²/AOD) calculated from the Rim Fire run and the control run (20Z-22Z of August 27). In the simulations the smoke is cooling the surface beneath it by 120-140 W/m² per unit of AOD.

Figure 4.6 (a) CARMA simulated clear sky net solar radiative forcing at surface (FSNS, W/m²) with Rim Fire smoke for 20Z-22Z of August 27; (b) FSNS difference between runs with and without Rim Fire smoke in CARMA for 20Z-22Z of August 27; (c) AOD simulated in CARMA with Rim Fire smoke for 20Z-22Z of August 27; (d) cooling efficiency for rim fire smoke for 20Z-22Z of August 27: surface cooling per AOD of
smoke (W/m²/AOD). Observation of AOD by AeroNet Sites (University of Nevada-Reno: 39N, 119W; Rimrock: 46N, 116W; Missoula: 46N, 114W; University of Lethbridge: 49N, 112W) close to the smoke, are shown in filled cycles. AeroNet observations are mostly taken between 20-22Z of August 27. Due to limited observation on August 27, the AOD data of University of Nevada-Reno is taken at 23 Z of August 27.

Figure 4.7 shows simulated solar heating rate (K/day) difference between runs with and without smoke. Black lines denote DC8 altitudes, while background colors denote simulated solar heating rate profile along the flight track. Up to 1.7 K/day solar heating rate is shown between 600 and 650 hPa near the source region with denser smoke, and near local noon solar location. In the far end of the smoke, the heating rate becomes noisy with less dense smoke, and a late afternoon time period. Given the fact the model with 1-degree resolution underestimates AOD near source region by a factor of 2-3 as shown in Figure 4.5c, the peak solar heating rate might be several times higher than 1.7 K/day.

Figure 4.7 simulated solar heating rate (K/day) difference between runs with and without Rim Fire smoke along the DC8 flight track. Pressure altitudes of DC8 are shown in black lines.

4.5 Conclusions
The Rim Fire of 2013, which consumed the third largest area in California history, produced a dense smoke cloud. We simulate this smoke cloud for August 26 and 27, when the smoke extended from the active fires in the Sierra Nevada Mountains near Yosemite National Park, to southern Canada and the Great Lakes. On these days the NASA DC-8 made a large number of observations of the smoke cloud properties, as part of the SEAC4RS field program. Our simulations use the CESM1/CARMA climate model with sectional aerosol microphysics. Our goal is to determine if a climate model, with relatively coarse resolution, can correctly reproduce the smoke properties, and the radiative impact of the smoke.

Both model and observations suggest smoke aerosol concentrations peak between 550 and 650 hPa. Under 1-degree spatial resolution, CARMA is able to reproduce smoke organic carbon mass concentration, particle number concentration, particle surface area concentration, particle volume concentration, and extinction coefficient within data variability, though the simulated mean values are somewhat lower than the mean observed values. The simulated single scattering albedo is slightly too low. Surprisingly the simulated single scattering albedo (SSA) at mid-visible wavelength is lower above the smoke plumes than in them, due to higher simulated and observed black carbon mass fraction in the aerosols above the main smoke layer and possibly due to the presence of dust transported from Asia/Africa. These underestimates of the mean values are likely related to a combination of model resolution being too low, inaccurate emissions estimates, inaccurate conversion of organic gases to secondary aerosols, and injecting the emissions at a pressure that is slightly too high. The simulations suggest that scattering and absorption by the Rim Fire smoke reduced solar insolation at the surface at 20Z-22Z.
of August 27 (around local noon time) by 20-50 W/m², which is roughly 4-6% of total solar radiation at the surface. The simulations also suggest forest fire smoke may cool the surface with an efficiency of 120-150 W m⁻² per unit AOD. The peak of the simulated solar heating rate is 1.7 K/day, but the model may underestimate the heating rate by a factor of 2-3 especially near the source region because it underestimates the aerosol concentrations. Following Robock [1991], this study suggests forest fire smoke, especially on continental scales, should be taken into account in the weather forecasting models.
5.1 Main findings

In this thesis, we developed a sectional aerosol model (CARMA) coupled with the Community Earth System Model (CESM). The model is utilized to study aerosols in the upper troposphere and lower stratosphere (UTLS) and in the smoke from the 2013 Rim Fire. The scientific questions set forth of this work were:

1) **Is our sectional aerosol model coupled with global climate model able to reproduce observational aerosol spatial distributions, physical and optical properties?**

2) **What are the composition, source and physical properties of ATAL and NATAL? Do Asian anthropogenic emissions contribute to the positive trend of background stratosphere aerosol loading?**

3) **What is the aerosol composition, physical properties of Rim Fire smoke? What is the radiative impact of the forest fire smoke on our planet?**

For question 1), CESM/CARMA is evaluated against a large dataset including satellites retrievals, ground-based observations and airborne *in-situ* measurements. Simulated annual average aerosol optical depths are lower than MODIS/MISR satellite observations and AERONET observations by ~32%. This difference is within the uncertainty of the satellite observations. Possibly the lower values than observed by AeroNet are related to simulating point source measurements near source regions, with a
relatively coarse resolution model. CESM1/CARMA reproduces sulfate aerosol mass within 8%, organic aerosol mass within 20%, and black carbon aerosol mass within 50% compared with a multi-year average of the IMPROVE/EPA data over United States, but differences vary considerably at individual locations. Other data sets show similar levels of comparison with model simulations. The model suggests that in addition to sulfate, organic aerosols also significantly contribute to aerosol mass in the tropical UTLS, which is consistent with limited data.

For question 2), CESM/CARMA predicts aerosol enhancements in the UTLS over Asia and North America in JJA season as observed by SAGEII [Thomason and Vernier, 2013] and CALIPSO [Vernier et al., 2011a]. The simulations reproduce the S/C ratio established by in situ measurements of the CARIBIC observatory [Martinsson et al., 2014] from 200 mb to 300 mb over Europe and Asia. The S/C ratio decreases from higher latitudes to lower latitudes, which possibly results in part from more organics emitted over India and China than over Europe. According to the simulations, the ATAL is mostly composed of mixed organics and sulfates with an effective radius of 0.2-0.3 µm, and in situ generated sulfate particles with an effective radius below 0.1 µm. While the ATAL has a strong POA contribution, the simulated NATAL is mostly composed of biogenic SOA. Simulations also suggest recent increased anthropogenic emission of SO₂ as well as organic aerosols and gases in Asia leads to an increase in optical depth of the ATAL region by 0.002 on average between 2000 and 2010 as is observed.

For question 3), this study shows that exceptional events like the 2013 Rim Fire can be simulated by a climate model with one-degree resolution, though that resolution is still not sufficient to resolve the smoke peak near the source region. CESM/CARMA is
able to reproduce smoke organic carbon mass concentration, particle number concentration, particle surface area concentration, particle volume concentration, and extinction coefficient within data variability, though the simulated mean values are somewhat lower than the mean observed values. The underestimation may be related to a combination of model resolution being too low, inaccurate emissions estimates, and insufficient formation of secondary organic aerosol. Both model and observations shows aerosol concentrations peak between 3-5 km above the ground, where the smoke is injected according to Peterson et al. [2015]. The simulated single scattering albedo (SSA) at mid-visible wavelength is lower above the smoke plumes than in them, due to higher simulated and observed black carbon mass fraction in the aerosols above the main smoke layer, and the presence of dust. The simulations suggest that Rim Fire smoke reduced solar insolation at the surface by 4-6% at local noon of August 27. The calculated surface cooling efficiency due to Rim Fire smoke was about 120-150 W m$^{-2}$ per unit AOD. The simulations suggest forest fires, especially in continental scale should be taken into account in the weather forecasting model.

5.2 Future work

Chapter II lists the weakness of current version of CESM1/CARMA and some of them are also commonly found in other aerosol models. For example, (a) the model doesn’t include ammonia and nitrate. This omission may become more important in the future as sulfate emissions decline and nitrates become relatively more important; (b) the model doesn’t include aging process between hydrocarbon-like organic aerosol (HOA) to oxidized organic aerosol (OOA). Chapter II shows omission of aging process may result in a factor of 10 variability in modeled HOA and OOA. In the future, more careful
parameterization of the organic aerosol aging process and secondary organic aerosols is required to better simulate the global organic aerosol budget; (c) in addition, CESM/CARMA is currently not coupled with ice cloud, although CARMA is fully coupled with 2-moment water cloud scheme in CESM [Morrison and Gettelman, 2008]. CESM/CARMA could interact directly with the sectional cirrus model developed in CESM1 by Bardeen et al. [2013].

Ramanathan, V., and G. Carmichael (2008), Global and regional climate changes due to black carbon, Nature Geoscience, 1(4), 221-227, doi:10.1038/ngeo156.

APPENDIX A

MODEL DESCRIPTION

A1 General structure of the model

The Community Aerosol and Radiation Model for Atmospheres (CARMA, version 3.0), which was first developed at NASA Ames Research Center [Toon et al., 1988], is a multi-dimensional and multi-sectional aerosol microphysical model. Bardeen et al. (2008) recently coupled CARMA with CESM1 (Community Earth System Model) developed by the National Science Foundation, the National Center for Atmospheric Research (NCAR), the Department of Energy, and many other researchers. CARMA has also been applied to multiple kinds of aerosols using a variety of dynamical models, for example: smoke [Matichuk et al., 2007, 2008]; stratospheric sulfate [English et al., 2011; Neely et al., 2013; Neely et al., 2014]; wind blown dust [Su and Toon, 2009, 2011]; sea salt [Fan and Toon, 2011]; noctilucent clouds [Bardeen et al., 2010]; cirrus clouds [Bardeen et al., 2013]; meteoritic smoke [Bardeen et al., 2008; Neely et al., 2011]; and stratospheric black carbon [Mills et al., 2008; Ross et al., 2010].

Figure A1 provides a summary of the processes included in the version of CESM1/CARMA in this study, and those treated in CESM1. As shown in Figure A1, CARMA calculates aerosol tendencies through microphysics parameterizations (e.g. emission, nucleation, condensational growth, coagulation and deposition) and CESM1 is responsible for gas-phase emission (e.g. SO\textsubscript{2}, VOCs), gas phase and cloud phase chemistry, and deposition. The CARMA model includes carbonaceous aerosols (OC and BC), wind blown dust, sea salt, and sulfate. In the current CESM1/CARMA, we treat
black carbon, sulfate deposited from the gas phase or from cloud evaporation, organic carbon, sea salt, sea-spray sulfate, dust and secondary organics as internally mixed aerosol. Sulfate aerosol, called pure sulfate, created from nucleation from the gas phase and subsequent growth is treated as externally mixed with other aerosol types mentioned above. Hereafter, we refer to CARMA aerosol in two main groups: mixed aerosols and pure sulfate. Similar aerosol groupings are treated in other climate models such as 7-mode ECHAM5-HAM [Stier et al., 2005], and CESM1-MAM3 and CESM1-MAM7 [Liu et al., 2012]. CESM1-MAM7 also includes ammonium aerosol that CARMA doesn’t have at this moment.

Figure A1. Diagram of the CESM1/CARMA Model. In addition to sulfate, the model includes organics, dust, sea salt, black carbon, aqueous chemistry and aerosol-cloud interactions (activation and evaporation).
Aerosol size settings for CARMA and the CESM1 modal modules (MAM3 and MAM7) are shown in Figure A2. The CARMA sectional size settings can be changed easily by altering one parameter if needed to treat a specialized problem or one single aerosol species. The central size of each bin is shown in red circles (pure sulfate) or diamonds (mixed particle). For modal schemes, the 10th and 90th percent of global averaged number distribution of each mode are shown by green (MAM3) and blue (MAM7) lines. Generally the sectional model (CARMA) has wider size ranges for particles.

CESM1/CARMA separates the mixed aerosols into 20 discrete mass bins from approximately 0.05 \(\mu m \) to 8.7 \(\mu m \) in radius and considers the mass fraction of the aerosol in each size bin composed of OC, BC, dust, sea salt, and sea-spray sulfate. The model separates pure sulfate particles into another set of 20 discrete bins from 0.2 nm to 1.3 \(\mu m \). The bins track the dry mass of the particles, and in total there are 120 CARMA prognostic advected aerosol tracers in this CESM1/CARMA model.

Particle mass, size and composition inside one CARMA particle bin are assumed homogenous. The various constituents of the particles are separately tracked, so for instance the mass of sulfate, black carbon, dust and so forth are known for each particle size bin. We often need to know the wet radius of a particle. In the Tables below we provide the equations we use to compute the relative humidity and temperature dependent wet radius. We use the densities provided in Table A4-A8 to compute the overall volume of the mixed particle, including any water that may be present. This assumption ignores changes in density that may occur if a material is dissolved in the water.
Generally we run CESM1/CARMA while re-computing the coagulation kernels at every grid box and time step. For 1.9x2.5 degree horizontal resolution and 30 vertical levels, the model requires 8.5-hours of wall-clock time using 250 processors (2125 computing units) for a year-long simulation, or 3.5 days of wall-clock time for a decade long simulation. If coagulation kernels are not recomputed, the model requires 6.2 hours of wall-clock time for a one-year simulation. CESM1/CARMA, as currently configured, contains a more advanced chemistry package, MOZART, than either the standard bulk or modal models. Shown in Table A1, CESM1/MAM7 with the full version of MOZART requires 3.1 wall-clock hours for a one-year simulation with the same resolution and computer processors, while CESM1/MAM7 without MOZART requires 1.6 wall-clock hours. Of course, all of these models are in a state of evolution and can be altered to treat additional aerosol types or to expand their size resolution. Hence inter-model comparisons are only useful for defined sets of studies. Nevertheless, CESM1/CARMA provides an option for decade-scale climate runs using a sectional model as an alternative to the bulk or modal models.
Figure A2. Diagram shows aerosol size bins and multiple aerosol modes: CARMA (red), MAM3 (green) and MAM7 (blue). CARMA sulfate bins are shown in circles, and mixed particle bins are shown in diamonds; Modes from MAM3/MAM7 have line edges at the 10th and 90th percent of the number of particles in each mode described by Liu et al. [2012]. (SS denotes sea salt. Bulk SOA in CESM1/CARMA is not shown on figure.)

Table A1 Comparison among different models on computer costs

<table>
<thead>
<tr>
<th>Model</th>
<th>CESM1/CARMA3.0</th>
<th>CESM1/CARMA3.0</th>
<th>CESM1/MAM7</th>
<th>CESM1/MAM3</th>
<th>CESM1/MAM7*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>1.9x2.5, 30 vertical levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas phase chemistry</td>
<td>CAM-Chem</td>
<td>CAM-Chem</td>
<td>CAM-Chem</td>
<td>CAM-Chem</td>
<td>None</td>
</tr>
<tr>
<td>Chemical reactions #</td>
<td>234</td>
<td>234</td>
<td>210</td>
<td>210</td>
<td>7</td>
</tr>
<tr>
<td>Aerosol tracers #</td>
<td>138</td>
<td>138</td>
<td>31</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>Wall-clock hours</td>
<td>8.5 hours/yr</td>
<td>6.2 hours/yr</td>
<td>3.1 hours/yr</td>
<td>2.4 hours/yr</td>
<td>1.6 hours/yr</td>
</tr>
<tr>
<td>CPU</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
</tbody>
</table>
SOA use VBS; including stratospheric sulfate chemistry | No re-computation of coagulation kernels | Fixed yields for SOA | Fixed OH, HO₂, O₃, NO₃

Note CESM11/MAM7* represents MAM7 model with simplified gas phase chemistry.

A2 Emission database and source functions

A2.1 SO₂, DMS and OCS emissions

The current study includes sulfur dioxide (SO₂), dimethylsulphide (DMS) and carbonyl sulfide (OCS) as sulfate aerosol precursors. Due to its long lifetime in the troposphere, OCS is specified with a constant surface concentration of 510 pptv [Chin and Davis, 1995; Montzka et al., 2007]. Emission of SO₂ and DMS are described in Emmons et al. [2010] and listed in Table A2.

Table A2 Sulfur emissions

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCS</td>
<td>510 pptv at the surface</td>
<td>Chin and Davis [1995] Montzka et al. [2007]</td>
</tr>
<tr>
<td>Anthropogenic SO₂</td>
<td>EDGAR-FT2000 data base</td>
<td>http://www.mnp.nl/edgar/</td>
</tr>
<tr>
<td>Biomass burning SO₂</td>
<td>GFED version 2 data base</td>
<td>van der Werf et al., [2006]</td>
</tr>
<tr>
<td>Volcanic SO₂</td>
<td>GEIA version 1 data base</td>
<td>Andres and Kasgnoc, [1998]</td>
</tr>
<tr>
<td>DMS</td>
<td>Marine biogeochemistry model HAMOCC5</td>
<td>Kloster et al. [2006]</td>
</tr>
</tbody>
</table>

A2.2 VOCs emissions

MOZART-4 [Emmons et al, 2010] updated the isoprene oxidation scheme and the sources of volatile organic compounds (VOCs). In total five species are oxidized and treated as precursors of SOA, including two VOCs emitted by vegetation (isoprene and monoterpane) and three VOCs emitted from anthropogenic or biomass burning sources (benzone, tolune and xylene). Emissions of isoprene are estimated by MEGAN2 (Model

Table A3 VOCs emissions

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoprene (C_5H_8), Monoterpene (C_{10}H_{16})</td>
<td>MEGAN</td>
<td>Guenther et al., [2006]</td>
</tr>
<tr>
<td>Toluene (C_5H_3CH_3), BENZONE (C_6H_6), XYLENE (C_8H_{10})</td>
<td>POET; GFED version 2</td>
<td>Granier et al., [2005]; van der Werf et al., [2006]</td>
</tr>
</tbody>
</table>

A2.3 Primary organics and black carbon

We assume primary organic carbon aerosol (POA) and black carbon (BC) are emitted internally mixed, but the masses of the different aerosol types are tracked separately in the model. The initial particle size distribution for biomass burning aerosol is based on a daily mean size distribution retrieved by AERONET at Jaru Reserve, Brazil on 20 September 2002. *Matichuk et al.* [2007, 2008] showed this distribution worked well for biomass aerosols in Southern Africa, and South America. Similar distributions have been found for boreal forest fires [*Westphal and Toon*, 1991]. We assume all primary organic aerosols and BC primary emissions involve the same initial size distribution. Of course, size distributions evolve through microphysical processes (e.g. coagulation, condensation and deposition) discussed later. The anthropogenic emission of POA and BC includes gas-flaring data following *Amann et al.* [2011]. The biomass combustion emission of POA and BC use the Global Fire Emission Database [GFED, version 3, *van der Werf et al.*, 2006, 2010]. According to *van der Werf et al.* [2006], total dry mass burned is first estimated from satellite retrievals (e.g. MODIS). Then emission factors for different types of fuel reported by *Andreae and Merlet* [2001] translate carbon...
mass burned to aerosol/gas emitted. The reported emission factors for OC (BC) range from 3.3 (0.48) to 9.7 (1.5) gram per kilogram dry mass burned for different vegetation types. We also apply a [OM]:[OC] ratio of 1.8 to convert derived carbon mass to total organic aerosol mass as suggested by IMPROVE report V [Hand et al., 2011]. OC/BC emissions are summarized in Table A4.

Table A4 Emission of POA and BC

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC/BC biomass burning</td>
<td>GFED version 3</td>
<td>van der Werf et al., [2010]</td>
</tr>
<tr>
<td>OC/BC anthropogenic</td>
<td>GAINS model</td>
<td>Amann et al., [2011]</td>
</tr>
<tr>
<td>Mass of emitted OM relative to carbon</td>
<td>1.8</td>
<td>IMPROVE report V [Hand et al., 2011]</td>
</tr>
<tr>
<td>Emitted size distribution</td>
<td>AERONET retrieved</td>
<td>Matichuk et al., [2008]</td>
</tr>
<tr>
<td>Density of OC/BC</td>
<td>1.35 g/cm³</td>
<td>Reid et al., [1998]</td>
</tr>
<tr>
<td>Solubility of OM</td>
<td>0.2</td>
<td>tuned</td>
</tr>
</tbody>
</table>

A2.4 Biological particles

Primary biological aerosol particles (PBAP) contribute a large fraction of the organic aerosol mass budget over heavily vegetated areas [Heald and Spracklen, 2009]. Fungal spores and pollen grains compose the most important PBAP types. However, measured pollen diameters peak around 25-27 µm according to O’Connor et al. [2014], with size ranges from 21 to 82 µm according to Sabban and van Hout [2011]. The largest particle size simulated in the current model is about 30 µm. Thus pollen grains are not simulated in our model.

Uncertainties exist in fungal spore emissions. Despres et al. [2011] summarized estimated global annual emissions by several studies and found they range from 8 Tg yr⁻¹ [Sesartic and Dallafior, 2011] to 186 Tg yr⁻¹ [Jacobson and Streets, 2009]. We assume a lognormal particle size distribution for spore particle emission with a mean radius (\(\bar{r}_m\)) of
1.5 µm and standard deviation (σ) of 1.2 according to Reponen [1995]. The total emission rate of spores (E_{tot}, unit: # cm$^{-2}$s$^{-1}$) is parameterized as: $E_{tot} = E_{max} \times LAI \times Rm \times \frac{q}{1.5 \times 10^{-2}}$.

Here $E_{max} = 0.01$ (unit: # s$^{-1}$ [leaf area, cm$^{-2}$]) denotes the maximum emission rate over unit leaf area, as estimated from Hoose et al. [2010]; LAI denotes leaf area index, a dimensionless quantity in unit of [leaf area, cm2/cm2, which is based on 17 different plant functional types considered in the Community Land Model [CLM, Lawrence et al., 2011]; and, q denotes specific humidity. Heald and Spracklen [2009] show a positive correlation between water vapor content and mannitol concentration, a unique tracer of fungal spore. Rm denotes the emission factor accounting for monthly variation, with values taken from Table 5 of Jacobson and Streets [2009]. The annual emission of spores in this study is 60 Tg yr$^{-1}$, which is within the very broad range reported by Despres et al. [2011].

Spore emissions are put into 20 discrete mixed aerosol bins from 0.05 um to 8.7 um as part of POA, by solving the equation: $\int_0^{8.7} E_{bin} \times F(r) \times dr = E_{tot}$, where $F(r)$ denotes the lognormal distribution probability density function. The emission rate for each bin (unit: # cm$^{-2}$s$^{-1}$) is parameterized as: $E_{bin} = E_{tot} \times \frac{dr(bin)}{r(bin)} \times \frac{1}{\sqrt{2\pi\ln(\sigma)}} \times e^{-\ln^2(r(bin)/r_m)/2\ln^2(\sigma)}$.

Number flux (E_{bin}) is converted to mass flux (EM_{bin}) as:

$EM_{bin} = E_{bin} \times r\text{mass}(bin)$, where $r\text{mass}$ (unit: gram per particle) denotes mass per spore particle, estimated as $r\text{mass}(bin) = \rho \times \frac{4}{3} \times \pi \times r(bin)^3$. Density ($\rho$) is assumed to be 1 g cm$^{-3}$ [Heald and Spracklen, 2009] and which is in the range of values given by Jacobson and Streets [2009]. Parameterization of spore emissions are listed in Table A5.
Table A5 Biological particle emission parameters

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rm, Mode radius</td>
<td>1.5 µm</td>
<td>Reponen [1995]</td>
</tr>
<tr>
<td>σ, Standard deviation</td>
<td>1.2</td>
<td>Reponen [1995]</td>
</tr>
<tr>
<td>LAI, Vegetation density</td>
<td>Community Land Model</td>
<td>Lawrence et al. [2011]</td>
</tr>
<tr>
<td>(E_{\text{max}}), Maximum number emission rate</td>
<td>0.01 # s(^{-1}) [leaf area, cm(^{-2})]</td>
<td>Hoose et al. [2010]</td>
</tr>
<tr>
<td>(R_m), Monthly variation</td>
<td>Month dependent</td>
<td>Jacobson and Streets [2009]</td>
</tr>
<tr>
<td>Density</td>
<td>1 g cm(^{-3})</td>
<td>Heald and Spracklen [2009]</td>
</tr>
<tr>
<td>Solubility</td>
<td>0.2</td>
<td>Tuned</td>
</tr>
</tbody>
</table>

A2.5 Dust source function

Mineral dust is lifted by saltating sand grains. Saltation is driven by the surface stress represented by wind friction velocity. The dust source function follows Su and Toon [2009] and is based on Ginoux et al. [2001]. The total dust emission flux \(F_{\text{tot}}\) (unit: g cm\(^{-2}\) s\(^{-1}\)) is parameterized as:

\[
F_{\text{tot}} = C \times S_e \times (u - u_t) \times u^2,
\]

where, \(u\) stands for 10-meter wind speed parameterized using wind stress \((u^*)\) and 10-meter drag coefficient \((C_d)\) under neutral condition: \(u = u^* / \sqrt{C_d}\). The drag coefficient is calculated using the roughness length \((z_0)\) of the model grid cell predicted by the land model and the von Karman constant \((\kappa)\).

\[
C_d = \kappa^2 / \ln^2(10/z_0).
\]

\(C\) is a scaling factor used to obtain the correct total dust emission and is model resolution dependent (\(C = 0.6 \mu g \, s^2 \, m^{-5}\) for 1.9x2.5 resolution); \(S_e\) denotes the dust erodibility factor, which describes the efficiency of dust lifting when winds exceed the threshold wind speed \((u_t)\). Erodibility factors \((S_e)\) derived from the TOMS Aerosol Index come from Ginoux et al. [2001], which is derived from the TOMS Aerosol Index. Su and Toon [2009] parameterized threshold velocity dependent on both particle size [Marticorena and Bergametti, 1995] and soil moisture [Ginoux et al., 2001] as:
$u_t(r) = \begin{cases} u_t^*(r) \ast (1.2 + 0.2 \ast \log_{10}(w)), & \text{when } 0.01 < w < 0.5 \\ \text{space left t } \infty, & \text{when } w \leq 0.01 \text{ or } w \geq 0.5 \end{cases}$, where u_t^* is the particle size dependent threshold velocity from Marticorena and Bergametti [1995]; w denotes soil moisture $(0 < w < 1)$, which is predicted by CESM1.

A Weibull wind distribution [Gillette and Passi, 1988; Colarco et al., 2002] is used to represent sub-grid wind velocity as described in Su and Toon [2009]. Wind speed is integrated from threshold wind velocity u_t to infinity. The u^2 terms in the dust source function are replace by a Weibull correction term as:

$$F_{tot, \text{weibull}} = C \ast S e \ast (u - u_t) \ast C_{ref}^2 \ast \Gamma\left[\frac{2}{k} + 1, \left(\frac{u_t}{C_{ref}}\right)^k\right]$$

Where $C_{ref} = u \ast \left[\Gamma \left(1 + \frac{1}{k}\right)\right]^{-1}$ is a scale factor in the wind probability distribution function with unit of ms$^{-1}$ following Justus et al. [1978] and Grini et al. [2005].

$\Gamma(a,x) = \int_x^\infty t^{a-1}e^{-t}dt$ is the incomplete gamma function, and $\Gamma(a) = \int_0^\infty t^{a-1}e^{-t}dt$ is the gamma function. $k = \begin{cases} 0.94\sqrt{u}, & \text{when } u > 1 \text{ ms}^{-1} \\ 2.5, & \text{when } u \leq 1 \text{ ms}^{-1} \end{cases}$ is a shape parameter as a function of 10-meter wind speed (u) in the Weibull distribution.

The total emission flux ($F_{tot, \text{weibull}}$) is put into 20 CARMA mixed size bins, and the emission flux for each bin ($F(\text{ibin})$, unit: g cm$^{-2}$ s$^{-1}$) is parameterized as: $F(\text{ibin}) = F_{tot, \text{weibull}} \ast s(\text{ibin})$. $s(\text{ibin})$ denotes the fraction of the total emission put into ibin, which satisfies $\sum_{\text{ibin}=1}^{20} s(\text{ibin}) = 1$. CARMA divides 20 discrete bins into two groups dependent on bin size. One group is assumed to be composed of silt particles greater than 1 µm in radius and the other is a clay group with a smaller particle size [Tegen and Fung, 1994]. According to measurements by Prospero and Bonatti [1969], it is assumed that 90% of dust emission flux is put into silt bins, while the remaining 10% of flux is put into
clay bins. For example, based on bin settings of the current model, the radius of first 12 particle bins are less than 1 µm and thus been categorized as the clay group: \(s(\text{ibin}) = \begin{cases} 0.9/8, & \text{when } \text{ibin} = 13, \ldots, 20 \\ 0.1/12, & \text{when } \text{ibin} = 1, \ldots, 12 \end{cases} \)

Overall, the dust emission flux (unit: g cm\(^{-2}\) s\(^{-1}\)) for each bin is calculated as:

\[
F(\text{ibin}) = C \ast s(\text{ibin}) \ast \left(u - u_c \right) \ast S_e \ast \left(\frac{u}{u_c} \right)^2 \ast \Gamma \left[\frac{2}{k} + 1, \left(\frac{u_c}{C_{\text{ref}}} \right)^k \right].
\]

Parameterizations of dust lifting are listed in Table A6.

Table A6 Dust emission parameters.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_e), Dust erodibility factor</td>
<td>Derived from TOMS Aerosol Index</td>
<td>Ginoux et al. [2001]</td>
</tr>
<tr>
<td>Roughness length</td>
<td>Community Land Model</td>
<td>Lawrence et al. [2011]</td>
</tr>
<tr>
<td>(C), dust scaling parameter</td>
<td>0.6 µgs(^2)m(^{-5}) (1.9x2.5)</td>
<td>tuned</td>
</tr>
<tr>
<td>(s(r))</td>
<td>90% of flux in bins with particles radius > 1 µm</td>
<td>Prospero and Bonatti [1969]</td>
</tr>
<tr>
<td>Density</td>
<td>2.65 g/cm(^3)</td>
<td></td>
</tr>
<tr>
<td>Solubility</td>
<td>0.1</td>
<td>tuned</td>
</tr>
</tbody>
</table>

A2.6 Sea spray particle source function

When the wind blows over the ocean surface, sea spray particles in the atmosphere are produced primarily by bubble bursting, though the largest particles are produced by the wind blowing the crests off of waves. Sea spray particle sizes range across several orders of magnitude from several nanometers to several hundred microns. We assume sea spray particles are composed of salt, organics and sulfate. In the next section we define our scheme to separate the composition of the total emissions.

The sea spray source function used in the current model is introduced by \textit{Fan and Toon} [2011]. It combines several other source functions (e.g. \textit{Gong} [2003] and \textit{Caffrey et al.} [2006]) that were developed for different particle size ranges. The sea spray aerosol...
number emission flux $\left(\frac{dF}{dr}\right)_{cms}$ (unit: #m$^{-2}$s$^{-1}$µm$^{-1}$) is described in Fan and Toon [2011] as follows:

For radius $r = 0.01$-0.8 µm,

$$
\left(\frac{dF}{dr}\right)_{cms} = \sum_{i=1}^{3} (\beta_{0i} + \beta_{2i}D + \beta_{3i}D^{2} + \beta_{4i}D^{3} + \beta_{5i}D^{4} + \beta_{6i}D^{5}) \cdot W_{cap}(u_{10}) \cdot r\ln10
$$

Where, $W_{cap}(u_{10}) = 3.84 \cdot 10^{-6}u_{i0}^{3.41}$.

For radius $r = 0.8$-8.7 µm,

$$
\left(\frac{dF}{dr}\right)_{cms} = \begin{cases}
\text{when } u_{10} < 9 \text{m/s}, & \left(\frac{dF}{dr}\right)_{Monahan} \\
\text{when } u_{10} > 9 \text{m/s}, & \max\left(\left(\frac{dF}{dr}\right)_{Monahan}, \left(\frac{dF}{dr}\right)_{Smith}\right)
\end{cases}
$$

$$
\left(\frac{dF}{dr}\right)_{Monahan} = 1.373u_{i0}^{3.41}r^{-3}(1 + 0.057r^{-1.05}) \cdot 10^{1.19e^{-b^{2}}},
$$

$$
\left(\frac{dF}{dr}\right)_{Smith} = \sum_{i=1}^{2} A_{i} \exp\{-f_{i}[\ln\left(\frac{r}{r_{i}}\right)]^{2}\},
$$

where,

$f_{1} = 3.1, f_{2} = 3.3, r_{1} = 2.1 \mu m, r_{2} = 9.2 \mu m$,

$\log(A_{1}) = 0.067u_{14} + 2.43$,

$\log(A_{2}) = 0.959u_{14} - 1.476$

D is the dry diameter of the sea spray particles. See Table 1 in Clarke et al. [2006] for β coefficients. The $r\ln10$ factor converts $dF/d\log(r)$ to dF/dr.

Similar to the dust source function, a Weibull wind distribution is also used in the sea spray particle source function. It is integrated from threshold wind speed $u_{*} = 4$ m s$^{-1}$ to infinity: $\frac{dF}{dr} = F(r) \int_{u_{*}}^{\infty} u^{3.41} p(u) du$, where $F(r)$ denotes the portion of the sea spray source function that only depends on particle size, which is source function
\(\left(\frac{df}{dr} \right)_{\text{ssa}} \) described above; the wind speed dependent part is \(\int_{u_*}^{\infty} u^{3.41} p(u) du \) based on the Weibull distribution. Thus the total sea spray particle flux is parameterized as:

\[
\left(\frac{df}{dr} \right)_{\text{ssa}} = \left(\frac{df}{dr} \right)_{\text{cms}} \cdot \left[\frac{u}{\Gamma \left(\frac{1}{k} \right)} \right]^{3.41} \Gamma \left(\frac{3.41}{k} + 1, \left(\frac{u_* \Gamma \left(\frac{1}{k} \right)}{u} \right)^k \right)
\]

Where \(k = 0.94 \sqrt{u} \) denotes shape parameter, \(\Gamma (a, x) = \int_x^{\infty} t^{a-1} e^{-t} dt \) is the incomplete gamma function, and \(\Gamma (a) = \int_0^{\infty} t^{a-1} e^{-t} dt \) is the gamma function. To get particle mass emission rate \(E_{ibin} \) (unit: g m\(^{-2}\) s\(^{-1}\)) in each bin, the number emission flux \(\left(\frac{df}{dr} \right)_{\text{ssa}} \) (unit: # m\(^{-2}\) s\(^{-1}\) \(\mu m\)^{-1}) is then multiplied by aerosol bin interval \((dr, \text{unit: } \mu m) \) and mass per particle in each bin \((r_{\text{mass, unit: gram per particle}}): E_{ibin} = \left(\frac{df}{dr} \right)_{\text{ssa}}^{ibin} \cdot dr(\text{ibin}) \cdot r_{\text{mass}}(\text{ibin}).\)

Parameterizations of sea spray emissions are listed in Table A7.

Table A7 Sea spray particle emission parameters.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_*), threshold wind speed</td>
<td>4 m/s</td>
<td>Fan and Toon, 2011</td>
</tr>
<tr>
<td>Density</td>
<td>2.65 g/cm(^3)</td>
<td></td>
</tr>
<tr>
<td>Solubility</td>
<td>0.8</td>
<td>tuned</td>
</tr>
</tbody>
</table>

A2.7 Sea salt, marine organics and sulfate

Marine organics and sulfates are assumed to be internally mixed with sea salt. We assign fractions of the sea salt flux defined in the previous section to sulfate and to marine organics. The annual marine organic aerosol emission is about 41 Tg C/year. The source function for the marine organic sub-micron mass emission rate \(\left(\frac{df_{oc}}{dr} \right)_{\text{sub}} \) [O’Dowd et al., 2008] and super-micron mass emission rate \(\left(\frac{df_{oc}}{dr} \right)_{\text{sup}} \) [Gantt et al., 2009] are:
Here F_{sub} (F_{sup}) denotes the Chlorophyll-dependent mass contribution of organics in sub-micron (sup-micron) sea spray aerosols. O’Dowd et al. [2008] shows a linear correlation between organic mass fraction and Chlorophyll concentration: $F_{\text{sub}} = 0.63[\text{Chl}] + 0.1$, while $[\text{Chl}]$ denotes the Chlorophyll concentration (mg/m^3) derived from monthly averaged Level 3 SeaWiFS data [O’Reilly et al., 1998]. $\left(\frac{dF}{dr}\right)_{\text{ssa}}$ denotes sea spray aerosol mass (ssa) flux at size bin of radius r. Physically F_{sub} has an upper limit of 1. As may be seen the organic aerosol flux for particles smaller than 0.5 microns is always at least 10% of the total marine particle flux and organics can be dominant in this size range. Following Gantt et al. [2009], the organic mass flux for super-micron particles is assumed to be 3% of the mass flux of marine particles.

Savoie and Prospero [1977] show that sulfate mixed with sea salt droplets accounts for 10-15% of sea salt mass at numerous island and marine locations. O’Dowd and Smith [1993] provide evidence of coarse mode sulfate emitted directly with sea spray. In the current study, sea salt (NaCl), marine organics, and marine sulfate all contribute to the total sea spray particle mass. Considering that the observed mass fraction of sulfate ion in seawater is 0.27% and the fraction of sodium is 1.08% [Lewis and Schwartz, 2004], the emission of oceanic sulfate ion is estimated as 9.83% of the sea salt (NaCl) flux.

In CESM1/CARMA, sea spray particles are assumed to be mixture of sea salt (NaCl), sulfate and organics. So the total sea spray flux $\left(\frac{dF}{dr}\right)_{\text{ssa}}$ is parameterized as:

$$\left(\frac{dF_{\text{occ}}}{dr}\right)_{\text{sub}} = \left(\frac{dF}{dr}\right)_{\text{ssa}} * F_{\text{sub}}, \text{when } r < 0.5 \mu m$$

$$\left(\frac{dF_{\text{occ}}}{dr}\right)_{\text{sup}} = \left(\frac{dF}{dr}\right)_{\text{ssa}} * F_{\text{sup}}, \text{when } r \geq 0.5 \mu m$$
(\frac{dF}{dr})_{ssa} = \frac{dF_{oc}}{dr} + \frac{dF_{NaCl}}{dr} + \frac{dF_{SO4}}{dr} \text{ and } \frac{dF_{SO4}}{dr} = 9.83\% \times \frac{dF_{NaCl}}{dr}, \text{ where } \frac{dF_{NaCl}}{dr} \text{ denotes marine sulfate flux and } \frac{dF_{NaCl}}{dr} \text{ denotes sea salt emission flux. The NaCl flux can be determined by subtracting the organic flux from the total sea spray flux:}

\frac{dF_{NaCl}}{dr} = 0.9105 \times \left(\left(\frac{dF}{dr}\right)_{ssa} - \frac{dF_{oc}}{dr}\right). \text{ Parameterizations of sea spray sulfate and organics are listed in Table A8.}

Table A8 Sea spray sulfate and organics parameters.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll A concentration</td>
<td>Derived from SeaWiFS satellite</td>
<td>O’Reilly et al., 1998</td>
</tr>
<tr>
<td>Ratio of sulfate ion mass to NaCl</td>
<td>9.83%</td>
<td>Lewis and Schwartz, 2004</td>
</tr>
<tr>
<td>Organic mass fraction</td>
<td>Chlorophyll dependent</td>
<td>O’Dowd et al., 2008</td>
</tr>
<tr>
<td>Density (g/cm³)</td>
<td>1.35 (organics); 1.923 (sulfate)</td>
<td>Reid et al., 1998; tuned</td>
</tr>
<tr>
<td>Solubility</td>
<td>0.2 (organics); 0.5 (sulfate)</td>
<td>tuned</td>
</tr>
</tbody>
</table>

A3 Chemistry (SOA and Sulfur)

A3.1 Organic aerosols and SOA chemistry

Organic aerosols are of great interest because they often compose a significant fraction of the aerosol loading [Zhang et al., 2007]. Organic aerosol classification is still open to debate. There are far too many types of organics to track them individually by composition. In the current study, we treat primary organics as non-volatile particles as assumed by Hodzic and Jimenez [2011]. However, different from Hodzic and Jimenez [2011], oxidation of primary particles to secondary particles is not considered in the current model.
Treatment of secondary aerosols is a multi-step process. First the precursor organic gases - monoterpenes, isoprene, benzene, toluene and xylene - are oxidized in MOZART by oxidants such as OH, O₃ and NO₃ under low and high NOx conditions [Chung and Seinfeld, 2002; Henze and Seinfeld, 2006]. Then CESM1/CARMA considers gas/particle partitioning among oxidized organic compounds.

Instead of the traditional two-product partitioning method [Odum et al., 1996], a volatility-basis set scheme is used to simulate SOA formation depending on their volatility. Pye et al. [2010] divides SOA into five volatility bins (i.e. saturation concentration of 0, 0.1, 1, 10 and 100 µg/cm³). Our current study considers the last four of the five bins from Pye et al. [2010]. Table A9 summarizes the θ_i used for different VOCs under 4 different volatility bins denoted by C* in units of µgm⁻³ from Pye et al. [2010]. For monoterpenne, the model used the constants for θ-pinene under low NOₓ conditions.

Table A9 Partitioning constants (θ_i) used in 4-bin SOA module for different VOCs or SOA precursors

<table>
<thead>
<tr>
<th>VOCs</th>
<th>Oxidant</th>
<th>C* bin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>Isoprene</td>
<td>OH</td>
<td>0</td>
</tr>
<tr>
<td>Isoprene</td>
<td>NO₃</td>
<td>0</td>
</tr>
<tr>
<td>Monoterpenne</td>
<td>OH</td>
<td>0.08</td>
</tr>
<tr>
<td>Monoterpenne</td>
<td>O₃</td>
<td>0.08</td>
</tr>
<tr>
<td>Monoterpenne</td>
<td>NO₃</td>
<td>0.04</td>
</tr>
<tr>
<td>BENO₂</td>
<td>HO₂</td>
<td>0.37</td>
</tr>
<tr>
<td>BENO₂</td>
<td>NO</td>
<td>0</td>
</tr>
<tr>
<td>XYLO₂</td>
<td>HO₂</td>
<td>0.3</td>
</tr>
<tr>
<td>XYLO₂</td>
<td>NO</td>
<td>0</td>
</tr>
<tr>
<td>TOLO₂</td>
<td>HO₂</td>
<td>0.36</td>
</tr>
<tr>
<td>TOLO₂</td>
<td>NO</td>
<td>0</td>
</tr>
</tbody>
</table>
Gas-particle partitioning theory [Pankow, 1994; Odum et al., 1996] assumes equilibrium between the gas and particle phase for each semi-volatile compound. The equilibrium coefficient is temperature dependent and proportional to the inverse of saturation concentration (C^*): $K_i = \frac{1}{C^*} \cdot \frac{T}{T_{\text{ref}}} \cdot e^{\frac{\Delta H}{R} \left(\frac{1}{T} - \frac{1}{T_{\text{ref}}}\right)}$, where T_{ref} denotes reaction reference temperature, ΔH denotes enthalpy (kJ mol$^{-1}$) of vaporization and R denotes gas constant.

The current version of MOZART tracks five main types of secondary organics in the aerosol and the gas phase (SOG) respectively based on their precursors: Isoprene (SOAI/SOGI), Monoterpenes (SOAM/SOGM), Benzene (SOAB/SOGB), Toluene (SOAT/SOGT) and Xylene (SOAX/SOGX). The mathematical relation between gas and particle phase mass concentration is expressed as: \[
\frac{\text{SOA}_i}{\text{SOG}_i} = K_i \cdot [\text{OM}],
\]
where SOA$_i$ and SOG$_i$ are the mass concentrations of secondary organic aerosol and gas of compound i; [OM] denotes the mass concentration of absorbing organic material. CESM1/CARMA uses the total mass across all POA bins for [OM] initially. Then the model solves for [OM] iteratively in equation \[
\frac{\text{SOA}_i}{\text{SOG}_i} = K_i \cdot [\text{OM}]
\] by adding secondary organic aerosol (SOA$_i$) into [OM].

A3.2 Coupling SOA with CARMA aerosol

CARMA is a bin-resolved aerosol model. However, we treat the SOA as a bulk aerosol both to save computer time, and to be able to deal with the equilibrium calculations. However, for purposes of computing size distributions and other parameters that depend on the total aerosol, we assume SOA exists internally mixed in the mixed aerosol bins. Inspired by the APM model [Yu, 2011], bulk SOA are distributed into
various bins of mixed aerosol when needed for outputting properties, or computing such things as radiative forcing. Since the particles are assumed to be internally mixed, we cannot add new particles into the bins, but instead must distribute the mass across the bins in a way that conserves particle number, but adds mass to the bins. According to condensation equation \cite{Seinfeld and Pandis, 1998, Eq. 12.3}, the transfer rate from gas to aerosol phase for one single particle is proportional to aerosol particle size: \(\frac{dm}{dt} = \frac{2\pi D_p DM}{RT} f(p - p_{eq}) \). Where \(\frac{dm}{dt} \) denotes mass transfer rate, \(D_p \) is aerosol diameter, \(D \) denotes diffusion coefficient, \(M \) denotes molecular weight of aerosol/gas species, \(f \) is a correction factor, and \(p - p_{eq} \) denotes the difference between vapor pressure and equilibrium vapor pressure. We can rewrite the single particle condensation equation as \(\frac{dm}{dt} \sim D_p \). Given the number concentration in bin \(i \) is \(N_i \), the total mass transfer rate into bin \(i \) (i.e. \(\frac{dM_i}{dt} \)) is proportional to the ratio of total mass of bin \(i \) to the second moment of particle diameter: \(\frac{dM_i}{dt} \sim N_i * D_p \sim \frac{M_i}{D_p^2} \). Thus, the mass fraction of SOA for each bin \(i \) (i.e. \(fra_i \)) can be calculated by normalizing the mass transfer rate in each bin \(\frac{M_i}{D_p^2} \) as:

\[
fra_i = \frac{M_i}{\sum_{i=1}^{\text{num_bin}} \frac{M_i}{D_p^2}}.
\]

In order to conserve number when the mass is added to the bin, it is partitioned between adjacent bins so that the number of particles does not change, but mass is conserved.

A3.3 Sulfur Chemistry

Sulfur chemistry is modeled following the package used in WACCM-CARMA \cite[refer to English et al., 2011, Table 1]{}. However, the current version of the model (CESM1-CARMA) doesn’t include stratospheric reactions among SO, ClO, BrO and OCIO.
radicals. CESM1-CARMA also includes SO\(_2\) formation from DMS as used in MOZART-4 [Emmons et al., 2010, Table 3] and CAM-Chem [Lamarque et al., 2012, Table 4]. In this model, SO\(_2\) also forms cloud-borne sulfate aerosol through aqueous chemistry in MOZART. Cloud borne sulfate is released when clouds or precipitation evaporates.

Table A10 summarizes the sulfur chemistry used in different aerosol modules in CESM1. All the models have aqueous chemistry shown in last two rows and SO\(_2\) formation from DMS. But CARMA also includes photochemical reactions relevant to the stratosphere and more detailed sulfur chemistry also mainly relevant to the stratosphere as summarized in English et al. [2011].

Table A10 Sulfur chemistry (gas and aqueous phase) used in different modules

<table>
<thead>
<tr>
<th>CESM1/CARMA</th>
<th>Default CESM1/MAM7</th>
<th>Bulk</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}_2\text{SO}_4 + \text{hv} \rightarrow \text{SO}_3 + \text{H}_2\text{O})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{SO}_2 + \text{hv} \rightarrow \text{SO} + \text{O})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{SO}_3 + \text{hv} \rightarrow \text{SO}_2 + \text{O})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{OCS} + \text{hv} \rightarrow \text{S} + \text{CO})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{SO} + \text{hv} \rightarrow \text{S} + \text{O})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{DMS} + \text{OH} \rightarrow \text{SO}_2;) DMS + OH -> .5 * SO(_2) + .5 * MSA*</td>
<td>DMS + OH -> SO(_2); DMS + OH -> .5 * SO(_2) + .5 * MSA*</td>
<td>DMS + OH --> a*SO(_2) + (1-a)*MSA</td>
</tr>
<tr>
<td>(\text{DMS} + \text{OH} \rightarrow \text{.5} * \text{SO}_2 + \text{.5} * \text{MSA})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{DMS} + \text{NO}_3 \rightarrow \text{SO}_2 + \text{HNO}_3)</td>
<td>DMS + NO(_3) -> SO(_2) + HNO(_3)</td>
<td>DMS + NO(_3) --> SO(_2)</td>
</tr>
<tr>
<td>(\text{OCS} + \text{O} \rightarrow \text{SO} + \text{CO})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{OCS} + \text{OH} \rightarrow \text{SO}_2 + \text{C} + \text{H})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{S} + \text{OH} \rightarrow \text{SO} + \text{H})</td>
<td>(\text{SO}_2 + \text{OH} \rightarrow \text{H}_2\text{SO}_4)</td>
<td>(\text{SO}_2 + \text{OH} + \text{M} \rightarrow \text{SO}_4 + \text{M})</td>
</tr>
<tr>
<td>(\text{S} + \text{O}_2 \rightarrow \text{SO} + \text{O})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{S} + \text{O}_3 \rightarrow \text{SO} + \text{O}_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{SO} + \text{OH} \rightarrow \text{SO}_2 + \text{H})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{SO} + \text{O}_2 \rightarrow \text{SO}_2 + \text{O})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{SO} + \text{O}_3 \rightarrow \text{SO}_2 + \text{O}_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{SO} + \text{NO}_2 \rightarrow \text{SO}_2 + \text{NO})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{SO}_2 + \text{OH} + \text{M} \rightarrow \text{HSO}_3 + \text{M})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MOZART considers two pathways for DMS oxidation with OH, which come from Chin et al. [1996]. One pathway is effective on low ambient temperature: \(\text{DMS} + \text{OH} \rightarrow \text{SO}_2 \); the other pathway of DMS oxidation has end products of MSA and \(\text{SO}_2 \). The current version of MOZART used in CESM1/CARMA, does not track MSA.

A4 Radiative properties

CARMA pre-calculates aerosol radiative properties using a Mie based core-shell code following Toon and Ackerman [1981]. CARMA creates lookup tables for radiative properties for each aerosol bin. Radiative properties strongly depend on particle size, which is one reason to use a sectional model. CARMA considers black carbon, organic, dust, sea-spray, and sea salt sulfate particles to be internally mixed. It is assumed that liquid components, such as organics, and water-soluble constituents (e.g. water, sulfate, sea salt) form a liquid shell. Cores are composed of insoluble material such as black carbon and dust.

According to the IPCC V report [Stocker et al., 2013], dust and black carbon aerosols affect the climate by absorbing solar radiation, i.e. warming the atmosphere. The imaginary parts of refractive indices of the core are calculated dependent on the mass fraction of black carbon and dust which vary with location and time:

\[
\text{Imag}_{\text{core}} = \text{Imag}_{\text{dust}} \times \frac{m_{\text{dust}}}{m_{\text{dust}} + m_{\text{bc}}} + \text{Imag}_{\text{bc}} \times \frac{m_{\text{bc}}}{m_{\text{dust}} + m_{\text{bc}}},
\]

where \(m_{\text{bc}} \) and \(m_{\text{dust}} \) denotes BC and dust mass in the mixed particle respectively. For simplicity, the real parts of refractive indices
of the core are assumed to be the average value of those of dust and black carbon, which is not composition-dependent: $\text{Real}_{\text{core}} = 0.5 \ast (\text{Real}_{\text{dust}} + \text{Real}_{\text{bc}})$.

The refractive indices of the particle shells are set to be the same as the measured indices of sulfate aerosol for simplicity. In summary, refractive indices for core/shell are parameterized as:

$$
\text{Imag}_{\text{core}} = \text{Imag}_{\text{dust}} \ast \frac{m_{\text{dust}}}{m_{\text{dust}} + m_{\text{bc}}} + \text{Imag}_{\text{bc}} \ast \frac{m_{\text{bc}}}{m_{\text{dust}} + m_{\text{bc}}}
$$

$$
\text{Real}_{\text{core}} = 0.5 \ast (\text{Real}_{\text{dust}} + \text{Real}_{\text{bc}})
$$

$$
\text{Imag}_{\text{shell}} = \text{Imag}_{\text{sulf}}
$$

$$
\text{Real}_{\text{shell}} = \text{Real}_{\text{sulf}}
$$

The refractive indices of aerosols ($\text{Imag}_{\text{dust}}, \text{Imag}_{\text{bc}}, \text{Real}_{\text{dust}}, \text{Real}_{\text{bc}}, \text{Real}_{\text{sulf}}$) are wavelength-dependent and listed in Table A11 from the OPAC project (Optical Properties of Aerosols and Clouds), [Hess et al., 1998].

CARMA provides detailed aerosol information (i.e. particle wet radius and composition) that vary with location and time. These are used to look up the appropriate optical properties (e.g. scattering coefficient, absorption coefficient and single scattering albedo, asymmetry parameter) that are then passed to the CESM1’s radiation model [RRTMG, Iacono et al., 2008] for online radiative calculation as forcing and heating rates.

Table A11 Aerosol refractive indices versus wavelength

<table>
<thead>
<tr>
<th>Wavelength (\text{um})</th>
<th>Dust Imag</th>
<th>Dust Real</th>
<th>Black carbon Imag</th>
<th>Black carbon Real</th>
<th>Sulfate Imag</th>
<th>Sulfate Real</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short wave values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.419</td>
<td>-0.018</td>
<td>1.51</td>
<td>-0.556</td>
<td>1.877</td>
<td>-0.158</td>
<td>1.367</td>
</tr>
<tr>
<td>2.759</td>
<td>-0.028</td>
<td>1.52</td>
<td>-0.527</td>
<td>1.832</td>
<td>-0.057</td>
<td>1.315</td>
</tr>
<tr>
<td>2.312</td>
<td>-0.012</td>
<td>1.523</td>
<td>-0.503</td>
<td>1.813</td>
<td>-0.003</td>
<td>1.358</td>
</tr>
</tbody>
</table>
Long wave values

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.041</td>
<td>-0.008</td>
<td>1.529</td>
<td>-0.492</td>
<td>1.802</td>
<td>-0.001</td>
</tr>
<tr>
<td>1.77</td>
<td>-0.007</td>
<td>1.53</td>
<td>-0.481</td>
<td>1.791</td>
<td>-0.001</td>
</tr>
<tr>
<td>1.444</td>
<td>-0.006</td>
<td>1.53</td>
<td>-0.458</td>
<td>1.768</td>
<td>-0.000</td>
</tr>
<tr>
<td>1.27</td>
<td>-0.005</td>
<td>1.53</td>
<td>-0.451</td>
<td>1.761</td>
<td>-0.000</td>
</tr>
<tr>
<td>0.957</td>
<td>-0.004</td>
<td>1.53</td>
<td>-0.44</td>
<td>1.76</td>
<td>-0.000</td>
</tr>
<tr>
<td>0.693</td>
<td>-0.004</td>
<td>1.53</td>
<td>-0.43</td>
<td>1.75</td>
<td>-0.000</td>
</tr>
<tr>
<td>0.517</td>
<td>-0.006</td>
<td>1.53</td>
<td>-0.443</td>
<td>1.75</td>
<td>-0.000</td>
</tr>
<tr>
<td>0.387</td>
<td>-0.014</td>
<td>1.53</td>
<td>-0.461</td>
<td>1.75</td>
<td>-0.000</td>
</tr>
<tr>
<td>0.299</td>
<td>-0.024</td>
<td>1.53</td>
<td>-0.47</td>
<td>1.741</td>
<td>-0.000</td>
</tr>
<tr>
<td>0.227</td>
<td>-0.03</td>
<td>1.53</td>
<td>-0.45</td>
<td>1.62</td>
<td>-0.000</td>
</tr>
</tbody>
</table>

Note: database from OPAC project (Optical Properties of Aerosols and Clouds, Hess et al. [1998]).

A5 Aerosol-cloud Interaction

CARMA interacts with the two-moment cloud model in CESM1 [Morrison and Gettelman, 2008; Gettelman et al., 2008; Gettelman et al., 2010]. CARMA aerosols that are cloud condensation nuclei (CCN) can be activated, and then released when cloud evaporates. Sulfate aerosol formation from SO$_2$ oxidization in cloud droplets is also included in CESM1/CARMA.
A5.1 Aerosol activation

Aerosols are activated to CCN following the methods of Ghan et al. [1993], Ghan et al. [1995] and Abdul-Razzak and Ghan [2002]. However these studies have slightly different treatments of activation. Ghan et al. [1993] calculate critical super-saturation \(S_c \) and maximum super-saturation \(S_{\text{max}} \) that particles can obtain from updraft for a single mode. Ghan et al. [1995] applied the same method for multiple log-normal modes instead of a single particle mode. Abdul-Razzak and Ghan [2002] determine \(S_{\text{max}} \) based on calculated effective critical super-saturation \((Sce) \) across all bins for sectional models, which is used in our current study.

In this study we define pure sulfate particles as group \(j = 1 \), and mixed particles sections as group \(j = 2 \). Critical super-saturation of a particle with dry radius of \(r \) in bin \(i \) and group \(j \) is parameterized as: \(S_c(i, j) = \frac{2}{\sqrt{B}} \left(\frac{A}{3\pi r(i, j)} \right)^{3/2} \), where \(B \) denotes hygroscopicity and \(A \) denotes surface tension effects in Ghan et al. [1993]. Hygroscopicity is parameterized as \(B = \frac{\nu \Phi M_w \rho_a}{M_a \rho_w} \) dependent on number of ions \(\nu \), where \(\Phi \) denotes osmotic coefficient, \(M_w (M_a) \) denotes water (aerosol) molecular weight, \(\rho_w (\rho_a) \) denotes water (aerosol) density. Surface tension term is parameterized dependent on surface tension (\(\sigma \)) and temperature (\(T \)) as \(A = \frac{2\sigma M_w}{\rho_w RT} \). Following Abdul-Razzak and Ghan [2002], \(Sce \) is determined for pure sulfate sections and mixed particle sections respectively: \(Sce(j) = \left[\frac{\sum_{i=1}^{n_{\text{bin}}} N(i, j) / S_c(i, j)^{1.5}}{\sum_{i=1}^{n_{\text{bin}}} N(i, j) / S_c(i, j)^{1.5}} \right]^{1.5} \), where \(i \) denotes bin index in each group; \(N(i, j) \) denotes number concentration in bin \(i \) of group \(j \). \(S_{\text{max}} \) is then determined based on \(Sce(j=1, 2) \) calculated for two groups following the method from Ghan et al. [1995]:
\[S_{\text{max}} = \left[\sum_{j=1}^{2} \frac{[0.5 \left(\frac{\zeta}{\eta} \right)^{3/2} + \left(\frac{\text{sce}(j)}{\eta^{3/2}} \right)^{3/4}}{\text{see}(j)} \right]^{-1}, \]

where \(\zeta \) and \(\eta \) are dimensionless terms in Ghan et al. [1993]. If \(S_{\text{max}} \) is greater than critical super-saturation, the particle is activated as a CCN.

A5.2 Aerosol released by cloud evaporation

Cloud-borne aerosols are released when cloud evaporates. Cloud-borne aerosols in CESM1/CARMA are tracked with the same number of bins as interstitial aerosols, which means one particle bin in the cloud droplet corresponds to one interstitial bin. When the cloud forms, one droplet is formed on each aerosol. CESM1 tracks the number of cloud drops, so the number of aerosols released is just the number of cloud drops that evaporate. If there is no cloud droplet coagulation, and no in-cloud chemistry, we would release one particle of the original size back to the aerosol bins when the cloud evaporates. In the current model coagulation of cloud droplets is not modeled. However as shown in Table A10, CESM1/CARMA includes aqueous chemistry from MOZART for \(\text{SO}_2 \) gas uptake and oxidization inside cloud droplets. Cloud-borne sulfate aerosols are formed through reactions between \(\text{SO}_2 \) and ozone/hydrogen peroxide [Barth et al., 2000]. In the model, the total sulfate mass formed (\(\Delta M_{\text{SO}_4} \)) is first computed by MOZART. CARMA puts \(\Delta M_{\text{SO}_4} \) into the cloud-borne mixed particle bins in proportion to the sulfate mass in each bin before aqueous chemistry happens. Thus the mass put into each mixed bin is calculated as:

\[\Delta M_{\text{SO}_4}(i\text{bin}) = \Delta M_{\text{SO}_4} \times \frac{M_{\text{sulf}}(i\text{bin})}{\sum_{i=1}^{20} M_{\text{sulf}}(i)}, \]

where \(M_{\text{sulf}}(i\text{bin}) \) denotes cloud-borne sulfate mass in mixed aerosol bin. Newly formed sulfate aerosols inside each droplet formed through aqueous chemistry are expected to coagulate with the existing aerosol in each droplet, thus the number is conserved. However, the current
treatment allows the particle number to change within each bin so that mass is added due to the chemistry, while total number is conserved.

Different assumptions are made for rain. We assume pure sulfate formed in cloud is part of the mixed particles inside raindrops. When rain evaporates, all the released materials are put into the mixed aerosol bins. In addition, all the particles inside one raindrop, which originated from the large number of cloud droplets that coalesced to form the raindrop, are assumed to fully coagulate to form one bigger particle. The particles released from raindrop evaporation are assumed to be bigger than the largest bin (i.e. 8.7 µm in radius) in current model and we assume the particles are removed quickly from the air.

A6 Hygroscopic growth and sulfuric acid physical properties in CARMA

Water vapor condenses on aerosols (e.g. sea salt, sulfate and organics) once they exceed their deliquescent relative humidity. The particle size increase due to the addition of the water is important for particle microphysical processes (e.g. sedimentation, dry deposition, wet deposition and coagulation) and optical properties. CARMA assumes particles are always in an equilibrium state with ambient water vapor as deliquesced aerosols. Thus CARMA does not track directly the amount of water condensed on particles, and it does not allow for the possibility that efflorescence may occur and return the particles to a dry state below the deliquescent relative humidity.

A6.1 Wet radius of pure sulfate

Weight percent of sulfuric acid in H$_2$SO$_4$-H$_2$O particles is defined as:

$$WP = \frac{m_{H_2SO_4}}{m_{tot}} = \frac{\rho_d V_{H_2SO_4}}{\rho_w V_{tot}}$$ Eq. 6.1.1
Where, \(m_{\text{H}_2\text{SO}_4} \) (\(V_{\text{H}_2\text{SO}_4} \)) denotes \(\text{H}_2\text{SO}_4 \) mass concentration (volume) in \(\text{H}_2\text{SO}_4-\text{H}_2\text{O} \) particles; \(\rho_d \) denotes dry density of sulfuric acid; \(m_{\text{tot}} \) (\(V_{\text{tot}} \)) denotes mass concentration (volume) of \(\text{H}_2\text{SO}_4-\text{H}_2\text{O} \) particles; \(\rho_w \) denotes wet particle density. The wet radius of sulfuric acid particle (\(r_w \)) is calculated as a function of \(WP \) as:

\[
r_w = r_d \left(\frac{V_{\text{tot}}}{V_{\text{H}_2\text{SO}_4}} \right)^{1/3} = r_d \left(\frac{100 \rho_d}{\rho_w \cdot WP} \right)^{1/3} \text{ Eq. 6.1.2}
\]

Here, \(r_d \) denotes dry radius of sulfuric acid particles.

Following Tabazadeh et al. [1997], sulfuric acid weight percent is parameterized as:

\[
WP = \frac{9800 m_s}{98 m_s + 1000} \text{ Eq. 6.1.3}
\]

Where \(m_s \) denotes sulfuric acid molality as a function of temperature and water activity (
\(a_w = \frac{P_{\text{H}_2\text{O}}}{PV_{\text{H}_2\text{O}}} \)); \(m_s(a_w, T) = y_1(a_w) + \frac{(T-190)[y_2(a_w)-y_1(a_w)]}{70} \). Here, functions \(y_1(a_w) \) and \(y_2(a_w) \) are given in Table 2 of Tabazadeh et al. [1997]; \(P_{\text{H}_2\text{O}} \) denotes water partial pressure in air calculated from idea gas law and \(PV_{\text{H}_2\text{O}} \) denotes vapor pressure of water over pure water described in section 6.3.

A6.2 Wet radius of mixed particles

Wet radius [unit: cm] for mixed aerosols is calculated following Petters and Kreidenweis [2007] as:

\[
r_w = r_d \left[1 + \frac{a_w}{1-a_w} \times K \right]^{1/3} \text{ Eq. 6.2.1}
\]

Where, \(a_w \) denotes water activity, \(K \) denotes mass weighted hygroscopicity of an internally mixed particle with different aerosol components. In this equation if the Kelvin effect is neglected, then relative humidity (\(RH \)) can be used instead of water activity [Seinfeld and Pandis, 1998, Eq.10.63]. To avoid generating too large particles through
swelling, relative humidity is constrained to be less than 99.5% in CARMA when calculating the particles’ wet radius. Hygroscopicity values for different aerosol species are given in Table A4 to A8.

Secondary organics aerosols (SOA) are formed through gas/particle partitioning theory, in which process the organic vapors condense onto the mixed particles. However, the model treats SOA as bulk aerosols with four classes of volatility. Mass fraction of total SOA partitioning onto section i of mixed particles \(\text{fra}_i \) is described in section 3.2. Thus the wet radius considering SOA is:

\[
 r_w^* = r_w \left[\frac{\text{fra}_i \cdot m_{\text{soa}} + m_{\text{mix}(i)}}{m_{\text{mix}(i)}} \right]^{1/3},
\]

where \(m_{\text{soa}} \) denotes mass concentration of total SOA; \(\text{fra}_i \) denotes mass fraction of total SOA partitioning onto section i of mixed particles; \(m_{\text{mix}(i)} \) denotes mass concentration of mixed particle in section i excluding SOA. In the calculation above, we neglect the density difference between SOA and total mixed particle.

A6.3 Vapor pressure of Water and Sulfuric Acid

The water vapor pressure \((PV_{h2o}, \text{unit: dyne cm}^{-2}) \) over pure water is parameterized as function of temperature following \textit{Murphy and Koop [2005]}:

For liquid water:

\[
 \ln \left(PV_{h2o}/10 \right) = 54.842763 - \frac{676.32}{T} - 4.21 \ln(T) + 0.000367T + \tanh \{0.0415(T - 218.8)\} (53.878 - \frac{1331.22}{T} - 9.44523 \ln(T) + 0.014025T) \quad \text{Eq. 6.3.1}
\]

Where 123 < T < 322 K.

For ice:

\[
 \ln \left(PV_{h2o}/10 \right) = 9.550426 - \frac{5723.265}{T} + 3.53068 \ln(T) - 0.00728332T \quad \text{Eq. 6.3.2}
\]
Where \(T > 110 \text{ K} \).

Equilibrium vapor pressure of sulfuric acid \((PV_{H_2SO_4}, \text{unit: dyne cm}^{-2})\) is parameterized as a function of weight percent \((WP)\) defined in section 5.3.1. The scheme is originally from in Ayers et al. [1980] with temperature correction by Kulmala and Laaksonen [1990] and thermal dynamics constants from Giauque [1959].

\[
\ln\left(\frac{PV_{H_2SO_4}}{1.01325}\right) = -\frac{10156}{T_0} + 16.259 + \text{corr} - \frac{en}{8.3143T + T^2} \quad \text{Eq. 6.3.3}
\]

Where, \(en = 4.184 \times (23624.8 - \frac{1.14208e8}{(WP - 105.318)^2 + 4797.69}) \) denotes factor considers water in \(H_2SO_4-H_2O \) particles; \(T_0 = 340 \text{ K} \), which is the low end of measurement range by Ayers et al. [1980]; \(\text{corr} = 10156\left(\frac{1}{T} + \frac{1}{T_0} + \frac{1}{905 - T_0} + 1 + \log\left(\frac{T_0}{T}\right) - \frac{T_0}{T}\right) \) denotes correction factor from Kulmala and Laaksonen [1990].

A7 Sedimentation in CARMA

In CARMA, particles are moved downwards in each model layer by gravitational sedimentation. As described in Fan and Toon [2011], the sedimentation velocity (or fall velocity \(V_g \)) for spheres in CARMA is calculated as:

\[
V_g = \begin{cases}
\frac{\mu Re}{2 \rho_a r_p^2}, & \text{when } Re > 0.1 \\
\frac{2 r_p^2 \rho_p g C_c}{\mu}, & \text{when } Re \leq 0.1
\end{cases} \quad \text{Eq. 7.1}
\]

Where \(\mu = \frac{7.62 e^{-\frac{1.5}{T}}}{T + 120} \) [unit: kg m\(^{-1}\) s\(^{-1}\)] denotes air dynamic viscosity following Sutherland [1893]; \(\rho_a \) denotes air density; \(\rho_p \) denotes wet particle density, \(r_p \) denotes wet particle radius, \(g \) denotes gravitational acceleration, \(Re \) denotes Reynolds number and \(C_c = 1 + \frac{\lambda}{r_p} \left[1.246 + 0.42 \exp\left(-\frac{0.87 r_p}{\lambda}\right)\right] \) denotes slip correction factor and \(\lambda = \frac{2 \mu}{\rho_a v_a} \)

denotes air mean free path, where \(v_a = \left(\frac{8 k_b T}{\pi m_a}\right)^{0.5} \) is thermal velocity of air molecule with
mass m_a and ρ_a denotes air density. Reynolds number is calculated using fall velocity of stoke flow: $Re = \frac{4 \rho_p \rho_a r_p^3 g c_c}{\eta \mu^2}$. CARMA also has equations for particle fall velocities for a variety of shapes including oblate and prolate spheroids, and fractals.

It is rare for aerosols to be in the high Reynolds number regime in Eq. 7.1. However, as one moves up in altitude the mean free path increases and the ratio of mean free path to particle radius (the Knudsen number) becomes larger than one. Then the slip correction factor deviates significantly from one. In the limit of large Knudsen number the fall velocity eq. is: $V_g = 0.74 r_p \rho_p g / (\rho_a v_a)$.

Figure A3 (right) illustrates the calculated fall velocity from CESM1/CARMA as a function of altitude for 20 aerosol size bins (dry radius from 0.05 to 8.7 µm) denoted by each line. Sedimentation velocities for each bin are global averages and calculated using their wet radius. For particles larger than several µm, the velocity decreases only slightly with altitude as the air viscosity changes in response to temperature. For small particles the fall velocity increases with altitude as the air density declines. Each line represents a size bin: the leftmost line denotes a bin of 0.05 µm in dry radius and the rightmost line denotes the biggest bin of 8.7 µm. The only particle properties involved in the fall velocity are the particle density and the radius. The particle densities are given in Tables A4 to A8.
In CARMA, particles are removed by dry deposition in the surface layer. The dry deposition velocity (V_d, cm s$^{-1}$) is parameterized following Zhang et al. [2001] as:

$$V_d = V_{g-S} + \frac{1}{R_a + R_s} \quad \text{Eq. 8.1}$$

Where V_{g-S} denotes the sedimentation velocity (V_g) at model surface layer, R_a denotes aerodynamic resistance, and R_s denotes surface layer resistance.

The deposition velocity depends on the surface type (i.e. land, ocean and sea ice) in the grid cell through roughness length and other parameters. Aerodynamic resistance (R_a) over land is provided by the CESM1 land model, while R_a over ocean and sea-ice is calculated separately in CARMA following Seinfeld and Pandis [1998] as $R_a =$
\[\int_{z_0}^{z_r} \psi(z) \, dz, \] where \(z_r \) denotes the center of model bottom layer, \(\mu_* = u \sqrt{C_d} \) denotes the friction velocity dependent on 10-meter \((u)\) wind and drag coefficient \((C_d)\) calculated from Community Land model, \(\kappa = 0.4 \) denotes the Von Karman constant, \(\psi \) denotes the stability function (equation 19.13 of Seinfeld and Pandis [1998]), and

\[z_0 = \begin{cases} 0.0001, & \text{ocean} \\ 0.04, & \text{sea ice} \end{cases} \]
is the roughness length (unit: meters) for ocean and sea ice respectively. Surface resistance \((R_s = \frac{1}{\varepsilon_0 \mu_*. R_1 (E_B + E_{IM} + E_{IN})})\) is parameterized following Zhang et al. [2001]. \(R_1 = 1 \) denotes the fraction of particles that stick to the surface when they hit it; \(\varepsilon_0 \) is an empirical constant and is taken as 3; \(E_B, E_{IM} \) and \(E_{IN} \) denote collection efficiency from Brownian diffusion, impaction and interception respectively. Detailed parameterizations are listed in Table A12.

Table A12 Summary of dry deposition parameterization

<table>
<thead>
<tr>
<th>Item</th>
<th>Formula</th>
<th>Parameter settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry deposition velocity, (V_d)</td>
<td>(V_d = V_g S + \frac{1}{R_a + R_s})</td>
<td>(V_g S = V_g (surface \ layer)), Sedimentation velocity at surface layer</td>
</tr>
<tr>
<td>Aerodynamic resistance, (R_a)</td>
<td>(R_a = \int_{z_0}^{z_r} \psi(z) , dz), for (z_0 = \begin{cases} 0.0001, & \text{ocean} \ 0.04, & \text{sea ice} \end{cases}, roughness length; (\kappa = 0.4, Von \ Karman \ constant; \mu_*, friction \ velocity; \psi, stable \ function)</td>
<td>(z_r, center \ of \ model \ bottom \ layer;) (R_1 = 1), Fraction of particles that stick to the surface; (\varepsilon_0 = 3), Empirical constant</td>
</tr>
<tr>
<td>Surface layer resistance, (R_s)</td>
<td>(R_s = \frac{1}{\varepsilon_0 \mu_*. R_1 (E_B + E_{IM} + E_{IN})})</td>
<td>(R_1 = 1), Fraction of particles that stick to the surface; (\varepsilon_0 = 3), Empirical constant</td>
</tr>
<tr>
<td>Brownian diffusion collection efficiency, (E_B)</td>
<td>(E_B = \begin{cases} Sc^{-0.5}, & \text{ocean} \ Sc^{-2/3}, & \text{land} \end{cases})</td>
<td>(Sc = \frac{v_a}{D_B}), Schmidt Number; (v_a), Kinetic air viscosity; (D_B), Brownian diffusivity</td>
</tr>
<tr>
<td>Impaction collection efficiency, (E_{IM})</td>
<td>(E_{IM} = \left(\frac{St}{St + 0.8} \right)^2)</td>
<td>(St = \frac{v_g S^* u_s^2}{g v_a}), Stoke number</td>
</tr>
</tbody>
</table>
The dry deposition tendency is written in implicit format to avoid generating negative values: \[\frac{C(t+1) - C(t)}{\Delta t} = V_d \frac{C(t+1)}{\Delta x}. \] Here, \(C(t) \) is particle concentration at time \(t \); \(\Delta t \) and \(\Delta x \) are time and spatial increments. The solution shows concentrations decrease exponentially in time: \[C(t) = C(1) \times e^{\frac{V_d}{\Delta x}(t-1)}. \] However, the solution for explicit format is: \[C(t) = \frac{C(t-1)}{1 - \frac{V_d}{\Delta x} \Delta t}, \] which may lead to negative concentrations if the deposition velocity \(V_d \) is too large.

Modeled dry deposition velocity at the model surface is shown in Figure A3 (left) as a function of wet radius at wind speeds of 4 m/s and 8 m/s over ocean and land. \(V_d \) shows a minimum value around 0.2 \(\mu \)m. The reason for this behavior is that small particles are efficiently transported to surface through Brownian diffusion, and large particles are quickly transported by gravitation. The particles with intermediate size (around 0.2 \(\mu \)m) are transported mainly by inertial impaction, which is not as efficient as the other mechanisms. \(V_d \) is generally larger over ocean than land for the same wind speed, and increases more rapidly with wind speed over the ocean. These trends are due to the lower surface roughness over the ocean than the land, so that the friction wind speed is lower for a given 10-meter wind speed with lower dry deposition velocities.

<table>
<thead>
<tr>
<th>Interceptio n efficiency, (E_{IN})</th>
<th>(E_{IN} = c[F \left(\frac{r}{r + A1} \right) + (1 - F) \left(\frac{r}{r + A2} \right)])</th>
<th>(A1 = 1.e^{-3} \text{cm}); (A2 = 1.e^{-1} \text{cm}); (F = 1%); (c = 1/3)</th>
</tr>
</thead>
</table>
A9 Wet deposition in CESM1

CARMA uses the wet deposition scheme in CESM1 [Rasch et al., 2000; Barth et al., 2000] for both in-cloud and below-cloud scavenging. Some details were discussed in the main text of this paper.

CARMA aerosols are activated into cloud as CCN and then removed by in-cloud scavenging dependent on cloud fraction in each grid box, cloud water amount and rate of precipitation formation.

The below cloud particle mixing ratio loss rate is parameterized as $L_{bc} = \frac{\Lambda}{j} jq$ where j denotes the precipitation rate, q denotes the aerosol mixing ratio and $\frac{\Lambda}{j}$ denotes the below-cloud scavenging coefficient, defined as the washout coefficient (Λ) normalized by the precipitation rate. The below-cloud scavenging coefficient is dependent on the aerosol and raindrop size distributions according to observational studies [Andronache, 2003; Andronache et al., 2006]. Online calculation of the scavenging coefficient for both aerosol and precipitation spectra is quite expensive [Henzing et al., 2006] so numerous studies have been implemented to parameterize or simplify the coefficient calculation in global models. These approaches include: 1) simple bulk parameterizations based on precipitation rate by Balkanski et al. [1993] (used in the CAM/CARMA model by Fan and Toon [2011] as well as Su and Toon [2009]); 2) aerosol size-dependent scavenging based on typical precipitation rates and assumed log-normal raindrop distributions [Dana and Hales, 1976] (used in IMPACT model, Liu et al. [2005]); 3) scavenging which is a function of aerosol mode and is scaled by rain or snow flux (used in ECHAM5-HAM model, Stier et al., [2005]); 4) scavenging which is aerosol size, raindrop size and precipitation rate-dependent using look-up tables [Croft et al., 2009]; 5) scavenging
coefficients which are aerosol size and precipitation rate-dependent found using Gamma raindrop distribution based on De Wolf [2001] [Henzing et al., 2006] (used in APM model by Yu and Luo [2009]); and 6) scavenging coefficients which are aerosol size and precipitation rate dependent and based on Marshall-Palmer raindrop distributions (developed in current study see Appendix B). Figure B1 shows calculated scavenge coefficient as a function of precipitation rate and particle radius.

A10 Nucleation in CARMA

CARMA parameterizes binary homogenous nucleation (BHN) using classic theory modified by Zhao and Turco [1995]. A binary solution of H$_2$SO$_4$-H$_2$O is considered. The equilibrium vapor pressure of water over the binary solution is calculated using Lin and Tabazadeh [2001], while the equilibrium vapor pressure of sulfuric acid is from Ayers et al. [1980] as described in Appendix A 6.1 and 6.3.

The classical theory for the binary homogenous nucleation rate (J, unit: particles cm$^{-3}$s$^{-1}$) applied to H$_2$SO$_4$-H$_2$O solution is:

$$J = 4\pi r_c^2 \beta_{h2so4} N_{h2o} e^{\frac{-\Delta G}{k_BT}} \quad \text{Eq. 10.1}$$

Where r_c denotes critical size of the cluster. When the size of the cluster reaches the critical value the cluster is stable and grows through condensation. N_{h2o} denotes the number density of water molecules in the gas phase. The Boltzmann constant. $k_B = 1.38e^{-23}JK^{-1}$; $\beta_{h2so4} = N_{h2so4} \left(\frac{k_BT}{2\pi M_{h2so4}}\right)^{0.5}$ denotes the molecular impingement rate of sulfuric acid on the embryo surface (unit: molecules cm$^{-2}$s$^{-1}$). M_{h2so4} denotes molecular weight of H$_2$SO$_4$. $\Delta G = 4\pi r_c^2 \sigma_p / 3$ denotes the change in Gibbs free energy
between the condensed and vapor state (unit: J), where σ_p denotes surface tension of cluster (unit: J/cm2) calculated using constants from Sabinina and Terpugow [1935].

To solve the BHN equation, the critical size of the stable cluster and corresponding minimum Gibbs free energy (i.e. the saddle point) are required. These can be found by solving the equation $d \Delta G = 0$. Zhao and Turco [1995] transform the saddle point search to a ω-V space where ω denotes weight percent of sulfuric acid in the solution, and V denotes volume of cluster. The advantage of the transformation is the unique solution under two 1-dimension spaces is computationally rapid.

There are many issues related to nucleation not treated in our model, such as the role of ions, organics and ammonia in altering the free energies.

A11 Growth and Evaporation in CARMA

In CESM1/CARMA, condensation and evaporation of sulfuric acid is parameterized following Toon et al. [1989]:

$$\frac{dm}{dt} = \frac{g_0(p_\infty - A kp_v)}{1 + g_0 g_1 p_v} \quad \text{Eq. 11.1}$$

Where $\frac{dm}{dt}$ denotes the rate of particle mass change in a size bin (g cm$^{-3}$ s$^{-1}$); p_∞ denotes the partial pressure of sulfuric acid in the ambient air; p_v denotes the saturation vapor pressure of sulfuric acid over a flat surface described in section 6.1.3 (assumed to be zero over mixed particles, explained later). The vapor pressure correction factor A_k represents the Kelvin (curvature) effect ($A_k = \frac{2M_c\sigma}{e^\rho R T}$), where σ represents surface tension and ρ denotes the solution density. In determining the vapor pressure of pure sulfate it is assumed that the ambient water vapor fixes the solution composition, as discussed in Appendix A 5.3.1. $g_0 = \frac{4\pi R D f_\nu M_c}{RT}$ and $g_1 = \frac{M_c L^2}{RT^2 f_\nu K 4\pi r}$ are particle growth kernels.
parameterized in Toon et al. [1989] as a function of vapor diffusivity (D) and thermal conductivity (K), where $M_c = 98 \text{ g/mol}$ denotes molecular weight of sulfuric acid; L denotes latent heat of condensation; f_v and f_t are ventilation factors to represent the effects of motion of particles through the air on condensation and thermal conduction;

Following Fuchs and Sutugin [1971], vapor diffusivity is parameterized as: $D = D^*C/(r + \frac{\gamma^r C + K_n d}{\phi})$; and thermal conductivity is parameterized as: $K = K^* C/(r + \frac{\gamma^t C + K_n t}{\phi})$. Here, D^* denotes temperature dependent diffusivity in air; $K^* = 418.6 \times [5.69 + 0.017 \times (t - 273.16)]$ denotes the thermal conductivity of air with ambient temperature t; C and ϕ are factors for particle shape correction and set to unity for spherical particles; $K_n d = \lambda_d / r$ and $K_n t = \lambda_t / r$ are Knudsen numbers defined by the ratio of mean free path to particle size, where $\lambda_d = 3D^*/\nu_w$, $\lambda_t = 3K^*/(\rho v_t(C_p - 0.5R))$, ν_w denotes mean thermal velocity of a water molecule, v_t denotes mean thermal velocity of air molecules, C_p denotes heat capacity of air; γ and γ_t are factors dependent on Knudsen numbers:

$$\gamma = \frac{1.33 + \frac{0.71}{K_n d}}{1 + \frac{1}{K_n d}} + 1.33(1 - \alpha_\alpha)/\alpha_\alpha; \ \gamma_t = \frac{1.33 + \frac{0.71}{K_n t}}{1 + \frac{1}{K_n t}} + 1.33(1 - \alpha_t)/\alpha_t,$$

where α_α and α_t denotes sticking coefficient and thermal accommodation coefficient, and assumed to be unity [Fuchs and Sutugin, 1971].

For the pure particles we assume that growth occurs on sulfuric acid. For the mixed particles we assume that the sulfuric acid has been fully neutralized to sulfate, and consequently has zero vapor pressure (i.e. $p_v = 0$). So the condensation and evaporation equation for mixed particles is $\frac{dm}{dt} = g_0 p_\infty$.
A12 Coagulation in CARMA

In CESM1/CARMA, coagulation is simulated among pure sulfate particle bins and among mixed particle bins, as well as between pure sulfate and mixed particle bins. The basic coagulation equation used in CARMA is:

\[
\frac{\partial C(v)}{\partial t} = \frac{1}{2} \int_0^v K_c(u, v - u) C(u) \, \text{d}u - C(v) \int_u^\infty K_c(u, v) C(u) \, \text{d}u.
\]

Here, \(K_c(u, v) \) is the coagulation kernel between particles of volume \(u \) and particles of volume \(v \); \(C(v) \) denotes the concentration of particles with volume \(v \). The two terms on the right side of the coagulation equation represent the production rate and the loss rate respectively. The production rate of particles of volume \(v \) is due to coagulation of smaller particles and the loss rate of particles of volume \(v \) is due to coagulation to form bigger particles.

For aerosols only Brownian coagulation is important. In Brownian coagulation particles collide due to random motion in a fluid. The Brownian coagulation kernel \((K_{cb}) \) is parameterized follows Fuchs [1964] as:

\[
K_{cb} = \frac{4\pi (r_i + r_j) (D_i + D_j)}{r_i + r_j} \frac{1}{4 \left(D_i + D_j \right)} \left(\frac{\delta^2 + \delta_j^2}{u_i^2 + u_j^2} \right)^{0.5} \left(r_i + r_j \right)
\]

Eq. 12.1

Where \(r_i \) and \(r_j \) denotes radius of particle \(i \) and \(j \) respectively; \(\nu_i = \left(\frac{8k_BT}{\pi m_i} \right)^{0.5} \) denotes the thermal velocity of particle \(i \) of mass of \(m_i \); \(D_i = \frac{k_B T C_c}{6 \pi \mu r_i} \) denotes the diffusion coefficient of particle \(i \), where \(k_B \) is Boltzman constant; \(C_c \) is the slip correction factor; \(\mu \) denotes air viscosity. \(C_c \) and \(\mu \) are described in section 6.2; \(\delta_i \) denotes the mean distance from the center of a sphere reached by particles leaving the surface of the sphere and traveling a distance of particle mean free path \((\lambda_i) \): \(\delta_i = \frac{2r_i + \lambda_i}{6r_i \lambda_i} \left(\frac{4r_i^2 + \lambda_i^2}{6r_i \lambda_i} \right)^{1.5} \), where \(\lambda_i = \frac{6D_i}{\pi \nu_i} \).
In the continuum regime ($Kn \ll 1$), particles encounter many air molecules in moving a distance comparable to their radius, and the resistance to motion comes from air viscosity; for the free-molecular regime (i.e. $Kn \gg 10$) particles encounter few air molecules in moving a distance comparable to a radius and the resistance to motion comes from the inertia of the particles. In continuum regime and free-molecular regime, Brownian coagulation kernels can be simplified as:

\[
K_{cb} = \begin{cases}
4\pi (r_i + r_j)(D_i + D_j) & (Kn \ll 1, \text{continuum regime}) \\
\alpha_s \pi (r_i + r_j)^2 (v_i^2 + v_j^2)^{0.5} & (Kn \gg 10, \text{free molecular regime})
\end{cases}
\]

Eq. 12.2

Where α_s denotes probability that the two particles will stick together. Figure A4 shows Brownian coagulation kernels (cm^3s^{-1}) at the surface and at 20 km are similar, which is due to the low dependence of kernels on temperature. Kernels are relatively small when two particle sizes are similar, and become larger when two particles have sizes which differ from each other.

Figure A4 Calculated Brownian coagulation kernel (cm^3s^{-1}) at surface (left) and 20 km (right) as a function of particle radius. Colors are used to make the graph easier to read.
A13 Comparison of aerosol burden with different meteorology and emissions

Table A13 lists simulated aerosol burden (Tg) using different aerosol modules. In addition to CARMA and Liu et al. [2012], additional runs of CESM-MAM7 (denoted by MAM7*) are included in Table A13. MAM7* is driven by the same meteorology winds (i.e. MERRA) from 2009 to 2011 and the same anthropogenic emissions of BC and POA used in CARMA. Simulated aerosol burden is within 20% between MAM7* and Liu et al. [2012].

Table A13 Species budgets simulated by CESM1/CARMA compared with Liu et al. [2012] and MAM7*.

<table>
<thead>
<tr>
<th>Burden (Tg)</th>
<th>CARMA</th>
<th>Liu et al. [2012]</th>
<th>MAM7*</th>
</tr>
</thead>
<tbody>
<tr>
<td>POA</td>
<td>1.63</td>
<td>0.68</td>
<td>0.61</td>
</tr>
<tr>
<td>SOA</td>
<td>1.27</td>
<td>1.15</td>
<td>1.14</td>
</tr>
<tr>
<td>BC</td>
<td>0.14</td>
<td>0.093</td>
<td>0.073</td>
</tr>
<tr>
<td>SALT</td>
<td>8.77</td>
<td>7.58</td>
<td>7.5</td>
</tr>
<tr>
<td>DUST</td>
<td>12.33</td>
<td>24.7</td>
<td>21.6</td>
</tr>
<tr>
<td>SULFATE</td>
<td>1.32</td>
<td>0.47</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Note: MAM7* run is CESM-MAM7 driven by MERRA reanalysis winds from 2009 to 2011. Anthropogenic emissions of BC and POA are the same as CARMA run.
We consider monodisperse particle washed out by a raindrop size distribution, and the washout coefficients are given by Engelmann (1968):

\[
\Lambda(a, R) = \int_0^\infty \pi R^2 E(a, R) F(R) dR = F_0 \int_0^\infty \pi R^2 E(a, R) f(R) dR
\]

Where, \(a\) denotes particle radius; \(R\) denotes raindrop radius; \(E(a, R)\) denotes collection efficiency between particle of radius \(a\) and raindrop of radius \(R\); \(F(R) dR\) denotes raindrop number flux (unit: \#/cm\(^2\)s) with radii from \(R\) to \(R + dR\); \(f(R)\) is the number pdf for rain distribution, and \(F_0\) is the total flux of rainfall. We assume the rainfall spectrum is invariant with rainfall rate \(J (cm/s)\), the rainfall rate is thus given by Dana (1971):

\[
J = \frac{4}{3} \pi \int_0^\infty R^3 F(R) dR = \frac{4}{3} \pi F_0 \int_0^\infty R^3 f(R) dR
\]

Thus we calculate the scavenging coefficient normalized by rainfall rate \(J\) (referred to as the scavenging coefficient (unit: \(1/cm\)) hereafter):

\[
\frac{\Lambda}{J} = \frac{3}{4} \frac{\int_0^\infty R^2 E(a, R) f(R) dR}{\int_0^\infty R^3 f(R) dR}
\]
According to Dana and Hales (1976), the Collection Efficiency used in washout coefficient calculation (a, R, cm) is

\[
E(a, R) = \begin{cases}
0.65 \times 10^{-12} \left[\frac{10^{-7}}{a^2 R^2} + \frac{1}{a^{4/3} R} \right] & \text{Brownian diffusion} \\
\frac{3 a}{R} & \text{Interception} \\
\left[\frac{S - \frac{1}{12}}{S + \frac{7}{12}} \right]^3 & \text{Inertial Impaction}
\end{cases}
\]

Based on the Simplified Collection Efficiency:

\[
E(a, R) = \begin{cases}
1.3 \times 10^{-16} \cdot a^{-2} & \text{Brownian diffusion} \\
\frac{3 a}{R} & \text{Interception} \\
\left[\frac{S - \frac{1}{12}}{S + \frac{7}{12}} \right]^3 & \text{Inertial Impaction}
\end{cases}
\]

We rewrite the scavenging coefficients for different modes (i.e. diffusion, interception and Initial):

Diffusion:

\[
\left[\frac{\Lambda}{I} \right]_1 = \frac{3}{4} \cdot (1.3 \times 10^{-16} a^{-2}) \cdot \frac{\int_0^\infty R^2 f(R) \, dR}{\int_0^\infty R^3 f(R) \, dR}
\]

Interception:

\[
\left[\frac{\Lambda}{I} \right]_2 = \frac{9a}{4} \frac{\int_0^\infty R f(R) \, dR}{\int_0^\infty R^3 f(R) \, dR}
\]
As suggested by Rogers and Yau, we assume the raindrop size follows Marshall and Palmer Distribution:

\[N(R) = N_0 e^{-\lambda R} \]

Where \(N(R)dR \) is the number of drops per unit volume with diameters between \(R \) and \((R+dR)\), and coefficient \(\lambda = 41J^{-0.21} \), the pdf of Marshall and Palmer distribution is:

\[f(\lambda, R) = \lambda e^{-\lambda R} \]

\[
\int_0^\infty Rf(R)dR = 41 \int_0^\infty R * J^{-0.21} * e^{-41J^{-0.21} R}dR
\]

\[k = -41 * J^{-0.21} \]

\[
\int_0^\infty Rf(R)dR = - \int_0^\infty R * d(e^{kR})
\]

\[t = e^{kR}, \quad R = \frac{1}{k} \ln t \]

\[
\int_0^\infty Rf(R)dR = - \int_1^0 Rdt = \frac{1}{k} \int_0^1 \ln t \ dt
\]
\[
\begin{align*}
\int_0^1 \ln t \, dt &= -1; \quad \int_0^1 [\ln t]^2 \, dt = 2; \quad \int_0^1 [\ln t]^3 \, dt = -6 \\
\int_0^\infty Rf(R) \, dR &= \frac{1}{-41} \int_0^1 \ln t \, dt = \frac{1}{41} \\
\int_0^\infty R^2 f(R) \, dR &= \frac{1}{k^2} \int_0^1 [\ln t]^2 \, dt = \frac{1}{k^2} \cdot 2 = \frac{2 \cdot J^{0.42}}{1681} \\
\int_0^\infty R^3 f(R) \, dR &= \frac{1}{k^3} \int_0^1 [\ln t]^3 \, dt = \frac{1}{k^3} \cdot (-6) = \frac{6 \cdot J^{0.63}}{68921} \\
\left[\frac{\Lambda}{J} \right]_1 &= \frac{3}{4} \cdot (1.3 \cdot 10^{-16} a^{-2}) \left(\int_0^\infty R^2 f(R) \, dR \right) = 13.325 \cdot 10^{-16} \cdot a^{-2} \cdot J^{-0.21} \\
\left[\frac{\Lambda}{J} \right]_2 &= \frac{9a}{4} \left(\int_0^\infty \frac{Rf(R)}{R^3 f(R)} \, dR \right) = 630.375 \cdot a \cdot J^{-0.42} \\
\left[\frac{\Lambda}{J} \right]_3 &= \frac{3}{4} \left(\frac{S - \frac{1}{12}}{S + \frac{7}{12}} \right)^3 \left(\int_0^\infty R^2 f(R) \, dR \right) = 10.25 \left(\frac{S - \frac{1}{12}}{S + \frac{7}{12}} \right)^3 J^{-0.21}
\end{align*}
\]
\[S = 10^7 \cdot a^2 \cdot \rho \]

Where, \(S \) denotes stoke number dependent on particle radius (\(a \)) and density (\(\rho \)). The scavenging coefficient dependent on Rainfall rate and particle radius is:

\[
\text{scavcoef} = \begin{cases}
\left[\frac{\Lambda}{J} \right]_{1} = 13.325 \times 10^{-16} \cdot a^{-2} \cdot J^{-0.21} & a < 5 \times 10^{-6} \text{ cm} \\
\left[\frac{\Lambda}{J} \right]_{2} = 630.375 \cdot a \cdot J^{-0.42} & 5 \times 10^{-6} \leq a < 1 \times 10^{-4} \text{ cm} \\
\left[\frac{\Lambda}{J} \right]_{3} = 10.25 \left[\frac{S - \frac{1}{12}}{S + \frac{7}{12}} \right]^3 \cdot J^{-0.21} & a \geq 1 \times 10^{-4} \text{ cm}
\end{cases}
\]
Figure B1 Scavenging coefficient (1/cm) using Marshall-Palmer raindrop distribution as a function of the wet aerosol radius and precipitation rate.

