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(b) NMI vs Threshold

Figure 1.2: (a) An example of a weighted network where thresholding will never succeed. (b)
A plot of the normalized mutual information (NMI) between the true community structure and
inferred SBM community structure after thresholding at various threshold values (averaged over
100 trials). Examples of community structure found by thresholding are shown above the graph
(different colors represent different communities). As the NMI is less than 1 for all threshold values,
the SBM after thresholding never infers the true community structure shown in (a).

In addition to this flexibility, the SBM’s probabilistic structure provides a principled ap-

proach to quantifying uncertainty of group membership, an attractive feature in unsupervised

network analysis. This structure has led to theoretical guarantees, including consistency of the

SBM estimators [8] and the identifiability and consistency of latent block models [5, 4].

1.2.1 Thresholding Weighted Networks

However, each of these models assumes an unweighted network, where edge presence or

absence is represented as a binary variable, while most real-world networks have weights, e.g.,

interaction frequency, volume, or character. Such information is typically discarded via thresholding

before analysis, which can obscure or distort latent structure [26].
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To illustrate this loss of information from thresholding, consider a toy network of four equally-

sized groups shown in Figure 1.2, labeled 1–4, where each edge (i, j) is assigned a weight equal to

the smaller of the endpoints’ group labels, plus a small amount of noise. Edges between groups are

thus assigned weights near 1, 2, or 3, while those within a group are assigned weights near 1–4.

To apply the SBM to this toy network, we must convert it to an unweighted network. We

accomplish this by discarding edges with weights less than a selected threshold. To illustrate the

results of this action, we consider all possible thresholds, and compute the average normalized

mutual information (NMI) between the community structure found using the SBM and the true

structure (Fig. 1.2). At every choice of threshold, the SBM divides edges into at most three groups:

those with weight above, at, or below the threshold. Thus, the SBM can thus recover a maximum

of three groups, rather than the four planted true groups. The only way to avoid these incomplete

inferences is to directly model the edge weights.

1.3 Weighted Stochastic Block Model

In this thesis, we introduce the weighted stochastic block model (WSBM), a general-

ization of the SBM that can learn from both the presence and weight of edges. The weighted

stochastic block model provides a natural solution to this problem by generalizing the SBM to

learn from both types of information. Specifically, the WSBM models each weighted edge Aij as

a draw from a parametric exponential family distribution, whose parameters depend only on the

group memberships of the connecting vertices i and j. It includes as special cases most standard

distributional forms, e.g., the normal or exponential, and their generalizations, and enables the

direct use of weighted edges in recovering latent group or block structure. This thesis covers my

research [1, 2].

We first describe the form of the WSBM, which combines edge existence and weight informa-

tion. We then derive a variational Bayes algorithm for efficiently learning WSBM parameters from

data. Applying this algorithm to a small weighted network, we show that the SBM and WSBM

can learn distinct latent structures as a result of observing or ignoring edge weights. Finally, we
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compare the performance of the WSBM to alternative methods for two edge prediction tasks on

a set of real-world networks. In all cases, the WSBM performs as well as alternatives on edge

prediction, and outperforms all alternatives on edge weight prediction. This model thus enables

the discovery of latent group structures in a wider range of networks than was previously possible.



Chapter 2

Model

We begin by reviewing the SBM and exponential families, and then describe a natural gen-

eralization of the SBM to weighted networks. In what follows, we consider the general case of

directed graphs; the theory readily extends to undirected (symmetric) graphs.

2.1 Stochastic Block Model

In the SBM, the network’s adjacency matrix A contains binary values representing edge

existences, i.e., Aij∈{0, 1}, the integer K denotes a fixed number of latent groups, and the vector z

contains the group label of each vertex zi∈{1, . . . ,K}. The number of latent groups K controls the

model’s complexity and may be chosen in a variety of ways—we defer a discussion of this matter

until section 3.3. Each possible group assignment vector z represents a different partition of the

vertices into K groups, and each pair of groups (kk′) defines a “bundle” of edges that run between

them. The SBM assigns an edge existence parameter to each edge bundle θkk′ , which we represent

collectively by the K-by-K matrix θ. The existence probability of an edge Aij is given by the

parameter θzizj that depends only on the group memberships of vertices i and j. And each edge

existence Aij is conditionally independent given z and θ.

Put together, the SBM’s likelihood function is

Pr(A | z, θ) =
∏
ij

θ
Aij
zizj

(
1− θzizj

)1−Aij , (2.1)
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which we may rewrite as

Pr(A | z, θ) =
∏
ij

exp

(
Aij · log

(
θzizj

1− θzizj

)
+ log

(
1− θzizj

))
,

where we have rewritten the Bernoulli distribution in exponential family form.

2.2 Exponential Family

Recall that an exponential family is a collection of parametric distributions F that can be

written in the form

F = {f(x | θ) = h(x) exp (T (x) · η(θ)) for x ∈ X | θ ∈ Θ} ,

where h, T, η are fixed functions, X is a fixed domain and Θ is set of possible parameters.

The map T is the sufficient statistic function and the map η(θ) are the natural parameters.

Note that T and η can be vectors. The function h(x) distinguishes different probability distri-

butions, but appears as an additive constant in the log-likelihood function and therefore can be

ignored. Thus, only the pair (T, η) directly impacts the likelihood function.

Examples of exponential families include the Normal, Exponential, Gamma, Log-Normal,

Pareto, Binomial, Multinomial, Poisson, and Beta distributions. Examples of distributions that are

not exponential families are the Uniform distribution and certain mixture distributions. Appendix

B provides a list of common exponential families.

A common representation of an exponential family sometimes includes the log-partition func-

tion A(θ) written as

f(x | θ) = h(x) exp
(
T̃ (x) · η̃(θ)−A(θ)

)
.

To keep notation compact we absorb −1 ·A into T · η.

A convenient property of exponential families is that they have easily written conjugate priors.

For our exponential family the standard class of conjugate priors π are

π(θ) =
1

Z(τ)
exp (τ · η(θ)) ,
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where τ are the (hyper-)parameters of the prior and can be thought of as pseudo-observations of

T . The function Z is the normalizing constant, defined as

Z(τ) =

∫
Θ

exp (τ · η(θ)) dθ .

Finally, it can be shown that the expected value of η(θ) under π(· | τ) is

〈η(θ)〉 =
∂ logZ(τ)

∂τ
.

There are many advantages to generalizing to exponential families such as the ability to

compress multiple observations into the sufficient statistic, the existence of conjugate priors, and

computational tractability to name a few. Further details on exponential families can be found in

Refs. [19, 24] and for appropriate prior distributions in Ref. [7].

2.3 Weighted Stochastic Block Model

Thus, the SBM likelihood Eq. (2.2) has the form of an exponential family

Pr(A | z, θ) ∝ exp

∑
ij

T (Aij) · η(θzizj )

 , (2.2)

where T (x) = (x, 1) is the vector-valued function of sufficient statistics of the Bernoulli random

variable and η(x) = (log[x/(1− x)], log[1− x]) is the vector-valued function of natural parameters.

This choice of functions (T, η) produces binary-valued edge weights. By choosing an appro-

priate but different pair of functions (T, η), defined on some domain X and Θ respectively, we may

specify a stochastic block model whose weights are drawn from an exponential family distribution

over X .

As in the SBM, the weighted stochastic block model (WSBM) is parametrized by a vector of

group labels z and matrix θ, where each θzizj specifies the parameters governing the exponential

family weight distribution in the (zizj) edge bundle. The likelihood of network A under the WSBM

given the parameters z, θ remains Eq. (2.2) but for a different choice of distribution (T, η). Figure 2.1

visualizes the dependencies in the WSBM’s likelihood function as a graphical model.
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Figure 2.1: Graphical model for the WSBM. Each weighted edge Aij (plate) is distributed according
to the appropriate edge parameter θzi,zj for each observed interaction (i, j). In our variational Bayes
inference scheme, the WSBM’s latent parameters z, θ are themselves modeled as random variables
distributed according to µ, τ , respectively. We highlight that the arrow from z to θzi,zj hides the
complex relational structure between each zi.

The generative process of creating a weighted network from the WSBM consists of the fol-

lowing steps:

• For each vertex i, assign a group membership zi.

• For each pair of groups (k, k′), assign an edge bundle parameter θkk′ ∈ ×

• For each edge (i, j), draw Aij ∈ X from the exponential family (T, η) parametrized by θzizj .

Note that the community structure of the WSBM retains the stochastic equivalence principle of

the classic SBM, in which all vertices in a group maintain the same probabilistic connectivity to

the rest of the network.

For example, if the edge weights are real-valued X = R, then we may choose the normal

distribution, which has sufficient statistics T =(x, x2, 1) and natural parameters

η = (µ/σ2,−1/(2σ2),−µ2/(2σ2)).

Instead of edge-existence probabilities, each edge-bundle (kk′) is now parametrized by a mean and

variance θkk′ = (µkk′ , σ
2
kk′). Here, the likelihood function would be

Pr(A | z, µ, σ2) =
∏
ij

N
(
Aij |µzizj , σ2

zizj

)
=
∏
ij

exp

(
Aij ·

µzizj
σ2
zizj

−A2
ij ·

1

2σ2
zizj

− 1 ·
µ2
zizj

σ2
zizj

)
.

(2.3)
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This particular WSBM uses a normal distribution instead of a Bernoulli distribution to model

the (continuous) values observed in an edge bundle. We emphasize that the choice of the normal

distribution is merely illustrative: an alternative exponential family distribution could be used

instead.

So far, this construction produces complete graphs, in which every pair of vertices is con-

nected by an edge with some real-valued weight. For a complete network, this formulation may be

appropriate. However, most real-world networks are sparse, with only O(n) pairs having a connec-

tion with weight, and a dense model like this one cannot be applied directly. We now describe how

sparsity can be naturally incorporated within our model.

2.4 Modeling Both Edges and Weights

In this section, we describe how the WSBM can model both edge existence and edge weights,

which allows it to be fitted to sparse weighted networks and to produce scalable inference algorithms.

A key insight for modeling sparse weighted networks lays in clarifying the meaning of zeros

in a weighted adjacency matrix. In this case, a value Aij =0 may represent any of three things: (i)

the absence of an edge, (ii) an edge that exists but has weight zero, or (iii) missing data, i.e., an

unobserved interaction. In both of the former two cases, we do in fact observe the interaction, while

in the latter, we assume we do not. For observed interactions, we call the observed non-interaction

to be a “non-edge,” and we let Aij = 0 denote the presence of an edge with weight zero. In many

empirical networks, distinct types of interactions may have been confounded, e.g., non-edges, edges

with zero weight, and unobserved interactions may all be assigned a value Aij = 0. However,

for accurate inference, this distinction is often important. For example, a non-edge may indicate

an interaction that is impossible to measure, which is distinct from choosing not to measure the

interaction (an unobserved interaction) or an edge with weight zero.

Here, we assume that these three types of interactions are distinguished in our input data.

To handle the information from edge existence (non-edge vs edges) and edge weights, the WSBM

models an edge’s existence as a Bernoulli or binary random variable, as in the SBM, and models
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an edge’s weight using an exponential family distribution. Terms corresponding to unobserved

interactions contribute no information to inference and are dropped from the likelihood function.

If the pair (Te, ηe) denotes the family of edge-existence distributions and the pair (Tw, ηw) denotes

the family of edge-weight distributions then we may combine their contributions in the likelihood

function via a simple tuning parameter α ∈ [0, 1] that determines their relative importance in

inference

log Pr(A | z, θ) = α
∑
ij∈E

Te(Aij) · ηe
(
θ(e)
zizj

)
+ (1− α)

∑
ij∈W

Tw(Aij) · ηw
(
θ(w)
zizj

)
, (2.4)

where E is the set of observed interactions (including non-edges) and W is the set of weighted edges

(W ⊂ E). This generalization can be reduced to the compact form of Eq. (2.2) by combining the

vectors αTe with (1− α)Tw and ηe with ηw.

By tuning α, we can learn different latent structures. When α= 1, the model ignores edge

weight information and reduces to the SBM. When α= 0, the model treats edge absence as if it

were unobserved, and fits only to the weight information. When 0<α<1, the likelihood combines

information from both edge existence and weights. In principle, the best choice of α could also be

learned, but we leave this subtle problem for future work.

2.4.1 Degree Correction

Here, we consider a particular edge-existence distribution Te that naturally handles heavy-

tailed degree distributions, which are ubiquitous in real-world networks and are known to cause

the SBM to produce undesirable results, e.g., placing all high-degree vertices in a group together,

regardless of their natural community membership [14].

Karrer and Newman introduced an elegant extension of the SBM that avoids this behavior. In

their “degree corrected” SBM (here DCBM), they add vertex degree information into the generative

model by adding an “edge-propensity” parameter φi to each vertex [14]. As a result, the number

of edges that exist between a pair of vertices i and j is a Poisson random variable with mean

φiφjθzizj . Because vertices with high propensity are more likely to connect than vertices with low
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propensity, the propensity parameters φ allow for heterogenous degree distributions within groups.

In the DCBM, vertices in the same block are no longer stochastically equivalent, but have similar

group-level connectivity patterns conditioned on their propensity parameters φ.

The likelihood function for this model is

Pr(A | z, θ, φ) ∝
∏
ij

(
φiφjθzizj

)Aij exp
(
−φiφjθzizj

)
.

It can be shown that the maximum likelihood estimate of each propensity parameter φi is simply

the vertex degree di [14]. By fixing φi = di, we can rewrite the DCBM in the exponential family

form

Pr(A | z, θ, φ) ∝
∏
ij

exp
(
Aij · log θzizj − didj · θzizj

)
, (2.5)

where the sufficient statistics are T =(Aij ,−didj) and the natural parameters are η=(log θzizj , θzizj ).

Thus, to derive a degree-corrected weighted stochastic block model, we simply replace the SBM

contribution in Eq. (2.4) with that of the DCBM in Eq. (2.5). To handle directed networks, this

model can be trivially extended to included in- and out-propensity parameters.



Chapter 3

Methods

3.1 Inferring the Parameters z, θ

Given some sparse weighted graph A, we recover the underlying communities by learning

the parameters z, θ. Any of a large number of standard approaches can be used to optimize the

likelihood function for the WSBM. Here, we describe an efficient variational Bayes approach [6],

which effectively handles one technical difficulty in fitting the model to real data.

3.1.1 Maximum Likelihood Failures

Learning the parameters z, θ by directly maximizing the likelihood in Eq. (2.2) can result

in degenerate solutions for continuous valued weights. For instance, consider the WSBM with

normally distributed edge weights, where some bundle of edges has all-equal weights. In this case,

the maximum likelihood estimate is a variance parameter equal to zero, which creates a degeneracy

in the likelihood calculation. This case is not pathological, as a poor choice of partition z can easily

create two small groups with only a few edges, each with the same weight, between them. This

problem has not previously been identified in the block-modeling literature because the SBM is a

model where edge “weights” are discrete Bernoulli random variables.

We solve this problem using Bayesian regularization.
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3.1.2 Bayesian Approach

Recall that in the Bayesian framework, we treat the parameters as random variables and

assign an appropriate prior distribution π to our parameters z, θ. If we treat the prior distribution as

the probability of the parameters π(z, θ) = Pr(z, θ) then we may calculate the posterior distribution

is the probability of the parameters conditioned on the data π∗(z, θ) = Pr(z, θ|A) through Bayes’

law

π∗(z, θ) ∝ Pr(A|z, θ)π(z, θ) .

After calculating the posterior distribution, we may either return our posterior beliefs π∗ about

the parameters z, θ or further calculate a point estimate to minimize a posterior expected loss with

respect to a given loss function [19, 24]. In both cases, it suffices to calculate the posterior π∗.

Finally, note that the maximum likelihood estimate corresponds to only maximizing the

likelihood Pr(A|z, θ). The inclusion of the prior distribution π prevents the posterior distribution

π∗ from over-fitting to the degenerate maximum likelihood solution and therefore estimation can

proceed smoothly.

3.1.3 Variational Inference

The posterior distribution is generally difficult to calculate analytically. Instead, we ap-

proximate π∗(z, θ) by a factorizable distribution q(z, θ) = qz(z)qθ(θ), a common approach in both

machine learning and statistical physics. We select our approximation q to minimize its Kullback-

Leibler (KL) divergence to the posterior DKL(q ||π∗)

DKL(q ||π∗) = −
∫
q log

π∗

q
.

The Kullback-Leibler divergence is a non-symmetric, non-negative, information-theoretic measure

of difference between two distribution. Thus, our approximation q can be thought of as the closest

approximation to the posterior π∗, subject to factorization and distribution constraints.

Expanding the constant likelihood log Pr(A), we observe that minimizing the KL-divergence
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is equivalent to maximizing the functional G(q) defined as follows. Let

log Pr(A) =

∫
Θ

∑
z∈Z

q(z, θ) dθ log Pr(A)

=

∫
Θ

∑
z∈Z

q(z, θ) log
Pr(A, z, θ)

Pr(z, θ|A)
dθ

=

∫
Θ

∑
z∈Z

q(z, θ) log
Pr(A, z, θ)

q(z, θ)
dθ −

∫
Θ

∑
z∈Z

q(z, θ) log
Pr(z, θ|A)

q(z, θ)
dθ

= G(q) +DKL (q(z, θ)||π∗(z, θ)) ,

where

G(q) =

∫
Θ

∑
z∈Z

q(z, θ) log
Pr(A, z, θ)

q(z, θ)
dθ = Eq(log Pr(A | z, θ)) + Eq

(
log

π(z, θ)

q(z, θ)

)
. (3.1)

The first term of Eq. (3.1) is the expected log-likelihood under the approximation q and the second

term is the negative KL-divergence of the approximation q from the prior π. Therefore, we aim to

maximize the expected log-likelihood of the data while weakly constraining the approximation to be

close to the prior. The second term serves as a regularizer which prevents over-fitting and eliminates

the aforementioned maximum likelihood degeneracies. In practice, the first term dominates the

second term given sufficient data and approximates maximum likelihood estimation.

Because the KL-divergence is non-negative, we can think of G(q) as a functional lower bound

on the log-evidence or marginal log-likelihood, that is,

log Pr(A) = G(q) +DKL (q ||π∗) ≥ G(q) . (3.2)

Maximizing G(q) is equivalent to minimizing the KL divergence DKL(q ||π∗) because the log-

evidence log Pr(A) is constant. Therefore as we maximize G(q), our approximation q gets closer to

the true posterior π∗. For more details on variational Bayesian inference in graphical models, we

refer the interested reader to Ref. [6].

3.1.4 Conjugate Distributions

To calculate G in practice, we must assign prior distributions π to our parameters and place

constraints on the distributions of our approximation q. For mathematical convenience, we choose
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π and restrict q to be the product of parametrized conjugate distributions. Because q takes a

parametrized form, maximizing the functional G(q) over all factorized distributions q simplifies to

maximizing G(q) over the parameters of q.

For the edge bundle parameters θ, the standard conjugate prior of the parameter of an

exponential family (T, η) is

π(θ) =
1

Z(τ)
exp (τ · η(θ)) , (3.3)

where τ parameterizes the prior and Z(τ) is a normalizing constant for fixed τ .

For notational convenience, we let r index into the K×K edge-bundles between groups; hence

θ = (θ1, ..., θr). When we update the prior based on the observed weights in a given edge bundle r,

the posterior’s parameter becomes τ∗ = τ + Tr, where Tr is the sufficient statistic of the observed

edges. Thus τ can be viewed as a set of pseudo-observations that push the likelihood function away

from the degenerate cases so that every edge bundle, no matter how small or uniform, produces a

valid parameter estimate.

For the vertex labels z, the simplest conjugate prior is a categorical distribution with param-

eter µ ∈ Rn×k where parameter µi(k) is the probability that node i belongs to group k.

π∗(z) ≈ q(z) =
∏
i

µi(zi) ,

This leads to the variational Bayes algorithm discussed in section 3.1.5.

A more complicated prior for the vertex labels z would be to model pairwise relationships

between vertices.

π∗(z) ≈ q(z) ∝
∏
ij

µij(zi, zj) ,

This leads to the Belief Propagation algorithm discussed in section 3.1.6.

For now, we consider the simple conjugate distribution and use a flat prior µ0(k) = 1/K.

The form of our prior is thus

π(z, θ |µ0, τ0) =
∏
i

µ0(zi)×
∏
r

1

Z(τ0)
exp(τ0 · η(θr)) , (3.4)
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where µ0, τ0 are the parameters for the priors πi, πr, picked to be a “non-informative” reference

prior [7] or flat.

Similarly, our approximation q takes the form

q(z, θ |µ, τ) =
∏
i

µi(zi)×
∏
r

1

Z(τr)
exp(τr · η(θr)) . (3.5)

3.1.5 Variational Bayes Algorithm

We now consider maximizing G over q’s parameters µi, τr. To simplify notation, let 〈T 〉r,

〈η〉r be the expected values of the sufficient statistics Tr and natural parameters ηr under the

approximation q, that is, we set

〈T 〉r =
∑
ij

∑
(zi,zj)=r

µi(zi)µj(zj)T (Aij) (3.6)

〈η〉r =
∂

∂τ
logZ(τ)

∣∣∣∣
τ=τr

. (3.7)

Substituting the conjugate prior forms of π, q into G thus yields

G ∝
∑
r

(〈T 〉r + τ0 − τr) · 〈η〉r +
∑
r

log
Z(τr)

Z(τ0)
+
∑
i

∑
zi

µi(zi) log
µ0(zi)

µi(zi)
. (3.8)

To optimize G, we take derivatives with respect to q’s parameters µ, τ and set them to zero.

We iteratively solve for the maximum by updating µ and τ independently.

For the edge bundle parameters τ , the derivative of G is

∂G
∂τr

= (〈T 〉r + τ0 − τr)
∂ 〈η〉r
∂τr

, (3.9)

and setting this equal to zero yields the compact update equation

τr = τ0 + 〈T 〉r (3.10)

for each edge bundle r.

For the vertex label parameters µ, we include Lagrange multipliers λi to enforce the constraint∑
z µi(z) = 1. Setting the derivative of G with respect to µi equal to λi yields

∂G
∂µi(z)

=
∑
r

(
∂ 〈T 〉r
∂µi(z)

· 〈η〉r
)
− logµi(z) = λi ,
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Algorithm 1 Variational Bayes for WSBM

Input: Edge-weighted network A and Model (K,T, η)
Initialize µ
repeat

for all r = 1, . . . ,K2 do
Set 〈T 〉r :=

∑
ij

∑
(zi,zj)=r

µi(zi)µj(zj)T (Aij)

Set τr := τ0 + 〈T 〉r
Set 〈η〉r := ∂

∂τ logZ(τ)
∣∣
τ=τr

end for
repeat

for all i = 1, . . . , n do
∂〈T 〉r
∂µi(z)

:=
∑

(z,z′)=r

∑
j 6=i T (Aij)µj(z

′)

µi(z) ∝ exp
(∑

r
∂〈T 〉r
∂µi(z)

· 〈η〉r
)

end for
until µ converge

until µ, τ converge
return µ, τ

where

∂ 〈T 〉r
∂µi(z)

:=
∑

z′:(z,z′)=r

∑
j 6=i

T (Aij)µj(z
′) .

Solving for µi(z) yields the compact update equation

µi(z) ∝ exp

(∑
r

∂ 〈T 〉r
∂µi(z)

· 〈η〉r

)
, (3.11)

where each µi is normalized to a probability distribution. To calculate the µi values, we iteratively

update each µi from some initial guess until convergence to within some numerical tolerance.

Algorithm 1 gives pseudocode for the full variational Bayes algorithm, which alternates be-

tween updating the edge-bundle parameters and the vertex label parameters using the update

equations Eqs. (3.10, 3.11). Updating θ is relatively fast. First, we calculate 〈T 〉r and τr for each

edge bundle r and then update each 〈η〉r, which takes O(nK2) time. Updating µ is the limiting step

of the calculation, as we iteratively update µ until convergence while holding θ fixed. To calculate

∂ 〈T 〉r /∂µi(z), each vertex must sum over its connected edges for each edge bundle, which takes

O(diK
2) time. If m is the total number of edges in the network, then updating µ takes O(mK2)

time. In particular, if the total number of edges in the network is sparse m = O(n), then updating

µ takes O(nK2) time. In practice, convergence is achieved after a small number of iterations.
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As with all variational approaches, and indeed all practical optimization techniques, the

algorithm is only guaranteed to converge to a local optima of G as G is non-convex. In practice, we

run the algorithm to convergence from a number of randomly-chosen initial conditions, and then

select the best.

Small modifications to improve scaling in sparse weighted networks are described in section

3.2.

See Appendix A for details on how to obtain the WSBM inference code.

3.1.6 Belief Propagation Algorithm

The main difference between the Loopy Belief Propagation (hereafter simply BP) algorithm

and the variational Bayes algorithm described in the previous section lays in how we update the

group membership parameters µ [30]. The BP approach gives a more accurate approximation of

the true posterior of z with a higher computational cost and has been shown to produce good

results in the classic SBM case [11].

Recall that in BP, we use pairwise approximations to the posterior distribution. Ideally, this

approximation would have the form

π∗(z) ≈ q(z) ∝
∏
ij

µij(zi, zj) ,

where the functions µij(·, ·) are probability distributions. However, this is not generally achievable

because normalizing the product of distributions over all edge pairs is non-trivial. Luckily, in the

case of trees, it is possible to normalize q to a probability distribution by accounting for repetition

q(z) =

∏
ij∈E µij(zi, zj)∏
i µi(zi)

ki−1
, (3.12)

where µi is the marginal of µij , ki is the degree of vertex i, and E is the set of observed edges.

However, the factor graph of the WSBM is not a tree, so this form is not necessarily exact.

Here, we take a Loopy BP approach and assume the structure of pairwise terms ij ∈ E

is in fact locally tree-like and approximate the conjugate prior distribution with Eq. (3.12). The
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assumption for locally tree-like structure makes this algorithm a poor choice on dense networks

(when we observe O(n2) interactions), but is both acceptable and effective for sparse networks.

Our goal remains to maximize the variational approximation to the likelihood of the data

G, so that the KL divergence between q and π∗ is minimized. Recall from Eq. (3.1) the objective

function G consists of two parts

G = Eq log Pr(A | z, θ) + Eq log (π/q) ,

a likelihood term and a prior regularizer term.

The likelihood term is

Eq log Pr(A | z, θ) ∝
∑
r

∑
ij

T (Aij)Eq(zizj) + τ (0)
r

 · 〈η〉r ≈∑
r

(
〈T 〉r + τ (0)

r

)
· 〈η〉r ,

where

〈T 〉r =
∑
ij

∑
(z,z′)=r

µij(z, z
′)T (Aij)

〈η〉r =
∂ logZ(τ)

∂τ

∣∣∣∣
τ=τr

,

and where we approximate Eq(zizj) ≈ µij(zi, zj) and τ
(0)
r , µ(0) are parameters for the prior.

The regularizer term consists of two parts

Eq log (π/q) = Eq (log π)− Eq (log q) .

The second term is requires us to sum over q(z) which is combinatorically difficult to calculate, so

we use the Bethe approximation

−Eq (log q) ≈ −
∑
ij∈E

∑
z,z′

µij(z, z
′) logµij(z, z

′)+
∑
i,z

(ki−1)µi(z) logµi(z)+
∑
r

−τr ·〈η〉r+logZ(τr) .

Combining these parts, the objective function may be written as

G =
∑
r

(
〈T 〉r + τ (0)

r − τr
)
· 〈η〉r +

∑
r

log
Z(τr)

Z(τ
(0)
r )

+
∑
i,z

(ki − 1)µi(z) log
µi(z)

µ
(0)
i (z)

−
∑
ij∈E

∑
z,z′

µij(z, z
′) log

µij(z, z
′)

µ
(0)
i (z)µ

(0)
j (z′)

.
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To enforce the marginalization and normalization restrictions on q(z), we introduce Lagrange

multipliers, yielding

G′ = G+
∑
i

λi

(∑
i

µi − 1

)
+
∑
ij∈E

(∑
z

λij,z

(
µi(z)−

∑
z′

µij(z, z
′)

)
+
∑
z′

λ′ij,z′

(
µj(z

′)−
∑
z

µij(z, z
′)

))
.

Note that λi enforces normalization of µi, λij,z enforces marginalization over i, and λ′ij,z′ enforces

marginalization over j. We maximize G′ by setting its derivatives with respect to the parameters

of q equal to 0

For the edge parameters θ, we differentiate with respect to τr

∂G′

∂τr
=
(
〈T 〉r + τ (0)

r − τr
) ∂ 〈η〉r

∂τr
− 〈η〉r +

∂ logZ(τ)

∂τ

∣∣∣∣
τ=τr

∝ 〈T 〉r + τ (0)
r − τr .

This is the same expression as for the variational Bayes solution, since we only modified q(z). The

update equations for τ remain τr = τ
(0)
r + 〈T 〉r.

For the vertex labels z, we will differentiate with respect to µi(z) and µij(z, z
′) and solve this

system of equations using a message passing method, which is standard in BP. The derivatives are

∂G′

∂µi(z)
= (ki − 1)

(
logµi(z)− logµ

(0)
i (z) + 1

)
+ λi +

∑
j:ij∈E

λij,z = 0 ,

and

∂G′

∂µij(z, z′)
= T (Aij) · 〈η〉z,z′ − logµij(z, z

′) + log µ
(0)
i (z) + log µ

(0)
j (z′)− 1− λij,z − λ′ij,z′ = 0 .

Solving for µi(z) and µij(z, z
′) we obtain

µi(z) ∝ µ(0)
i (z)

∏
j:ij∈E

e−λij,z/(ki−1)

µij(z, z
′) ∝ µ(0)

i (z)µ
(0)
j (z′) exp

(
T (Aij) · 〈η〉z,z′

)
e−λij,ze

−λ′
ij,z′ .

For notational convenience, let

Mij(z, z
′) = exp

(
T (Aij) · 〈η〉z,z′

)
.
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Since
∑

z′ µij(z, z
′) = µi(z), we have

µi(z) ∝ µ(0)
i (z)

∑
z′

µ
(0)
j (z′)Mij(z, z

′)e−λij,ze
−λ′

ij,z′ .

Setting our two equations for µi(z) are equal, we obtain

µ
(0)
i (z)

∏
j′:ij′∈E

e−λij′,z/(ki−1) ∝ µ(0)
i (z)

∑
z′

µ
(0)
j (z′)Mij(z, z

′)e−λij,ze
−λ′

ij,z′

∏
j′:ij′∈E

e−λij′,z/(ki−1) ∝
∑
z′

µ
(0)
j (z′)Mij(z, z

′)e−λij,ze
−λ′

ij,z′ . (*)

Let ψi→j(zj) denote the message from vertex i to vertex j and set

e−λij,z =
∏

k:ik∈E,k 6=j
ψk→i(z)

e
−λ′

ij,z′ =
∏

k:j,k∈E,k 6=i
ψk→j(z

′) .

Plugging in our definition of ψ, we obtain

∏
j:ij∈E

e−λij,z/(ki−1) =
∏

j:ij∈E

∏
k:ik∈E,k 6=j

ψk→i(z)
1/(ki−1) =

∏
ij∈E

ψj→i(z) .

And, using Eq. (*), we obtain the following recusive definition for ψ

∏
ij∈E

ψj→i(z) ∝
∑
z′

µ
(0)
j (z′)

(∑
z′

Mij(z, z
′)

) ∏
k:ik∈E,k 6=j

ψk→i(z)
∏

k:jk∈E,k 6=i
ψk→j(z

′)

ψj→i(z) ∝
∑
z′

µ
(0)
j (z′)Mij(z, z

′)
∏

k:k,j∈E,k 6=i
ψk→j(z

′) .

Finally, our update equations for µ become

µi(z) ∝ µ(0)
i (z)

∏
ij∈E

ψj→i(z)

µij(z, z
′) ∝ µ(0)

i (z)µ
(0)
j (z′)Mij(z, z

′)
∏

k:ik∈E,k 6=j
ψk→i(z)

∏
l:l,j∈E,l 6=i

ψl→j(z
′) .

If m = |E| is the number of observed edges/interactions, then the BP algorithm requires

O(m) messages to be passed and therefore each iteration has an O((m + n)K2) running time

(updating the messages ψ and then the group membership parameters µ).
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It will be convenient to use the following equivalent messages ϕ used by [31, 29, 11] in our

BP algorithm

ϕi→j(z
′) = µ

(0)
j (z′)

∏
k:k,j∈E,k 6=i

ψk,j(z
′) .

Note that from our old message ψ update equations, we obtain

ψi→j(z
′) =

∑
z

Mij(z, z
′)ϕj→i(z) .

Putting these two equations together, our new update equations using ϕ for our messages become

ϕi→j(z
′) = µ

(0)
j (z′)

∏
k:kj∈E,k 6=i

∑
z

Mk,j(z, z
′)ϕj→k(z)

µi(z) ∝ µ(0)
i (z)

∏
ij∈E

∑
z′

Mij(z, z
′)ϕi→j(z

′)

µij(z, z
′) ∝Mij(z, z

′)ϕj→i(z)ϕi→j(z
′) .

Algorithm 2 gives pseudocode for the full Loopy BP algorithm.

Algorithm 2 Loopy BP for sparse networks

Input: Data E, Model (K,α, T, η)
Initialize µ
repeat

for all r = 1, . . . ,K2 do
Set 〈T 〉r :=

∑
ij

∑
(zi,zj)=r

µi(zi)µj(zj)T (Aij)

Set τr := τ0 + 〈T 〉r
Set 〈η〉r := ∂

∂τ logZ(τ)
∣∣
τ=τr

end for
Calculate Mij for all (ij) in E
Set Mij(k, k

′) = exp(T (Aij) · 〈η〉k,k′ + T (Aji) · 〈η〉k′,k) for all k, k′

repeat
for all (ij) in E do

Set ϕj→i(zi) ∝ µ0(zi)
∏

k 6=i,kj∈E

∑
zk

ϕi→k(zk)Mik(zi, zk)

end for
until ϕ converge
for all i = 1, . . . , n do

Set µi(zi) ∝ µ0(zi)
∏
ij∈E

∑
zj

ϕi→j(zj)Mij(zi, zj)

end for
until µ, τ converge
return µ, τ
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3.2 Scaling for Sparse Weighted Networks

We now consider modifications to our variational Bayes algorithm (Algorithm 1) and our BP

algorithm (Algorithm 2) for the case of sparse weighted graphs discussed in Section 2.4.

Recall that for a network of n nodes we can partition the n2 interaction into 3 disjoint edge

lists W,N,M , where W is a list of weighted edges, N is a list of non-edges, and M is a list of

missing edges or unobserved edges. We define the union E = W ∪N as the list of observed

edges. Let mW = |W | be the number of weighted edges, mE = |E| be the number of observed edges,

and mM = |M | be the number of missing edges. Note that mE +mM = |E|+ |M | = |A| = n2.

Both algorithms we presented require O(|E|K2) time when updating µ. If the number of

observed edges is sparse (|E| = O(n)), then no changes are required. However it may be the case

that the number of weighted edges is sparse (|W | = O(n)), while the number of non-edges is dense

(|N | = O(n2)). In this case, if we assume the number of missing edges is also sparse (|M | = O(n)),

then we can modify Algorithms 1 and 2, so that running time is once again O(nK2). The key idea

is to exploit the structure of our edge-existence distribution.

First we introduce some notation, then we consider the edge bundle τ updates, and finally

we introduce modifications to the group membership µ updates.

Notation. There are two types of degrees: the degree with respect to weighted edges and

degree with respect to observed edges. Let d−W (i) be the in-degree of vertex i with respect to

weighted edges. Let d+
W (i) be the out-degree of vertex i with respect to weighted edges. Let d−E(i)

be the in-degree of vertex i with respect to observed edges. Let d+
E(i) be the out-degree of vertex i

with respect to observed edges.

Let our exponential family edge-weight distribution fw under parameter θw take form

fw(x | θw) = hw(x) exp (Tw(x) · ηw(θw)) ,

where hw, Tw, ηw are fixed functions.

Let our exponential family edge-existence distribution fe under parameter θe take the form

fe(x | θe) = he(x) exp (Te(x) · ηe(θe)) ,
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where he, Te, ηe are fixed functions.

Let R : K ×K → r be the mapping between the groups and edge-bundles.

3.2.1 Update for Edge Distribution τ

The edge bundle updates consist of two steps: (i) calculating the expected sufficient statistic

〈T 〉 for each edge bundle, and (ii) updating τ for each edge bundle.

Weighted τw. For the weighted distribution, the expected sufficient statistic 〈Tw〉r for all

edge bundles r can be calculated using Eq. (3.13) for all pairs of groups (z, z′), as

〈Tw〉R(z,z′) +=
∑
ij∈W

Tw(Aij)µi(z)µj(z
′) . (3.13)

Since the running time for each pair is dominated by the summation over the set W , each iteration

over Eq. (3.13) takes O(n+mW ) in O(K2(n+mW )) time.

Edge existence τe. To update Te we note that the sufficient statistic value for a non-edge

is typically zero except for the last dimension that takes the value 1 for observed edges. Knowing

that this value is 1 for all edges lets us calculate Te without needing to sum over W ∪N .

Therefore we update Te using Eq. (3.13) for all but the last dimensions of Te. For the last

dimension we update Te with

〈Te〉R(z,z′) +=
∑
ij

µi(z)µj(z
′)−

∑
ij∈M

µi(z)µj(z
′) =

(∑
i

µi(z)

)∑
j

µj(z
′)

− ∑
ij∈M

µi(z)µj(z
′) ,

(3.14)

which takes O(K2(n+mM )) time.

Degree-corrected edge existence τe. For the degree corrected block model, recall that

edge existence distribution is modified slightly by replacing the Te(Aij) = 1 in the last dimension

of Te with the product of i, j’s in and out degrees, Te(Aij) = d+
W (i)d−W (j). This changes equation

(3.14) by replacing µi(z) with d+
W (i)µi(z) and µj(z

′) with d−W (j)µj(z
′). This gives us

〈Te〉R(z,z′) +=

(∑
i

d+
W (i)µi(z)

)∑
j

d−W (j)µj(z
′)

− ∑
ij∈M

d+
W (i)µi(z)d

−
W (j)µj(z

′) . (3.15)

The running time remains the same as in the edge existence case.
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3.2.1.1 Update for Vertex Labels µ

Variational Bayes Algorithm. The update for the vertex labels under the variational

Bayes algorithm, is to (i) calculate
∂〈T 〉r
∂µi(z)

and (ii) update µi using

µi(z) ∝ exp

(∑
r

∂ 〈T 〉r
∂µi(z)

· 〈η〉r

)
.

The rate limiting step is in calculating
∂〈T 〉r
∂µi(z)

.

For the weighted sufficient statistics Tw, we calculate for all pairs (z, z′) and for each vertex i

∂ 〈Tw〉R(z,z′)

∂µi(z)
+=

∑
j∈∂i+W

Tw(Aij)µj(z
′) ,

∂ 〈Tw〉R(z′,z)

∂µi(z)
+=

∑
j∈∂i−W

µj(z
′)Tw(Aji) , (3.16)

where ∂i+W is the neighborhood formed by the outgoing weighted edges of vetex i. Since the sum

in Eq. (3.16) is over d+
W (i) terms, the running time is O(K2

∑
i d

+
W (i)) = O(K2(n+mW )).

Similar to how we updated τe, in the edge-existence case we update
∂〈T 〉r
∂µi(z)

by calculating

the entire sum and subtracting away the missing edges. Again, we exploit the fact that the last

dimension of Te is 1 for observed edges, and

∂ 〈Te〉R(z,z′)

∂µi(z)
+=

∑
j

µj(z
′)

− ∑
j∈∂i+M

Te(Aij)µj(z
′), . (3.17)

Calculating Eq. (3.17) for all vertices has a total O(K2(n+mM )) running time if we pre-calculate∑
j µj(z

′).

For the degree corrected block model we replace µj with d−W (j)µj(z
′) and use Eq. (3.17).

Loopy BP Algorithm. The update for the vertex labels under the BP algorithm requires

us to (i) calculate the marginal evidence from each edge Mij(z, z
′), (ii) update messages ϕj→i(zi)

between weighted edges, (iii) approximate messages ϕ→i(zi) = µi(zi) between non-edges, and (iv)

caclulate the vertex label probabilities µi.

We calculate the marginal evidence M

Mij(z, z
′) = exp

(
T (Aij) · 〈η〉R(z,z′) + T (Aji) · 〈η〉R(z′,z)

)
, (3.18)
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for each weighted edge ij ∈W for all z, z′. This takes O(K2mW ) time. Note that Mij = Mji. For

the non-edges, we again exploit the fact that the last dimension of Te is 1 for observed edges and

only need to calculate Mij = MN once using Eq. (3.18) for all non-edges ij ∈ N .

The messages between weighted edges are

ϕi→j(z
′) ∝ µ0(z′)

∏
k 6=j,k∈∂iW

∑
zk

ϕj→k(zk)Mjk(z
′, zk) . (3.19)

Each step requires O(|∂iW |K2) calculations. In the case of a sparse graph, ∂iW = O(1) and since

we repeat this step for each pair i, j in W , the overall running time is O(K2mW ).

Since there are O(n2) non-edges, the messages between non-edges must be approximated for

our algorithm to be efficient. The idea behind this approximation is to exploit the sparsity of the

weighted edges.

To be concrete, suppose we select the Bernoulli distribution for our edge-existence distribution

fe(x | p). Then our marginal evidence takes the form

M̃ij(z, z
′) =


exp

(
〈log p〉z,z′

)
·Mij(z, z

′) if ij ∈ E

exp
(
〈log(1− p)〉z,z′

)
otherwise ,

(3.20)

where p is the edge-existence parameter θe. If the graph is sparse, then 〈log(1− p)〉r = O(1/n).

Thus for i, j ∈ E, we have M̃ij ≈ 1. And therefore messages between non-edges can be approximated

as

ϕi→j(z
′) = µ

(0)
j (z′)

∏
k 6=i

∑
z

M̃k,j(z, z
′)ϕj→k(z) ≈ µ

(0)
j (z′)

∏
k

∑
z

M̃k,j(z, z
′)ϕj→k(z) = µj(z

′) .

(3.21)

Thus we can approximate all messages between non-edges ϕi→j(z
′) with their marginal distribution

µj(z
′) taking O(nK) space and time.

The Poisson and degree-corrected case are more complicated and should follow along the

lines of [29]. This extension is left for future work.
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Given the messages and marginal evidence, we calculate the vertex label probabilities with

µi(z) ∝ µ(0)
i (z)

∏
ij∈W

∑
z′

Mij(z, z
′)ϕi→j(z

′) ·
∏
ij∈N

∑
z′

MN (z, z′)µj(z
′)

=
∏

j∈∂iW

∑
z′Mij(z, z

′)ϕi→j(z
′)∑

z′MN (z, z′)µj(z′)
·

∑
z′

MN (z, z′)
∑
j

µj(z
′)

∂iE

, (3.22)

where ∂iE is the total (in- and out-) degree of observed edges and MN is the marginal evidence

of a non-edge. Each of these updates takes O(|∂iW |K2) calculations. Let ∂iW be the in and out

neighborhood of i. In the case of a sparse graph, ∂iW is O(1) and since we repeat this step for each

pair i, j in W , the overall running time is O(K2mW ).

In conclusion, all three steps take O(nK2) time when the number of weighted edges and

missing edges is sparse (|W | = O(n) and |M | = O(n)). Although both the variational Bayes

algorithm and the loopy BP algorithm have the same asymptotic running time, the constant in

front of O(nK2) for the loopy BP algorithm depends on the average weighted degree of the network.

3.3 A Note on Model Selection

As with most stochastic block models, the number of groups K is a free parameter that must

be chosen before the model can be applied to data. For the WSBM, we must also choose the tuning

parameter α and the exponential family distributions (T, η).

In principle, any of various model selection techniques could be used to choose from among a

set of choices, although classic techniques like AIC and BIC are known to misestimate K in certain

situations[29]. Here, we describe an approach for choosing K based on Bayes factors that chooses

the value K with largest marginal log-likelihood.

LetM1 = (K1, α1, T, η) andM2 = (K2, α2, T, η) be two competing models. The Bayes factor

between M1 and M2 is simply

logB(M1,M2) = log
Pr(A |M1)

Pr(A |M2)
≈ G1 − G2 , (3.23)

where we approximate the marginal log-likelihood Pr(A |Mi) with our lower bound Gi Eq. (3.2).
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Although Bayes factors assigns a uniform prior on a set of nested models, this approach has

a built-in penalty for complex models through the prior distribution. In practice, we believe this

method is useful for selecting K. This method should not be used to select α nor (T, η)

In our experiments below, we treat K,α, T, η as fixed. This method has produced good results

on synthetic data with known planted structure [1].



Chapter 4

Experimental Evaluation

In this chapter, we evaluate the performance of the WSBM. First, we explore the WSBM’s

ability to accurately recover latent block structure by evaluating its performance on synthetic data

with known structure. Then, we consider the question of whether adding edge-weight information

necessarily reinforces the latent group structure contained in the edge existences. That is, can

the WSBM can find structure distinct from what the SBM would find? Finally, we evaluate the

WSBM’s performance on two prediction tasks. The first focuses on predicting missing edges (also

called “link prediction”), while the second focuses on predicting missing edge weights. We compare

its performance with other block models through cross-validation.

4.1 Synthetic Tests

To evaluate how well the WSBM finds structure, we generated dense synthetic graphs with

n = 100 vertices divided into K∗ = 4 homogenous blocks; the weights of each edge bundle are

normally distributed with bundle-specific parameters (similar to (see Fig. 1.2). This 4-block model

is a weighted variation of Newman’s four-group test for unweighted graphs [18].

We vary three model parameters—graph size n, variance of the edge weight distributions,

and number of blocks we fit to the data—and measure the accuracy of the inferred block structure.

Varying the graph size corresponds to consistency, varying the variance shows the performance in

high-noise settings, and varying the number of inferred blocks corresponds to robustness.

We compare the WSBM fit with normally distributed edge-weights to the SBM fit after
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(b) NMI vs Variance
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(c) NMI vs Inferred K

Figure 4.1: Comparison of the WSBM and the SBM after thresholding on synthetic data. Accuracy
of the recovered community structure is measured in NMI. Each data point is averaged over 25
generated synthetic data sets. (a) Varying the number of vertices per group. (b) Varying the
variance of each edge-weight distribution. (c) Varying the inferred number of groups K.

thresholding at the 25th, 50th, and 75th percentile of the edges.

We characterize the accuracy of the recovered community structure using normalized mutual

information (NMI), a standard metric for such tasks. The NMI is a principled, information theoretic

similarity measure between the inferred and true assignment (vertex labels). Let P denote the true

block structure and Q be our estimate. Then

NMI(P,Q) = 2I(P,Q)/(H(P ) +H(Q)) ,

where I(·, ·) is mutual information and H(·) is entropy. When Q = P and we recover the true

structure exactly, NMI(P,Q) = 1. When Q 6= P , 0 ≤ NMI(P,Q) < 1. For more details on NMI

and other labeling metrics see Ref. [27].

Under the test settings, the WSBM outperforms the alternatives of thresholding and using

the SBM (Fig. 4.1).

When varying the graph size n, all methods perform better as n increases, with the WSBM

performing best by far. When varying the variance, all methods have decreased performance for

high variance, but the WSBM fails most gracefully. In addition, the SBM after thresholding has

poor performance in low variance settings, as well, due to the difficulty distinguishing more than

three distributions discussed in the introduction. The WSBM does not suffer from this problem.

Finally, when varying the number of blocks we infer only the WSBM correctly recovers the latent
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structure at K = 4 = K∗, which is the value selected under model selection using Bayes factors,

while the SBM after thresholding incorrectly selects K = 2 or K = 3.

This performance shows that the WSBM outperforms the SBM after thresholding in all cases.

4.2 Edge Weight and Edge Existence Information

To probe the question of whether edge weights can contain latent group structures that are

distinct from those contained in the edge existences, we consider a simple network derived from

the competitions among a set of professional sports teams. In this network, called “NFL-2009”

hereafter, each vertex represents one of the 32 professional American football teams in the National

Football League (NFL). In this network, an edge exists whenever pair of teams played each other in

the 2009 season, and each of these edges is assigned a weight equal to the average score difference

across games played by that pair [25]. (This definition of edge weight implies the network is skew-

symmetric Aij =−Aji.) These teams are divided equally among two “conferences” (called AFC

and NFC), and within each conference, teams are assigned to one of 4 divisions, each containing 4

teams. Play among teams, i.e., the existence of an edge, is determined by division memberships,

and many teams never play each other during the regular season. To analyze this network, we

choose K = 4 and fit both the SBM (α = 1) and the “pure” WSBM (α = 0) using the normal

distribution as a model of edge weights. This choice is reasonable for these data as score differences

can be positive or negative. The α= 1 (SBM) case ignores the weights of edges, while the α= 0

(pure WSBM) case ignores the presence or absence of edges, focusing only on the observed score

differences.

Examining the results of both models, we see that the block structure learned by the SBM

(α = 1, Figs 4.2(a-b)) exactly recovers the major divisions within each conference, along with

the division between conferences, illustrating that division membership fully explains which teams

played each other in this season. The empty off-diagonal blocks (Fig. 4.2(b)) reflect the fact that

two pairs of two divisions never play each other.

In contrast, the block structure learned by the pure WSBM (α= 0, Figs 4.2(c-d)) recovers
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(a) SBM (α=1) (b) SBM Adjacency Matrix

(c) WSBM (α=0)

1 

2 

3 

4 

1 2 3 4 

(d) WSBM Adjacency Matrix

Figure 4.2: NFL-2009 network: black nodes (•) are teams in conference 1 (NFC) and white nodes
(◦) are teams in conference 2 (AFC). Edges are colored by score differential (red positive, green
approximately zero, blue negative). (a) Network showing SBM communities. (b) Adjacency matrix,
sorted by SBM communities. (c) Network showing WSBM communities. (d) Adjacency matrix,
sorted by WSBM communities. The SBM (α=1) groups correspond to NFL conference structure
whereas the WSBM (α=0) corresponds to relative skills levels.

a global ordering of teams (as in Fig. 1.1(d)) that reflects each team’s general skill, so that teams

within each block have roughly equal skill. This pattern mixes teams across conference and division

lines, and thus disagrees with the block structure recovered by the SBM. For instance, consider

the upper-left group in Fig. 4.2(c), which generally has positive score differences (wins) in games

against teams in either lower group, with a mean lead of 11 points. Similarly, the lower-left group
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has positive score differences (wins) against teams in the lower-right group. The small upper-right

group performs equally well against teams of every other group. Within each group, however, score

differences tend toward zero, indicating roughly equal skill.

The fact that the SBM and pure WSBM recover entirely distinct block structures illustrates

that adding edge-weight information to the inference step can dramatically alter our conclusions

about the latent block structure of a network. That is, adding edge weights does not necessarily

reinforce the inferences produced from binary edges alone. The extremal settings of the parameter

α in our model allows a practitioner to choose which of these types of latent structure to find, while

if a mixed-type conclusion is preferred, an intermediate value of α may be chosen. In the following

section, we demonstrate that such a model, which we call the “balanced” WSBM, that can learn

simultaneously from edge existence and weight information.

4.3 Predictive Performance on Real Networks

To illustrate a more rigorous evaluation of the WSBM, in this section, we consider the problem

of predicting missing information when the model is fitted to a partially observed network. In

particular, we consider predicting the existence or the weight of some unobserved interaction.

Here, we compare the WSBM to other block models on five real-world networks from various

domains. Most of these models are only defined for unweighted networks, and thus some care is

required to make them perform under the edge-weight prediction task, which we describe below.

We evaluate performance numerically across multiple trials of cross-validation, training each model

on 80% of the n2 possible edges and testing on the remaining 20%.

The weighted graphs we consider are the following.

• Airport. Vertices represent the 500 busiest airports in the United States, and each of the

5960 directed edges is weighted by the number of passengers traveling from one airport to

another [10].

• Collaboration. Vertices represent the 226 nations on Earth, and each of the 20616 edges

is weighted by a normalized count of academic papers whose author lists include that pair
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of nations [21].

• Congress. Vertices represent the 163 committees in the 102nd United States Congress,

and each of the 26569 edges is weighted by the pairwise normalized “interlock” value of

shared members [23].

• Forum. Vertices represent 1899 users of a student social network at UC Irvine, and each

of the 20291 directed edges is weighted by the number of messages sent between users [20].

• College FB. Vertices represent the 1411 NCAA college football teams, and each of the

22168 edges are weighted by the average point difference across games between a pair of

teams [25].

For each of the two prediction tasks and for each network, we evaluate the following models. The

“pure” WSBM (pWSBM), using only weight information (α=0), a “balanced” WSBM (bWSBM),

using both edge and weight information (α=0.5), the “classic” SBM, using only edge information

(α=1), a degree-corrected weighted block model DCWBM, where (α=0.5) and the degree-corrected

block model (DCBM). For the weighted block models, we select the Normal distribution to model

the edge weights.

In both prediction tasks, we first choose a uniformly random 20% of the n2 interactions,

which we treat as missing when we fit the model to the network. We then fit each model to the

observed edges and infer group membership labels for each vertex in the network. Finally, we use

the posterior mean obtained from variational inference as the predictor for edge existence and edge

weight for unobserved interactions between those groups. For the models that do not naturally

model edge weights (SBM, DCBM), we take their partitions and compute the sample mean weight

for each of the induced edge bundles in the weighted network and use this value to predict the

weight of any missing edge in that bundle. These estimators correctly correspond to the underlying

generative model for edge-prediction in the SBM and DCBM, and are a natural extension for

predicting edge-weights for a given block membership. Under this scheme, each model is made

to predict the unobserved interactions for a given network, and we score the accuracy of these

predictions using the mean-squared error (MSE). Evaluating edge-existence prediction could be
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Table 4.1: Average mean-squared error (MSE) on edge prediction in 25 trials.

Network pWSBM bWSBM SBM DCWBM DCBM
Airport 0.0202(1) 0.0156(1) 0.0158(1) 0.0238(1) 0.0238(1)
Collaboration 0.1446(3) 0.1167(3) 0.1138(3) 0.2289(5) 0.2454(5)
Congress 0.1765(4) 0.1648(4) 0.1640(5) 0.2298(9) 0.2402(9)
Forum 0.00560(1) 0.00535(1) 0.00535(1) 0.00565(1) 0.00565(1)
College FB 0.0369(2) 0.0344(1) 0.0346(1) 0.0387(2) 0.0389(2)

Table 4.2: Average mean-squared error (MSE) on normalized weight prediction in 25 trials.

Network pWSBM bWSBM SBM DCWBM DCBM
Airport* 0.0486(6) 0.0543(5) 0.0632(8) 0.0746(9) 0.0918(8)
Collaboration* 0.0407(1) 0.0462(1) 0.0497(3) 0.0500(2) 0.0849(3)
Congress* 0.0571(4) 0.0594(4) 0.0634(6) 0.0653(4) 0.1050(6)
Forum* 0.0726(3) 0.0845(3) 0.0851(4) 0.0882(4) 0.0882(4)
College FB 0.0124(1) 0.0140(1) 0.0145(1) 0.0149(1) 0.0160(2)

achieved using alternative criteria such as AUC [9], which gives similar results.

Each of these models has a free parameter K that determines the number of parameters

that are estimated, which thus controls their overall flexibility. We control this variable model

complexity and ensure a fair comparison by fixing all models to have K = 4 latent groups, and

we treat all networks as directed. Finding the true number of latent groups K for each network

is separate worthwhile problem not considered here. To compare the results across different data

sets, all edge-weights were normalized to fall on the interval [−1, 1]. Non-negative weights were

normalized after applying a logarithmic transform (cases marked with a star ∗ in Tables 4.1 and 4.2).

For each model and each network, we ran 25 independent trials with our 80/20 cross-validation

split, as described above, and then compute the average MSE on the particular prediction task.

The results for predicting edge existences are summarized in Table 4.1 and the results for predicting

edge weights are summarized in Table 4.2. Bolded values denote the best MSE across all models,

and parentheses indicate the uncertainty (standard error) in the last digit.

Notably, in the edge-existence prediction task, the SBM and the balanced WSBM are the most

accurate among all models, often by a large margin. The fact that the SBM performs well is perhaps
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unsurprising, as it is, by design, only sensitive to edge existences in the first place. However, the

balanced WSBM is learning from both existence and weight information, and its strong performance

indicates that for these networks, learning from edge weights does not necessarily confuse predictions

on edge existence. In the edge-weight prediction task, however, the pure WSBM (α=0) is the most

accurate, often by a large margin, as we might expect for a model designed to learn only from edge

weight information.

In this experimental framework, none of the degree corrected models performs well. This is

likely caused by the DCBM and DCWBM correction for edge propensity in the group membership,

which leads to less accurate predictions in these tasks. It is worth pointing out, however, that

prediction is not the only measure of utility for community detection techniques, and degree-

corrected models often perform better than non-corrected models at recovering meaningful latent

group structures in practical situations. We thus expect the degree-corrected WSBM to be very

useful in situations where the goal is the recovery of scientifically meaningful group structures,

rather than edge existence or weight prediction.

In general, the SBM performs well on edge prediction but poorly on weight prediction, while

the pure WSBM performs poorly on edge prediction but well on weight prediction. This pattern

is precisely as we might expect, as the SBM only considers existence information, while the pure

WSBM only considers weights.

What is surprising, however, is the good performance on both tasks by the balanced WSBM

(α= 0.5), which is as good or nearly as good as SBM in edge prediction, but substantially better

than the SBM in weight prediction. This demonstrates that the balanced WSBM is a more powerful

model than the SBM: it performs as well as the SBM on SBM-like tasks and better on edge weight

tasks. In these examples, incorporating edge weight information into the SBM framework does

not detract the WSBM performance in edge prediction. In fact, this good general performance is

possible because the balanced WSBM learns from both edge existence and edge weight information.
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Conclusion

In the analysis of networks, the inference of latent community structure is a common task

that facilitates subsequent analysis, e.g., by dividing a large heterogeneous network into a set of

smaller, more homogeneous subgraphs, and can reveal important insights into its basic organiza-

tional patterns. When edges are annotated with weights, this extra information is often discarded,

e.g., by applying a single universal threshold to all weights. The weighted stochastic block model

(WSBM) we described here is a natural generalization of the popular stochastic block model (SBM)

to edge-weighted sparse networks. This generalization presented several technical challenges, which

we solved using a Bayesian approach to develop a variational Bayes algorithm for dense graphs.

Crucially, The WSBM provides a statistically principled solution to the community detection prob-

lem in edge-weighted networks, and removes the need to apply any thresholds before analysis.

Thus, this model preserves the maximal amount of information in such networks for characterizing

their large-scale structure.

The WSBM’s general form, given in Eq. (2.4), is parametrized by a mixing parameter α,

which allows it to learn simultaneously from both the existence (presence or absence) of edges and

their associated weights. In our tests with real-world networks, the WSBM yields excellent results

on both edge existence and weight prediction tasks. Additionally, the balanced model (α = 0.5)

performed as well or nearly as well as the best alternative block model, suggesting it may work well

as a general model for novel applications where it is not known whether edge existences or edge

weights are more informative for the target question.
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In many applications, the inferred group structure will be of primary interest. For these

cases, it is important to note that the groups identified by the WSBM can be distinct from those

identified by examining only an unweighted version of the same network. Both forms of latent

structure may be interesting and are likely to shed different light on the underlying organization

of the network. It remains an open question to determine the types of networks for which weight

information contains distinct partition structure from edge existences, although we have shown at

least one example of such a network in Section 4.2.

The variational algorithm described here provides an efficient method for fitting the WSBM

to an empirical network. It scalability is relatively good by modern standards, and thus should be

applicable to networks of millions of vertices or more. Alternative algorithms are certainly possible,

however, each must contend with several technical problems presented by edge weight distributions,

e.g., the degeneracies in the likelihood function produced by edge-bundles whose weights have zero

variance. An alternative approach that also nicely solves these problems is belief propagation, which

provides a more accurate approximation of the posterior distribution in the sparse case, albeit at

slightly higher computational cost.

Finally, there are several natural extensions of the WSBM, including mixed memberships [3],

bipartite forms [15], different distributions for different edge bundles, and the handling of more

complex forms of auxiliary information, e.g., on the vertices or edges. An important and open

theoretical question presented by this model is whether utilizing weight information modifies the

fundamental detectability of latent group structure, which exhibits a phase transition in the classic

SBM [11]. We look forward to these and other extensions.
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Appendix A

WSBM Implementation

Implementation of the WSBM inference code, written by the authors, may be found at http:

//tuvalu.santafe.edu/%7Eaaronc/wsbm/. The code implements the efficient WSBM inference

algorithms discussed in section 3.2.



Appendix B

Exponential Families

The following is a list of common exponential families giving details on their probability

distributions, their standard conjugate priors, and the expected natural parameter value 〈η〉 in our

notation.

B.1 Binomial

For a fixed number of trials n, the binomial distribution is an exponential family. The

Bernoulli distribution is the binomial distribution with n = 1.

Distribution : Binomial PMF

f(x | θ) =

(
n

x

)
θx(1− θ)n−x for x ∈ {0, 1, . . . , n}, θ ∈ [0, 1]

Exponential Family Form :

h(x) =

(
n

x

)
T (x) =

x
1

 η(θ) =

 log θ
1−θ

n log(1− θ)


Standard Conjugate Prior : Beta Distribution

π(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 ,

where α = τ1 + 1 and β = nτ2 − τ1 + 1.

Expected Values :

〈η1〉 = ψ(τ1 + 1)− ψ(nτ2 − τ1 + 1)

〈η2〉 = nψ(nτ2 − τ1 + 1)− nψ(nτ2 + 2) ,
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where ψ(·) is the Digamma function.

B.2 Multinomial

For a fixed number of trials n and a fixed number of categories k, the multinomial distribution

is an exponential family.

Distribution : Multinomial PMF

f(x | θ) =

(
n

x1, . . . , xk

)
θx11 · · · θ

xk
k for xi ∈ N s.t.

∑
i

xi = n,
∑
i

θi = 1, θi ≥ 0

Exponential Family Form :

h(x) =

(
n

x1, . . . , xk

)
T (x) =


x1

...

xk

 η(θ) =


log(θ1)

...

log(θk)


Standard Conjugate Prior : Dirichlet Distribution

π(θ) =
Γ(
∑

i αi)

Γ(α1) · · ·Γ(αk)
θα1−1

1 · · · θαk−1
k ,

where αi = τi + 1.

Expected Values :

〈ηi〉 = ψ(τi + 1)− ψ

∑
j

(τj + 1)

 ,

where ψ(·) is the Digamma function.

B.3 Poisson

The Poisson distribution is an exponential family.

Distribution : Poisson PMF

f(x | θ) =
θx

x!
e−θ for x ∈ N, θ ∈ [0,∞)
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Exponential Family Form :

h(x) =
1

x!
T (x) =

x
1

 η(θ) =

log(θ)

−θ


Standard Conjugate Prior : Gamma Distribution

π(θ) =
βα

Γ(α)
θα−1e−βθ ,

where α = τ1 + 1, β = τ2.

Expected Values :

〈η1〉 = ψ(τ1 + 1)− log τ2

〈η1〉 = −(τ1 + 1)/τ2 ,

where ψ(·) is the Digamma function.

B.4 Negative Binomial

For a fixed number of successes r, the negative binomial distribution is an exponential family.

The geometric distribution is the negative binomial distribution with r = 1. Here, the negative bi-

nomial distribution counts the number of failures before r successes, where each trial has probability

of success θ.

Distribution : Negative Binomial PMF

f(x | θ) =

(
r + x− 1

x

)
θr(1− θ)x for x ∈ {0, 1, . . .}, θ ∈ [0, 1]

Exponential Family Form :

h(x) =

(
r + x− 1

x

)
T (x) =

x
1

 η(θ) =

log(1− θ)

r log(θ)


Standard Conjugate Prior : Beta Distribution

π(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 ,
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where α = rτ2 + 1 and β = τ1 + 1.

Expected Values :

〈η1〉 = ψ(τ1 + 1)− ψ(τ1 + rτ2 + 2)

〈η2〉 = rψ(rτ2 + 1)− rψ(τ1 + rτ2 + 2) ,

where ψ(·) is the Digamma function.

B.5 Exponential & Pareto

The Exponential distribution is an exponential family. The Pareto (power-law) distribution

is the same except that it is log-scaled; the log of a Pareto is Exponential.

Distribution : Exponential PDF

f(x | θ) = θe−θx for x ∈ [0,∞), θ ∈ (0,∞)

Exponential Family Form :

h(x) = 1 T (x) =

x
1

 η(θ) =

 −θ

− log θ


Standard Conjugate Prior : Gamma Distribution

π(θ) =
βα

Γ(α)
θα−1e−βθ ,

where α = τ2 + 1, β = τ1.

Expected Values :

〈η1〉 = −(τ2 + 1)/τ1

〈η2〉 = ψ(τ2 + 1)− log τ1 ,

where ψ(·) is the Digamma function.
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B.6 Normal & Log-Normal

The Normal or Gaussian distribution is an exponential family. The Log-Normal distribution

is the same, except that it is log-scaled; the log of a Log-Normal is Normal.

Distribution : Normal PDF

f(x | θ) =
1√

2πσ2
exp

(
−(x− µ)2

2

)
for x ∈ R, θ = (µ, 1/σ2) ∈ R× [0,∞)

We follow the common parameterization, mean µ and precision 1/σ2, of the Normal distri-

bution for Bayesian inference to obtain the Normal-Gamma conjugate prior the parameters. If we

use the classic parameterization, mean µ and variance σ2, then the conjugate prior would be the

Normal-Inverse-Gamma distributon and the math is similar.

Exponential Family Form :

h(x) =
1√
2π

T (x) =


x

x2

1

 η(θ) =


µ
σ2

− 1
2σ2

− µ2

2σ2 − 1/2 log σ2


Standard Conjugate Prior : Normal-Gamma Distribution:

π(µ, σ2) = N
(
µ | µ̃ =

τ1

τ3
, σ̃2 =

σ2

τ3

)
Γ

(
σ2 | α =

τ3 + 1

2
, β =

τ2τ3 − τ2
1

2τ3

)
.

Expected Values :

〈η1〉 =
(τ3 + 1)τ1

τ2τ3 − τ2
1

〈η2〉 = − τ3(τ3 + 1)

2(τ2τ3 − τ2
1 )

〈η3〉 = −1

2

(
τ2 + τ2

1

τ2τ3 − τ2
1

− ψ
(
τ3 + 1

2

)
− log

(
2τ3

τ2τ3 − τ2
1

))
,

where ψ(·) is the Digamma function.

B.7 Multivariate Normal

For a fixed dimension k, the Multivariate Normal distribution is an exponential family .
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Distribution : Multivariate Normal PDF

f(x | θ) = (2π)−k/2 |Σ|−1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
for x ∈ Rk

The parameters are the mean µ ∈ Rk and covariance matrix Σ ∈ Rk×k+ (Σ must be a

nonnegative-definite matrix).

Exponential Family Form :

h(x) = (2π)−k/2, T (x) =


x

xxT

1

 , η(θ) =


Σ−1µ

Σ−1/2

−µΣ−1µ/2 + 1/2 log |Σ|


Standard Conjugate Prior : The conjugate prior for the Multivariate Normal is the

Normal-Inverse-Wishart Distribution. The Inverse-Wishart Distribution can be thought of as the

multivariate Gamma Distribution and is the distribution for the covariance matrix.

The Inverse-Wishart Distribution for a random matrix takes the form

W−1(X|Ψ−1, ν) =
|Ψ|ν/2

2νk/2Γk(ν/2)
|X|−

ν+k+1
2 exp

(
−1

2
Ψ ◦X

)
for X,Ψ ∈ Rk×k,X,Ψ > 0, ν > k−1 ,

where ν is the degrees of freedom, X and Ψ are symmetric positive definite matrices, ◦ denotes

element-wise multiplication, and Γk(·) is the multivariate Gamma function.

The standard conjugate prior takes the form

π(µ,Σ) = Nk
(
µ | m̃u =

τ1

τ3
, Σ̃ =

Σ

τ3

)
W−1

(
Σ | Ψ−1 =

τ2τ3 − τ1τ
T
2

τ3
, ν = τ3 + k

)
,

where we recall that τ1 ∈ Rk, τ2 ∈ Rk×k and τ3 ∈ R from the dimensions of T and η. Note

that under π, the expected value of µ is τ1/τ3 and Σ is Ψ/(τ3 − 1).

Expected Values :

〈η1〉 =

(
τ3 + k

τ3

)
Ψ · τ1

〈η2〉 =

(
τ3 + k

τ3

)
Ψ

〈η3〉 = −k
2

log 2− k

2τ3
+

1

2
ψk

(
τ3 + k

2

)
− 1

2
log
∥∥Ψ−1

∥∥− τ3 + k

2
Sum

(
Ψ ◦ τ1τ

T
1

τ3

)
,

where ψk(·) is the multivariate Digamma function.


