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the energy of the noise is high and insulates the underlying signal. Here, only the noise will be

extracted and the signal will remain untouched. The locations at which signal is extracted into an

otherwise noisy IMF will be shown to be phase dependent.

Figure 5.14: A model of a noisy signal in the time-frequency plane. Signal will be extracted in the

region corresponding to 0.5-0.6 seconds. Here the energy of the noise is too low to insulate the

signal from extraction. Outside of this region, only the energy of the noise will be extracted.

Consider two signals with identical spectral content, differing only by a constant phase factor

and contaminated with the same noise realization. For simplicity, we consider two stationary

signals. Using a stationary example will limit the effect of spectral leak, as unlike the chirp used in

the previous nonstationary case, a signal with one frequency should not have energy spread over

many IMFs. Let f = 75 Hz and t ∈ [0, 1] seconds. We examine x1 = sin(2πft) and a phase-shifted

copy x2 = sin(2πft + .9p), where p = 1
f is the period of x1. Because x1 and x2 have the same

frequency content, we expect that when contaminated with the same noise realization, EMD should

produce very similar results. Figure 5.15 shows that the first transition IMFs for each noisy signal
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Figure 5.15: Two stationary signals with identical spectral content differing only by a phase shift.
From top to bottom: the clean signal, spectrograms of the noisy residual from which the first
transition IMFs are extracted, mean power spectral density (PSD) of the residual with error bars
representing one standard deviation, and the first transition IMFs. The PSD sections highlighted
in red correspond to those with the smallest standard deviations and is where signal leaks into the
otherwise noisy IMFs.
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contain signal in different locations. Examining the residual from which each transition IMF was

extracted lends an explanation. The smallest standard deviation in each residual occurs near 0.7

seconds and 0.4 seconds for x1 and x2 respectively and is highlighted in red. These time locations

correspond exactly with the location of signal content in each transition IMF. At these locations,

the level of the noise is too small to insulate the signal from extraction into the current IMF. This

process demonstrates that the extraction of transition IMFs is also phase dependent.

In the above example, the first IMF contains pure noise for both signals. Because the exact

same noise realization was used to contaminate both signals, one might expect that the first IMF,

and thus the first residual, for each signal would be identical. However, as noted above and seen

in figure 5.15, the statistics of the residuals are different, showing dips in the energy of the noise

at different locations. For a more complete understanding of the demonstrated phase dependence,

we consider how the phase of a signal interacts with noise. The interference between the sinusoidal

function xi(t) = α cos(ωt+βi) (i = 1 or 2) and a realization n(t) of the white noise can be described

by the following simple model. We consider n(t) to be a realization of a white noise process sampled

at a finite number of samples N . We can decompose n(t) using a finite Fourier transform [11] and

the Fourier series expansion can be written as follows:

n(t) =
N−1∑
k=0

ρk cos(2πk
t

N
+ ϕk)

where the ρk ≥ 0 and ϕk are defined by

ak = ρkcosϕk, bk = −ρksinϕk, and a0 = 2ρ0cosϕ0,

with

ak =
2

N

N−1∑
t=0

n(t) cos(2πk
t

N
) (k = 0, . . .) and bk =

2

N

N−1∑
t=0

n(t) sin(2πk
t

N
) (k = 1, . . .).

We now contaminate the signal xi(t) by adding the noise realization n(t) to xi(t),

xi(t) + n(t) = α cos(ωt+ βi) +
N−1∑
k=0

ρk cos(2πk
t

N
+ ϕk) (t = 0, 1, . . . , N − 1).
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Because the noise is white, we expect the realization of the noise to have a uniform distribution of

the energy in the Fourier domain. In other words, we expect that all ρk have similar amplitudes.

We now examine under what circumstances the noise will interfere with the signal. First,

we assume that the signal amplitude is about the same as the noise level, (α ≈ ρk0). Second, we

consider the frequency index of the noise that matches the frequency of the signal, k0 such that

ω ≈ 2πk0. At this frequency the noise will interfere with the signal. Formally, we can consider the

interaction of the two cosine function,

α cos

(
ω
t

N
+ βi

)
+ ρk0 cos

(
2πk0

t

N
+ ϕk0

)
≈

2ρk0 cos

(
ω + 2πk0

2

t

N
+
βi + ϕk0

2

)
cos

(
ω − 2πk0

2

t

N
+
βi − ϕk0

2

)
.

If ω ≈ 2πk0, then the function

cos

(
ω − 2πk0

2

t

N
+
βi − ϕk0

2

)
slowly modulates the other cosine function,

ρk0 cos

(
ω + 2πk0

2

t

N
+
βi + ϕk0

2

)
which still oscillates at the frequency ω since (ω+2πk0)/2 ≈ ω. The overall amplitude of the slowly

varying envelope cos((ω − 2πk0)/2 t/N + (βi − ϕk0)/2) clearly depends on the phase difference

(βi − ϕk0)/2, as is shown in figure 5.15.

We conclude that the exact amount of cancellation created by the interference between the

original signal xi(t) and the noise realization n(t) depends on the phase of the signal xi(t). We note

that this analysis is concerned with one realization of the noise, and is not in contradiction with

the fact that the noise statistical properties are translation invariant, since the noise is considered

to be stationary.

5.5 EMD Decomposition of Synthetic Seismic Data

Having demonstrated both the effect and mechanism of noise corruption on simple synthetic

examples, we turn our attention to a synthetic seismic signal which will serve as a model for real
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world data. The signal was constructed using elementary chirplet wave packets. Such chirplet

packets were proposed in [6] to decompose seismograms. Details of the construction are given in

the next subsection. Figure 5.16a shows the clean signal that will be considered along with the

estimate of its instantaneous frequency3. In the absence of noise we observe that the decomposition

of the signal yields a physically meaningful IF (figure 5.16b).

To investigate the effect of noise, the same signal is contaminated with additive white Gaus-

sian noise and we consider an SNR of 24dB. The noisy signal is shown in figure 5.17a and it is clear

that a meaningful IF was not produced (figure 5.17b). Examining the IMFs of the noisy signal

shows that IMF 1 contains noise and IMF 2 represents the transition from noise to signal. It is

noted that 91.8% of the signal’s total energy is captured in this transition IMF. Eleven IMFs were

produced and figure 5.18 shows the first five, capturing 98.6% of the energy. It is clear that to pro-

duce a meaningful instantaneous frequency, IMF 1 must be discarded. IMF 2 must be included as

it contains almost all of the energy, but will be problematic as it also contains noise. Recomputing

the IF (not shown) using all but the first IMF fails to produce a meaningful IF estimate due to the

noise present in IMF 2.

The seismic signal is clearly nonstationary. We therefore expect that the transition IMF

was formed due to spectral leak. The IMFs in figure 5.18 indicate that the decomposition indeed

followed the process presented in the model for spectral leak (figure 5.11). IMF 1 is pure noise,

extracted by EMD operating in the filter bank regime. The spectrogram of IMF 2 shows that

EMD continued down the frequency axis in a somewhat dyadic fashion. In principle, IMF 2 would

have contained only pure noise, but the frequency content of the signal leaked into the bottom of

this frequency band. The spectrograms of IMFs 3 - 5 show that the extraction of signal into the

transition IMF damaged all subsequent IMFs.

3 This synthetic seismic waveform is the result of the superposition of several signals, each with different frequency
and amplitude functions. Therefore, the waveform is a multicomponent signal and its analytic IF is not well defined.
The IF must be computed numerically (as the weighted sum of the IF from each of its IMFs) as shown in figure
5.16b.
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Figure 5.16: Clean seismic signal from which a physically meaningful IF is calculated.
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Figure 5.17: Noisy seismic signal (SNR = 24dB) from which a physically meaningful IF cannot be

calculated.

Finally, there is also evidence of phase dependence. Let the original signal be denoted by x,

and consider x1 and x2, two phase-shifted copies of x with identical spectral content. Phase shift

is accomplished by adding a constant c to the argument of the sine in the wave packet wk(t) (see

Section 5.5.1). The values used for c are 0.9π and 0.3π for x1 and x2, respectively. Figure 5.19

shows the transition from noise to signal is captured in IMF 2 for x and x1. Although subtle, these
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Figure 5.18: First five IMFs with spectrograms from the decomposition of the noisy seismic signal.
91.8% of the total energy is captured in transition IMF 2. IMFs 3-5 are damaged by the extraction
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IMFs contain signal at different locations (most easily seen at 0.6 seconds). A more obvious effect

is seen in the decomposition of x2, where the transition begins in IMF 1 instead of IMF 2.
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Figure 5.19: First two IMFs of noisy seismic signals differing only by a phase factor. IMF 2 is the

transition IMF for x and x1, while the transition begins in IMF 1 for x2. The transition IMFs for x

and x1 contain signal content in slightly different locations, most notable at time t = 0.6 seconds.

5.5.1 Construction of the seismic waveform

The synthetic seismic waveform, f(t), used in this section is based on the work of Bardainne

[6] and is constructed as follows:

Let f(t) =
∑4

k=1 akwk ((t− tk)/dk) , t ∈ [0, 1]

• Wave packet wk(t) = g(t) sin [2π(fk + pkt
qk) t]

• Envelope g(t) = two Gaussians smoothly glued:

exp

[
−
(
ck(1−lk)−t
1
2
ck(1−lk)

)2]
if 0 < t < ck(1− lk)

1 if ck(1− lk) < t < ck + (1− ck)lk

exp

[
−
(
ck+(1−ck)lk−t
1
2
(1−ck)(1−lk)

)2]
if ck + (1− ck)lk < t < 1

• (fk, pk, qk) control the frequency of the wave packet
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• (ck, lk) control the boundary between the attack and the silencing of the wave packet.

The parameter values used in this section are shown in table 5.5.1 below.

k tk dk fk ak ck lk pk qk

1 0 1 10 0.3 0.0 1 0 0
2 0.2 0.8 80 0.2 0.9 0.5 10 1
3 0.32 0.05 300 3 0.7 0.1 2 -1
4 0.45 0.24 195 10 0.2 0.2 -5 10

Table 5.1: Parameters used for constructing the seismic waveform.

5.6 Conclusions

All data analysis tools are susceptible to noise corruption; EMD is not an exception. Despite

this reality, EMD has emerged as an effective tool for nonstationary data analysis. Wavelet decom-

positions, which suffer from similar corruption in the presence of noise, are accompanied by rich

theory from which this noise corruption may be studied and understood. A complete theoretical

framework for EMD has yet to emerge. Therefore, EMD is best understood through experiments

to discover and test its limits. EMD is an effective tool for estimating the IF of a clean signal but

provides a poor estimate in the presence of noise. When decomposing a noisy signal, “transition”

IMFs are extracted, capturing both noise and signal in the same mode. Such IMFs are problem-

atic as their noise pollutes the IF calculation yet their signal content cannot be ignored. We have

demonstrated both the existence of and mechanism by which transition IMFs are created. Specif-

ically, transition IMFs arise from spectral leak between modes and EMD’s filter bank behavior in

the presence of noise. In addition, the manner in which signal leaks into an otherwise noisy IMF

has been shown to be phase dependent. Given this understanding, there is an opportunity to more

faithfully estimate instantaneous frequency in the presence of noise. In doing so, care must be

taken to treat transition IMFs in a manner that preserves any meaningful physical information, as

this is an idea at the core of the development of EMD.



Chapter 6

Conclusion and Future Directions

The work in this thesis is motivated by the goal of constructing an efficient parameterization

of a large data set of points lying close to a smooth manifold in high dimension. We have studied

the recovery of the local tangent plane from a collection of noisy manifold samples. The tangent

plane yields an efficient local parameterization that allows for the data to be well represented in

fewer dimensions than those of the ambient space. Such a parameterization therefore yields a sparse

representation guided by the geometry of the data.

We have presented a detailed analysis of the optimal scale for tangent plane recovery. Using

local PCA, we seek a scale small enough such that the manifold is approximately linear, but a scale

large enough such that structure may be discerned from noise. We use eigenspace perturbation

theory to study the stability of the subspace estimated by PCA and bound, with high probability,

the angle it forms with the true tangent space. The scale that optimally balances the noise-curvature

trade-off is identified, yielding the optimal tangent plane estimate.

Local PCA is frequently used for subspace approximation and tangent plane recovery in the

manifold learning and data analysis literature. Most often, locality is defined via a fix number of

nearest neighbors or a fixed radius about a point. However, estimates that do not consider the

curvature of the manifold or noise level of the data are bound to be suboptimal. The analysis in

this thesis uses the geometry of the data to guide the definition of locality and thus offers new

results for optimal scale selection and tangent plane recovery.

To connect this analysis with practical algorithmic considerations, we have studied a PCA
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approximation-based partitioning scheme for noisy data. Our geometric analysis and numerical

results indicate that the main loop of this algorithm is driven by a noise-curvature trade-off and

therefore recovers a partitioning that provides an appropriate scale for tangent plane estimation. In

future work, we plan to combine our analysis of the optimal scale for tangent plane recovery with

the partitioning criterion of such an algorithm. Rather than resorting to an a posteriori comparison

of the returned partitioning to the optimal scale, the algorithm should be guided by our tangent

plane stability analysis. Further, as our results yield error bounds on the local scale, a partitioning

may be found in a manner that maintains low-distortion guarantees over the entire data set. Such

guarantees are desirable not only in this context, but in any data parameterization algorithm.

A particular area of application for the ideas discussed in this thesis is image processing. The

manifold geometry of collections of images or image patches (“patch-space”) has been a growing

area of study over the past decade (see [23, 53], for example). In fact, face images are used as a

standard data set with which to benchmark the performance of various parameterization algorithms

(see the experiments in [67, 77], amongst many others). As sparse representation algorithms have

recently demonstrated state-of-the-art image denoising results [1], the geometric sparsity afforded

by the local tangent plane parameterization of patch-space may be used in a similar manner.

Projecting noisy points (each point representing an image or image patch) into the optimal estimate

of the local tangent plane effectively eliminates noise in all of the out-of-plane dimensions. As the

dimensionality of the tangent space (intrinsic dimensionality) is typically much smaller than that of

the ambient space, such a projection can eliminate much of the noise. Denoising via the sparsity of

this geometric parameterization is similar in spirit to the well-studied idea of wavelet thresholding

[58]. A key difference, however, is that thresholding transform coefficients relies on sparsity in a

fixed basis, whereas our results can adaptively find the proper geometric parameterization of the

data. We are currently studying the performance of image filtering in the tangent plane, comparing

the statistics of this method with those of standard image filtering techniques (see the analysis in

[60]). Image processing in the tangent plane therefore remains a focus of our current research.

Finally, sparsity has been demonstrated to be a powerful data model that allows for efficient
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representation of complex and high-dimensional data sets. The past decade has witnessed many

new and exciting results exploiting the sparsity inherent in such data. The work in this thesis has

highlighted a geometric notion of sparsity that can be used to extend sparse representation to a

wider range of data. The geometric interpretation of standard sparse representation is clear and

has been discussed in several contexts [26, 69]. By representing points as linear combinations of

a small number of basis elements or dictionary atoms, traditional sparse representation operates

under the assumption of samples from a linear subspace or union of linear subspaces. Spectral

clustering of the sparse coefficient matrix can then be used to partition a data set into linear

clusters (see [2, 27] for example). However, most data sets exhibit curvature and thus cannot be

completely characterized by such a “flat” geometric model. Extremely recent results of the past

months have presented algorithmic [28] and theoretical [72] considerations of sparse representation

in the manifold context. Still, a more detailed analysis incorporating curvature is needed (see [16]

for recent related work). The continued development of sparse representation from a geometric

perspective is a primary focus of our current work and an important extension of this thesis.
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Appendix A

Appendix: Optimal Tangent Plane Recovery From Noisy Manifold Samples

A.1 The Set Ωe

Here the set Ωe over which projections of the vector e have bounded norm is formally defined.

Begin by recalling a standard result on the concentration of the Gaussian measure on RN , denoted

by γN . Consider a random vector drawn from the N (0, σ2IN ) distribution. By the concentration

of Gaussian measure [36], the set

S = {x ∈ RN :
√
N(1− ε) ≤ ‖x‖/σ ≤

√
N(1 + ε)}

has measure

γN (S) > 1− 2e−
Nε2

2 .

This result states that the Gaussian measure of the set of points in RN that concentrate about the

sphere of radius σ
√
N is extremely large.

The sets

Ω1 = {x ∈ Rd : ‖x‖ ≤ σ
√
d(1 + ε1)}

Ω2 = {x ∈ RD−d : ‖x‖ ≤ σ
√
D − d(1 + ε2)}

have Gaussian measure

γd(Ω1) > 1− e
−dε21

2

γD−d(Ω2) > 1− e
−(D−d)ε21

2 .
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We may define sets

ΩU1 = {x ∈ RD : ‖UT1 x‖ ≤ σ
√
d(1 + ε1)}

ΩU2 = {x ∈ RD : ‖UT2 x‖ ≤ σ
√
D − d(1 + ε2)}

such that ΩU1 and ΩU2 are the preimages of Ω1 and Ω2, respectively, in RD. The Gaussian measures

of the sets Ω1 and Ω2 are the pushforwards of the Gaussian measure in RD by the respective

projections UT1 and UT2 :

γD(ΩU1) = γd(Ω1) ≤ e
−dε21

2

γD(ΩU2) = γD−d(Ω2) ≤ e
−(D−d)ε22

2 ,

where Ω denotes the complement of the set Ω.

Finally, define

Ωe = ΩU1 ∩ ΩU2

and a standard union bound argument yields

γD(Ωe) = γD(ΩU1 ∪ ΩU2) = γD(ΩU1) + γD(ΩU2) ≤ e
−dε21

2 + e
−(D−d)ε22

2 .

Set ε1
√
d/2 = ε2

√
(D − d)/2 = ξe. Then both

‖UT1 e‖ ≤ σ
(√

d+ ξe
√

2
)

‖UT2 e‖ ≤ σ
(√

D − d+ ξe
√

2
)

hold on Ωe, and

γD(Ωe) > 1− 2e−ξ
2
e .
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A.2 Suprema and Expectations for Main Result 1

A.2.1 Suprema Rpqab and Rpa

Listed here are the suprema terms needed for the calculations leading to Main Result 1. The

calculation is outlined in Chapter 3.3.2.1.

First we have Rpa terms:

R1
` ≤ rmax

(
N

Nmax

) 1
d

,

R2
c ≤

1

2
Kr2max

(
N

Nmax

) 2
d

,

R1
e ≤ σ

(√
d+ ξe

√
2
)

on Ωe,

R2
e ≤ σ

(√
D − d+ ξe

√
2
)

on Ωe.

Then using (3.3.19) we may bound the remaining Rpqab:

R22
cc ≤

1

4
K2r4max

(
N

Nmax

) 4
d

,

R21
c` ≤

1

2
Kr3max

(
N

Nmax

) 3
d

,

R11
ee ≤ σ2

(√
d+ ξe

√
2
)2

on Ωe,

R22
ee ≤ σ2

(√
D − d+ ξe

√
2
)2

on Ωe,

R21
ee ≤ σ2

(√
d+ ξe

√
2
)(√

D − d+ ξe
√

2
)

on Ωe,

R11
e` ≤ σrmax

(
N

Nmax

) 1
d (√

d+ ξe
√

2
)

on Ωe,

R21
e` ≤ σrmax

(
N

Nmax

) 1
d (√

D − d+ ξe
√

2
)

on Ωe,

R21
ce ≤

1

2
Kσr2max

(
N

Nmax

) 2
d (√

d+ ξe
√

2
)

on Ωe,

R22
ce ≤

1

2
Kσr2max

(
N

Nmax

) 2
d (√

D − d+ ξe
√

2
)

on Ωe.
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A.2.2 Expectations

Here we detail the calculation of the expectations from Chapter 3.3.2.2. Each term is of the

form ∥∥∥E[UTp (a− E[a])(b− E[b])TUq]
∥∥∥
F

=
∥∥∥E[aupb

T
uq ]− E[aup ]E[bTuq ]

∥∥∥
F
.

As only pure curvature (ccT ) and pure noise (eeT ) terms have nonzero expectation, the calculations

of all other terms are omitted.

Pure Curvature Term: The expectation of the pure curvature term is computed as follows.

Consider first (cu2c
T
u2)i,j = cicj for i, j = (d+ 1), . . . , D. Then

E[cicj ] =
1

4
E[(κ

(i)
1 `21 + . . . + κ

(i)
d `

2
d)(κ

(j)
1 `21 + . . . + κ

(j)
d `2d)]

=
1

4
Kij
nn E[`4n] +

1

4
Kij
mn E[`2m`

2
n]

=
r4max

4(d+ 2)(d+ 4)

(
N

Nmax

) 4
d [

3Kij
nn +Kij

mn

]
. (A.2.1)

Next consider (cu2)i = ci for i = (d+ 1), . . . , D. Then

E[ci]E[cj ] =
r4max

4(d+ 2)2

(
N

Nmax

) 4
d [
Kij
nn +Kij

mn

]
(A.2.2)

and we have

∥∥∥E[cu2c
T
u2 ]− E[cu2 ]E[cTu2 ]

∥∥∥
F

=

r4max
2(d+ 2)2(d+ 4)

(
N

Nmax

) 4
d

 D∑
i=d+1

D∑
j=d+1

[
(d+ 1)Kij

nn −Kij
mn

]2 1
2

. (A.2.3)

Pure Noise Terms: Using that the entries of e are i.i.d. random variables from the N (0, σ2)

distribution, we have



123∥∥∥E[eupe
T
uq ]− E[eup ]E[eTuq ]

∥∥∥
F

=
∥∥∥E[eupe

T
uq ]
∥∥∥
F

=

(
d∑
i=1

d∑
j=1

E[eiej ]
2

) 1
2

=

 d∑
i=1

E[e2i ]
2 +

d∑
i,j=1
i 6=j

E[eiej ]
2


1
2

= σ2
√
d

if (p, q) = (1, 1),(
D∑

i=d+1

D∑
j=d+1

E[eiej ]
2

) 1
2

=

 D∑
i=d+1

E[e2i ]
2 +

D∑
i,j=d+1
i 6=j

E[eiej ]
2


1
2

= σ2
√
D − d

if (p, q) = (2, 2),(
D∑

i=d+1

d∑
j=1

E[eiej ]
2

) 1
2

= 0 if (p, q) = (2, 1).

A.3 Norm Bounds for Main Result 1

The right-hand side of the confidence interval (3.3.18) from Chapter 3 is used to bound the

size of the perturbation norms. When considering noise terms, recall that we must condition on

e ∈ Ωe. Recalling the rescaled notation r = rmax (N/Nmax)1/d is helpful for interpretation. Note

that we may work with either the matrix in question or its transpose when computing the norm

and our notation may reflect either choice.

Curvature

∥∥∥UT2 ( 1
N C̃C̃

T
)
U2

∥∥∥
F
≤

r4max
2(d+ 2)2(d+ 4)

(
N

Nmax

) 4
d

 D∑
i=d+1

D∑
j=d+1

[
(d+ 1)Kij

nn −Kij
mn

]2 1
2

+
1√
N

K2

4
r4max

(
N

Nmax

) 4
d
[(

2 + ηcc
√

2
)

+
1√
N

(
2 + ηc

√
2
)2]

(A.3.1)

with probability at least 1− e−η2cc − e−η2c over the random selection of the sample points.
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Noise

∥∥∥UT1 ( 1
N ẼẼ

T
)
U1

∥∥∥
F
≤

σ2
√
d +

1√
N
σ2
(√

d+ ξe
√

2
)2 [(

2 + ηee
√

2
)

+
1√
N

(
2 + ηe

√
2
)2]

(A.3.2)

with probability at least 1− e−η2ee − e−η2e − 2e−ξ
2
e over the random realization of the noise.∥∥∥∥UT2 ( 1

N
ẼẼT

)
U2

∥∥∥∥
F

≤ σ2
√
D − d +

1√
N
σ2
(√

D − d+ ξe
√

2
)2

×
[(

2 + ηee
√

2
)

+
1√
N

(
2 + ηe

√
2
)2]

(A.3.3)

with probability at least 1− e−η2ee − e−η2e − 2e−ξ
2
e over the random realization of the noise.∥∥∥∥UT2 ( 1

N
ẼẼT

)
U1

∥∥∥∥
F

≤ 1√
N
σ2
(√

d+ ξe
√

2
)(√

D − d+ ξe
√

2
)

×
[(

2 + ηee
√

2
)

+
1√
N

(
2 + ηe

√
2
)2]

(A.3.4)

with probability at least 1− e−η2ee − e−η2e − 2e−ξ
2
e over the random realization of the noise.

Linear-Curvature Interaction

∥∥∥UT2 ( 1
N C̃L̃

T
)
U1

∥∥∥
F
≤

1√
N

K

2
r3max

(
N

Nmax

) 3
d
[(

2 + η`c
√

2
)

+
1√
N

(
2 + η`

√
2
)(

2 + ηc
√

2
)]

(A.3.5)

with probability at least 1− e−η2`c − e−η2` − e−η2c over the random selection of the sample points.

Linear-Noise Interaction∥∥∥∥UT1 ( 1

N
ẼL̃T

)
U1

∥∥∥∥
F

≤ 1√
N
σrmax

(
N

Nmax

) 1
d (√

d+ ξe
√

2
)

×
[(

2 + η`e
√

2
)

+
1√
N

(
2 + η`

√
2
)(

2 + ηe
√

2
)]

(A.3.6)
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with probability at least 1 − e−η2`e − e−η2` − e−η2e − 2e−ξ
2
e over the joint random selection of the

sample points and random realization of the noise.∥∥∥∥UT2 ( 1

N
ẼL̃T

)
U1

∥∥∥∥
F

≤ 1√
N
σrmax

(
N

Nmax

) 1
d (√

D − d+ ξe
√

2
)

×
[(

2 + η`e
√

2
)

+
1√
N

(
2 + η`

√
2
)(

2 + ηe
√

2
)]

(A.3.7)

with probability at least 1 − e−η2`e − e−η2` − e−η2e − 2e−ξ
2
e over the joint random selection of the

sample points and random realization of the noise.

Curvature-Noise Interaction∥∥∥∥UT2 ( 1

N
C̃ẼT

)
U1

∥∥∥∥
F

≤ 1√
N

K

2
σr2max

(
N

Nmax

) 2
d (√

d+ ξe
√

2
)

×
[(

2 + ηce
√

2
)

+
1√
N

(
2 + ηc

√
2
)(

2 + ηe
√

2
)]

(A.3.8)

with probability at least 1−e−η2ce−e−η2c−e−η2e−2e−ξ
2
e over the joint random selection of the sample

points and random realization of the noise. Note that ‖UT1
(
1
NEC

T
)
U2‖F = ‖UT2

(
1
NCE

T
)
U1‖F .∥∥∥∥UT2 ( 1

N
C̃ẼT

)
U2

∥∥∥∥
F

≤ 1√
N

K

2
σr2max

(
N

Nmax

) 2
d (√

D − d+ ξe
√

2
)

×
[(

2 + ηce
√

2
)

+
1√
N

(
2 + ηc

√
2
)(

2 + ηe
√

2
)]

(A.3.9)

with probability at least 1 − e−η2ce − e−η2c − e−η2e − 2e−ξ
2
e over the joint random selection of the

sample points and random realization of the noise.

A.4 Moment Calculations

The following moment calculations will be used in the confidence interval calculations. Let

Li be the random variable that returns the ith coordinate of a point from Bd(r), randomly chosen

according to a uniform distribution. Let x = [x1 x2 . . . xd] and compute the following expectations
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with respect to µ, the uniform measure on Bd(r):

E[Lai ] =

∫
Bd(r)

xai dµ(x)

=
1

vol(Bd(r))

∫ r

−r
xai

∫
x1,...,xi−1,xi+1,...,xd

∈ Bd−1(
√
r2−x2i )

dx1 . . . dxi−1 dxi+1 . . . dxd dxi

=
1

vol(Bd(r))

∫ r

−r
xai vol(Bd−1(

√
r2 − x2i )) dxi

=
vol(Bd−1(1))

vol(Bd(r))

∫ r

−r
xai (r2 − x2i )

d−1
2 dxi.

Similarly,

E[LaiL
b
j ] =

vol(Bd−2(1))

vol(Bd(r))

∫ r

−r

∫ √r2−x2i
−
√
r2−x2i

xai x
b
j (r2 − x2i − x2j )

d−2
2 dxj dxi.

Then we compute the following moments:

E[Li] = 0 Var[Li] = r2

d+2

E[LiLj ] = 0 Var[LiLj ] = r4

(d+2)(d+4)

E[L2
i ] = r2

d+2 Var[L2
i ] = 2(d+1)r4

(d+2)2(d+4)

E[LiL
2
j ] = 0 Var[LiL

2
j ] = 3r6

(d+2)(d+4)(d+6)

E[L3
i ] = 0 Var[L3

i ] = 15r6

(d+2)(d+4)(d+6)

E[L2
iL

2
j ] = r4

(d+2)(d+4) Var[L2
iL

2
j ] = 8(d2+5d+3)r8

(d+2)2(d+4)2(d+6)(d+8)

E[L4
i ] = 3r4

(d+2)(d+4) Var[L4
i ] = 24(d+1)(4d+17)r8

(d+2)2(d+4)2(d+6)(d+8)
.
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A.5 Central Limit Theorem Calculations for Main Result 2

Here we detail the Central Limit Theorem (CLT)-based calculations that are used for Main

Result 2. In the following analysis we will write 1
N

∑N
k=1 Yk

d→ Y meaning that the sum converges

in distribution to the random variable Y , and we will then indicate the distribution from which Y

is drawn.

A.5.1 Matrix Entries

A.5.1.1 Centering

We first compute the entries of the matrices representing the centering terms Ê[L], Ê[C], and

Ê[E].

• Linear

Ê[Li] =
1

N

N∑
k=1

Li,k
d→ Y ∈ [µ− Γ, µ+ Γ] (A.5.1)

µ = 0 (A.5.2)

Γ = ηL
1√
N

√
2

d+ 2
rmax

(
N

Nmax

) 1
d

, (A.5.3)

with probability greater than 1− e−η2L , where Y ∼ N
(
E[Li],

1
NVar[Li]

)
.

• Curvature

Ê[Ci] =
1

N

N∑
k=1

Ci,k (A.5.4)

=
1

2

[
κ
(i)
1

1

N

N∑
k=1

L2
1,k + · · ·+ κ

(i)
d

1

N

N∑
k=1

L2
d,k

]
d→ 1

2

[
κ
(i)
1 Y1 + · · ·+ κ

(i)
d Yd

]
∈ [µ− Γ, µ+ Γ]
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µ =
Ki

2

r2max
(d+ 2)

(
N

Nmax

) 2
d

(A.5.5)

Γ =
Ki

2

r2max
(d+ 2)

(
N

Nmax

) 2
d

(
2ηC√
N

√
d+ 1

d+ 4

)
(A.5.6)

with probability greater than 1 − de−η
2
C , where Yj

∼ N
(
E[L2

i ],
1
NVar[L2

i ]
)

for j = 1, . . . , d.

• Noise

Ê[Ei] =
1

N

N∑
k=1

Ei,k = Y ∈

[
−ηE

σ
√

2√
N
, ηE

σ
√

2√
N

]
(A.5.7)

with probability greater than 1− e−η2E , where Y ∼ N
(
0, 1

N σ
2
)
.

Combining these results, we will use the following centering terms:

• Ê[Ci]Ê[Cj ] ∈ [µ− Γ, µ+ Γ]

µ =
KiKj

4(d+ 2)2
r4max

(
N

Nmax

) 4
d

(A.5.8)

Γ =
KiKj

4(d+ 2)2
r4max

(
N

Nmax

) 4
d

(
4ηC√
N

√
d+ 1

d+ 4
+

4η2C
N

(
d+ 1

d+ 4

))
(A.5.9)

with probability > 1− de−η2C ,

• Ê[Ei]Ê[Ej ] ∈
[
−η2E

2σ2

N , η2E
2σ2

N

]

with probability >


1− 2e−η

2
E (i 6= j)

1− e−η2E (i = j),

• Ê[Li]Ê[Cj ] ∈ [µ− Γ, µ+ Γ]

µ = 0 (A.5.10)

Γ = ηL
1√
N

Kj√
2(d+ 2)

3
2

r3max

(
N

Nmax

) 3
d

[
1 +

2ηC√
N

√
d+ 1

d+ 4

]
(A.5.11)
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with probability > 1− e−η2L − de−η2C ,

• Ê[Li]Ê[Ej ] ∈ [µ− Γ, µ+ Γ]

µ = 0 (A.5.12)

Γ = ηLηE
1

N

2σ√
d+ 2

rmax

(
N

Nmax

) 1
d

(A.5.13)

with probability > 1− e−η2L − e−η2E ,

• Ê[Ci]Ê[Ej ] ∈ [µ− Γ, µ+ Γ]

µ = 0 (A.5.14)

Γ = ηE
1√
N

σKi√
2(d+ 2)

r2max

(
N

Nmax

) 2
d

[
1 +

2ηC√
N

√
d+ 1

d+ 4

]
(A.5.15)

with probability > 1− de−η2C − e−η2E .

A.5.1.2 Curvature

The entries of the pure curvature term CCT are computed as follows. Note that the curvature

term is the only one for which the entries grow with N .

1

N

N∑
k=1

Ci,kCj,k (A.5.16)
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)
=
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d∑
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(j)
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N

N∑
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4
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κ(i)m κ
(j)
n

1

N

N∑
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L2
m,kL

2
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d→ 1

4

d∑
n=1

κ(i)n κ
(j)
n Zn +

1

4

d∑
m,n=1
m 6=n

κ(i)m κ
(j)
n Ymn

∈ [µ− Γ, µ+ Γ]
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µ =
1

4

r4max
(d+ 2)(d+ 4)

(
N

Nmax

) 4
d [

3Kij
nn +Kij

mn

]
(A.5.17)

Γ =
1√
N

r4max
2
√

2(d+ 2)(d+ 4)

(
N

Nmax

) 4
d

×

(
ηCC1K

ij
nn

√
24(d+ 1)(4d+ 17)

(d+ 6)(d+ 8)
+ ηCC2K

ij
mn

√
8(d2 + 5d+ 3)

(d+ 6)(d+ 8)

)
(A.5.18)

with probability greater than 1 − de−η
2
CC1 − d(d−1)

2 e
−η2CC2 , where Zn ∼ N

(
E[L4

i ],
1
NVar[L4

i ]
)

and

Ymn ∼ N
(
E[L2

iL
2
j ],

1
NVar[L2

iL
2
j ]
)

, for m,n = 1, . . . , d. Subtracting Ê[Ci]Ê[Cj ] from (A.5.16),(
1

N
C̃C̃T

)
i,j

∈ [µ− Γ, µ+ Γ] (A.5.19)
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(A.5.20)

Γ =
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(A.5.21)

×

(
ηCC1K
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with probability greater than 1− de−η
2
CC1 − d(d−1)

2 e
−η2CC2 − de−η2C . Note that only the lower right

(D − d)× (D − d) entries are nonzero.

A.5.1.3 Noise

A diagonal entry of the pure noise matrix EET is the square of the norm of a vector in

RN of Gaussian random variables. We could use the concentration of Gaussian measure to bound

this norm (see Section A.1), but obtain a slightly tighter result using the CLT. Note that this

norm neither grows nor decays with N , and its leading order term σ2 represents a noise-floor. An

off-diagonal entry is the inner-product between two such vectors, and we therefore expect it to

be small. Using a Bernstein-type inequality [59] to bound such entries yields the same leading

behavior but with higher order terms, whereas using the CLT does not. Properties of the Wishart

distribution could also be used [62]. Note that the off-diagonal terms tend to zero as N grows.
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• Diagonal entry (i = j)

1

N

N∑
k=1

Ei,kEi,k =
σ2

N

N∑
k=1

Yk
d→ σ2Z (A.5.22)

∈
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1− ηEE1

2√
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)
, σ2
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N

)]
with probability greater than 1− e−η

2
EE1 , where Yk ∼ χ2(1) so that E[Yk] = 1, Var[Yk] = 2,

and Z ∼ N
(
E[Yk],

1
NVar[Yk]

)
. Subtracting Ê[Ei]Ê[Ej ] yields(

1

N
ẼẼT

)
i,i
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• Off-diagonal entry (i 6= j)
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]
(A.5.24)

with probability greater than 1 − e
−η2EE2 , where

Y ∼ N
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)
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√
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(A.5.25)

with probability greater than 1− e−η
2
EE2 − 2e−η

2
E .
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A.5.1.4 Linear-Curvature Interaction

The entries of the linear-curvature term are computed as follows.

1

N

N∑
k=1

Li,kCj,k (A.5.26)

=
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×
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, for n = 1, . . . , i − 1, i + 1, . . . d,

and Subtracting Ê[Li]Ê[Cj ], (
1

N
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)
i,j

∈ [µ− Γ, µ+ Γ] (A.5.29)

µ = 0 (A.5.30)
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]

with probability greater than 1− (d− 1)e
−η2LC1 − e−η

2
LC2 − e−η2L − de−η2C .



133

A.5.1.5 Linear-Noise Interaction

An entry of the linear-noise matrix may be shown to be a Lipschitz function of Gaussian

variables on a set with large measure. One may show that on this set, such a function concentrates

tightly about its expectation (see [59]). Using the CLT to compute the Lipschitz constant yields

the same leading order behavior as directly applying the CLT to the entries, but results in higher

order terms as well. Thus we proceed with the usual CLT calculation.

1

N

N∑
k=1

Li,kEj,k
d→ Y ∈ (A.5.32)[
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√
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N

]
(A.5.35)

with probability greater than 1− e−η2LE − e−η2L − e−η2E .

A.5.1.6 Curvature-Noise Interaction

The entries of the curvature-noise matrix may be shown to be Lipschitz functions over a

large set and the same comment holds as in the linear-noise case. Directly applying the CLT to

the entries of this matrix, we have

1

N

N∑
k=1

CiEj
d→ Y ∈ [µ− Γ, µ+ Γ] (A.5.36)

µ = 0 (A.5.37)
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3Kii
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mn (A.5.38)
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with probability with probability greater than 1 − e−η
2
CE , where Y ∼

N
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)
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µ = 0 (A.5.40)

Γ =
σ√
N

r2max√
2(d+ 2)

(
N

Nmax

) 2
d

(A.5.41)
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with probability greater than 1− e−η2CE − de−η2C − e−η2E .

A.5.2 Norm Bounds

Recall the following constants, previously defined in Chapter 3.4.3 and restated here for

clarity:
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We now use the confidence intervals computed above to bound each perturbation norm. Note again

that we may work with either the matrix in question or its transpose when computing the norm

and our notation may reflect either choice.

• Curvature
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(A.5.42)

with probability greater than
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• Noise
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with probability greater than 1− d(D − d)e
−η2EE2 −De−η2E .
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• Linear-Curvature Interaction
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with probability greater than
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• Linear-Noise Interaction
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• Curvature-Noise Interaction
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C̃ẼT

)
U2

∥∥∥∥
F

≤ (A.5.50)

σ√
N

√
D − d

2(d+ 2)
r2max

(
N

Nmax

) 2
d

(
D∑

i=d+1

CE2i

) 1
2

with probability greater than

1− (D − d)2e−η
2
CE − de−η2C − (D − d)e−η

2
E .

The norm bounds are combined to yield Main Result 2 (equation (3.4.13) in Chapter 3) and a

union bound is used to establish its associated probability.


