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ABSTRACT11

The Time/Cost Trade-off (TCT) problem has long been a popular optimization question for12

construction engineering and management researchers. The problem manifests itself as the opti-13

mization of total costs of construction projects that consist of indirect project costs and individual14

activity costs. The trade-off occurs as project duration and, as a result, indirect project costs15

decrease with reduced individual activity duration. This reduction in individual activity duration16

is achieved by increasing resource allocation to individual activities, which increases their costs17

to completion. Historically, metaheuristic solutions have been applied to small scale problems18

due to computational complexities and requirements of larger networks. Findings in this article19

demonstrated that the metaheuristic approach is highly effective for solving large scale construction20

TCT problems. A custom Genetic Algorithm (GA) is developed and used to solve large benchmark21

networks of up to 630 variables with high levels of accuracy (<3% deviation) consistently using22

computational power of a personal computer in under ten minutes. The same method can also be23
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used to solve larger networks of up to 6,300 variables with reasonable accuracy (∼7% deviation)24

at the expense of longer processing times. A number of simple, yet effective, techniques that25

improve GA performance for TCT problems are demonstrated; the most effective of which is a26

novel problem encoding, based on weighted graphs, that enables the critical path problem to be27

partially solved for all candidate solutions a priori, thus significantly increasing fitness evaluation.28

Other improvements include parallel fitness evaluations, optimal algorithm parameters, and the29

addition of a stagnation criteria. This article also presents some guidelines of optimal algorithm30

parameter selection through a comprehensive parameter sweep and a computational demand profile31

analysis. Moreover, the methods proposed in this article are based on open source development32

projects that enable scalable solutions without significant development efforts. This information33

will be beneficial for other researchers in improving computational efficiency of their solution in34

addressing TCT problems.35

INTRODUCTION36

The construction industry is characterized by non-repetitive, complex projects, with generally37

unpredictable productivity figures. The level of complexity increases exponentially as the scope38

and size of projects increase. For various reasons, such as meeting deadlines to avoid liquidated39

damages, earn bonuses etc., crashing construction project schedules is common practice in the40

construction industry. This is generally achieved through increased resource allocation to individual41

activities to reduce their duration. In most cases, both the increase in resources and reduction in42

duration are coupled in discrete pairs to simplify the problem (Sonmez and Bettemir 2012). The so-43

called Time/Cost Trade-off (TCT) problem manifests itself in finding the optimum balance of total44

project costs. That is the balance of increased activity costs and reduced indirect costs because of45

reduced project duration—as a result of reduced activity duration (Chassiakos and Sakellaropoulos46

2005). In its most basic form, this problem can be represented as:47

CT = CA + CI + D − I . (1)48
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where: CT is total project cost, CA is total activity cost, CI is indirect project costs, D is49

disincentives, and I is incentives. In reality, disincentives are more likely to be in a liquidated50

damage format that is applied when the project duration exceeds a predetermined threshold and51

incentives are bonuses rewarded for days saved from a specified threshold. The complication in52

minimizing the total project cost, CT , arises due to the large number of time-cost pairs for individual53

activities, and the resulting network computations because of differing activity duration values. It is54

typical for large construction projects to consist of hundreds of activities. Considering the potential55

number of discrete time-cost pairs for these activities, combined with the logical sequencing of56

activities, the computational demands can be extreme.57

Time-Cost Trade-off Problem58

Heuristic and metaheuristic methods have been the main tools in addressing this problem due59

to the above mentioned computational requirements, although exact methods have also found some60

limited interest (Kandil et al. 2010; Sonmez and Bettemir 2012; Chassiakos and Sakellaropoulos61

2005; Boussaïd et al. 2013). Of the metaheuristics methods used in construction and in general,62

Genetic Algorithms (GA) have been undoubtedly the most prominent method used for a multitude63

of problems, including the TCT problem (Boussaïd et al. 2013). Inspired by the Darwinian theories64

on biology and evolution, GA use genetic operations of cross-over, mutation and selection to find65

near optimal solutions to otherwise complicated problems using an initial set of candidate solutions66

(Michalewicz 1999). Possible solutions are represented as a genome upon which genetic operations67

such as mutation and crossover can be performed, thus simulating the natural selection process.68

Table 1 represents the state of the practice in regards to the TCT problem in the construction69

industry. It shows the typical size of the problems solved, the methods by which they are solved,70

performance of the methods used, and whether parallel computing was used to reduce the pro-71

cessing time. It is clear that the majority of the articles addressed smaller networks, and detailed72

performance benchmarks on solution accuracy and runtime performance also appear to be lacking.73

In a broader context, the TCT problem can be considered a sub-set of the more general resource74

constrained scheduling (RCS) problem; a heavily studied problem in operations research (Hartmann75
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and Briskorn 2010; Vanhoucke and Debels 2007). It should be noted that in construction engineer-76

ing and management literature TCT and RSC problems appeared to have been treated as different77

topics (Kim and Ellis Jr 2008; Zhang 2011); however, it is safe to say both belong under the same78

class of scheduling benchmark problems. The algorithms for RCS in areas of computer science,79

operation research and operations management can be sophisticated (Debels and Vanhoucke 2007;80

Gaglioppa et al. 2008; He et al. 2017). Even in these disciplines, algorithm performance is often81

only reported for relatively small networks of less than 300 nodes. Therefore, demonstration of82

performance of large scale, realistic, TCT problems is one important contribution of this work for83

construction engineering and management research and beyond.84

Issues in Solving the TCT Problem Using GA85

Computational complexity becomes relevant and problematic with the increased network size86

as cost computations are simple formulas. This can explain that the majority of the earlier studies—87

and this trend appears to continue in the more recent studies—on this subject has revolved around88

smaller networks (Feng et al. 1997; Hegazy 1999; Chassiakos and Sakellaropoulos 2005; Long and89

Ohsato 2009; Ghoddousi et al. 2013; Monghasemi et al. 2015; Tran et al. 2016). Works of Feng et al.90

(1997), and Chassiakos and Sakellaropolous (2005) has addressed networks of 18 and 29 variables91

respectively. These two articles represent some of the more popular networks that have later been92

used in literature as key benchmark problems. With the advancements in computational efficiency93

and better understanding of these problems, larger networks have also been analyzed (Kandil and94

El-Rayes 2006; Kandil et al. 2010; Sonmez and Bettemir 2012). Perhaps, the most interesting95

article on scale of problems addressed in literature has been the publication byMenesi et al. (2013),96

in which the authors criticize the earlier literature because of the size of the networks analyzed, and97

urge other researchers to focus on methods that can provide fast, accurate solutions to large scale98

TCT problems. Following this criticism of (Menesi et al. 2013), this article is an attempt to improve99

the state of GA optimization practice by taking amore holistic approach to performance analysis that100

considers accuracy, convergence time, computational efficiency, and ease of development. Thus,101

findings presented are highly relevant for real life scale applications; in particular, the approach to102
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parameter selection step should serve as a useful guide for practical use of GA for construction103

TCT problems.104

Research Motivation and Contribution105

It is clear from the existing literature that there is a lack of GA exemplars that could demonstrate106

the capacity to solve realistic large-scale construction TCT problems efficiently to make them107

accessible for real life applications. The term efficiency is used here to indicate solutions with108

reasonable computational requirements that can be met by a personal computer, and processing109

time (∼minutes). The main motivation behind this research is to address this gap, and following110

are the main research questions:111

• How feasible, in terms of computational demand and accuracy, is the application of meta-112

heuristics to realistic TCT problems?113

• What features of the TCT problem can be exploited to improve the efficiency of metaheuris-114

tics?115

• What is the software development effort required to achieve such solutions?116

Motivated by these research questions, this article provides the following contributions to the117

construction industry and research community:118

• The presentation of a holistic analysis on the utility of GA to solve real-world TCT problems.119

This analysis considers the trade-off of solution optimality in terms of time-to-solution, the120

complexity of implementation and computer hardware/software requirements.121

• The presentation of a number of well-studied, but highly effective, methods for improving122

GA performance of TCT problems. These include optimization of fitness evaluations using123

weighted graphs, a population stagnation criterion, and implementing parallel computing.124

• The provision of guidelines for GA parameter selection for TCT problems based on param-125

eter performance assessment using approximate Bayesian techniques.126

• The demonstration of the efficacy of freely available, standard “off-the-shelf” GA imple-127
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mentations in solving realistic TCT problems typical of real construction projects.128

Organization of the Article129

The following section of the article describes the research methodology; the benchmark models130

used, solution method, and implementation approach are discussed in detail. An improved GA131

design to solve TCT problems is then introduced. This section includes discussions on how to132

encode the problem, evaluate fitness and using a stopping criteria to maximize the computational133

efforts. Also described in this section is a novel approach to fitness assessment step of GA134

development. The results section includes discussions on how to solve the benchmark problems135

where the model performance is assessed in terms of accuracy, processing time and processing136

demand. The article concludes with the summary and long term implications of the findings.137

RESEARCH METHODOLOGY138

Defining the Problem—Benchmark Studies139

The majority of literature reviewed use the fundamental problems defined by Feng et al. (1997)140

and Chassiakos and Sakellaropoulos (2005). This article is structured around the 18- and 63-141

variable problems defined by Feng et al. (1997) and Sonmez and Bettemir (2012) in devising larger142

networks. This was achieved by repeating these network in series to achieve larger networks, and143

because the solution to smaller networks are known, so are the solutions to the larger networks.144

This property provides the benchmark for accuracy comparisons. Although the networks created145

in this fashion may not capture actual complexity of networks of comparable size, this method has146

been used and accepted in earlier literature consistently (Aminbakhsh and Sonmez 2016).147

Algorithm development efforts in this article was structured around the 63-variable networks148

defined by Sonmez and Bettemir (2012). These two topologically identical networks (63a and 63b)149

have a minor difference in their respective indirect cost figures. Additionally, results for analyses150

of larger networks of 630, 1800, 3150 and 6500 variables are also provided. Sonmez and Bettemir151

(2012) provide an interesting perspective on the increased computational complexity as the number152

of time-cost pairs associated with these networks—the computational complexity of these networks153
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are likely to increase exponentially with increased activity numbers. For the 18-variable problem154

there are 5.9E+9 discrete time-cost alternatives, while the same for the 63-variable problem are155

1.4E+42. For 180- and 630-variable networks, these values are 5.2E+97 and 2.9E+421 respectively.156

Note that these values only indicate the mode selection for activities, the topology sorting for larger157

networks (i.e. Critical path computations) will also be more complicated.158

Solution Method—Genetic Algorithms159

Genetic Algorithms (GA) have long been the most common and widely used metaheuristics160

in construction engineering and management research. However, examples of more sophisticated161

metaherustics solutions such as Particle Swarm Optimization (Zhang et al. 2005), Shuffled Frog162

Leaping (Fang and Wang 2012) , Ant Colony Optimization (Merkle et al. 2002), and Memetic163

Algorithms (Senouci and Eldin 2004) also exist (Zhang and Ng 2012). Despite this popularity, no164

clear benchmarks exist on their design and capacity as potential practical solutions to large-scale165

TCT problems outside few studies (Aminbakhsh and Sonmez 2016; Menesi et al. 2013; Kandil166

et al. 2010). Thus, this article provides analysis of GAs performance across different benchmark167

problems as a starting point to test their performance.168

Solution Platform169

An important goal with this article was to assess the GA performance without devising purpose170

specific algorithms in an attempt to minimize the development efforts and ensure extensibility of the171

proposed solutions to different problems. The application platform chosen for this study was to use172

a generic GA solution through the Distributed Evolutionary Algorithms in Python (DEAP) frame-173

work (Fortin et al. 2012). This open source framework is built on the Python programming174

language—an open source, high-level programming language (https://www.python.org/).175

DEAP was chosen due to the ease of development and integration of parallel computing. The176

method chosen for parallelization was Scalable COncurrent Operations in Python (SCOOP) within177

the DEAP framework, due to its seamless integration with DEAP and relatively low "cost of178

development" in implementation (Hold-Geoffroy et al. 2014).179
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Preliminary Implementation and Observations180

To assess the baseline performance of DEAP as a general implementation method and SCOOP181

as the parallel computing medium, preliminary optimization instances were run. No modifications182

were made to the DEAP code to implement the problem to assess its viability for scalability183

and reduce development efforts. A reasonable assumption was made about the upper limits of184

the population size (2,000) and the number of generations (2,000) (Kandil and El-Rayes 2006).185

The default GA parameters were; mutation rate of 0.1 and method of Polynomial Bounded (also186

available Gaussian, Shuffle Indexes, Flip Bit and Uniform), crossover rate of 0.5 and method187

of Uniform Partially Matched (also available, One and Two Point, Uniform, Partially Matched,188

Ordered and Blend), and selection method of NSGA-II (also available, Tournament, Roulette,189

SPEA-II, Random, Best, Worst, Tournament BCD) (Fortin et al. 2012). A snapshot of the overall190

performance of the results of these runs is given in Table 2. The reported baseline performance191

values are for 630-variable problem as this was the most recent benchmark problem, and more192

detailed analyses for different networks are provided in later parts of this article.193

Remarkably, the results were extremely accurate, exceeding those reported by Sonmez and194

Bettemir (2012); however, the computational time, on average, was approximately 18 hours for195

the five routines run for each one of these test instances. Due to the expect non-linear growth in196

processing time of the larger network problems, they were not attempted using this method. Having197

arrived at an accurate DEAP implementation of the benchmark problem by Sonmez and Bettemir198

(2012), this research was extended to exploit parallel computing using SCOOP. This resulted in199

more than 4x speedup over the serial code using 8 CPU cores; however, the overall runtime ( 4 hrs)200

indicated solving realistic TCT problems would still be infeasible.201

IMPROVED GENETIC ALGORITHM DESIGN202

The preliminary analysis indicated that the DEAP package can provide accurate solutions;203

although, the processing times were still significant. Parallel computing with the SCOOP package204

also reduced the computational time significantly when the computations were distributed over205

multiple CPUs. Considering these observations, the following sections of this article show further206
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improvements made to the GA design—including introducing a stopping criterion, details of207

graph-based fitness evaluation method, and selection of optimal GA parameters—to minimize208

computational time without sacrificing accuracy.209

Problem Encoding210

Arguably the most important element in effective use of a GA is the encoding of a problem211

solution as a genetic code. In terms of biological analogy, the problem solution can be considered212

as the organism or the phenotype and the genetic code is the genotype. The method of reading213

a genome to produce a problem solution is the embryology. The choice of encoding along with214

the associated embryology, crossover, mutation and selection operations can have a significant215

impact on the effectiveness of the method (Affenzeller et al. 2009). A simple encoding approach216

was determined to be effective in modeling the TCT problem, and the genotype of a individual is217

defined as a sequence of construction modes.218

Firstly consider the time-cost optimization problem with n activities A = {a1, a2, . . . , an} where219

ai is an integer that represents the number of modes that can be assigned to the ith activity. Each220

mode assignment, mi, j , is a cost/duration pair, mi, j = (ci, j, di, j), where ci, j and di, j are respectively221

the cost and duration of the ith activity using the jth mode. The genotype for a potential solution set222

of mode assignments is given by the list G = {g1, g2, . . . , gn} where 1 ≤ gi ≤ ai for i = 1, 2, . . . , n.223

Here each gene, gi, encodes the mode number for activity i.224

The phenotype is constructed by assigning activity i to the gith possible mode. This yields an225

embryology function E(G) defined by,226

E(G) = {(1, g1), (2, g2), . . . , (n, gn)}. (2)227

A fitness function the can be determined in terms of the phenotype and genotype.228

Fitness Evaluation229

The fitness of a individual phenotype p = E(G), is the total cost of the construction process230

given the activity mode assignments. By assignment is referred to an activity-mode pair. For231
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example, if activity i will implement mode gi, then the mode assignment is pi = (i, gi). This total232

cost, CT , consists of the sum of the activity costs, CA, and the indirect costs, CI , of the total project233

duration. That is,234

CT = CA + CI . (3)235

This is simply Equation (1) without the incentive and disincentive terms—it should be noted that236

these terms can be simply added to the formula if the problem characteristics requires so.237

Given individual, p, CA and CI can be calculated as,

CA =

n∑
i=1

cpi, (4)

CI = r
∑
j∈L

dpj . (5)

where r is the indirect cost rate ($/time) and L is the set of activities which contribute to the critical238

path of the project.239

By substitution of Equations (4) and (5) into Equation (3) a fitness function can be defined,240

F(p) =
n∑

i=1
cpi + r

∑
j∈L

dpj . (6)241

This can, in turn, be expressed in terms of the genotype using the embryology (Equation (2)),242

F∗(G) =
n∑

i=1
ci,gi + r

∑
j∈L

d j,gj . (7)243

Computational complications arise from computing the latter part of the formula caused by the244

necessity to compute the longest path (i.e. critical path) of the network analyzed. A significant245

contribution of this article to general construction engineering and management literature is the246

computation of the critical path using a robust and efficient method from graph theory. This method247

removes the need for repeated topology sortingwith different time-costmode allocation and improve248

overall computation time substantially. Used in various other disciplines such as Operations249
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Management (e.g. minimum spanning tree), graph theory is the mathematics of objects with250

interconnected relationships (Floudas and Pardalos 2008). Although graph theory has been applied251

to general scheduling problems (Dharwadker and Pirzada 2011), no such study in construction252

engineering and management literature exists to the best of the authors knowledge. The main253

advantage of using a graph-based solution to the classical TCT problem is the requirement for254

topological sorting of the network needs only be completed once, rather than more traditional255

approach of iteratively constructing the critical path for each one of the GA solutions. Because256

the time-cost pairs are assigned to activities in no particular order in search of the lowest project257

costs, all corresponding topologies needs to be sorted (i.e. Critical path) at each step of genetic258

operations. It is not clear whether this iterative approach was replicated in earlier literature, but this259

method was used in the earlier optimization analyses conducted for this article. This also explains260

the significant computational time associated with these optimization runs.261

Stopping Criteria262

A challenge in using GA is to determine when to terminate (Affenzeller et al. 2009; Kim263

2013) the genetic operations. This is a trade-off between the quality of the solution and the overall264

execution time. Everything kept equal, more generations will always lead to better solutions unless265

the correct answer is found during computations; however, the rate at which this improvement occurs266

is greatly dependent on the genetic diversity in the population of solutions. When the diversity of267

the solutions gets low, the populations stagnate and the solutions are essentially stabilized. At this268

point there is little to be gained by continued genetic operations, and it is sensible to terminate the269

evolution to optimize computation time required. To achieve this, a measure of diversity, which270

compares the relative distance between fitness of the best individual to the average fitness of the271

whole population was devised.272

S(P) = 1 − |P |
minG∈P F∗(G)∑

G∈P F∗(G)
(8)273

where P is the gene pool, that is the set of all genomes in the current population. This stagnation274

11 Agdas, August 16, 2017



criterion is used to determine the trade-off between computational effort and solution accuracy. In275

this article, the stagnation threshold of T = 5E − 005, and the stopping criterion of S(P) < T were276

used.277

Critical Path Computations278

The total cost function (Equation (3)) and derived fitness function (Equation (7)) consist of279

two distinct components; the activity costs and the indirect cost. Of these, the indirect cost is280

more computationally expensive due to the requirement that the critical path (i.e. duration) of281

the project must be calculated to determine the total project duration. The reviewed construction282

engineering and management literature have not explicitly stated the method used in computing283

the project duration; but, it appears this is computed as the longest path within a network (Sonmez284

and Bettemir 2012). This can simply be calculated by iteratively computing the completion time285

of activities using the precedence logic. In this article, the preliminary computations were run286

using this method. Once an individual activity time-cost pair is selected from available modes287

for an activity, the time is registered as the accepted activity duration and fed into the critical288

path computations. This is identical to the forward pass computations of traditional CPM method.289

Although effective in providing a simple solution to project duration computations, this approach290

proves to be inefficient due to excessive time required to compute the results, as in each iteration291

the network topology needs to be recalculated because of the activity mode selection.292

The Longest Path Problem293

Critical path problem is a specific case of a longest path problem. This widely studied fun-294

damental problem of finding the longest path within a graph is essentially the very description295

to finding the longest path within a given schedule (Floudas and Pardalos 2008). Studying the296

effective solution algorithms devised from the longest path problem, a computationally efficient297

solution for the TCT problems under consideration was developed.298
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Graph Method299

A graph is defined as a set of vertices,V , and a set of edges, E . For an undirected graph, vertices300

u, v ∈ V are said to be connected if there is an edge e ∈ E such that e = (u, v). The neighborhood of301

vertex v by n(v), that is, n(v) is the set of all vertices in E that are connected to v. A weighted graph302

also includes a function ω(e) which assign edges to a measure of distance between its endpoints.303

Importantly, a mode’s duration through the weighting function ω(e) was explicitly encoded, which304

enables efficient pre-processing via a topological sort.305

Given a path is defined as a connected sequence of vertices Pv0,vn = (v0, v1, ..., vn), that is for all306

i ∈ [0, n − 1] there is an an edge (vi, vi+1) ∈ E . The length of a path, denoted by D(Pv0,vn), is the307

sum of the edge weights connecting the vertices in the path, that is D(Pv0,vn) =
∑n−1

i=0 ω((vi, vi+1)).308

The longest path problem can be stated as follows: Given a weighted graph, G = (V, E), with309

weighting function ω(e) and two vertices s, t ∈ V , the task is to find a path Ls,t that satisfies,310

Ls,t = argmax
Ps,t∈Φs,t

D(Ps,t), (9)311

where Φs,t is the set of all possible paths between s and t. It should be noted that for a general312

graph G the longest path problem has been shown to be NP-hard—similar to the TCT problem as313

noted by Sonmez and Bettemir (2012).314

Solution for Directed Acyclic Graphs315

There are two special types of graphs: directed and acyclic graphs. A directed graph defines316

connectivity as unidirectional, that is if (u, v) ∈ E then u is connected to v but v is not connected317

to u. A graph is acyclic if there do not exist and paths with v0 = vn, such a path is called a cycle.318

Although the longest path problem is NP-hard for a general weighted graph, an efficient algorithm319

exists for graphs which are directed and acyclic with a non-negative weight function ω(e) ≥ 0 for320

all e ∈ E (Kahn 1962; Knuth 1968). The algorithm consists of two steps: (1) sort the vertices321

topologically, and (2) visit vertices in order and compute longest path as the longest path from each322

incoming edge.323
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A vertex list of a directed acyclic graph (DAG) is topologically sorted if for every directed edge324

e = (vi, v j) then i < j. That is, all vertices from all possible paths leading to the j-th vertex are325

visited before the j-th vertex itself. A topological sort can be computed using the algorithm shown326

in Figure 1. It is worth noting that a topological sort is only valid for directed acyclic graphs. Once327

the topological sort has been applied, the longest path between all nodes can be computed using328

the algorithm shown in Figure 2.329

This longest path algorithm has a computational complexity of O(|V | + |E |). Since the activity330

dependency graph for a TCT problem is directed, acyclic and activity durations are always non-331

negative, the algorithm shown in Figure 2 is directly applicable.332

Thus, the fitness function F∗(g) (Equation (7)) can be computed efficiently in O(|V | + |E |)333

operations (Cormen et al. 2001). Figure 3 demonstrates the relative proportion of CPU time334

spent in fitness evaluations using the graph-based scheme versus the original, iterative approach.335

This figure shows computational demands for different parts of the overall computations and the336

advantage of DAG method over the traditional approach to the 63a problem.337

DAG Implementation Using DEAP and SCOOP338

A parallel genetic algorithm for solving the TCT using Python was implemented, in which339

the computationally demanding critical path durations were calculated using the graph theory.340

The DEAP library was utilized for the genome definition population creation and genetic opera-341

tions (Fortin et al. 2012). The fitness evaluation step, which is the most computational task, has342

been parallelized using the SCOOP library (Hold-Geoffroy et al. 2014).343

At the beginning of each iteration, individuals were randomly paired together based on fitness344

based on one of several selection methods. Crossover is then performed with each of these pairs345

to produce exactly two offspring, upon which mutation is applied at random. Finally, all offspring346

and parents are pooled into one population, from which the best 50% are selected for the next347

generation. This cycle repeats until a fixed generation limit is reached or if the population stagnates348

(As computed by Equation 8). An overview of this approach is given in Figure 4.349

The most efficient method of computing the longest path in a DAG consists of a topological sort350
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followed by an incremental build of the longest path by choosing the longest incident path at each351

node. Because individual activity dependencies do not change with different activity duration-cost352

pair selection, the topological sort needs to be applied once. This dramatically increases the overall353

performance of the critical path computations. Larger problemswere solved efficiently by removing354

repeated topological sorting. Since each fitness evaluation is completely independent, these can be355

executed in parallel using the Python SCOOP library (Hold-Geoffroy et al. 2014).356

Parameter Selection357

Performance (computation time and accuracy) of GAs are affected by the parameter selection,358

and to the best of authors’ knowledge, no comprehensive parameter sweep of GA parameters has359

been conducted on TCT problem solution criteria—examples of such studies exist for different360

scheduling problems (Alcaraz and Maroto 2001). To address this research gap, approximate361

Bayesian computation (ABC) techniques were used to analyse the algorithm parameter distribution362

for a given desired accuracy threshold. The vector of algorithm parameters, θ, was treated as a363

random variable with probability distribution p(θ), then the parameter distribution was computed,364

in which the solution under a given parameter set, Sθ , is the exact minimum solution, SM using365

Bayes’ Theorem,366

p(θ given Sθ = SM) =
p(Sθ = SM given θ)p(θ)

p(Sθ = SM)
. (10)367

While Equation (10) is not tractable, it can be estimated for a tolerable level of accuracy, ε ,368

through GA simulations with randomized parameters. This method, given in Figure 5, that results369

is know as ABC rejection sampling in the computational statistics literature (Sunnaker et al. 2013).370

This ABC rejection scheme was applied using the 63a and 63b TCT problems using a target371

accuracy of ε = 0.7% with uniform initial parameter distributions. For the crossover and mutation372

rates this was continuous uniform distributions in the interval [0, 1], and the crossover, mutation373

and selection functions were treated as uniform discrete random variables (i.e., each was selected374

with equal probability from the available options within DEAP documentation). These values were375
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used for the limits for the initial parameter distribution for ABC analysis. After computing 300376

accepted ABC samples, it was determined that the most optimum parameters in balancing accuracy377

and processing time using the mean of the ABC samples. For the selection, crossover and mutation378

functions, this mean was rounded and found the Tournament selection function, the One Point379

cross-over function, and the Shuffle Indexesmutation function to be optimal. The optimal mutation380

and crossover rates where found to be 0.107 ± 0.079 and 0.474 ± 0.082 respectively. Note that381

the ABC analyses in this article exclude number of generations run and the population size as they382

were discussed in earlier parts of this article. A particularly interesting observation is the lack of383

performance from widely popular functions such as NSGA-II and SPEA-II. This can be explained384

in part that these algorithms are suitable for multi-objective optimization, and the TCT problems385

presented here are not and can be solved with simpler and faster converging algorithms.386

RESULTS AND DISCUSSIONS387

Performance388

Solution Accuracy389

The largest network with clear accuracy numbers has been provided by Sonmez and Bettemir390

(2012) as 2.41% and 2.47% for 630a and 630b problems using a hybrid GA the authors have391

developed. The algorithms used in this research produced significantly better results for the same392

networks during parameter selection analyses described in earlier sections of this article. The393

average accuracies were 0.79% (min=0.43%, max=1.57%) & 1.12% (min=0.64%, max=1.71%)394

for 630a and 630b problems respectively. The results were encouraging and clearly indicate395

the efficacy of the proposed optimization routine in achieving extremely accurate solutions to a396

large scale TCT problem. However, for any solution of this problem to be practically viable,397

accuracy needs to be accompanied by convergence speed, as well as development effort—a factor398

mostly ignored in earlier literature. Because of these encouraging results and significantly faster399

convergence rates, larger networks of sizes 1800, 3150 and 6300 variables were solved to test the400

convergence limits of the algorithms.401
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No stagnation criteria was used in these experiments as the goal was to assess the limits of402

convergence, rather than practical solutions. The analyses were run five times for each one of these403

instances and averages values for both accuracy and runtime are reported in Table 3. Number of404

generationswas set to 5,000with a population size of 2,750 to test the accuracy limits of the proposed405

solution. These test instances were run with 8 CPUs. The results of these larger networks are also406

encouragingwith the exception of an 1800-variable network. There are no clear explanations to why407

this variability of the accuracies observed while processing times were comparable to the network408

sizes. Another interesting observation is the growth in processing time appears to be near linear409

with increased network size. This is a clear indicator of the efficiency of the proposed method410

in addressing the computational complexity of these problem under assessment. The observed411

variable accuracy might have been caused by the inherent variability of the results consistency of412

metaheuristic methods for different problems or the complexities of solution surfaces of the original413

18-variable problem might be more complicated than those of the 63-variable problem; although,414

the latter is the much larger network.415

Development Effort416

It is common in construction engineering and management research to use existing, open source417

optimization routines (Kandil and El-Rayes 2006), purpose specific software platforms (Menesi418

et al. 2013), or develop customized optimization routines (Sonmez and Bettemir 2012) using419

different software packages and programming languages. In this article, DEAP, and open source420

development project aimed at increasing the viability of EvolutionaryAlgorithmswritten in Python,421

was used. In developing solutions for the TCT and parallelism, the main goal was to minimize422

the development efforts and rely as much on off-the shelf solutions. Similar to GA development,423

SCOOP package was used for parallel computing, which was in built to DEAP package with424

minimal alterations.425

Runtime Performance and Processing Demand426

Kandil and El-Rayes (2006) cited a TCT problem of 720-variable network that took 136.5 h427

to solve, which was reduced to 19.72 h using parallel computing and 6.70 h when using coarse-428
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grained parallel modules. In a follow up article, the authors reported (Kandil et al. 2010) a 90429

h runtime without parallel computing that can possibly be attributed to faster processors. The430

authors also provide a processing time versus number of processors to evaluate their relationship.431

Following this approach, a comparison of reduced processing time with added computational432

resources through parallel computing is provided. Table 4 summarizes the runtime performance433

with added computational demand across multiple levels of accuracy. It can be seen that problems434

of 630 variables are solved under 10 minutes consistently using no more than 8 CPUs. This is435

significant as these results indicate a more than 100× speed increase to the non-graph, non-parallel436

GA approach used earlier in this article (see Table 2).437

In parallel computing, the limitations of parallelization must also be considered. It is important438

to note that the maximum speed up of a parallel algorithm is constrained by the ratio of strictly serial439

portions of the code. This is generally referred to as Amdahl’s Law (Amdahl 1967). Essentially,440

this is an example of the law of diminishing returns. As the parallel portion of the code is increased,441

the strictly serial portion becomes a bigger proportion of the total runtime. As the the number of442

cores goes to infinity, then the limit of the speed up is the original serial code runtime divided443

by the strictly serial portion of the parallel code—theoretically this is the maximum possible444

parallelization. During the analyses, CPUs of 1-8 were considered. In majority of these runs, no445

noticeable improvements in either time or accuracy were noted when more than 6 CPU’s where446

used. The algorithms for this research effort were developed using a state of art HPC facility, which447

brings the questions about how viable this method for implementation on a personal computer. To448

test the viability of solving these problems in a personal computer, some of these test instances were449

also run on a personal computer. This PC had a 6 core Intel Xeon CPU (W3670 clocked at 3.2 GHz)450

with 16 GB of RAM and the operating system was the Red Hat Enterprise Linux version 6.4. This451

is a relatively old (∼2010) system that performed on par with the HPC runs for larger problems,452

indicating that common PCs can be used in applications based on the methodology proposed here.453
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Strengths, Weaknesses of the Proposed Solution454

The DAG model implemented in DEAP and SCOOP can be a viable solution to large scale455

discrete TCT problems that are common in the construction industry. The implemented model was456

developedwithminimum coding and software development using open source tools, and processing457

demands can be met by a personal computer while keeping the computational time manageable.458

The solution developed in this article compares favorably in terms of accuracy and processing459

time when compared to the earlier studies. Development effort comparisons are more challenging460

as specifics of earlier studies are not detailed to provide such a comparison. It can be deduced461

from the earlier articles that researchers have developed problem specific GA solutions (Sonmez462

and Bettemir 2012), and built on existing algorithms (Kandil et al. 2010); however, there are no463

discussions on the development efforts needed. The parameter sweep analyses conducted indicates464

that the model performance will be heavily dependent on problem formulation and GA parameter465

selection. This is, perhaps, also the biggest weakness of the algorithms developed in this article as466

their performance is not consistent across different problems and users will have to make decisions467

on what parameters should be selected. The proposed solution here is a steep improvement from468

traditional GA solutions to the TCT problem; however, there are other solutions that can solve469

the TCT problem (Aminbakhsh and Sonmez 2016). The solution set presented in this article is470

not mutually exclusive to other efforts as the DAG method can be implemented in longest path471

computation step of different algorithms.472

CONCLUSION473

This article presents an innovative approach to solving large scale construction time-cost trade-474

off problems using genetic algorithms (GAs) that can solve real life scale TCT problems with475

exceptional accuracy, while not creating excessive computational demand or processing time. This476

is achieved by using a well-studied, yet innovative method of graph theory in solving the critical477

path problem. The computational bottleneck in solving large scale TCT problems is the fitness478

assessment of different solutions because of the iterative and repeated computation of critical paths479

(i.e. the longest path in a network). The graph method was used to carry out topology sorting480
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one time, which increases computational efficiency significantly. Moreover, this research effort481

implemented parallel-computing, provide an approximate Bayesian assessment of optimum GA482

parameters, and introduce an effective stopping criteria; all ofwhich further improves computational483

efficiency. Themethods provided here represent the groundwork for analyzing even larger networks,484

and can be extended to different construction engineering and management problems such as485

resource constrained scheduling and resource leveling. Because the methodological improvements486

proposed here are non domain-specific, they can be used to efficiently solve different computational487

problems.488
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TABLE 1. Sample of Earlier Research Findings on TCT Problem Solution Benchmarks

Article Network Cost-Time Pairs Method Runtime(h) Accuracy(%) Parallelism
Feng et al. 1997 18 5 GA N/A N/A No
Hegazy 1999 18 5 GA 0.11 N/A No
Chassiakos &
Sakellaropolous 2005 29 3 LP/IP <0.01 0 .30 No

Kandil and El Reyes. 2006 720 N/A GA 6.70 N/A Yes
Long & Ohsato 2009 18 5 GA N/A N/A No
Menesi et al. 2012 2000 5 Const. Prog. 2.00 6.39 No
Sonmez & Bettemir 2012 630 5 Hybrid GA 1.22 2.41 No
Ghoddousi et al. 2013 37 2 GA N/A N/A No
Monghasemi et al. 2015 18 5 GA N/A N/A No
Tran et al. 2016 15 3 Hybrid GA N/A N/A No
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TABLE 2. Preliminary GA Benchmarks with DEAP and SCOOP

Size DEAP Runtime(h) DEAP Accuracy(%) DEAP+SCOOP Runtime(h) DEAP+SCOOP Accuracy(%)
630a 17.45 0.43 4.05 0.80
630b 18.98 0.83 4.61 1.20
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TABLE 3. Processing Time and Solution Accuracy for Very Large Networks

Network Runtime(h) Accuracy(%)
1800a 5.82 7.05
1800b 5.84 14.72
3150a 9.15 6.50
3150b 9.41 4.73
6300a 16.42 7.66
6300b 16.76 6.96
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TABLE 4. Runtime & Accuracy vs Number of CPU’s

Stopping Criteria Network CPUs Runtime(m) Accuracy(%)

2,000 Generations 63a 2 29.04±0.31 0.28±0.26
2,000 Generations 63a 4 20.74±0.65 0.34±0.14
2,000 Generations 63a 6 18.93±0.38 0.33±0.38
2,000 Generations 63a 8 18.32±0.17 0.48±0.53
2,000 Generations 63b 2 29.01±0.73 0.75±0.31
2,000 Generations 63b 4 21.88±2.78 0.96±0.18
2,000 Generations 63b 6 19.06±0.32 0.89±0.44
2,000 Generations 63b 8 18.39±0.13 1.20±0.37
2,000 Generations 630a 2 125.72±5.38 1.47±0.25
2,000 Generations 630a 4 99.38±11.80 1.62±0.25
2,000 Generations 630a 6 77.14±2.24 1.78±0.31
2,000 Generations 630a 8 73.92±0.07 1.93±0.61
2,000 Generations 630b 2 123.25±2.08 1.84±0.47
2,000 Generations 630b 4 94.72±9.78 2.20±0.47
2,000 Generations 630b 6 76.76±1.86 2.30±0.25
2,000 Generations 630b 8 71.99±1.79 2.47±0.17
Stagnation 63a 2 2.15±0.17 0.27±0.18
Stagnation 63a 4 2.06±0.28 0.39±0.33
Stagnation 63a 6 1.91±0.18 0.37±0.25
Stagnation 63a 8 1.85 ±0.13 0.26±0.18
Stagnation 63b 2 2.00±0.37 0.93±0.64
Stagnation 63b 4 1.38±0.42 1.84±1.92
Stagnation 63b 6 1.73±0.26 0.64±0.32
Stagnation 63b 8 1.48±0.23 1.24±0.59
Stagnation 630a 2 10.08±6.15 3.15±3.44
Stagnation 630a 4 9.38±4.13 2.25±1.49
Stagnation 630a 6 5.11±3.34 4.37±3.11
Stagnation 630a 8 6.07±2.27 2.76±1.64
Stagnation 630b 2 8.93±2.93 2.49±0.83
Stagnation 630b 4 6.63±1.38 2.63±0.48
Stagnation 630b 6 4.73±2.80 3.77±2.60
Stagnation 630b 8 6.61±0.77 2.29±0.41
Literature Accuracy 63a 2 1.65±0.10 1.39±0.25
Literature Accuracy 63a 4 1.55±0.06 1.33±0.12
Literature Accuracy 63a 6 1.54±0.13 1.40±0.17
Literature Accuracy 63a 8 1.39±0.08 1.50±0.24
Literature Accuracy 63b 2 1.68±0.28 1.42±0.15
Literature Accuracy 63b 4 1.46±0.12 1.65±0.28
Literature Accuracy 63b 6 1.50±0.14 1.50±0.24
Literature Accuracy 63b 8 1.38±0.19 1.50±0.25
Literature Accuracy 630a 2 10.52±1.10 2.18±0.15
Literature Accuracy 630a 4 7.63±0.64 2.18±0.10
Literature Accuracy 630a 6 7.10±0.63 2.23±0.06
Literature Accuracy 630a 8 7.37±1.26 2.33±0.30
Literature Accuracy 630b 2 10.36±0.98 2.30±0.13
Literature Accuracy 630b 4 7.78±1.13 2.32±0.25
Literature Accuracy 630b 6 7.09±1.78 2.47±0.33
Literature Accuracy 630b 8 6.13±0.58 2.43±0.24

Note that each of these test instances are run five times, and what is reported in runtime and accuracy columns
is the average of these runs and half of the range (max-min) for each. This is done to indicate the approximate
distances from the mean for each one of these runs.
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Fig. 1. Topological Sort
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Fig. 2. Longest Path Algorithm for a Topological Sorted, Non-Negatively Weighted DAG
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Fig. 3. Computational Demand Profile for GA Implementation

32 Agdas, August 16, 2017



Activity Data

Topological Sort of

Dependency Graph

Generate inital Population P

g = 0

Evaluate Fitness in Parallel

F*(P1) F*(Pn)

Assign Pairs in P

Crossover pairs to

produce offspring O

Mutate O
Pool Population

P* = O + P

Select top 50% in P*

S(P*) < t ?

g = g + 1

End

F*(P1)

g > N ?

Start

Yes

No

Yes

No

Fig. 4. Flow Chart of GA Implementation
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Fig. 5. ABC rejection sampling for optimal algorithm parameter selection
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