Graduate Thesis Or Dissertation

 

Thermophysical Analysis of Gale Crater Using Observations from TES, THEMIS and the Mars Science Laboratory Curiosity Rover Public Deposited

Downloadable Content

Download PDF
https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/pg15bf24f
Abstract
  • I created a web-based interface to the MARSTHERM one-dimensional numerical thermal model, which calculates surface and atmospheric temperatures of Mars for a set of user-specified conditions. The website also provides access to tools which I adapted to allow users to automatically derive thermal inertia from images taken by the Mars Odyssey Thermal Emission Imaging System (THEMIS), and access to existing maps of thermal inertia derived from Mars Global Surveyor Thermal Emission Spectrometer (TES) observations. To demonstrate the capabilities of the tools provided on the website, I conducted a case study investigating the thermal inertia within Gale Crater, using observations from TES, THEMIS, and the Mars Science Laboratory (MSL) Ground Temperature Sensor (GTS). Seasonal variations in TES-derived thermal inertia in the vicinity of the MSL landing site are consistent with a layer of sand or dust over rock, an interpretation supported by diurnal temperature variations recorded by GTS on MSL sol 30. However, diurnal temperature variations from elsewhere along the MSL traverse route could not be modeled by simple two-component structures. Seasonal variations in TES-derived thermal inertia support the hypothesis that the thickness of a surface layer of dust likely increases with elevation on Mount Sharp.
Creator
Date Issued
  • 2013
Academic Affiliation
Advisor
Committee Member
Degree Grantor
Commencement Year
Subject
Last Modified
  • 2019-11-17
Resource Type
Rights Statement
Language

Relationships

Items