Date of Award

Spring 1-1-2013

Document Type


Degree Name

Master of Science (MS)


Aerospace Engineering Sciences

First Advisor

Eric W. Frew

Second Advisor

Brian Argrow

Third Advisor

Dale Lawrance


The focus of this work is to develop an energy-aware path planning algorithm that maximizes UAS endurance, while performing sampling and surveillance missions in a known, stationary wind environment. The energy-aware aspect is specifically tailored to extract energy from the wind to reduce thrust use, thereby increasing aircraft endurance. Wind energy extraction is performed by static soaring and dynamic soaring. Static soaring involves using upward wind currents to increase altitude and potential energy. Dynamic soaring involves taking advantage of wind gradients to exchange potential and kinetic energy. The path planning algorithm developed in this work uses optimization to combine these soaring trajectories with the overarching sampling and surveillance mission.

The path planning algorithm uses a simplified aircraft model to tractably optimize soaring trajectories. This aircraft model is presented and along with the derivation of the equations of motion. A nonlinear program is used to create the soaring trajectories based on a given optimization problem. This optimization problem is defined using a heuristic decision tree, which defines appropriate problems given a sampling and surveillance mission and a wind model.

Simulations are performed to assess the path planning algorithm. The results are used to identify properties of soaring trajectories as well as to determine what wind conditions support minimal thrust soaring. Additional results show how the path planning algorithm can be tuned between maximizing aircraft endurance and performing the sampling and surveillance mission. A means of trajectory stitching is demonstrated to show how the periodic soaring segments can be combined together to provide a full solution to an infinite/long horizon problem.