Date of Award

Spring 1-1-2013

Document Type


Degree Name

Doctor of Philosophy (PhD)


Aerospace Engineering Sciences

First Advisor

Dale A. Lawrence

Second Advisor

Bart Van Zeghbroeck

Third Advisor

Eric Frew

Fourth Advisor

Mark Rentschler

Fifth Advisor

Richard Weir


This research investigates design and control of an active catheter for minimally invasive medical procedures. Microfabrication techniques are developed and several prototypes were constructed. The understanding and analysis results from each design iteration are utilized to improve the overall design and the performance of each revision. An innovative co-fabrication method is explored to simplify the fabrication process and also improve the quality, repeatability, and reliability of the active catheter. This co-fabrication method enables a unique compact integrated heater and sensor film to be directly constructed on a shape memory alloy (SMA) sheet and to be utilized as an outline mask to pattern a micro SMA actuator. There are two functions integrated in the sensor film: heat sources to actuate the micro SMA actuator and sensors to provide temperature and strain of the active catheter to closed-loop control algorithms. Three main aspects are explored in this dissertation: thermal dynamics in the MicroFlex (\uF) film and its effect on the sensor capabilities; non-minimum phase behavior and its effect on control performance, and film micro fabrication design and its effect on thermal dynamics. The sensor film developed from this understanding is able to deliver excellent heating and sensing performance with a simple design.