Graduate Thesis Or Dissertation

 

Modeling, Theoretical and Observational Studies of the Lunar Photoelectron Sheath Public Deposited

Downloadable Content

Download PDF
https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/0z708w42x
Abstract
  • The Moon, lacking an atmosphere and a global magnetic field, is directly exposed to both solar ultraviolet radiation and a variety of ambient plasmas. On the lunar dayside, a photoelectron sheath develops and the surface typically charges positively since the photoemission current is at least an order-of-magnitude greater than any ambient current. This sheath dominates the near-surface plasma environment and controls the charging, levitation and transport of micron-sized dust grains. In this thesis, we first model the lunar near-surface plasma environment via a one-dimensional particle-in-cell code. The sheath potential, electric field and plasma densities are presented over a wide range of plasma parameters. Additionally, the charging and transport of micron- and sub-micron sized dust grains is modeled via a test-particle approach in an attempt to explain Apollo-era observations of lunar dust dynamics. Secondly, we present a comparison of the particle-in-cell results with theoretical, kinetic derivations of the lunar photoelectron sheath. We extend previous theories to include the presence of a κ-distribution for the solar wind electrons. Finally, we present a comparison of in-situ measurements of the lunar photoelectron sheet in the terrestrial plasma sheet by the Lunar Prospector Electron Reflectometer with particle-in-cell simulations to confirm the presence of non-monotonic sheath potentials above the Moon. Future work in all three sections, (simulation, theory and observation) is presented as a guide for continuing research.
Creator
Date Issued
  • 2011
Academic Affiliation
Advisor
Committee Member
Degree Grantor
Commencement Year
Subject
Last Modified
  • 2019-11-16
Resource Type
Rights Statement
Language

Relationships

Items