Date of Award

Spring 1-1-2015

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Physics

First Advisor

David J. Wineland

Second Advisor

James Thompson

Third Advisor

Cindy Regal

Fourth Advisor

Eric Cornell

Fifth Advisor

David Jonas

Abstract

Entangled states are a key resource in fundamental quantum physics, quantum cryptography, and quantum computation. In this thesis, we focus on the demonstrations of two novel methods to generate entanglement. First, we implement dissipative production of a maximally entangled steady state on two trapped ions. Dissipative and coherent processes are combined and implemented in a continuous time-independent fashion, analogous to optical pumping of atomic states, continuously driving the system towards the steady entangled state. With this method, we obtain a Bell state fidelity up to 0.89(2). Second, we propose and demonstrate a novel coherent process to confine quantum evolution in a subspace between an initial separable state and the target entangled state. We demonstrate this scheme on two and three ions obtaining a Bell state fidelity up to 0.992(2). Both of these methods are robust against certain types of experimental noise and decoherence. Additionally, we demonstrate sympathetic cooling of ion chains to near the ground

state of motion with an electromagnetically-induced-transparency (EIT) method. This results in roughly an order of magnitude faster cooling time while using significantly lower laser power compared to the conventional resolved sideband cooling method. These techniques may be helpful for scaled-up quantum computing.

Share

COinS