Document Type

Article

Publication Date

Spring 5-1-2003

Publication Title

Journal of the Optical Society of America B

ISSN

0740-3224

Volume

20

Issue

5

First Page

968

Last Page

976

DOI

10.1364/JOSAB.20.000968

Abstract

We present a detailed investigation of strontium magneto-optical trap (MOT) dynamics. Relevant physical quantities in the trap, such as temperature, atom number and density, and loss channels and lifetime, are explored with respect to various trap parameters. By studying the oscillatory response of a two-level 1S01P1 88Sr MOT, we firmly establish the laser cooling dynamics predicted by Doppler theory. Measurements of the MOT temperature, however, deviate severely from Doppler theory predictions, implying significant additional heating mechanisms. To explore the feasibility of attaining quantum degenerate alkaline-earth samples via evaporative cooling, we also present the first experimental demonstration of magnetically trapped metastable 88Sr. Furthermore, motivated by the goal of establishing the fermionic isotope 87Sr as one of the highest-quality, neutral-atom-based optical frequency standards, we present a preliminary study of sub-Doppler cooling in a 87Sr MOT. A dual-isotope (87Sr and 88Sr) MOT is also demonstrated.

Included in

Physics Commons

Share

COinS