Document Type

Article

Publication Date

Fall 11-2011

Publication Title

Journal of Molecular Spectroscopy

ISSN

0022-2852

Volume

270

Issue

1

First Page

1

Last Page

25

DOI

doi:10.1016/j.jms.2011.06.007

Abstract

High-resolution molecular spectroscopy is a sensitive probe for violations of fundamental symmetries. Symmetry violation searches often require, or are enhanced by, the application of an electric field to the system under investigation. This typically precludes the study of molecular ions due to their inherent acceleration under these conditions. Circumventing this problem would be of great benefit to the high-resolution molecular spectroscopy community since ions allow for simple trapping and long interrogation times, two desirable qualities for precision measurements. Our proposed solution is to apply an electric field that rotates at radio frequencies. We discuss considerations for experimental design as well as challenges in performing precision spectroscopic measurements in rapidly time-varying electric fields. Ongoing molecular spectroscopy work that could benefit from our approach is summarized. In particular, we detail how spectroscopy on a trapped diatomic molecular ion with a ground or metastable 3Δ1 level could prove to be a sensitive probe for a permanent electron electric dipole moment (eEDM).

Included in

Physics Commons

Share

COinS