Date of Award

Spring 1-1-2013

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Electrical, Computer & Energy Engineering

First Advisor

Zoya Popovic

Second Advisor

Dragan Maksimovic

Third Advisor

Dejan Filipovic

Fourth Advisor

Bart Van Zeghbroeck

Fifth Advisor

Charles Campbell

Abstract

This thesis addresses an architecture for enhancing efficiency and linearity of GaN power amplifiers using external second harmonic injection at the output. This transmitter architecture has potential uses in communication and radar systems which have stringent requirements of low DC power dissipation and minimum out of band interference. An idealized theoretical analysis based on expansions of the nonlinear transfer function of a PA predicts the measured improvements in linearity and efficiency.

The experimental demostration is performed with both hybrid and integrated harmonically-injected PA using discrete GaN 6W transistors in class-AB mode with 55% PAE at a fundamental frequency of 2.45 GHz. Harmonic injection at the output is shown to enhance the efficiency of the PA to 89%. For a slightly reduced efficiency of 78%, the linearity can be improved and > 15 dB reduction of third and fifth order intermodulation distortion tones is measured in compression.

Integration of a dynamic supply of the harmonically-injected PA is also investigated in order to achieve high efficiency and linearity for signals with Peak-to-Average ratios (PARs) of 6 dB and higher. Experimental results demonstrate a 70-80% efficient HI-PA for an output power variation of 6 dB. Reduction in third order nonlinear products and AM-PM distortion shows improved linearity of the PA over the entire range of power levels.

Finally, the concept is extended to an X-band GaN MMIC to demonstrate integration and efficiency enhancement at 10 GHz with a 4 W, 47% efficient class-AB PA, with an expected final efficiency of over 60% with harmonic injection.

Share

COinS