Graduate Thesis Or Dissertation

 

Self Assembly of Modular Robots with Finite Number of Modules Using Graph Grammar Public Deposited

https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/xg94hp82k
Abstract
  • We wish to design decentralized algorithms for self-assembly of robotic modules that have 100% yield even if the number of available building blocks is limited, and specically when the number of available building blocks is identical to the number of blocks required by the structure. In contrast to self-assembly at the nano and micro scales where abundant building blocks are available, modular robotic systems need to self-assemble from a limited number of modules. In particular, when self-assembly is used for reconguration, it is desirable that the new conformation includes all of the available modules. We propose a suite of algorithms that (1) generate a reversible graph grammar, i.e., generates rules for a desired structure that allow the structure not only to assemble, but also to disassemble, and (2) have a set of structures that are growing in parallel converge to a single structure using broadcast communication. We show that by omitting a reversal rule for the last attached module, self-assembly eventually completes, and that communication can drastically speed up this process. We verify our results by running simulations on Matlab and Player/Stage 2D simulator
Creator
Date Issued
  • 2011
Academic Affiliation
Advisor
Committee Member
Degree Grantor
Commencement Year
Subject
Last Modified
  • 2019-11-18
Resource Type
Rights Statement
Language

Relationships

Items